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The stringent constraints from the direct searches for exotic scalars at the LHC, as well as indirect
bounds from flavor physics measurements, have imposed severe restrictions on the parameter space of new
physics models featuring extended Higgs sectors. In the type-II two-Higgs-doublet model (2HDM), this
implies a lower bound on the charged Higgs masses of Oð600 GeVÞ. In this work we analyze the
phenomenology of a Z3 symmetric three-Higgs-doublet model in the alignment limit focusing on the
impact of flavor physics constraints on its parameter space. We show that the couplings of the two charged
Higgs bosons in this model feature an additional suppression factor compared to type-II 2HDM. This gives
rise to a significant relaxation of the flavor physics constraints in this model, allowing the charged Higgs
masses to be as low as Oð200 GeVÞ. We also consider the constraints coming from precision electroweak
observables and the observed diphoton decay rate of the 125 GeV Higgs boson at the LHC. The bounds
coming from the direct searches of nonstandard Higgs bosons at the LHC, particularly those from
resonance searches in the ditau channel, prove to be very effective in constraining this scenario further.
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I. INTRODUCTION

Two of the major tasks that will be undertaken in the
upcoming runs of the LHC and beyond comprise of the
precise determination of the properties of the 125 GeV
Higgs boson as well as direct searches for additional scalar
particles. The remarkable consistency between the predic-
tions from the standard model (SM) and the experimental
data from the LHC so far has posed strong challenges for
new physics (NP) scenarios beyond the standard model
(BSM). A complimentary pathway to explore NP is pro-
vided by the low energy precision measurements in flavor
physics. Measurements from dedicated flavor physics

experiments like BELLE, BABAR, and LHCb have so far
been largely in agreement with the SM, providing stringent
constraints on most of the BSM scenarios.
Introduction of additional Higgs doublets has been one of

themost popular choices for new physics extensions beyond
the SM. The most minimal choice, the two-Higgs-doublet
model (2HDM) [1,2], has been discussed widely in the
literature from both theoretical and phenomenological
points of view. In the well-known alignment limit, the
lightest CP-even Higgs boson of the 2HDM can be SM-
like in its tree-level couplings to the fermions and vector
bosons and thus can serve as the 125 GeV scalar observed at
the LHC [3–8]. The additional (pseudo) scalar and charged
Higgs bosons can give rise to interesting signatures at the
LHC, as well as at various flavor physics experiments.
Consistency with the strong constraints from the LHC and
flavor observables often pushes the charged Higgs boson
mass in the 2HDM towards the heavier end of the spectrum.
It has been observed that a combination of flavor physics
measurements can exclude the charged Higgs masses below
Oð600 GeVÞ in the 2HDM of type II [9], where up- and
down-type quarks obtain their masses from two different
Higgs doublets. This bound on the charged scalar masses
can be somewhat relaxed in type-I 2HDMs where a single
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Higgs doublet is responsible for generatingmasses of the up-
and down-type quarks [10]. This is because in the type-I
2HDM all the fermionic couplings of the charged scalar are
proportional to cot β, with tan β being the ratio of the two
vacuum expectation values (VEVs), as conventionally
defined in 2HDMs. Therefore, the constraints on the
nonstandard scalars can be easily evaded by choosing
tan β ≫ 1. In this work we investigate the possibility of
allowing lighter nonstandard scalars without compromising
the essential feature of the type-II 2HDM, i.e., two different
doublets give masses to up and down quarks.
Moving beyond the 2HDM, the most natural step ahead is

to add one additional Higgs doublet, leading to the three-
Higgs-doublet model (3HDM) [11–16]. As in the 2HDM
case, it is possible to achieve an alignment limit correspond-
ing to a physical scalar resembling the properties of the
125 GeV SM-like Higgs boson [17,18]. In contrast to the
2HDM, the scalar spectrum is much broader here, offering a
rich phenomenology in both high and low energy experi-
ments. Most importantly, the presence of additional non-
standard Higgs bosons leads to significant modifications in
the flavor changing neutral and charged current processes
compared to the 2HDM. In Ref. [17], it was shown that the
conditions for alignment limit in the 3HDM can be para-
metrized by a set of simple equations closely mimicking
those of the CP conserving 2HDM. Using the example of
Z3-symmetric 3HDM (Z3HDM), it was observed that the
analytic conditions can be easily implemented in a realistic
scenario, making way for efficient numerical analysis. In the
present work we explore the phenomenological aspects of
the alignment limit in the Z3HDM with an emphasis on the
effects of flavor physics constraints on its parameter space.
We show that the constraints on the parameter space
stemming from the interplay of various flavor physics data
are notably relaxed compared to those in the type-II 2HDM.
Such a relaxation of constraints transpires from the presence
of an additional suppression in the couplings of the charged
Higgs bosons in the model compared to the type-II 2HDM.
We prescribe a simple analytical set up that automatically
guarantees agreement with the ρ-parameter constraints, as
well as bounds arising from the measurement of Higgs to
diphoton decay rate at the LHC. We also study the effect of
the bounds coming from direct searches for additional Higgs
bosons at the LHC on the parameter space of our interest.
Our paper is organized as follows. In Sec. II we describe

the scalar sector and Yukawa structure of Z3HDM. The
constraints from flavor physics observables are analyzed in
Sec. III. We calculate the diphoton decay rate for this model
in Sec. IV. The limits coming from the direct searches at the
LHC are discussed in Sec. V. Finally, we summarize our
results in Sec. VI. Additionally, the detailed analytical
expressions for the scalar couplings translation to the
physical mass and mixing parameters are given in
Appendix A while the Z3HDM contributions to the
B-physics flavor observables are presented in Appendix B.

