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Inflation connected to the origin of CP violation
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We consider a simple extension of the standard model, which could give a solution for its CP issues such
as the origin of both Cabibbo-Kobayashi-Maskawa (CKM) and Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) phases and the strong CP problem. The model is extended with singlet scalars which allow the
introduction of the Peccei-Quinn symmetry and could cause spontaneous CP violation to result in these
phases at low energy regions. The singlet scalars could give a good inflaton candidate if they have a suitable
nonminimal coupling with the Ricci scalar. CP issues and inflation could be closely related through these
singlet scalars in a natural way. In a case where the inflaton is a mixture of the singlet scalars, we study
reheating and leptogenesis as notable phenomena affected by the fields introduced in this extension.
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I. INTRODUCTION

CP symmetry is a fundamental discrete symmetry that
plays an important role in particle physics. In the standard
model (SM), it is considered to be violated explicitly
through complex Yukawa coupling constants [1] and a 6
parameter in the QCD sector [2]. The former is known to
explain very well CP violating phenomena in B meson
systems and so on [3]. The latter is severely constrained
through an experimental search of a neutron electric dipole
moment [4] and causes the notorious strong CP problem
[5]. Peccei-Quinn (PQ) symmetry has been proposed to
solve it [6]. If we assume that the CP symmetry is an
original symmetry of nature, the complex phases of
Yukawa coupling constants have to be spontaneously
induced through some mechanism at high energy regions.
It may be compactification dynamics in string theory near
at the Planck scale [7]. In that case, since nonzero & could
be caused through radiative effects after the CP violation,
the PQ symmetry is required to solve the strong CP
problem again.

As an alternative scenario for the realization of CP
symmetry, we may consider it to be exact so that all
coupling constants, including Yukawa couplings, are real
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and also that @ is kept to some scale much lower than the
Planck scale. In that case, the CP symmetry is supposed to
be spontaneously broken, and this violation can be
expected to be transformed to a complex phase in the
CKM matrix effectively. If nonzero 6 is not brought about
in this process, then it is favorable for the strong CP
problem. The Nelson-Barr (NB) mechanism [8] has been
proposed as such a concrete example. Unfortunately,
radiative effects could cause a nonzero € with a magnitude
that contradicts the experimental constraints [9]." However,
the scenario is interesting since it can present an explan-
ation for the origin of the CP violation at a much lower
energy region than the Planck scale. As a realization of the
NB mechanism, a simple model has been proposed in [10].
The model is extended in [11] to the lepton sector where the
existence of a CP violating phase in the PMNS matrix [12]
is suggested through recent neutrino oscillation experi-
ments [13].

Observations of the cosmic microwave background
(CMB) fluctuation [14,15] suggest the existence of the
exponential expansion of the Universe called “inflation.”
Inflation is usually considered to be induced by some
slowly rolling scalar field called “inflaton” [16]. It is a
crucial problem to identify its candidate from a viewpoint
of the extension of the SM. Although the Higgs scalar has
been studied as a promising candidate in the SM [17] under
an assumption that it has a nonminimal coupling with the
Ricci scalar curvature [18], several problems have been
pointed out [19-21]. In this situation, it is interesting to find

'Introduction of the PQ symmetry could solve this fault of the
model. We consider such a possibility in the extension of the
model.
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an alternative candidate for inflaton in a certain extension of
the SM that could solve several problems in the SM. In this
sense, the model extended from a viewpoint of the CP
symmetry as described above could give such a promising
candidate. It contains singlet scalars that cause the sponta-
neous CP violation and allow the introduction of the PQ
symmetry as a solution for the strong CP problem. If they
couple with the scalar curvature nonminimally, then it
could cause slow-roll inflation successfully. In this paper,
we discuss such a possibility that the inflation of the
Universe could be related to the CP violation in the SM. We
study reheating and leptogenesis as its phenomenology
caused by extra fields introduced in the model to solve the
CP issues.

Remaining parts of the paper are organized as follows. In
Sec. II, we describe the model studied in this paper and
discuss both phases in the CKM and PMNS matrices that
are derived as a result of the spontaneous CP violation. In
Sec. III, we discuss the inflation brought about by the
singlet scalars which are related to the CP issues and the
reheating. After that, we describe leptogenesis that could
show a distinguishable feature from the usual leptogenesis
in the seesaw model. The paper is summarized in Sec. IV.
|

II. ORIGIN OF CP VIOLATION
A. An extended model

Our model is an CP invariant extension of the SM with
global U(1) x Z, symmetry and several additional fields.
As fermions, we introduce a pair of vectorlike down-type
quarks (D;,Dg), a pair of vectorlike charged leptons
(Er, ER), and three right-handed singlet fermions N
G=12, 3).2 We also introduce an additional doublet
scalar n and two singlet complex scalars ¢ and S. Their
representation and charge under the symmetry [SU(3), %
SU(2), x U(1)y] x U(1) x Z, are summarized in Table 1.’
The SM contents are assumed to have no charge of the
global symmetry. Since this global U(1) has a color
anomaly in the same way as the Kim-Shifman-Vainstein-
Zakharov (KSVZ) model [23] for a strong CP problem, it
can play the role of PQ symmetry. The present charge
assignment for colored fermions guarantees the domain
wall number to be one (Npw = 1) so that the model can
escape the domain wall problem [24,25].

The model is characterized by new Yukawa terms and
scalar potential, which are invariant under the imposed
symmetry

—£y = yDGDLDR + )’EGELER + Z( GNLN + yd SDLdR + yd STDLdR

j=1

3
+ye,SEper, + .S Eep + Z hajnf(,zvj> +> X;ﬂ (Za)(Z4¢) + H.c.,

a=1

= (@) + a(n'n)* + 23(dT @) (n'n) + Aa(d™n) (" )

+k,(676) + kg(S7S)?

a,f=1

P
+3 Aj [6(n'$)? + H.c]

+ (K¢G¢T¢ + Kr]anTr]) (Oja) + (K¢S¢T¢ + K”SY]T?]) (STS)

+ Kos(670)(STS) + mgp' ¢ + mun'n + mgo'o + mzSTS +V,, (1)

where dg and e are the SM down-type quarks and
charged leptons respectlvely ¢, is a doublet lepton and ¢
is an ordinary doublet Higgs scalar. Since CP invariance is
assumed, parameters in the Lagrangian are considered to be
all real. In Eq. (1), we list dominant terms up to dimension
five, and M, is a cutoff scale of the model. Other invariant
terms are higher order and can be safely neglected in
comparison with the listed ones. V,, is composed of terms
that are invariant under the global symmetry but violate the
S number.

For a while, we focus on a part of field space where the
field values of ¢ and S are much larger than both ¢ and 7 to

*Similar models with vectorlike extra fermions have been
cons1dered under different symmetry structures [11,22].

74 is imposed by hand to control the couplings of the new
fields to the SM contents.

study the potential composed of ¢ and S only. In the present
study, we assume that V,, takes a following form®:

= a(S* + ™) + po'o(S* + 57)

1., -
=3 S2(a8? cos4p + % cos 2p), (2)

where we define o :%eia and S :\/i— e”. Along the
minimum of V, for p, which is fixed by ‘Wb =0, the

potential of & and S can be written as

“Imposed symmetry allows terms §(87 + ™) in V,. How-
ever, we assume that their contrlbutlon is negligible since we
focus our attention on a potential valley where & o S is satisfied,
and then cos 2p could be a constant at the minimum of V,, in that
case.
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TABLE L. New fields added to the SM and their representation and charge under [SU(3) x SU(2), x U(1),]x
U(l) X Z4.
SUB).  SUQR),  U(l), U(l) z SUB)e  SUQ),  Ul)y UL  Z
D, 3 1 -1 0 2 Dy 3 1 -1 2 0
E, 1 1 -1 0 2 Eg 1 1 -1 2 0
c 1 1 0 -2 2 S 1 1 0 2
Ny 1 1 0 1 1 n 1 2 -1 -1 -1
V(3,3) = K, 5 —w?)? 4 Ks (32 — u?)? VEVs as cos2p = —%L”—ZZ as long as |%’:—22| < 1is satisfied,
4 4 the CP symmetry is spontaneously broken to result in a low
Kos (52 —w?) (8% — u?), (3) energy effective model with the CP violation. On the other
4 hand, 6 =0 is satisfied because of the global U(1)
where %, and & are defined as symmetry.relevant to o [26]. The stability condition for
the potential (3) can be given as
Ks = Kg — 7 Ky = kg —2 (4) R % 2
Ks = Ks 4a7 Ks = Kg a, Ks, Kg > O, 4K0'KS > K g- (5)

and w and u are the vacuum expectation values (VEVs) of 6
and S. They are supposed to be much larger than the weak
scale. They keep the gauge symmetry but break down the
global symmetry U(1) x Z, into its diagonal subgroup Z,.’
Since the minimum of V/;, can be determined by using these
|

K2
m% [asd 2(}?5 - 6S> M2 = 212‘5142,

2 )
ms =~ 2Kkqu”, =
4KS

Although they have a tiny subcomponent in these cases, a
dominant component of their eigenstates is S and &,
respectively. The mass of an orthogonal component to S
is found to be m3 = 8au’(1 —cos®2p). Since the global
U(1) symmetry works as the PQ symmetry mentioned
above, and the axion decay constant is given as f, = w, the
VEV w should satisfy the following condition [3,27]:

4% 10% GeV <w < 10" GeV. (7)
The Nambu-Goldstone (NG) boson caused by the sponta-
neous breaking of this U(1) becomes an axion [28] that is
characterized by a coupling with photons [29]:

151 [m
_ b (M) 8
Jorr = 1010 Gev (eV) ®)

It guarantees the stability of the lightest Z, odd field, which
could be a dark matter (DM) candidate as discussed later.