II. THE MODEL: 3HDM WITH Z3 SYMMETRY

The study of nHDMs leads to a rich phenomenology, as
well as a sharp increase of the number of parameters, due to
the addition of a SM-like Yukawa structure for each doublet,
in general. Thus, the diagonalization of the mass matrices
will not lead to the simultaneous diagonalization of all the
associated Yukawa matrices, which will bring in flavor
changing neutral currents (FCNCs) at the tree levelmediated
by the neutral scalars. Since experimental data suggest that
FCNCs are highly suppressed [19], one interesting path to
undertake is the study of models with natural flavor
conservation (NFC) [20]. In these cases, each type of
fermion is coupled to a single scalar doublet, ensuring the
simultaneous diagonalization of the Yukawa and mass
matrices, leading to the absence of FCNCs at tree level.
Within the framework of 2HDMs, there are four known

types of models featuring NFC, which amount to the
distinct possibilities of coupling each scalar to the fermions.
Contrary to what one might expect, enlarging the frame-
work to a 3HDM only adds one more nonequivalent
possibility, which ensures NFC. The different types of
models, characterized by their Yukawa structures, are
shown in Table I. In this work, we focus on the case
unique to models with more than two Higgs doublets,
sometimes referred to as democratic or type-Z 3HDM
[21–23]. However, such a democratic Yukawa structure can
be implemented in more than one way. Here, we make use
of the matching number of fermionic and scalar doublets
generations to endow the 3HDM with a Z3 symmetry.1 By
doing so, we are able to find suitable charge assignments
for both the fermions and the scalar doublets such that the
NFC model ensues.
In our current setup, only scalars and right-handed

fermionic fields may transform nontrivially under the Z3

symmetry. Namely, we require

ϕ1 → ωϕ1; ϕ2 → ω2ϕ2; ð1aÞ
lR → ω2lR; nR → ωnR; ð1bÞ

where ω ¼ e2πi=3, and nR (lR) are the right-handed down-
type quarks (leptons), as to clearly distinguish between the

TABLE I. All nonequivalent possibilities for models featuring
NFC. The first four types can be realized within 2HDMs, while
the last requires at least a 3HDM.

Fermion Type I Type II Type X Type Y Democratic

u ϕ3 ϕ3 ϕ3 ϕ3 ϕ3

d ϕ3 ϕ2 ϕ3 ϕ2 ϕ2

l ϕ3 ϕ2 ϕ2 ϕ3 ϕ1

1It should be noted that a democratic 3HDM, which features a
similar Yukawa structure, can also be obtained by imposing a
Z2 × Z2 symmetry [22,23].
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flavor and mass eigenstates. By taking all other fields to
transform trivially under the Z3 symmetry, it becomes clear
that ϕ1 couples to the leptons, whereas ϕ2 and ϕ3 couple to
the down- and up-type quarks, respectively. As such, we
achieve a Yukawa structure, which ensures NFC and the
absence of FCNCs at tree level.

A. Scalar sector

While there are more than one way to achieve a
democratic Yukawa structure, the different choices will
lead to different scalar potentials. The most general scalar
potential for a Z3HDM obeying the symmetry in Eq. (1a) is
given by [24–26]

V ¼ m2
11ðϕ†

1ϕ1Þ þm2
22ðϕ†

2ϕ2Þ þm2
33ðϕ†

3ϕ3Þ − ðm2
12ðϕ†

1ϕ2Þ þm2
23ðϕ†

2ϕ3Þ þm2
13ðϕ†

1ϕ3Þ þ H:c:Þ
þ λ1ðϕ†

1ϕ1Þ2 þ λ2ðϕ†
2ϕ2Þ2 þ λ3ðϕ†

3ϕ3Þ2
þ λ4ðϕ†

1ϕ1Þðϕ†
2ϕ2Þ þ λ5ðϕ†

1ϕ1Þðϕ†
3ϕ3Þ þ λ6ðϕ†

2ϕ2Þðϕ†
3ϕ3Þ

þ λ7ðϕ†
1ϕ2Þðϕ†

2ϕ1Þ þ λ8ðϕ†
1ϕ3Þðϕ†

3ϕ1Þ þ λ9ðϕ†
2ϕ3Þðϕ†

3ϕ2Þ
þ ½λ10ðϕ†

1ϕ2Þðϕ†
1ϕ3Þ þ λ11ðϕ†

2ϕ1Þðϕ†
2ϕ3Þ þ λ12ðϕ†

3ϕ1Þðϕ†
3ϕ2Þ þ H:c:�; ð2Þ

where we allow the presence of the soft-breaking termsm2
ij,

i ≠ j since they will be of some importance for regulating
the charged Higgs contribution to the diphoton decay
amplitude[27]. For simplicity, we take all the parameters
of the scalar potential to be real, so that the neutral scalars
can be easily classified as CP-even and CP-odd bosons.
After the electroweak symmetry breaking (EWSB),

the scalar doublets can be decomposed in terms of the
component fields as

ϕk ¼
1ffiffiffi
2

p
� ffiffiffi

2
p

wþ
k

vk þ hk þ izk

�
; k ¼ 1; 2; 3; ð3Þ

where vk denotes the VEVof the field ϕk (hϕki ¼ vk=
ffiffiffi
2

p
).

For notational convenience, the VEVs are expressed as

v1¼v cos β1 cos β2; v2¼v sin β1 cos β2; v3¼v sin β2;

ð4Þ

where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22 þ v23

p
is the usual electroweak (EW)

VEV. The inclusion of three scalar doublets will give rise to
four charged scalar particles H�

1;2, three CP-even neutral
ones h;H1;2, as well as two CP-odd neutral particles A1;2,
where the remaining fields are the usual Goldstone bosons
w�; ζ. These physical particles can be obtained by rotating
the fields onto the mass basis. For the charged and
pseudoscalar sectors, we can obtain the physical scalars
by performing the following 3 × 3 rotations,

0
B@

w�

H�
1

H�
2

1
CA¼Oγ2Oβ

0
B@
w�
1

w�
2

w�
3

1
CA;

0
B@

ζ

A1

A2

1
CA¼Oγ1Oβ

0
B@
z1
z2
z3

1
CA; ð5Þ

where, the rotation matrices are defined as

Oγ1 ¼

0
B@

1 0 0

0 cos γ1 − sin γ1
0 sin γ1 cos γ1

1
CA;

Oγ2 ¼

0
B@

1 0 0

0 cos γ2 − sin γ2
0 sin γ2 cos γ2

1
CA; ð6Þ

and

Oβ ¼

0
B@

cos β2 cos β1 cos β2 sin β1 sin β2
− sin β1 cos β1 0

− cos β1 sin β2 − sin β1 sin β2 cos β2

1
CA: ð7Þ

For the CP-even sector, we can obtain the physical mass
basis through

0
B@

h

H1

H2

1
CA ¼ Oα

0
B@

h1
h2
h3

1
CA; ð8Þ

where

Oα ¼ R3 ·R2 ·R1; ð9aÞ
with

R1 ¼

0
B@

cos α1 sin α1 0

− sin α1 cos α1 0

0 0 1

1
CA;

R2 ¼

0
B@

cos α2 0 sin α2
0 1 0

− sin α2 0 cos α2

1
CA;

R3 ¼

0
B@

1 0 0

0 cos α3 sin α3
0 − sin α3 cos α3

1
CA: ð9bÞ
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For more details on the analysis of the scalar potential, we
refer the reader to Appendix A.
The existence of nonstandard neutral CP-even scalars in

the Z3HDM, in general, leads to a deviation of the
couplings of the physical scalar h from the respective
SM predictions. However, the data obtained from the LHC
runs shows a good agreement of the experimental data to
the SM prediction for the Higgs signal strengths [28,29].
This motivates us to work in the alignment limit, which is a
set of conditions such that the lightest CP-even scalar
mimics the SM Higgs in its tree-level couplings, automati-
cally respecting the agreement between the experimental
data and the corresponding SM predictions for the Higgs
signal strengths. For our Z3HDM, the conditions for
alignment are given by [17]

α1 ¼ β1; α2 ¼ β2: ð10Þ

As more data accumulate in the future runs of the High-
Luminosity LHC, the possibility of deviating from the
alignment limit will become increasingly constrained, if no
BSM signals are detected.