2 o9z
mz ~ 2k ,w

2

K
2.0 = oS \ 2 — p 12 220 =202
m&_2<1<(,— >w = 2k,w°  for kKgu” > kow”.

If we consider the fluctuation of & and S around the
vacua (5) and (S), then mass eigenstates are the mixture of
them in general. If we take account of the stability
condition (5), then mass eigenvalues can be approximately

expressed as

2 for R2w? > &Bu?,

(6)

|

In the next part, we show that the effective model after
the symmetry breaking can have CP phases in the CKM
and PMNS matrices. They are induced by the mass
matrices for the down type quarks and the charged leptons
through a similar mechanism that has been discussed in
[10] as a simple realization of the NB mechanism [8] for the
strong CP problem.

B. CP violating phases in CKM and PMNS matrices

Yukawa couplings of down-type quarks and charged
leptons given in Eq. (1) derive mass terms as

- = ij My 0

where f and F represent f = d, e and F = D, E for down-
type quarks and charged leptons and M is a 4 x 4 matrix.

Each component of M is expressed as my, = hf,~,-<‘;5>’
Fr = (yfjuei” —l—)N)fjue‘i”) and pp = ypw. This mass

matrix is found to have the same form proposed in [10].
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Since the global U(1) symmetry works as the PQ sym-
metry, and all parameters in the model are assumed to be
real, arg(det M) = 0 is satisfied even if radiative effects
are taken into account after the spontaneous breaking of the
CP symmetry [11].

We consider the diagonalization of a matrix M f./\/l;- by a
unitary matrix

i f f i
(Af Bf> (mfmf mf]-"f )(Af Cf>
Cr D) \Fymi i+ FF; ) \B; D

¥
m: 0

N ( of MZ)’ (10)
F

where ﬁaj% is a 3 x 3 diagonal matrix in which generation
indices are not explicitly written. Equation (10) requires
mym} = AyintA; + CiM3Cy,
Fyml, = Bjin?Ay + DIM3Cy,
p3 + FF ) = Bim}By + DiM3Dy. (11)
If u2+F f]-"; is much larger than each component of
F fm;, which can be realized in the case u, w > (¢), then
we find that B, Cy, and D, are approximately given as
il
_AmTy

fﬁz—;r, Dfﬁl. (12)
Wi+ F T

These guarantee the unitarity of the matrix A, within the

|rm ]
Cf| ~ W <

O(1077) is satisfied in each component. In such a case, it is
easy to find

’

present experimental bound [3] since |B;

1
Hy + F iy
M3 = 3 + F 1 F. (13)

Ajjlrh%Af ~ mfm; - (mf}"})(]:fm;),

a=1

The right-hand side of the first equation corresponds to an
effective squared mass matrix of the ordinary fermions f.
It is derived through the mixing with the extra heavy
fermions F. Since its second term can have complex phases
in off-diagonal components as long as y;, # , is satisfied,
the matrix A could be complex. Moreover, if ur < F F ;
is realized, the complex phase of A, in Eq. (13) could
have a substantial magnitude because the second term in
the right-hand side has a comparable magnitude with
the first one. Although it can be realized for various
parameter settings, we consider a rather simple situation
here®:

() <w<u, Vi, ~ Vg < YF- (14)
Since the masses of vectorlike fermions are expected
to be of O(10%) GeV or larger in this case, they decouple
from the SM and do not contribute to phenomena at TeV
regions.

The CKM matrix is determined as Vegy = 0,7Ag,
where O, is an orthogonal matrix used for the diagona-
lization of a mass matrix for up-type quarks. Thus, the CP
phase of Vg is caused by the one of A;. The same
argument is applied to the leptonic sector, and the PMNS
matrix is derived as Vpyns = Al U,, where U, is an
orthogonal matrix used for the diagonalization of a neutrino
mass matrix. The Dirac CP phase in the CKM matrix and
the PMINS matrix can be induced from the same origin of
CP violation. A concrete example of A, is given for a
simple case in the Appendix A.

C. Effective model at a lower energy region

An effective model at lower energy regions than w and u
can be obtained by integrating out the heavy fields. It is
reduced to the SM with a lepton sector extended as the
scotogenic neutrino mass model [30], which is character-
ized by the terms invariant under the remaining Z,
symmetry

3.r3. /. . My _ ERR B
Ly =Y {Z <h;;,fa;71v,- +— N;-'Nj> +)° 2f () (Zp) + He.
p=1"%

j=1

+mipTp + min'n + 2 (¢T9) + a(n'n)? + 23 (¢Td) (nn) + As(dTn) (" @)

+ %5 [(¢"n)* + He],

(15)

where neutrino Yukawa couplings £, ; are defined on the basis for which the mass matrix of the charged leptons is
diagonalized as discussed in the previous part. Thus, they are complex now. After the spontaneous breaking due to the

VEVs of & and S, coupling constants in Eq. (15) are related to the ones contained in Eq. (1) as

(’Leptogenesis could depend on the strength of these couplings heavily in this model as studied later.
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2 2 2 2
=y — Koo Kps | KosKpoKyps Iy =4y — Kno  Kus | KosKyoKys
4z,  4kg 4j kg 4z, 4Ky 4j kg
o KpoKne  KpsKys  KeSKpoKys + KoSKnoKps 3 w
M= ————— — , As = s . (16)
2K, 2K 4K ,Kg M,

These connection conditions should be imposed at a certain scale M, which is taken to be M = M. in the present study.
Stability of the potential (15) requires the following conditions to be satisfied through scales u < M:

;11,22 > 0, 23, 13 +ﬂ4 — |/~15| > =2 11:12. (17)

Potential stability (5) and (17) and perturbativity of the model from the weak scale to the Planck scale can be examined by
using renormalization group equations (RGEs) for the coupling constants. Relevant RGEs at y > M are given in

Appendix B. The mass parameters in Eq. (15) are represented as

MN,- =INW,
KpsK, KoK,
o ) $SheS 2 ¢S 2
my, m(/)—l— <K¢G+—2k5 )w + (K¢S+—2fco >u s
. KysKes KyoKos
2 =m?2+ <K,76 —1—7”2%; >w2 + (K,,S +7'720’; >u2. (18)
o

If ﬁa,% > 0 is satisfied and n has no VEV, then Z, is kept as
an exact symmetry of the model. In this model, we assume
both |7i1,| and 7, have values of O(1) TeV. Since it has to
be realized under the contributions from the VEVs w and u,
parameter tunings are required.7

Phenomenology on neutrinos and DM could be the same
as the one that has been studied extensively in various
studies [31,32] unless the axion is a dominant component
of DM. If the lightest neutral component of # is DM, which
is identified as its real component 7, then both DM relic
abundance and DM direct search constrain the parameters
;13 and A4 [22,33]. As a reference, in Fig. 1 we show their
required values in the (A,.4;) plane for the cases
M,, =09, 1, and 1.1 TeV where 1, = A3 + 4 + 5 and
M3, = mg + 2. (¢)*. They should be also consistent with
the stability condition (17). The figure shows that these
could be satisfied with rather restricted values of 45 and A,.
A perturbativity requirement at 4 > M also constrains the
model strongly since DM relic abundance requires 45 and
|44] to take rather large values. We have to take account of it
to consider the model at high energy regions. As an
example, we show the result of RGE study in the right
panel of Fig. 1. Details of the assumed initial values are
given in Appendix B. If the initial values of 13 and 1, are
chosen at a larger /1 region in the left panel, the perturbative
condition is violated at a much lower region than the Planck
scale. We do not plot the behavior of k; in this figure since
their values are fixed to be very small and they do not

"For parameter values assumed in this analysis, the order of
required tuning is estimated as O(10719).

|
change their values substantially. If they satisfy the con-
dition (5), it can be confirmed to be kept up to the
Planck scale.

Neutrino mass is forbidden at tree level due to this Z,
symmetry except for the ones generated through dimension
five Weinberg operators in Eq. (15). They could give a
substantial contribution to the neutrino masses depending
on the cutoff scale M, and coupling constants y,s. In the
present study, however, we assume that their contribution is
negligible and the dominant contribution comes from one-
loop diagrams with n and N; in internal lines. Its formula is
given as

2

() 1 MNj

L= — N N
I8 My, M?