B. Yukawa sector and charged Higgs couplings

The quark Yukawa Lagrangian of the Z3HDM can be
written as

L ¼ −YdQ̄Lϕ2nR − YuQ̄Lϕ̃3pR þ H:c:; ð11Þ

where QL ≡ ðpL; nLÞT denotes the SUð2ÞL left-handed
quark doublet field, pR the up-type right-handed quarks,
and Yd;u are the respective 3 × 3 Yukawa matrices in flavor
space. After EWSB, the mass matrices of the down- and up-
type quarks are given by

Md ¼ Yd
v2ffiffiffi
2

p ; Mu ¼ Yu
v3ffiffiffi
2

p : ð12Þ

As usual, we can redefine the quark fields to rotate into the
mass basis through

dL ¼ DLnL; dR ¼ DRnR;

uL ¼ ULpL; uR ¼ URpR; ð13Þ

which, in turn, will diagonalize the mass matrices through
the biunitary transformation

Dd ¼ DLMdD
†
R ¼ diagðmd;ms;mbÞ; ð14aÞ

Du ¼ ULMuU
†
R ¼ diagðmu;mc;mtÞ: ð14bÞ

Similar to the SM, the Cabbibo-Kobayashi-Maskawa
(CKM) matrix is defined as V ¼ ULD

†
L. As intended,

our model does not have any FCNC at the tree level,
and the Higgs signal strengths will also be compatible with
the corresponding SM expectations in the alignment limit.
However, the presence of charged scalars brings forth new
channels for loop contributions to several flavor observ-
ables, such as neutral meson oscillations and b → sγ. In
fact, these processes are quite restricted from experiments
and thus are usually used to place lower bounds on the
nonstandard scalar masses, as their contributions must be
kept in check. Thus, it becomes important to study the
charged scalar couplings to the fermions, as these will
govern the vertices responsible for these processes at the
one-loop level.
Given its importance, we focus on the original

quark Yukawa Lagrangian containing the charged Higgs
couplings,

LQ
c ¼ −Ydp̄L nR w

þ
2 þ Y†

up̄R nL w
þ
3 þ H:c: ð15aÞ

¼
ffiffiffi
2

p

v
ū

�
−

1

sβ1cβ2
wþ
2 ðVDdÞPR þ 1

sβ2
wþ
3 ðDuVÞPL

�
d

þ H:c:; ð15bÞ

where, in the last step, we have rotated into the quark
mass basis. Our goal is to arrive at couplings among the
physical fields, as we further rewrite the Lagrangian in
the scalar mass basis. Using X ¼ OT

βO
T
γ2 , Eq. (15b)

becomes

LQ
c ¼

ffiffiffi
2

p

v
Hþ

1 ū

�
X32

sβ2
ðDuVÞPL −

X22

sβ1cβ2
ðVDdÞPR

�
d

þ
ffiffiffi
2

p

v
Hþ

2 ū

�
X33

sβ2
ðDuVÞPL −

X23

sβ1cβ2
ðVDdÞPR

�
d

þ H:c:; ð16Þ

which describes the vertices between the physical charged
scalars to the physical quarks. The same process can be
repeated to obtain the leptonic couplings as follows:

Ll
c ¼ −

ffiffiffi
2

p

v
Hþ

1 ν̄
X12

cβ1cβ2
DlPRl

−
ffiffiffi
2

p

v
Hþ

2 ν̄
X13

cβ1cβ2
Dl PRlþ H:c:; ð17Þ

where, l≡ ðe; μ; τÞT , ν≡ ðνe; νμ; ντÞT , and Dl ¼
diagðme;mμ; mτÞ. In the following, we will focus mostly
on the consequences of quark flavor observables. Hence, to
better grasp the model’s implications, it is helpful to
substitute the Xij elements explicitly following Eqs. (6)
and (7), recasting the charged Higgs couplings to quarks as
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LQ
H�

1

¼ −
ffiffiffi
2

p

v
Hþ

1 ū
�
cot β2 sin γ2ðDuVÞPL þ tan β2

�
cot β1 cos γ2

sin β2
þ sin γ2

�
ðVDdÞPR

�
dþ H:c:; ð18aÞ

LQ
H�

2

¼
ffiffiffi
2

p

v
Hþ

2 ū

�
cot β2 cos γ2ðDuVÞPL − tan β2

�
cot β1 sin γ2

sin β2
− cos γ2

�
ðVDdÞPR�dþ H:c: ð18bÞ

One noteworthy observation is the similarity between the
Z3HDM and the type-II 2HDM. In fact, both are NFC
models, where the difference lies in the fact that, in the
Z3HDM, the lepton Yukawa couplings have a dedicated
doublet, whereas in the type-II 2HDM the leptons share the
doublet responsible for the down-type quark masses. The
resemblance can be made more explicit by noting that due
to the Z3 charge assignments of the scalar doublets, ϕ1 is
responsible for the lepton masses, which are generally
much lower than the quark masses. Combining this with the
relation between each individual VEV and the EWSB seen
in Eq. (4), it seems reasonable to assume v1 ≪ v2; v3,
which is achieved by taking large values of tan β1, while
still remaining in a perturbative regime for the τ-Yukawa
coupling. In this regime, where cot β1 ≪ 1, the cot β1
dependency of the charged Higgs couplings of
Eqs. (18a) and (18b) can be neglected, and the couplings
become similar to those of the type-II 2HDM, relaxed by
either cos γ2 or sin γ2, which are always less than 1. Indeed,
by comparing with the corresponding couplings in the
type-II 2HDM [1],