(19)

where M2 = in2 + (13 + 24)(¢)* and My, > M, is sup-
posed. As an example, one may assume a simple flavor
structure for neutrino Yukawa couplings [35]

h,; =0, h,;
ﬂ3 = —7[13 = h3. (20)

This realizes a tribimaximal mixing, which gives a simple
and rather good Oth order approximation for the analysis of
neutrino oscillation data and leptogenesis [32]. If we
impose the mass eigenvalues obtained from Eq. (19) for
the case |h| < |hy|, |hs| to satisfy the squared mass
differences required by the neutrino oscillation data, then
we find

075034-5
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0.5

-0.5
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15 F g
1 7\’4A 1 1 1 1 1 1
-22 4 6 8 10 12 14 16 18

U

FIG. 1. Left: contours of Q4% = 0.12 are plotted in the (A4, :13) plane by a solid line for M, = 0.9 (green), 1 (red), and 1.1 (blue) in a
TeV unit. Since 5y should be lighter than the charged components, 1, < 0 should be satisfied, which corresponds to a region above the
diagonal black solid line. Direct search bound from XenonlT [34] is shown by the same color dashed line for each M, . Stability
conditions (17) restrict the allowed region to the area marked in the upper right quadrant (marked off by the dot-dashed lines), for which
J» = 0.1 is assumed. Right: an example of the running of coupling constants 1; for M = 10# GeV. Initial values of 15 and A, are fixed as

J3 = 0.445 and A, = —0.545, which are included in the allowed region of the left panel for M, =1 TeV. 13 4+ 21/4;4, and A, +

24/ A4, are also plotted by red and blue lines, respectively.

~ 1 ~ 1
|3s|As = 7V Am,, |h34s|As = 3V Am3,. (21

Since we have Ay 3 ~7 x 10° eV for M, 3 ~ 107 GeV and
M, ~ 10° GeV, the neutrino oscillation data [3] can be
explained by taking as an example

|h2| ~6 X 10_3,
5| ~ 1073, (22)

Even if we impose the neutrino oscillation data, /; can take
a very small value compared with £, 3 [32]. It can play a
crucial role for low scale leptogenesis as seen later.

yNj ~ 10_2’
|hs| ~2 x 1073,

1
S, = / d*x\/=g [—2M§1R —&£,6'6R — &5, STSR —

where M, is the reduced Planck mass and the coupling of S
is controlled by the Z, symmetry. V (o, S) stands for the
corresponding part in the potential (1). Since inflation
follows very complicated dynamics if multiscalars contrib-
ute to it, we confine our study to the inflation in a potential
valley. Moreover, we assume &g = —&g, is satisfied for
simplicity. In that case, the coupling of S with the Ricci
scalar is reduced to 1£gS?R, where S = % (Sg +iS;) and
E¢ = &g — Egp. If S is supposed to evolve along a constant
v

i o =0
then the radial component S couples with the Ricci scalar as
1E¢S?R, where & is defined as & = &gsin?p and the

p, which is determined as a potential minimum

III. INFLATION DUE TO SINGLET SCALARS
A. Inflation

It is well known that a scalar field that couples non-
minimally with the Ricci scalar can cause the inflation of
the Universe, and the idea has been applied to the
Higgs scalar in the SM [17] and its singlet scalar extensions
[36,37]. If the singlet scalars S and o, which are related
to the CP issues in the SM, couple with the Ricci
scalar, then it can play the role of inflaton in this model.
The action relevant to the inflation is given in the Jordan
frame as

¢ t
% (S + SR+ 96'9,0 + 0#570,S - V(5.5)|.  (23)

|
potential V (o, S) is expressed by Eq. (3). Here we consider
cases such that both £, and & are positive only. Stability of
this potential requires the condition given in Eq. (5). We
neglect the VEVs w and u for a while since they are much
smaller than O(M ), which is the field values of & and §
during the inflation. We also suppose that other scalars have
much smaller values than them.

We consider the conformal transformation for a metric
tensor in the Jordan frame

) £,5° + &5
9w = ngﬂlﬂ Q2 =1 + % (24)
pl
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After this transformation to the Einstein frame where the Ricci scalar term takes a canonical form, the action can be

written as

650%51‘3_%
p

-1 .- 1 1
SE—/d4X\/ —qg |:—§M§1R+§a’u)(68ﬂ)(g+§aﬂ)(sa#)(5+ [(

where y, and yg are defined as [36]

4 /
o __ 92 6 2 ,
6 522 0% Mgl

Oys 1
! Q2 2
a5 @ + 6§S M2 (26)

If we introduce variables 7, ¢ to express & and S as
6 = ycos@, S = ysin ¢, then the potential in the Einstein
frame at the large field regions such as &,67 + &5% > M2,
can be written as

M3y kgsint + &,co8*p + K g5in2pcosp
4 (£,c08%p + Egsin’p)?

V(Z.9)= (27)

We find that there are three types of valley along the
minimum in the ¢ direction of this potential. They realize
different types of inflaton. Two of them are

(i)

Q= for 2%055 < Kys&s,
(ii) ¢ =

0
T ~
> for 285&,; < Ky5és. (28)
In each case, a kinetic term mixing between y, and yg
disappears and inflaton can be identified with y,, for (i) and
s for (ii), respectively.®

Another valley that is studied in this paper is realized at

2’%0'55 - KUSéO’

sin? ¢ = ~ g . (29)
(ZkSéa - KaSéS) + (212'0'55 - Kana)
under the conditions
ZI%GES > Kasfm 2’%5'&(7 > K{)’SES’ (30)

where we note that these are automatically satisfied for
k,s < 0since Eq. (5) is imposed, and & and &, are assumed
to be positive. In this case the inflaton 7 is a mixture of &
and S with a constant value of &/S. Although the kinetic
term mixing cannot be neglected for a general sin ¢, it can
be safely neglected if we restrict it to the one in which the

8In different context, the inflaton dominated by & and the S
inflaton have been discussed in [38,11], respectively.

_ YO s——2
> 2 ~N11.29 Ao 7
@455 ) (@2 +555) | Q

V(,8)|, (25)

pl

I
inflaton is dominated by S(sin>¢@ ~1) or &(sin?¢ ~0).
We focus our study on the former case where 7 > & is
always satisfied during inflation. If we additionally impose

&g > £, on Eq. (29) and assume that the relevant couplings
satisfy

Kss < 0’ ’?S < |K(FS| < ’~<0" (31)

sing is expressed as sin’¢ =1 +"“5 In this case, by

, potential can be expressed as V(S) =
/}

uSlng KS - KS _4T

a7 ksS* at the bottom of the valley and cos 2p = — £ cot? ¢
realizes the minimum of V, if tan’ ¢ > | £| is satlsﬁed.
Nature of the inflaton 7 is fixed by the parameters kg, K,
and k,g.

Squared mass of the orthogonal component to y during

. . . |K 5|M2 .
inflation can be estimated as m?ﬂ = % Since the
S
fcsMgl

Hubble parameter H; satisfies H? = at the same

1282
period, H; < mj; is satisfied under the condition (31).10
Thus, the inflation y starts rolling along the valley within a
few Hubble time independently of an initial value of the

inflaton. It justifies our analyzing the model as a single field

inflation model. On the other hand, since 6(= %}?) >

% is satisfied generally,'' the global U(1) is spontane-
ously broken during inflation, and isocurvature fluctuation
could be problematic [38]. However, even in that case it is
escapable since the axion needs not to be a dominant
component of DM in the present model. This problem is
discussed later.

The canonically normalized inflaton y can be expressed
as [38]

°If we assume &g > |k,|, then sin ¢ is differently expressed as
sinffp =1-— KSE” . However, we do not consider such a case in this
paper.
""Mass of another orthogonal component S; is estimated as
8aM>
mgl ~7 Bl
present study and then 96a > kg is required for mg, > H,.
Although a < kg is assumed from the vacuum determination,
it can be satisfied for suitable values of a.
llAlthough it may be escapable for &g < \/|k,g], it i
case in the present model.

for a case cos2p ~ 0, which is interested in the
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dy -, §?
922532,/y924-65§EE§ (32)

where y can be approximated along the valley as

Kss
. 33
2k, (33)

If we use y ~ 1, then the potential of y obtained through
Viy) = V(5. S) can be derived by using the solution of

Eq. (32), which is given as
\ﬁ&
M
= —V/6 arcsinh !

e _ Ve
ZMP1 "1 + fs S2
[ Es(14+8&5)8
+ r+ fs arcsinh M . (34)
fs My,

We derive the potential of y through numerical calculation

for a typical value of & by using Eq. (34). Such examples
of V(y) are shown in Fig. 2. It can be approximated as

r=1-

%M“l x> Mpl
M
Vix) = Qﬁ%ﬂ <y <M. (35)
M.
&yt X <7

The inflation ends at y.,q =~ M. After the end of inflation,
there is a substantial region where the potential behaves as a
quadratic form before it is reduced to a quartic form at low
energy regions for the case &; > 1 as in the Higgs inflation.
However, such a region can be neglected for the case
& < 10, which is the case considered in this study. Since
the inflaton oscillating in the quartic potential behaves as
radiation as shown later, the radiation domination starts
soon after the end of inflation in that case.

The slow-roll parameters in this model can be estimated
by using Eq. (32) as [16]

My (K’y o My
2 \V rEs(1+885)8"
v 8M?