L2HDM-II
H� ¼

ffiffiffi
2

p
Hþ

v
½cot βūRðDuVÞdL þ tan βūLðVDdÞdR�

þ H:c:; ð19Þ

we can identify tan β of the 2HDM-II with tan β2 of the
Z3HDM since both control the ratio vu=vd, where vuðdÞ are
the VEVs of the scalars that couple to the up (down)
quarks, respectively. If we further consider a scenario
where either H�

1 or H�
2 is relatively heavy (≳5 TeV),

while keeping the other relatively light (≲1 TeV), then the
heavy particle decouples, and its contribution will be
negligible, and our effective theory becomes similar to a
type-II 2HDM scenario. The striking difference is that
while one of the scalars is decoupled, the effective
theory still retains some consequences of the full theory.
In order to exemplify, we consider a scenario where H�

2 is
decoupled and tan β1 ≫ 1. In this case the H�

1 couplings of
Eq. (18a) can be approximated as follows:

LZ3HDM
H�

1

≈ − sin γ2 ·

ffiffiffi
2

p
Hþ

1

v
½cot β2ūRðDuVÞdL

þ tan β2ūLðVDdÞdR� þ H:c: ð20Þ

Comparing with Eq. (19), we notice the remarkable
similarity with the type-II 2HDM, except for the fact that
the couplings are reduced in strength by a factor of sin γ2.
This will play an important role in diluting the constraints
from flavor data compared to those in the type-II 2HDM,
which we will discuss in the next section.

III. CONSTRAINTS FROM FLAVOR DATA

Since compliance with flavor data is continuously
pushing the lower bound on the mass of the charged
Higgs of the type-II 2HDM upwards, the relaxation due to
γ2 in this effective 2HDM can easily justify lower masses
for new charged particles, while still remaining within the
experimental limits for the NP contributions to the flavor
processes.
In order to make the discussion concrete, we analyze the

resulting bounds coming from flavor data. We restrict
ourselves to the analysis of the NP contributions to the
radiative decay b → sγ, as well as the bounds coming from
the B meson oscillations ΔMBs;d

.2 We make use of the
FlavorKit [30] functionalities within SPheno [31,32], com-
piled by SARAH [33], explicitly retaining contributions up
to one loop only. In order to gain some qualitative insights
into the processes and phenomenologies at hand, we refer
the reader to Appendix B, where we provide analytic
expressions for the relevant processes. It is, however, easy
to note that in models with no tree-level FCNCs, the only
one-loop NP contributions to both b → sγ, as well as
ΔMBs;d

, will come from the charged Higgs couplings.
Therefore, these observables will be governed by a set
of five parameters, namely, ðtan β1; tan β2; γ2; mHþ

1
; mHþ

2
Þ.

As we mentioned earlier, the Z3HDM, where one
charged Higgs is decoupled from EW scale dynamics,
becomes a relaxed type-II 2HDM effective scenario.
Namely, a remnant of the full theory survives as a damping
of the usual type-II 2HDM charged scalar couplings, which
will in turn result in a relaxation of the bounds that are
found for the type-II 2HDM. As such, we initially focus on
this case where one of the charged scalars is decoupled,
featuring the relaxation of the bounds.
Our point is clearly exemplified in Fig. 1 where we note

that the type-II 2HDM bounds coincide with the more
restrictive case of this Z3HDM limit (γ2 ¼ π=2 for the

2The constraints from ΔMK are much weaker.
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bounds on H�
1 , and γ2 ¼ 0 for H�

2 ). As we can see, for our
benchmark of tan β1 ¼ 10, the constraints on the charged
scalar masses are, at worst, comparable to the correspond-
ing bounds in the type-II 2HDM for appropriate values of
γ2, but the important point is that by changing the values of
γ2 the bounds can be considerably diluted. Even while
keeping away from the extremal cases, the bounds can be
easily relaxed by a factor of 2, by taking γ2 ¼ π=4, as
clearly seen in the plots. From Fig. 1 we also note that there
is an asymmetry in the bounds onH�

1 andH�
2 when we are

away from the type-II 2HDM limit. This feature can be
attributed to the tan β1 dependency of the charged Higgs
couplings. Moreover, considering the particular nature of
the tan β2 dependence of both the b → sγ and ΔMBs;d

bounds, we see that for an intermediate range
2≲ tan β2 ≲ 30, the bounds on the charged Higgs masses
are practically independent of tan β2. Thus, by choosing
tan β2 in this range, we can lift the assumption of a
decoupled charged Higgs and, instead, analyze the inter-
play between both contributions to the flavor data, placing
the bounds on the mHþ

1
−mHþ

2
plane. The results can be

seen in Fig. 2, where we show the region compatible with
the b → sγ constraints, on the charged Higgs mass plane,
while taking tan β2 ¼ 2 as a benchmark. We have checked
explicitly that the ΔMBs;d

constraints are also satisfied on
the region of interest of Fig. 2, i.e., they do not impose
additional restrictions in the mHþ

1
−mHþ

2
plane. The inter-

section point between all the different values of γ2
coincides with the type-II 2HDM bound on its charged
Higgs mass. Evidently, considerably light charged scalars,
with masses as low as Oð200 GeVÞ, can be allowed from

flavor data by taking the other charged scalar to be heavier,
while still keeping away from extreme values of γ2.
Now that we have established that relatively light

charged scalars can successfully pass through the stringent
constraints imposed by the flavor data, it will be interesting

FIG. 2. Experimentally allowed regions at 95% C.L. from the
b → sγ branching ratio (colored regions), where the region of
interest is already in agreement with ΔMBs

and ΔMBd
. The color

labels denote the values of γ2 used in the analysis. The results are
shown in the mHþ

1
−mHþ

2
plane, and tan β1 ¼ 10, tan β2 ¼ 2,

γ2 ¼ fπ=6; π=4; π=3g. In the dashed line we display the h → γγ
bounds studied in Sec. IV, where we set mHþ

i
¼ mHi

¼ mAi
,

i ¼ 1, 2. The allowed region at 95% C.L. from the h → γγ
constraint lies above the dashed line.