The e-foldings number A/, from the time when the scale k
exits the horizon to the end of inflation is estimated by
using Eq. (32) as

1 1V
N":W/ v

pl Hend

m
Il

3 3 ML +ES;
s;m)—-Jn—————lélf—. (37)

end

8M2

Taking account of these, the slow-roll parameters in
this inﬂation scenario is found to be approximated as

€ W and 5 ~ _/\L/A' The field value of inflaton during

the inflation is found to be expressed as y; =

@Mpl In(32&4N) by using Egs. (34) and (37), and its
potential V,(=V(y,)) takes a constant value as shown in

Eq. (35). On the other hand, if we use ¢ = 1 at the end of
inflation, then the inflaton potential is estimated as

end( V(chd)) 0.0723 g Mgl’

good approximation from Fig. 2.
The spectrum of density perturbation predicted by the
inflation is known to be expressed as [16]

ksl Vv
Plk) =As| — , Ay =———
(k) (k*) 247r2Mgl€ k

which is found to be a

(38)

If we use the Planck data A, = (2.1011“8’8;}) x 107 at
k, = 0.05 Mpc~! [15], then we find the Hubble parameter
during the inflation to be H; = 1.4 x 1013(/\6/—?) GeV and

the relation

60
Ksz413X10“f2<Nk>, (39)

which should be satisfied at the horizon exit time of the
scale k,. We confine our study to the case & < 10.

In Fig. 3, we plot predicted values for the scalar spectral
index n,; and the tensor-to-scalar ratio r in the present
model. Since the quartic coupling Ky is a free parameter of
the model under the constraint (39), we vary kg in the range
10710 < &g < 1077 for fixed values of & or ;. The CMB
constraint (39) is satisfied at intersection points of the lines
with a fixed value of & or \/. The figure shows that the
constraints of the observed CMB data [15] are satisfied for
the supposed parameters.

After the end of inflation, the inflaton y starts oscillation
in the potential V(y). At this stage, the description by y is
no longer justified, especially, at the small field regions. ¢
is not constant in general there. S and & should be treated
independently. In the following study, however, we confine
our study to a special inflaton trajectory and estimate the
reheating phenomena by using y to give a rough evaluation
of reheating temperature under the assumption that inflaton
follows a constant ¢ trajectory.'” In this case, inflaton
oscillation is described by the equation

d*y dy
3H-=+V'(y) =0. 40
L%y (@0

“During the first several oscillations, both ¢ and p can be
numerically confirmed to take constant values. This suggests that
single field treatment is rather good during the first few
oscillations at least.
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FIG. 2. Potential of the inflaton y for & = 1 (left panel) and & = 10 (right panel). In both panels, &/&, = 20 and &g/ ks =

|k,5]/%s = 0.1 are assumed and Xy is fixed by using Eq. (39) for A} = 55. As references, we also plot approximated potential (%Mpl;(z
N

2

and & »* in Eq. (35) as y? and y*. In these plots, a Planck unit (M, = 1) is used.

0.007 —
3 10—
0.0065 l\élk:SO
0.006 N5 —— ]
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0.0055¢ 3
~ 0.005% 3
0.0045¢ 3
0.004¢ 3
0.0035¢ 3
0.003
0.95 0.97

FIG. 3. Predicted values of the scalar spectral index n; and the
tensor-to-scalar ratio r in this model. They are read off as the
values at intersection points of two lines with a fixed value of &g
or Ny. The coupling constant kg is varied in a range from
1077 to 10710

Since the amplitude of y evolves approximately as

D(1) = \/—,

. . . . 1 = _ .
inflation, the inflaton y oscillates S—— T (Eg— 1) times

in the quadratic potential after the end of

before the potential (35) changes from a quadratic form
to a quartic one. This means that preheating under the
quadratic potential could play no substantial role for
the case st < 10. In such a case, we need to consider
the preheating in the quartic potential only. The model with
the quartic potential V(y) = % 4 becomes conformally
invariant [39].

If we introduce dimensionless conformal time z, which is
defined by using a scale factor a as adt = v/Kgyenadt
and also a rescaled field f = £, then Eq. (40) can be

HXend ’
rewritten as

&
d—f{ +f=0. (41)

The solution of this equation which describes the inflaton
oscillation is known to be given by a Jacobi elliptic function
f(z) =cn(r - 1,»,%).13 From the Friedman equation for

this inflaton oscillation, we find

a( )_ Xend

T —m’[, T:2(3K5M§1)1/4\/;. (42)
Since H = 1/2t is satisfied, this oscillation era is radiation
dominated. If we take into account such a feature of the
model that radiation domination starts just after the end of
inflation, the e-foldings number N, can be expressed by
noting a relation k = a;H, as

k V1/4 V1/4
=56.7-1 In{——d ) 4 2In( L),
Ne “<aoHo> * “(1014 GeV> " n(v”“)

end
(43)
where H? = 3‘/72 and the suffix O stands for the present
pl

value of each quantity. Reheating temperature dependence
of N is weak or lost differently from the usual case [16]
where substantial matter domination is assumed to follow
the inflation era.'* In the next part, we discuss the reheating
temperature expected to be realized in the present model.

BIf we take 7; ~2.44, then f(z) can be approximated by
cos (% 7), where 7 is expressed by using the complete elliptic
integral of the first kind K as 7, = 4K (\/ii) [39].

1t reheating occurs through a perturbative process at y < u
where matter domination is realized, its effect on A/, could also
be negligible as long as I' > H is satisfied at that stage where I" is
inflaton decay width.
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B. Preheating and reheating

Before proceeding to the study of particle production under the background oscillation of inflaton, we need to know the
mass of the relevant particles, which is induced through the interaction with inflaton. Such interactions are given as

YE Ko8

T 22%,”

YD Kss

—7? xD Dy
1 b
+7(ye,.e + 3e,e " )xELer, —

1
5 (kpsd"p + kysn'n)y* — 2%,

ny Kss

222K,

298 (kg b + Kol M)

YEL R+Z{ (va,e” + Fa,e™*)xDdp,

Jon]

(44)

The particles interacting with the inflaton y have mass varying with the oscillation of y and their mass can be read off from

Eq. (44) as

where F' = D or E should be understood for f = d or e,
respectively. Since the effect of nonminimal coupling is
negligible during this oscillation period, it is convenient to
use the components of ¢ and S, which are parallel and
orthogonal to the inflaton y to describe their interactions. If
we indicate each of them as o, 01, S| and S |, then their
interactions are expressed as

7 (Sﬁ + 87 —u?)? + 4 (Sﬁ + 8% - uz)(aﬁ + 0% —w?)
K(T
+t (aﬁ +0% —w?)2 (46)

By combining these interactions with the composition of y,
their masses are found to be given by15

2
K oS 2 ,
<| oS 4K(;>Z

(47)

K2
2 [ an 5SS \.2 2
mSH - <3KS + )){ ’ mo'H

2
USZ

L 4~

The coupling constants relevant to these masses are
restricted through the assumed inflaton composition and
the realization of the CP phases in the CKM and PMNS
matrices. The discussion in the previous sections shows that
such requirements are satisfied for

"It should be noted that the mass of & could have another non-
negligible contribution that is induced by explicit breaking of the
global U(1) symmetry brought about by the quantum gravita-
tional effects. We do not take account of it in the present study.

1 |K0'S‘
m,% =3 (K,,S + =Ky X (45)
|
ks < [Kos] <Ko, Rs < YN Y52 Vg, (48)
We assume additionally
A — |K(SS| | O’Sl 49
Kg <g¢—K¢S+—’,€ Kgo S<gn—KnS+ Kyo- ( )

Since the oscillation frequency of the inflaton is ~+/&gy,
decays or annihilations of the inflaton are kinematically
forbidden except for the one to ¢, as found from Egs. (45)
and (47). In o case, the inflaton reaction rate to it is much
smaller than the Hubble parameter at this period because of
the smallness of its coupling with the inflaton, energy drain
from the inflaton to ¢ is ineffective to be neglected. As a
result, the energy transfer from the inflaton oscillation to
excited particles is expected to occur at the time when the
inflaton crosses the zero where the resonant particle
production is possible.

Preheating under the background inflaton oscillation can
generate the excitations of y itself and other scalars y which
couple with y at its zero crossing [40]. In a quartic potential
case [39], the model becomes conformally invariant and the
time evolution equations of y;(~S;) and v, which are the
comoving modes with a momentum k, can be transformed
to the simple ones by rescaling them to the dimensionless
quantities in the same way as Eq. (41). They are given as

2
dr?

d _
szk+a)ka_0 @%:k2+€lf(7)27
Ks

X+ @2 X, =0, w? =k +3f(1)%,
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where the rescaled variables are defined as

ak
Zend\/’a '

Function f () is the solution of Eq. (41) and g,, stands for a
coupling constant of the relevant particle w (= o,S |, ¢, n)
with the inflaton y, which can read off from Egs. (45)
and (47). Amplitudes X; and F} are known to show the
exponential behavior « e¢#«* with a characteristic exponent
k> which is determined by a parameter g, /ks. Using the
solutions of Eq. (50), the number density of the produced
particle y can be calculated as

~ 2
Vo Wy |F;<| F 2 _l
Mk 2f<5<c7)§ ) =3

Xk:a)(k Fk

b
Xend

_ ay

’ ]_C -
Xend

(51)

(52)

Particle production based on Eq. (50) at the inflaton zero
crossing has been studied in [39] and it is shown to be
characterized by the parameter g, /ks. We classify the
relevant couplings into five groups

9o gs gs
A) L1, B) =L =3, C) =L =1,
() % B) 2 © %
gal g¢ g’?
D <1, E) —,—>1, 53
(D) () .2t > (53)

where we note that couplings in (A)—~(D) are fixed by the
present inflaton composition but the ones in (E) are not
constrained. Now we consider the resonant particle pro-
duction in each group. A maximum value of characteristic
exponent in (D) is very small so that it plays no effective
role also in preheating. In (B) and (C), both the fluctuations
of S and §, are produced fast, but it stops as soon as
(IS|*) and (|S , |*) reach a certain value such as 0.5y2 ,/a*.
Although a maximum value p,,, of the characteristic
exponent of (B) is much smaller than the one of (C) and
also the resonance band of (B) is much narrower than (C),
the interaction SﬁSzl accelerates the production of fluctua-

tions of §) through rescattering and they reach the similar
value [38,41]. Since the backreaction of these fluctuations
to the inflaton oscillation restructures the resonance band,
the resonant particle production stops before causing much
more conversion of the inflaton oscillation energy to
particle excitations. Moreover, since the decay of excita-
tions produced through these processes are also closed
kinematically, these could not play an efficient role in
reheating. In (A), since o) also couples to the inflaton
directly, the resonant production of its excitation stops at a
certain stage due to the same reason as (B) and (C). Even if
the excited particles are allowed to decay to fermions F and
N ; kinematically, the decay width is much smaller than the
Hubble parameters to be neglected. As a result, if the
process due to (E) is not effective, preheating cannot play

any role for reheating and reheating proceeds through
perturbative processes after the amplitude of inflaton is
smaller than the VEV u.

Here, we have to note that there is a possibility in (E)
where the energy transfer from the inflaton oscillation to
radiation proceeds through preheating since the produced
excitations can decay to relativistic particles differently
from (B) and (C). In this case, ¢ and 5 are produced as
excitations at the zero crossing of the inflaton where an
adiabaticity condition @} < @; could be violated for certain
values of k. By using the analytic solution of Eq. (50)
derived in [39], the momentum distribution nf of the
produced particle y through one zero crossing of the
inflaton can be estimated as

i
25
27°Kg

n},('l’ = o7 = g=(k/k)? k2= (54)
where 7, is an inflaton oscillation period and 7, = 7.416.
The resonance is efficient for k < k.. Thus, the particle
number density produced during one zero crossing of the

inflaton is

37 37 7.3
ﬁ'l’ = d k nl[/ = d k e_<l_‘/l_‘c)2 — L
eyt~ | Gay 8

The energy transfer from the inflaton oscillation to
relativistic particles is caused through the decay of the
produced particles w(=¢,n) and thermalization proceeds.
They can decay to light fermions through ¢ — g with a top
Yukawa coupling /, and n — ZN with neutrino Yukawa
couplings h;, respectively. Here, we should note that 7 can
be heavier than N at this stage even if 7 is the lightest one
with Z, odd parity at the weak scale. It is caused by the
inflaton composition in the present model as found from
Eq. (45). Their decay widths in the comoving frame are
given by using the conformally rescaled unit as

(55)

2
- Cyly - amy, 9y
= My, m, = = ., (56
W 81 W W Kend /—’,%S ’%S (T) ( )

where y = ¢,n, and c,, are internal degrees of freedom
¢y =3 and ¢, = 1. The Yukawa coupling y, represents
yp =h, and y, = h;. Since I',! <1,/2 is satisfied for
Gy > 4 X 10‘7(£—ig), the produced y decays to the light
fermions completely before the next inflaton zero crossing
[42], and then it is not accumulated in such cases. We fix
7 =0 at the first inflaton zero crossing so that f(z) can
be expressed approximately as f(z) = fosin(cfy7).
Transferred energy density through the y decay during a
half period of oscillation can be estimated as'

15 is defined as the energy density in the comoving frame by
using the conformally rescaled variables.
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ng:w‘r’

70/2  _
op, :/ d<l', m,n,e
0

1 9y 5/4
=P &) TUoen) G7)

where y,, and Y(f.7,,) are defined by using ¢ = 27/7, as

2
o
Y 8me \| &g

Y(fo.7y) = *" deflsin? 2, s’ (F) (58
0:Yy) = CVy ; Tfgsin(cfor)e v >). (58)

The energy density transferred to the light particles is
accumulated at each inflaton zero crossing linearly and its
averaged value for 7 is estimated as

2t

ﬁr( ) = _5pr =6.5x 10" (91//

Ks

) Y Fore (59)

where the substantial change of f is assumed to be
negligible during 7. Since the total energy density of the
inflaton oscillation energy p, and the transferred energy p,
to light particles is conserved, reheating temperature
realized through this process can be estimated from

Py..a = Py It can be written by transferring it to the physical
unit as
L \/’g)(end 4 _ 7[_29 T4 (60)
4R a 307 R

where we use p, = W and g, = 130. By applying
Egs. (42) and (59) to this formula, we find"’

Tg =59 x1056,/*Y(fo.7,) GeV. (61)
Since h,> h; is satisfied, reheating temperature is
expected to be determined by the produced ¢ as long as
¢ is dominantly produced.

If preheating cannot produce relativistic particles effec-
tively, then the dominant energy is still kept in the inflaton
oscillation. When the oscillation amplitude of y decreases
to be O(u), the inflatons start decaying to the light particles
through the perturbative processes. Since the mass pattern
is expected under the present assumption for the coupling
constants in (48) to be

2]’7’[,7 < m)( < MD,ME, (62)

the inflaton decay is expected to occur mainly through
x—n'nand y — ¢’ at tree level. The decay width of
w(=¢,n) is estimated as

""The same result can be obtained by using the relation H =
in the radiation dominated era together with Egs. (42) and (59).

vw

Qq/

167k "

&l

(63)

v =

where g,, is defined in Eq. (49). After the inflaton decays to
1" and ¢' ¢, the SM contents are expected to be thermalized
through gauge interactions with n and ¢ immediately. Since
I, > H is satisfied for g, > 107" (10 8)1/2(1011“06\])1/2 at
¥ =~ u, reheating temperature in such a case can be estimated

la 4 _ x* 4,18
through s ksu” = 259,Tk as

AN 1/4 u
Tp~2.8x 108 -3 v 4
pe= 2810 (10 ) (1011 GeV) GeV,  (64)

which is independent of g,. However, if T', > H is not
satisfied because of a small g,,, the reheating temperature is
expected to be determined through I, = H and then
becomes smaller proportionally to g,,.

In the left panel of Fig. 4, for a case y = ¢, the expected
reheating temperature through both processes is plotted
as a function g, in a case Ky =10"% &, =10"*7,
lkys|/K, = 10712, and u = 10" GeV. It shows that the
reheating temperature is determined by the perturbative
process at g, < 107%. We also found from the figure that
the reheating at g, > 1076 proceeds through the preheating.
Even if the dominant component S of the inflaton has no
coupling with ¢ so that g, ~ |k,s|x,,/K,, the preheating is
caused by the component o. It is shown in the right panel
where the reheating temperature is plotted for x,, by
varying |k,s|/%,."" These figures show that T > 2.3 x
10® GeV can be realized if gy >4 x 1078 is satisfied.
However, since the perturbativity of the model is found to
be violated at g; > 10~** as mentioned in the previous
footnote, k4, < 1074 and k,, < 1072 should be satisfied,
and then the reheating temperature cannot be higher than
~10'° GeV as found from the figure. Since the decay of ¢
is so effective, it decays soon after their production and
much before the inflaton amplitude becomes large during
the oscillation. This makes the energy transfer in the
preheating inefficient.

In the usual leptogenesis in the seesaw scenario, the
right-handed neutrinos are supposed to be thermalized only
through the neutrino Yukawa couplings ;. In the present

"Although a larger value of u can make the reheating
temperature much higher, its upper bound exits. Since a larger
g, 1s required in that case, it could violate the perturbativity of the
model and cause the upper bound for it. For example, if we
consider the case with y, = 107!2, the perturbativity is violated
for g, > 10744, As a result, the reheatmg temperature due to the
perturbative process 1s bounded as T < 6.3 x 10!* GeV.

The condition F‘ < 79/2 can be confirmed for the param-
eters used here.
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FIG. 4. Left: reheating temperature T (GeV) predicted for both the preheating (a) and the perturbative process (b). They are plotted as
a function of g,. In the case (a), the decay ¢ — gt is assumed. Right: contribution to the reheating temperature due to a component ¢ of
the inflaton in a case x5 = 0. The reheating temperature T (GeV) is plotted as a function of k,. Each line represents T for several
values of (K, |k,s|/%,), where &, is fixed at 107> and 107> for &g = 107 and 10~°, respectively.

model, neutrino mass eigenvalues obtained from Eq. (19)
require 1,3 = O(1072) to explain the neutrino oscillation
data as discussed at a part of Eq. (22). On the other hand,
reheating temperature is found to satisfy Tk > 108 GeV
from the above discussion. Since the decay width I'y, . of
N>3 and the reheating temperature Ty satisfy Iy, >
H(Tg) and Tg > My, ,, N,3 are also expected to be in
the thermal equilibrium through the inverse decay simulta-
neously at the reheating period. In the case of N, however,
it depends on the magnitude of its Yukawa coupling /,,
which can be much smaller than others. We should note that
N, could be effectively generated in the thermal bath, even
if 1y is extremely small, through the scattering of extra
fermions that are expected in the thermal equilibrium
through gauge interactions in the case Mp, My < Tg. It
is a noticeable feature of the present model, which opens a
window for low scale leptogenesis.