FIG. 1. Experimentally allowed regions for the b → sγ branching ratio (colored regions), as well as the boundaries placed by the
neutral meson oscillations ΔMBs

and ΔMBd
, shown by the solid lines. The allowed region for the meson oscillations lies within the

boundaries. The color labels denote the value of γ2 used in the analysis. The results are shown in the tan β2 vs the lighter charged Higgs
mass plane. Left: mHþ

2
¼ 5 TeV, tan β1 ¼ 10, γ2 ¼ fπ=6; π=4; π=3; π=2g. The 2HDM-II limiting case is γ2 ¼ π=2. Right:

mHþ
1
¼ 5 TeV, tan β1 ¼ 10, γ2 ¼ fπ=3; π=4; π=6; 0g. The 2HDM-II limiting case is γ2 ¼ 0. Notice the different arrangement of γ2

values due to the difference between the trigonometric functions of Eqs. (18a) and (18b).
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if we can say something about the masses of the neutral
nonstandard scalars in relation to those of the charged
scalars. This is where the constraints from the electroweak
ρ parameter become useful. The neutral scalars are
expected to have masses such that the impact of NP on
the ρ parameter is minimized. Using the general expres-
sions in Refs. [34,35], we have calculated the NP con-
tribution to the ρ parameter in the alignment limit of our
model. The relevant expression is particularly clean and
intuitive in the limit γ1 ¼ γ2 ¼ −α3 ¼ α (say) as we display
below,

Δρ ¼ g2

64π2m2
W
fFðm2

Hþ
1

; m2
A1
Þ þ Fðm2

Hþ
2

; m2
A2
Þ

þ Fðm2
Hþ

1

; m2
H1
Þ þ Fðm2

Hþ
2

; m2
H2
Þ

− Fðm2
A1
; m2

H1
Þ − Fðm2

A2
; m2

H2
Þg; ð21Þ

where,

Fðx; yÞ≡
� xþy

2
− xy

x−y ln
x
y for x ≠ y;

0 for x ¼ y:
ð22Þ

One easy way to circumvent the ρ-parameter constraint will
be to impose mHþ

1
≈mH1

≈mA1
¼ M1 (say) and mHþ

2
≈

mH2
≈mA2

¼ M2 (say) as Δρ becomes zero in this limit.
Under this assumption, the scalar spectrum conveniently
breaks down into two degenerate tiers of nonstandard
masses. This spectrum of masses and mixings can be
easily achieved with a simplified scalar potential of the
following form, which has an enhanced symmetry in its
quartic part [36]:

V ¼ m2
11ðϕ†

1ϕ1Þ þm2
22ðϕ†

2ϕ2Þ þm2
33ðϕ†

3ϕ3Þ
− ðm2

12ðϕ†
1ϕ2Þ þm2

23ðϕ†
2ϕ3Þ þm2

13ðϕ†
1ϕ3Þ þ H:c:Þ

þ λðϕ†
1ϕ1 þ ϕ†

2ϕ2 þ ϕ†
3ϕ3Þ2: ð23Þ

In the above potential there are seven parameters which can
be traded in favor of the seven physical parameters,
ðv; β1; β2; mh;M1;M2; αÞ. The relevant reparametrizations
are given below,

s12 ≡ 2m2
12

v1v2
¼ 2M2

1

v2

�
c2α
c2β2

− tan β2

�
c2β1s2α
s2β1cβ2

þ s2α tan β2

��

þ 2M2
2

v2

�
s2α
c2β2

þ tan β2

�
c2β1s2α
s2β1cβ2

− c2α tan β2

��
; ð24aÞ

s13 ≡ 2m2
13

v1v3
¼ 2

v2

�
M2

1s
2
α þM2

2c
2
α − ðM2

1 −M2
2Þ
cαsα
sβ2

tanβ1

�
;

ð24bÞ

s23 ≡ 2m2
23

v2v3
¼ 2

v2

�
M2

1s
2
α þM2

2c
2
α þ ðM2

1 −M2
2Þ

cαsα
sβ2 tan β1

�
;

ð24cÞ

λ ¼ m2
h

2v2
; ð24dÞ

where cx and sx are shorthands for cos x and sin x,
respectively.
At this point, we wish to remark that the potential of

Eq. (23) contains only one quartic parameter, λ. Thus, both
unitarity and stability of the scalar potential can be ensured
by requiring 0 < λ < 4π.3 Looking at Eq. (24d), we can
easily see that the potential of Eq. (23) is manifestly
compatible with the unitarity and vacuum stability con-
straints. Next, we extract the top, bottom, and τ Yukawa
couplings as

yt ¼
ffiffiffi
2

p
mt

v sin β2
; yb ¼

ffiffiffi
2

p
mb

v sin β1 cos β2
;

yτ ¼
ffiffiffi
2

p
mτ

v cos β1 cos β2
; ð25Þ

which follow from our convention that ϕ3, ϕ2, and ϕ1

couple to up-type quarks, down-type quarks, and charged
leptons, respectively. For the perturbativity of Yukawa
couplings, we should have jytj; jybj; jyτj <

ffiffiffiffiffiffi
4π

p
. The

resulting constraint from perturbativity has been displayed
in Fig. 3. Throughout our paper, we have used values of
tan β1;2, which are consistent with this perturbative region.

FIG. 3. Allowed regions from the perturbativity conditions of
the Yukawa couplings. The individual color labels denote the
regions allowed from the top, bottom and τ Yukawa couplings
and the hatched region represents the combined perturbative
regime.

3For more general analysis of unitarity and boundedness from
below conditions for this model, please see Ref. [37].
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IV. IMPLICATIONS FOR DIPHOTON
DECAY RATE

At this point one might naturally wonder whether such
light charged scalars would leave observable imprints in
loop induced Higgs decays, such as h → γγ. After the
13 TeV run of the LHC, updated constraints on the Higgs to
diphoton signal strength has been reported by both the
ATLAS [38] and CMS [39] collaborations at 139 fb−1

luminosity. It is thus important that we check whether such
light charged scalars can negotiate the bound arising from
the measurement of the Higgs to diphoton signal strength.
To do that, we need to calculate the hHþ

i H
−
i couplings

which, for the potential of Eq. (23) are given below,

ghHþ
i H

−
i
¼ −

m2
h

v
; ði ¼ 1; 2Þ: ð26Þ

Using this, we can easily write down the expression for the
diphoton signal strength as follows:

μγγ ¼
jFWðτWÞ þ 4

3
FtðτtÞ þ

P
2
i¼1 κiFiþðτiþÞj2

jFWðτWÞ þ 4
3
FtðτtÞj2

; ð27Þ

where, κi ¼ −m2
h=2m

2
Hþ

i
, τx ¼ ð2mx=mhÞ2, ðx ¼ W; t;Hþ

i Þ
and the loop functions are given by [40],

FWðxÞ ¼ 2þ 3xþ 3xð2 − xÞfðxÞ; ð28aÞ

FtðxÞ ¼ −2x½1þ ð1 − xÞfðxÞ�; ð28bÞ

FiþðxÞ ¼ −x½1 − xfðxÞ�; ð28cÞ

with fðxÞ ¼ ½sin−1ð ffiffiffiffiffiffiffiffi
1=x

p Þ�2 for x > 1. It is interesting to
note that in the limiting potential of Eq. (23), the charged
Higgs couplings to the SM-like Higgs in Eq. (26) are
completely independent of any mixing angles and fixed to a
constant value. Therefore, the charged Higgs contribution
to the loop-induced Higgs to diphoton channel will always
be suppressed by the charged Higgs masses when the
charged Higgses are much larger than the SM-like Higgs.
We display our results in Fig. 2 in the ðmHþ

1
−mHþ

2
Þ mass

plane, where we see that the current Higgs data mainly
discards the parameter space, where both or any one of the
charged Higgs masses are below Oð200 GeVÞ. In Fig. 2,
the region below the red dashed line is excluded by the
current data at 95% C.L [38].

V. DIRECT SEARCH CONSTRAINTS

The presence of two charged and four additional neutral
Higgs bosons places this model under the scrutiny of direct
searches for nonstandard Higgs bosons at the LHC. In the
parameter region favored by the flavor physics constraints
(mHþ

1;2
> mtop), the dominant production mode of a charged

Higgs boson at the LHC is in association with tb-quark
pairs. Both ATLAS and CMS collaborations have provided
model-independent upper bounds on the production cross
section times branching ratio for this modewith the charged
Higgs boson decaying to tb [41,42] and τν [43,44] final
states.4 On the other hand, the search for heavy scalar and
pseudoscalar resonances yields the most stringent con-
straints in the τþτ− final state. In this case model-
independent bounds are available for production via
gluon-gluon-fusion and in association with a b-quark pair
[45,46]. In the following, we discuss the impact of the
various bounds mentioned above on the parameter space of
the Z3HDM.
To elucidate the relevance of different direct search

constraints on the parameter region of our interest, we
plot in Fig. 4 the branching ratios of H�

1 , A1, and H1 as a
function of tan β2. Keeping in mind the precision con-
straints from electroweak ρ parameter, we choose to
work in the limit mHþ

i
¼ mHi

¼ mAi
, i ¼ 1, 2 and

γ1 ¼ γ2 ¼ −α3. Furthermore, we consider the case of
one decoupled charged Higgs boson for simplicity, which,
in this case, we take to be H�

2 .
5 The branching ratios are

calculated for a fixed tan β1 ¼ 10 and two different values
of sin γ2 shown as solid (γ2 ¼ π

6
) and dashed (γ2 ¼ π

4
) lines.

For tan β2 ≲ 1 the leading decay mode of H�
1 is H�

1 → tb
because of the dominance of the first term in Eq. (18a),
which is proportional to cot β2. As tan β2 increases, the
terms proportional to tan β2 in Eqs. (17) and (18a) promptly
take over. In the tan β2 > 1 region favored by the flavor
physics data,H�

1 → τν becomes the dominant decay mode.
A somewhat similar pattern is observed in the branching
ratio of A1 and H1, with A1=H1 → τþτ− being the
dominant decay mode in the tan β2 > 1 region.
The implications of various direct search constraints on

the parameter space of the Z3HDM becomes even clearer
by looking at Fig. 5, where we show the production cross
section times branching ratio of the Higgs bosons H�

1 ; A1,
and H1 at the 13 TeV LHC as a function of their masses.
For this calculation, we implemented our model in FeynRules

[48,49] to generate files in the UFO format [50]. These files
are then used by MadGraph5_aMC@NLO [51] to compute
the signal cross section at the LHC. The gray-shaded region
denotes the parameter space excluded by the corresponding
bound from ATLAS. We consider a relatively small value
of tan β2, namely, tan β2 ¼ 2, to comply with the stringent
bounds from the LHC. The value of tan β1 is kept fixed at
tan β1 ¼ 10. As can be seen from Fig. 5(a), the value of

σ
H�

1
→τν

tbH�
1

remains comfortably within the upper limit set by

4The vanishing H�
1 W

∓h coupling in the alignment limit leads
to the absence of W�h final state in H�

1 decay. Furthermore, the
decay to W�A1 final state is kinematically disfavored as a result
of the assumed degeneracy between H�

1 and A1.
5Similar bounds may be imposed on H�

2 in the case of a
decoupled H�

1 .
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the direct search for charged Higgs boson mass within the
region of interest. Thus, even the relatively low mHþ

1
region

allowed by the flavor physics constraints remains effec-
tively safe from the direct LHC constraints on charged
Higgs bosons. However, the bounds from scalar and
pseudoscalar resonance searches in the ditau channel can
be more constraining in this case, especially when taken
together with the indirect bounds from the precision
measurements of the electroweak ρ parameter and diphoton
decay rate of the 125 GeV Higgs boson, as discussed in
Sec. IV. It can be clearly seen from Fig. 5(b) that the
associated production of the pseudoscalar A1 with b-quark
pairs does not impose any significant restrictions on the
relevant parameter space. However, the production cross
section via the gluon-gluon-fusion process, as shown in
Fig. 5(c), can be significantly larger in this case, allowing
only mA1

≳ 450 GeV. The similar LHC bounds on H1

comes out to be weaker than those on A1 in most of the
parameter space for this scenario.
Before we conclude, it should be noted that this

seemingly strong constraint from the direct searches should
be interpreted with some caution. The strong constraints on
the neutral bosons are essentially due to relatively high

branching ratios (BRs) into the ττ channel, which, in turn,
may be attributed to our choice of tan β1 ≫ 1. But one
should also remember that we have been working in a
simplified limit of the Z3HDM, where the nonstandard
scalars come with two tiers of degenerate masses, which we
motivated from the ρ-parameter constraints. However, we
can lift the degeneracy and allow one of the neutral scalars
to have a different mass while still keeping the NP
contributions to the ρ parameter under control. In this
way, it will be possible to open up channels like A1 → H1Z,
which will reduce BRðA1 → ττÞ. Moreover, there can be
additional decay modes in the scalar sector too. As an
example, if there is a dark singlet coupling to the other
scalars, then decay modes, such as H1 → SS, where S is
the dark singlet, can open up. Keeping all these possibilities
in mind, we can say that the bounds from the direct
searches in our simplified analysis can be considerably
relaxed.

VI. SUMMARY

To summarize, we have analyzed a 3HDM with Z3

symmetry featuring NFC, where the Z3 symmetry ensures a

(a) (b) (c)

FIG. 5. Figure shows the cross section times branching ratio of H�
1 and A1 at the 13 TeV LHC as a function of their masses. The plots

correspond to the parameter choice tan β1 ¼ 10, tan β2 ¼ 2, γ1 ¼ γ2 ¼ −α3 ¼ π
6
andmA2

¼ mH2
¼ mHþ

2
¼ 5 TeV. Note that σxy denotes

the production cross section times branching ratio for the production mode x and decay mode y of the corresponding Higgs boson.
The parameter space excluded by the latest bound from ATLAS is shown as a gray-shaded region.

(a) (b) (c)

FIG. 4. Figure shows the branching fractions ofH�
1 , A1, andH1 with tan β2 for fixed masses ofmA1

¼ mH1
¼ mHþ

1
¼ 500 GeV. Here

we choose, γ1 ¼ γ2 ¼ −α3 ¼ π
6
(solid lines) and π

4
(dashed lines) and mA2

¼ mH2
¼ mHþ

2
¼ 5 TeV. This hierarchy of branching

fractions can serve as distinguishing features of Z3HDMs from other canonical 2HDMs [47].
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democratic Yukawa structure requiring each type of SM
fermion to be coupled to a particular Higgs scalar doublet,
thus eliminating FCNCs at tree level. We have discussed
the characteristics of the scalar and Yukawa sectors in
detail, focusing on the alignment limit where the lightest
CP-even Higgs boson of the model possesses SM-like
tree-level couplings and hence can serve as a candidate for
the 125 GeV scalar observed at the LHC. This alignment
limit can be characterized by a set of simple analytic
conditions closely resembling that of a 2HDM. The
alignment limit is also phenomenologically well motivated
in view of the increasingly precise measurements of the
signal strengths of the 125 GeV SM-like Higgs boson at
the LHC.
The presence of two pairs of charged (H�

1;2Þ and addi-
tional two neutral CP-odd (A1;2) and two neutral CP-even
(H1;2) Higgs bosons in the model gives rise to distinctive
signatures in various experiments looking for direct or
indirect signals of BSM physics. From the phenomeno-
logical point of view, we have put an emphasis on
analyzing the effect of the flavor physics constraints on
the parameter space of Z3HDMs. The leading BSM
contribution to flavor observables like BRðb → sγÞ and
ΔMBs;d

comes from the loops containing the charged Higgs
bosons H�

1 and H�
2 . The Yukawa coupling structure of the

charged Higgs bosons in this model bears close likeness to
those of the type-II 2HDM. However, the key difference
from the type-II 2HDM is that the fermionic couplings of
the charged Higgses feature an additional suppression
effect, which is essentially nondecoupling in nature.
Thus, even in the limit of an effective type-II 2HDM, with
one of the charged Higgs bosons taken to be decoupled
from the spectrum, the couplings of the other charged
Higgs retains the suppression factor. This produces a
significant relaxation of the bounds coming from flavor
observables in this model compared to the type-II 2HDM. It
is observed that charged Higgs masses as low as 200 GeV
are allowed by the flavor data in the Z3HDM, whereas in
the case of the type-II 2HDM the lower bound on charged
Higgs mass from the same flavor physics constraints stands
at Oð600 GeVÞ. We have discussed the combined contri-
bution of H�

1 and H�
2 to flavor observables when both of

them are taken to be light. We have also taken into account
the precision constraints from the EW ρ parameter, which
can be easily satisfied in a simple set up with two
sets of degenerate masses for the nonstandard scalars,
mHþ

i
¼ mHi

¼ mAi
, i ¼ 1, 2. We show that in this limiting

case, the couplings of the charged Higgs bosons to the
125 GeV SM-like Higgs assumes a constant value.
Therefore, the contribution to h → γγ decay from the
charged Higgs loop, being suppressed by a factor of
m2

h=m
2
Hþ

i
; i ¼ 1, 2, does not produce any additional con-

straint on the relevant parameter space.

Finally, we have analyzed the constraints coming from
the direct searches of the nonstandard Higgs bosons at the
LHC. We show that the bounds from direct charged Higgs
boson searches can be satisfied relatively easily in most of
the parameter region satisfied by the flavor data. However,
the constraints on neutral CP-even and CP-odd Higgs
boson masses coming from ditau resonance searches put
somewhat stringent bounds on our parameter space.
We also note that the strong constraints from the ditau
resonance searches are a consequence of the particular
parameter choice we make to satisfy the bounds from the
EW ρ parameter. Some alternative choice of parameters
to satisfy the ρ-parameter constraint may lead to a signifi-
cant reduction in the branching ratios of the neutral
CP-even and CP-odd scalars to ττ final states. This, in
turn, may lead to a dilution of the LHC bounds by a
considerable amount.
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APPENDIX A: MASS-COUPLING RELATION
OF THE Z3HDM SCALAR SECTOR

In this Appendix we give a detailed description of the
scalar sector. It is to be noted that the scalar potential of
Eq. (2) contains 18 parameters including the three soft-
symmetry breaking terms m2

12, m
2
13, and m2

23. Among all,
the bilinear parameters m2

11, m
2
22, and m

2
33 can be traded for

the three VEVs, v1, v2, and v3 or equivalently v, tan β1, and
tan β2. The remaining twelve quartic couplings will corre-
spond to the seven physical masses (three CP-even scalars,
two CP-odd scalars, and two pairs of charged scalars) and
five mixing angles (three in the CP-even sector, one in the
CP-odd sector, and one in the charged scalar sector).
Below, we demonstrate this relation by examining the
potential of Eq. (2) in more detail.
The minimization conditions used to replace the bilinear

parameters, in terms of the VEVs, are given below,
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m2
11 ¼ −λ1v21 −

1

2
fðλ4 þ λ7Þv22 þ ðλ5 þ λ8Þv23 þ 2λ10v2v3g

−
v2v3
2v1

ðλ11v2 þ λ12v3Þ þm2
12

v2
v1

þm2
13

v3
v1

; ðA1aÞ

m2
22 ¼ −λ2v22 −

1

2
fðλ4 þ λ7Þv21 þ ðλ6 þ λ9Þv23 þ 2λ11v1v3g

−
v1v3
2v2

ðλ10v1 þ λ12v3Þ þm2
12

v1
v2

þm2
23

v3
v2

; ðA1bÞ

m2
33 ¼ −λ3v23 −

1

2
fðλ5 þ λ8Þv21 þ ðλ6 þ λ9Þv22 þ 2λ12v1v2g

−
v1v2
2v3

ðλ10v1 þ λ11v2Þ þm2
13

v1
v3

þm2
23

v2
v3

: ðA1cÞ

Now let us demonstrate the diagonalization of the mass matrices in different sectors following the same prescription as
in [17] but in the presence of the soft terms.