IV. PHENOMENOLOGICAL SIGNATURE
OF THE MODEL

A. Leptogenesis

The most interesting feature of this inflation scenario is
that thermal leptogenesis could generate sufficient baryon
number asymmetry even for My < 10° GeV without
relying on resonance effect. In the ordinary seesaw frame-
work, neutrino mass is generated as (m,),; = haih/};@ s

J
through Yukawa interaction h,,j?aquj. Baryon number
asymmetry in the Universe [43] is expected to be generated
by the same interaction through thermal leptogenesis [44].
If we assume the sufficient lepton asymmetry is generated
through the out-of-equilibrium decay of the lightest right-
handed neutrino, which has been in the thermal equilib-
rium, then the reheating temperature T’ is required to be
larger than its mass T > M, . Moreover, since it has to be
produced sufficiently in the thermal bath, its Yukawa

coupling h,; should not be so small. On the other hand,
the neutrino mass formula gives a severer upper bound on
hgy for a smaller My under the constraints of neutrino
oscillation data. These impose a lower bound for M, such
as 10° GeV [45]. This condition for M n, 1s not changed

even if T > 10° GeV is satisfied. The problem is caused
by such a feature of the model that both the production and
the out-of-equilibrium decay of the right-handed neutrino
have to be caused only by the same neutrino Yukawa
coupling. It does not change in the original scotogenic
model either [32]. In that model, the right-handed neutrino
mass can be much smaller than 10° GeV, keeping the
neutrino Yukawa couplings to be rather larger values by
fixing |15| at a smaller value in a consistent way with
the neutrino oscillation data. However, the washout of the
generated lepton number due to the inverse decay of the
right-handed neutrinos becomes so effective in that case.
As a result, successful leptogenesis cannot be realized for a
lighter right-handed neutrino than 108 GeV.O It is a
notable aspect in the present model that this situation
can be changed by the particles which are introduced to
explain the CP issues in the SM.

We note that the interaction between the right-handed
neutrino N, and extra vectorlike fermions F mediated by &
could change the situation.”! The lightest right-handed
neutrino N; can be effectively produced in the thermal
bath through the extra fermions scattering D; Dg, E; Ex —
NN, mediated by & if D; p and/or E; p are in the thermal
equilibrium at a certain temperature 7. In that case, both
conditions T > My, M v, and T'pp ~ H(T) are required to

®Low scale leptogenesis in the scotogenic model has been
studied intensively in [46]. However, the lightest right-handed
neutrino is assumed to be in the thermal equilibrium initially
there.

'The similar mechanism has been discussed in models with a
different type of inflaton [33,47].
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be satisfied, where Iy is the reaction rate of this scattering.
Mass of these fermions is determined by the VEVs u and w,
which should be larger than the lower bound of PQ
symmetry breaking scale. Since the rough estimation of
['pp =~ H(T) for relativistic F and N, gives

2 2
T:5.8x108<10yf1'2> (%) GeV,  (65)

we find that T > M F> My, could be satisfied for suitable
values of y and yy, . It is crucial that this does not depend
on the magnitude of the N; Yukawa coupling /. If an
extremely small value is assumed for A, successful
|

leptogenesis is allowed in a consistent way with neutrino
oscillation data even for My < 10° GeV.

After N, is produced in the thermal bath through the
scattering of the extra fermions mediated by &, it is expected
to decay to Z,n" by a strongly suppressed Yukawa coupling.
Since its substantial decay occurs after the washout proc-
esses are frozen out, the generated lepton number asymme-
try can be efficiently converted to the baryon number
asymmetry through sphaleron processes. This scenario
can be checked by solving Boltzmann equations for Yy,
and Y, (=Y, —Y;), where Y, is defined as Y,, = by
using the y number density n,, and the entropy density s.
Boltzmann equations analyzed here are given as

dYy z Yy N Yy
L | 1 +1 .
de " sH(My,) (YN IER g tt) 2

v, _ oz | (YN
dz — sH(My) [ \ry

where 7 = MTN
CP asymmetry ¢ for the decay of N, is expressed as

&=

8711 4 Za
2

{4|h2|2F (y ) sin2(0, — 0
~16n )’Nl

where h; = |h;le; and F(x) = /x[1 — (1 +x)Ini]. A
reaction density for the decay N; — ¢,n" and for the lepton
number violating scattering mediated by N is expressed by

yg’ and YN, respectively [32]. yr represents a reaction
density for the scattering D; Dg, E; Ex — N;N,. We as-
sume that (D;,Dg) and (E;,Eg) are in the thermal

equilibrium and Yy =Y, =0 at z = zR(_N;’;‘)

Now we fix the model parameters for numerical study of
Eq. (66) by taking account of the discussion in the previous
part. We consider two cases for the VEVs of the singlet

scalars such that

1 [, (PP (M,
2. T F<

2
My,

F=D.E

N, 2Y, 4
YD — qu Z (Z +}’N>:| (66)

¢ j=123

- and an equilibrium value of Y, is represented by Y,/. H(T) is the Hubble parameter at temperature T and the

)

)+ |h3|2F(

2

) sin2(6), 93)} , (67)

Nl

|
where the axion could be a dominant DM in case (II).
The parameters kg, &,, and k,g, which characterize the
inflaton y, are fixed to &g = 1073, &%, = 107*3, and
lkss| = 107!, These are used in the right panel of
Fig. 4. The condition F ;F } > u2 for which the CP phases
in the CKM and PMNS matrices can be generated is
reformulated as 8 = My /up > /2. If we confine our study
on a case y; = (0,0,y) and )”)f = (0,9,0) for s.implicity,22
then we have a relation y* + §* = (6% — 1) >y} among
Yukawa couplings of the extra fermions. We fix them as
5=+/3,5/y=0.5and y, = yp = 10712 at the scale M.
Parameters relevant to the neutrino mass generation are

M) w=10" GeV, u=10" GeV, ,
fixed as
(I1) w= 10" GeV, u = 10" GeV, (68)
J
v, =2x 1072, yy, =4 %1072 for (I)and (II),
yv, =7x 1073, || =6x1077 |is| =107, M, =1TeV for (I),
yy, = 1073, || =6x107, |is|=5x1073, M, =09 TeV for (II). (69)

It is considered as an example in Appendix A.
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These parameters fix the mass of relevant particles as

(I) My, =7 x10° GeV,
Mp=Mg=1.1x10% GeV,
(II) My, = 10® GeV,
Mp=Mg=1.1x10" GeV.

Although the mediator has a small component S, it can be
safely treated as 6. For these parameters, the CP asymmetry
¢ in the N, decay takes a value of O(107%) in both cases if
the maximum CP phase is assumed. DM is determined by
the couplings 45 and 4. Since they are fixed so as to realize
the correct DM abundance by the neutral component of 77 in
the case (I), it cannot saturate the required DM abundance
for the same /5 and 4, in the case (II) as found from Fig. 1.
The axion could be a dominant component of DM in the
case (II) since w is taken to be a sufficient value for it.
We give a remark on these couplings here. It is crucial to
examine whether the above parameters used in this analysis
are consistent with the potential stability conditions (5),
(17) and also the perturbativity of the model under
constraints coming from the requirements for the DM relic
abundance and the reheating temperature. If DM relic
abundance is realized by the neutral component of #, both
5 and A, should take values shown in Fig. 1. On the other
hand, the reheating temperature required for sufficient
leptogenesis can be realized for k,, = 107* or Kps 2
10~7 as found from the analysis of the reheating temper-
ature. Since they can give rather large contributions to the 3
functions of the scalar quartic couplings «,, and k,g for
example, the perturbativity up to the inflation scale could
be violated. An upper bound on g, has to be imposed to
escape it and it results in an upper bound on the reheating

100} |7

108k
10710 ¢
102
107}
10716}

-18
1
0 0.01

FIG. 5.

My, =2 x 107 GeV,
mz = 8 X 10° GeV,
My, =2x10° GeV,
5 =8x10% GeV. (70)

My, = 4 x 107 GeV,

My, =4x10° GeV,

|

temperature discussed already. The parameter sets used
here have been confirmed to satisfy these conditions
through the RGEs study. Details of the used parameters
in the analysis are addressed in Appendix B and an example
of the results of this study is presented in the right panel
of Fig. 1.

Solutions of the Boltzmann equations in the cases (I) and
(IT) are shown in Fig. 5. The lightest right-handed neutrino
mass in each case is My, =7 x 10° and 10® GeV. In both
cases, the sufficient baryon number asymmetry is found to
be produced. The figure for the case (I) shows clearly that
the present scenario works well. Y reaches a value near
Y f\?l through the scattering of the extra fermions as
expected. Substantial out-of-equilibrium decay occurs at
7> 10 to generate the lepton number asymmetry. The
delay of the decay due to the small &; could make the
washout of the lepton number asymmetry ineffective. On
the other hand, we cannot definitely find a signature of
the scenario in the case (II), where the N mass is near the
bound for which the usual leptogenesis can generate the
required baryon number asymmetry in the original scoto-
genic model [32]. The figure shows that additional con-
tribution to the N; production starts at z~0.1. It is
considered to be brought about by the N, inverse decay
since it is expected to become effective around

-5 M
Z~ (6.3>}<l}0 )( Ni

). The figure shows that it plays a

10° GeV

100

Evolution of Yy, and Y, obtained as solutions of Boltzmann equations. Results of the case (I) is shown in the left panel for

Kpo = 10~ and Kgps = kys = 0. Results of the case (I) is shown in the right panel for ;5 = k,5 = 107 and Kgpo = Ky = 0. Other
parameters in each case are given in the text. Initial values for them are fixed as Yy, = ¥, = O at z = zg. py, /pg represents aratio of the

energy density of N; to the one of radiation.
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FIG. 6. Left: baryon number asymmetry generated at the expected reheating temperature T (GeV) in the case (I). It is plotted by a red
solid line for y, = 107! and by green crosses for y, = 10~!7. Right: baryon number asymmetry generated at Tx = 10° GeV for
various values of s and yy, in the case (I). In both panels, other parameters are fixed at the ones given in (69).

main role for the N; production. As a result, the lepto-
genesis in this case results in the ordinary one where the
lower mass bound of N, is O(10%) GeV.

These results show that the model with suitable param-
eters can generate a sufficient amount of baryon number
asymmetry through leptogenesis even if the reheating
temperature is lower than 10° GeV as long as M N, <
Tr GeV is satisfied. In the present model, both the right-
handed neutrino mass and the extra fermion mass are
determined by M N, =YW and My = Syzw. Since w is
fixed as the PQ symmetry breaking scale and 6 > 1 is
imposed for the realization of the substantial CP phases in
the CKM and PMNS matrices, their mass cannot be
arbitrarily smaller than 10° GeV under the condition that
the scattering of the extra fermions to the right-handed
neutrinos is effective. Because of this reason, low scale
leptogenesis, which can be a distinguishable feature of the
model, tends to be allowed only for the case where the PQ
symmetry breaking occurs at a neighborhood of its lower
bound. Even in that case, successful leptogenesis is
expected to be realized only in the range My, >

4 % 10%(;352)7"/2 GeV for the case Ty > 10° GeV since

T in Eq. (65) should satisfy T > My, M, for the sufficient
N, production.

In Fig. 6, we show the baryon number asymmetry Yp
generated in the case (I) varying the values of relevant
parameters. In the left panel, Yp is plotted as a function of
the reheating temperature, which is fixed by the inflaton
composition and its coupling with ¢ and 7. Two values of
yr are used in this plot. The N production in the present
scenario depends on the reheating temperature and the
couplings yp, yy,. A red solid line representing Yp is
expected for the parameters given in Eq. (69) for the
case (I). It becomes larger and reaches an upper bound
Y ~ 2.5 x 107! when the reheating temperature increases
to 10'° GeV. This behavior can be understood if we take

into account that the equilibrium number density of extra
fermions are suppressed by the Boltzmann factor at lower
reheating temperature and then the N, production due to
the scattering of extra fermions is suppressed. We also plot
Yp for a smaller value of yr by green crosses at some
typical Tg. They show that Y takes smaller values for a
smaller yr since the N production cross section is propor-
tional to y%.B In the right panel, Y is plotted by varying
|;15| and yy, . A red solid line represents it as a function of
|/~15| for a fixed yy, =5 x 1073. Since the neutrino oscil-
lation data have to be imposed on Eq. (21), Yukawa
couplings h, 5 are settled by |15, Yy, and yy.. The CP
asymmetry & and the washout of the generated lepton
number asymmetry are mainly determined by h, ; for the
fixed yy, and yy, as found from Eq. (67). Since a smaller
15| makes £, 5 larger and then both & and washout larger,
Y  takes a maximum value for a certain | 15|, which is found
in the figure. We also plot Y5 by varying yy, for a fixed s
in the same panel. A smaller yy, makes the N; production
less effective for a fixed y and then its lower bound is
expected to appear for successful leptogenesis. It gives the
lower bound of M, as ~4 x 10° GeV as predicted above.

Although other parameters are fixed at the ones given in
(69) in these figures, it is useful to give remarks on their
dependence here. If § takes a larger value, then the mass of
extra fermions M becomes larger to suppress the reaction
density yr due to the Boltzmann factor. As a result, the N,
number density generated through the scattering becomes
smaller and the resulting Y5 also becomes smaller. If £, is
much smaller, then N; decay delays and the entropy

Since the effect of Boltzmann suppression caused by its mass
My = 8ypw could be dominant at lower T compared with the
effect on the cross section, the smaller yp gives a larger Yp at
Tr < 10 GeV in this case.
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produced through the decay of relic N; might dilute the
generated lepton number asymmetry.

B. Dark matter and isocurvature fluctuations

This model has two DM candidates. One is the lightest
neutral component of # with Z, odd parity which is an
indispensable ingredient of the model. It is known to be a
good DM candidate which does not cause any contradiction
with known experimental data as long as its mass is in the
TeV range where the coannihilation can be effective
[32,48,49]. As found from Fig. 1, both the DM abundance
and the DM direct search bound can be satisfied if the
couplings A; and || take suitable values of O(1).
Although these parameters could affect the perturbativity
of the scalar quartic couplings through the radiative
corrections, we can safely escape such problems in certain
parameter regions. The results obtained for the case (I) in
the previous part are derived by supposing that the required
DM is nR.

Axion is another promising candidate in the model.
However, the axion could be a dominant component of DM
only for f, ~ 10" GeV although it depends on the con-
tribution from the axion string decay [50]. We consider the
case (II) as such an example. As described before, the PQ
symmetry is spontaneously broken during the inflation
since the inflaton contains the radial component of 6. As a
result, the axion appears as the phase 8 of ¢. Since the axion
potential is flat during the inflation, the axion gets a
quantum fluctuation §A = (H/2x)? and it can cause iso-
curvature fluctuation in the CMB amplitude [51,52]. A
canonically normalized axion A is defined by noting
Eq. (26) as

0A & 5* M
OA_ 5 Jopyee, O o VEMuilkesl _ gy
90~ M2 SRR g

Since the axion interacts with other fields very weakly, it
causes the isocurvature fluctuation as the fluctuation of its
number density n,. The amplitude of its power spectrum
can be expressed as

5}’lA

R®=< 72)

2 _ H%
T xo(07)

Since the axion is only a source of the isocurvature
fluctuation in this model, its fraction in the power spectrum
is given as

ny

R2P(K)
T RP () + P (k)

oMy RE [(R.\?2
~ geEl/? P —a (—") . (73
S Xk <€2> Kos (73)

where P, (k) = A, which is given in Eq. (38). R, is a
fraction of the axion energy density in the CDM and
defined as R, = Q,/Qcpym. If we use a relation [53]

) (e -

7/6
“6x 1070 \10'° GeV) '

then we find

My (55\2( f 76 /R \2
—325x 1075E/2R (22 ) Ja )R [ Ze )
* s \Wo) \ogev ) Reli

(75)

Since the Planck data constrain a as a < 0.037 at k =
0.05 Mpc~! [15], we have a condition for the model to be
consistent with the present observation of the isocurvature
fluctuation in the CMB as

67 yi (N\2 /10" GeV\ /6 (k.52
Re<zmy\ss) 0w ) (&) 09
55 pl w Ky

where f, =w is used. In the case (I), this gives no
constraint and the parameters used in the present study
to estimate the reheating temperature in Fig. 4 and the
baryon number asymmetry are consistent with the obser-
vational data. DM can be identified with the neutral
component of 7. On the other hand, in the case (II), the
isocurvature condition can be satisfied for R, < 0.21 if
lkys|/K, = 1071 is assumed and for R, < 0.034 if
[kss|/K, = 1072 is assumed. The isocurvature constraint
forbids the axion to be a dominant DM component, and the
neutral component of # is required to play a role of the
dominant DM in this case also.

V. SUMMARY

We have proposed a model that could give an explan-
ation for the origin of the CP phases in both the CKM and
PMNS matrices and the strong CP problem. It is a simple
extension of the SM with vectorlike extra fermions and
several scalars. In order to control the couplings of new
fields, global symmetry is imposed. If the CP symmetry is
spontaneously broken in a singlet scalar sector at an
intermediate scale, then it can be transformed to the
CKM and PMNS matrices through the mixing between
the extra fermions and the ordinary quarks or the charged
leptons. On the other hand, since the colored extra fermions
play the same role as the ones in the KSVZ model for the
strong CP problem, the strong CP problem could be solved
through the PQ mechanism. After the symmetry breaking
due to the singlet scalars, the leptonic sector of the model is
reduced to the scotogenic model, which can explain the
small neutrino masses and the DM abundance due to the
remnant discrete symmetry of the imposed symmetry.
Singlet scalars introduced to explain the CP issues can
play a role of inflaton if it has a nonminimal coupling with
the Ricci scalar. We suppose this coupling is of order one.
In that case, although it gives the similar prediction for the
scalar spectral index and the tensor to scalar ratio to the one
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of the Higgs inflation, reheating phenomena is different
from it since the radiation domination starts just after the
end of inflation.

The model has a notable phenomenological feature in
addition to these. The extra fermions that are introduced for
the CP issues could make the thermal leptogenesis generate
the sufficient baryon number asymmetry even if the lightest
right-handed neutrino mass is much lower than 10° GeV,
which is the well-known lower bound of the right-handed
neutrino mass for successful leptogenesis in the ordinary
seesaw scenario. Although the model allows low scale
leptogenesis, it is difficult to distinguish it from other
thermal leptogenesis model experimentally. However, if we
consider its supersymmetric extension, it could give a
possibility to escape the gravitino problem. The model is
constrained by the isocurvature fluctuation which is caused
by the spontaneous breaking of the PQ symmetry during
the inflation. We find that its present observation can be
consistent with the model even if the DM relic abundance is
imposed on the model. Although the relic density of axion
should be a small fraction of the DM, there is a neutral
component of the inert doublet scalar as an alternative
candidate of DM in the model. It can explain the DM
abundance just as in the scotogenic model without affecting
other predictions of the model. It is remarkable that the
model has potentiality to explain various issues in the SM
although the model is rather simple. It may deserve
further study.
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APPENDIX A: A SIMPLE EXAMPLE FOR A,

In this Appendix, we present a simple example that could
bring about a phase in the CKM matrix. In this example, we
assume w = 10° GeV and u = 10" GeV, and also the
relevant Yukawa couplings &, y,4, and y, to be written by
using real constant parameters as

et & péel

hg=c| & ¢ pe* |, v,=(0,5,0), 3,=(0,0.5).
e ps —ps

(A1)

As long as € satisfies € < 1, the down type quark mass

matrix my(=hy(¢)) has hierarchical mass eigenvalues.
Here, we introduce X;; and Y;; whose definition is given as

2 2 ~
Yy +5pipj+y¥(pi+p;)cos2p 1
Xi':1+ D+ . 1—= .
] plpj y2+5)2 52
V(p;—p;)sin2, 1
Yr%(l——z), (A2)
yo+y b

where 6 is defined as 6 = My /up. If we define R;; and 0;;
by using these quantities as

le:1/X12j+lej’

then the component of Eq. (13) is found to be expressed

(A3)

Y.
tan@ij = X_I.J.’
3]

under the assumption 3, < F F Zl as

(Ad_lmzAd)ij = Cz<43>2€inijei9ij’ (A4)

where ¢;; is defined as

_ 4 _ _ _
€p =€, €33 =1, €12 = €21 = €57

€r3 = €3p = €2. (AS)

€11 = €6,

€13 = €31 = 63,

By solving Eq. (A4), we find that A, is approximately
written as

3, X 9 X
1 —A A (\a\zf;ﬁ l _\a|3;33)
X i
Ay A 1 —Proe? ., (A6)
3_Xis 2 Xy ,—id
A laf* X33 A |01|2X33€ 1
where the constants A4, @, and 9 are defined by
X12X33 — X13Xp3e7 (O t002700)
— 5 , A= |ale,
X0 X33 — X33
9 = arg(a) + 03 + 01, — 0,3. (A7)

This expression shows that A, could have a nontrivial
phase that gives the origin of the CKM phase. If the
diagonalization matrix O for a mass matrix of the up type
quarks takes an almost diagonal form, the CKM matrix
could be obtained as Vg >~ Ay As an example, if we
assume cosp = 7 and fix other parameters as

yr=10"15 5=+/3, y=4x10" §=2x10"%,
pi=11, p,=-09, p3=1, €=0.2, ¢=0.014,
(A8)

then we obtain A = 0.22 and the Jarlskog invariant [54] as
J(=Im[A|,A73A53A5,]) = —=1.6 x 1075, The mass eigen-
values for the down type quarks are obtained as
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XZ XZ 1/2 »
de{X11—X—;+|a|2<X22—X—§z— >} ()
~ 3.3 MeV,

X\ o
my = <X22 —> e*c{ph) ~ 138 MeV,
X33
my, = X32e(P) ~ 42 GeV. (A9)
Although a diagonalization matrix A, for the charged
lepton sector may be considered to take the same form
as A, it is not favorable for a large CP phase in the PMNS
matrix. In that case, since A, is the nearly diagonal, large
flavor mixing has to be caused only by the neutrino sector
|

3

and the Dirac CP phase in the PMNS matrix becomes small
as aresult. A large CP phase in the PMNS matrix requires
A, to have rather large off-diagonal elements also.

APPENDIX B: RGEs FOR
COUPLING CONSTANTS

In order to examine both the stability and the perturba-
tivity of the model from the weak scale to the Planck scale,
we have to know the running of the coupling constants in
Eq. (1). If we fix these coupling constants at an inter-
mediate scale and solve the RGEs to the Planck scale, then
we can find their values throughout the scale. The one-loop
RGEs of the relevant coupling constants are given as

oA
16;#;48—”1 =242 + 5+ (A3 +4)* + x5, +iGs +2 (39" +9* +29°9%) =34 (397 + g% —4h7) — 6k,

8
o,

3
1671’2/48—# =245+ 5+ (I +4) +ig, + i+ (Bg + 9 +24°97)

8

—322(3g7 + %) + 422 (213 + 3h2) — 813 — 18K4,

i
167:2/1%: 2

(A1 4 42) (643 4 224) 4+ 423 + 223 + 2K oKy + 2K psKps

3
+5 39" + ¢4 =20°9%) = 313 (3¢" + ¢°) + 245 (3h7 + 2h3 + 3h3),

0%y

16712/48—” =4(A) + )y + 8234 + 422 + 357 g* = 304397 + ¢?) + 224 (3h? +2h3 +3h3),

ok - . - -
1672 = 2003 + K25 + 2(k35 + k2¢) + dxs 303+ 53) + 32+ 52 =233 +32)?) + (32 +572)7.

Op

Ok 1
16;;2/48—/;’ =20k + K2+ 2(K§w + KZy) + 4K, (3)% +yi+ 5

Ok
;S = 4K(2;S + S(KS + Ko’)KrrS + 2(Kr/’)SK(/)(f + Kr/SKno’)

167%u

1
)’12v3> —2<3y‘15 +YE +§y®3>v

N - 1 - -
+ 2K {3(% +3) + V543 + i +—y12v3] —43y5 vz +52) +yE(ve +32)),

2

OK s 1 9 3
1671:2'1,48—;5 = 4K§50_ =+ 2K'55K'¢S -+ 21(',70(2/13 —+ 24) -+ 4K¢o—(3/11 -+ 2K.'6) -+ 2K¢a (3y%) 4 y% =+ —y%]3 + 3h% — Z92 _ _g/2> ,

HMpo _

2 4

1671'2/4 alu = 4K,75 + 2KO'SKI]S + 2K¢O.(2A.3 + 14) + 4K1’]0‘(3}“2 + 2K6>

5 9

1 3
+ 2K, (3y,2)+y%+—y,2v3 +2h2+3h§—zgz—zg’2

2

) 403 I,

ok 9 3
167f2ﬂ8—ZS =45+ 2K sk g 205 (223 + Ag) A Ak ys (341 + 2K5) + 2K s {305 +33) + i+ 32+ 3hi - 192 - Zg'z} ;

ok 9 3
167r2ua—;s = 4"53 + 2K 55Ky + 2K 5 (225 + Ag) + 4K,5 (345 + 2K5) + 2K,5 [3()}5 +33) + Y2+ 52 +2h3+ 3035 - Zgz - Zdz} ,
dy 2 1 - -
167r2u8—/j =ya [—89? —392 3D+ 35 +y%] ,
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oy [ 2 1
1672424 — 5, —89% — 2 4=y 4 352 472 4 32 + 72,
ou 3 2
9.
16ﬂ2ﬂa—M:ye —69,2 yE+3(yd+yd)+2ye +ye:|7
16 P — 5, [ e 1 132 +3(yv; +¥a) +ve + 27
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167 = = i, [3y% +YE VA T2+ h%)} ,
oh 9
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oh 9 3 15 1
2, 9N3 & 2 2 2 2
16 Ma h3< Z —*g/ +2h h3+2yN3>7
oh 9 17
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g,
167’ —= = -—g,
TH Y, 3 gs
dg
167° = -3¢,
n ua g
ag 719
167> —q° Bl
TH Gy =5 (B1)
|
where g, g, and ¢’ are the gauge coupling constants of the Initial values of the coupling constants which are used in

SM. In these equations, we assume Eq. (20) for neutrino  the RGE study of the right panel of Fig. 1 are taken to be
Yukawa couplings and Eq. (Al) for y; and j, and also  the same ones that are used in the analysis of the lepto-
only yy, is taken into account. Contributions from V;, are  genesis for the case (I). A part of them are fixed at the weak
also neglected in these RGEs. scale as

2y = 0.13, Jp =0.1, Iy = 0.445, Ay = —0.545, As = —1073,
hy=6x1077,  hy=83x1073, hy =3.9x 1073, (B2)

where /5 and A, are fixed by the DM constraint shown in the left panel of Fig. 1 and h, 5 are fixed by using the nautrino mass
formula and the neutrino oscillation data. Remaining ones are fixed at a scale M as

kg =1078, g, = 10743, K,s| = 10761, Kpo = Kyo = 1074, Kps = Kys = 1077
yn, =Tx107. yy, =2x1072, YN, =4x 1072,
yp=ye =107y, =y, =8x10"  §, =, =4x10"" (B3)

These satisfy the imposed conditions (5), (14), (17), (31), and (39).
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