1. CP-odd scalar sector

The mass term for the pseudoscalar sector can be extracted from the scalar potential as,

Vmass
PS ¼ ð z1 z2 z3 Þ

M2
P

2

0
B@

z1
z2
z3

1
CA; ðA2Þ

where M2
P is the 3 × 3 mass matrix that can be block diagonalized as follows:

ðBPÞ2≡Oβ ·M2
P ·O

T
β ¼

0
B@
0 0 0

0 ðB2
PÞ22 ðB2

PÞ23
0 ðB2

PÞ23 ðB2
PÞ33

1
CA: ðA3aÞ

The elements of B2
P are given by

ðB2
PÞ22 ¼ −

v3
2v1v2ðv21 þ v22Þ

½λ10v1ðv21 þ 2v22Þ2 þ λ11v2ð2v21 þ v22Þ2 þ λ12v3ðv21 − v22Þ2 þm2
23v

3
1 þm2

13v
3
2� þm2

12

ðv21 þ v22Þ
v1v2

;

ðA3bÞ

ðB2
PÞ23 ¼

v
2ðv21 þ v22Þ

½−λ10v1ðv21 þ 2v22Þ þ λ11v2ð2v21 þ v22Þ þ 2λ12v3ðv21 − v22Þ −m2
23v1 þm2

13v2�; ðA3cÞ

ðB2
PÞ33 ¼ −

v2

2v3ðv21 þ v22Þ
½λ10v21v2 þ λ11v1v22 þ 4λ12v1v2v3 −m2

12v1 −m2
23v2�: ðA3dÞ

The matrix B2
P can be fully diagonalized by an orthogonal transformation,

Oγ1 · ðBPÞ2 ·OT
γ1 ¼ diagð0; m2

A1
; m2

A2
Þ; ðA4Þ

where Oγ1 is given in Eq. (6), which entails the following relations:
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m2
A1
cos2γ1 þm2

A2
sin2γ1 ¼ ðB2

PÞ22; ðA5aÞ

cos γ1 sin γ1ðm2
A2

−m2
A1
Þ ¼ ðB2

PÞ23; ðA5bÞ

m2
A1
sin2 γ1 þm2

A2
cos2 γ1 ¼ ðB2

PÞ33: ðA5cÞ

Using Eqs. (A3) and (A5) can be inverted to solve for λ10, λ11, and λ12 as

λ10 ¼
2m2

A1

9v2

�
s2γ1
cβ1cβ2

−
2sβ1c

2
γ1

sβ2cβ2
þ s3β1sγ1cγ1

sβ1cβ1cβ2
þ tan β2s2γ1

�
tan β1
cβ1

− 2cβ1 cot β1

��

−
m2

A2

9v2

�
ð2c2β1 þ 3Þ s2γ1

cβ1cβ2
þ 4

sβ1s
2
γ1

sβ2cβ2
− 2 tan β2c2γ1

�
tan β1
cβ1

− 2cβ1 cot β1

��

þ 4

9v2
m2

12

sβ2cβ1cβ2
þ 4

9v2
m2

13

sβ2cβ1c
2
β2

−
2

9v2
m2

23

c2β1c
2
β2

; ðA6aÞ

λ11 ¼
m2

A1

9v2

�
−
4cβ1c

2
γ1

sβ2cβ2
þ ð−3þ 2c2β1Þ

sβ1cβ2
s2γ1 þ 2ðcot4β1 þ cot2β1 − 2Þsβ1s2γ1 tan β1 tan β2

�

þm2
A2

9v2

�
−
4cβ1s

2
γ1

sβ2cβ2
þ ð5þ cot2β1Þ

cβ2
s2γ1sβ1 þ 2ðcot4β1 þ cot2β1 − 2Þsβ1c2γ1 tan β1 tan β2

�

þ 4

9v2
m2

12

sβ1sβ2cβ2
−

2

9v2
m2

13

s2β1c
2
β2

þ 4

9v2
m2

23

sβ1cβ1c
2
β2

; ðA6bÞ

λ12 ¼
m2

A1

36v2

�
4s2β1c

2
γ1

s2β2
−
4c2β1s2γ1

sβ2
þ ðc4β1 − 17Þ s2γ1

sβ1cβ1

�
þ m2

A2

36v2

�
4s2β1s

2
γ1

s2β2
þ 4c2β1s2γ1

sβ2
þ ðc4β1 − 17Þ c2γ1

sβ1cβ1

�

−
2m2

12

9v2s2β2
þ 4

9v2
m2

13

sβ1sβ2cβ2
þ 4

9v2
m2

23

cβ1sβ2cβ2
: ðA6cÞ

2. Charged scalar sector

Similar to the pseudoscalar case, the 3 × 3 charged sector mass matrix M2
C can also be block diagonalized as

ðBCÞ2 ≡Oβ ·M2
C ·OT

β ¼

0
B@

0 0 0

0 ðB2
CÞ22 ðB2

CÞ23
0 ðB2

CÞ23 ðB2
CÞ33

1
CA; ðA7aÞ

where

ðB2
CÞ22 ¼ −

1

2ðv21 þ v22Þ
�
λ10

v3
v2

ððv21 þ v22Þ2 þ v42Þ þ λ11
v3
v1

ððv21 þ v22Þ2 þ v41Þ þ λ12
v23
v1v2

ðv41 þ v42Þ

þ λ7ðv21 þ v22Þ2 þ λ8v22v
2
3 þ λ9v21v

2
3 −m2

12

ðv21 þ v22Þ2
v1v2

−m2
13

v22v3
v1

−m2
23

v21v3
v2

�
; ðA7bÞ

ðB2
CÞ23 ¼

v
2ðv21 þ v22Þ

½−v1v22λ10 þ λ11v21v2 þ λ12v3ðv21 − v22Þ − λ8v1v2v3 þ λ9v1v2v3 −m2
23v1 þm2

13v2�; ðA7cÞ

ðB2
CÞ33 ¼ −

v2

2ðv21 þ v22Þ
�
v21v2
v3

λ10 þ λ11
v1v22
v3

þ 2v1v2λ12 þ λ8v21 þ λ9v22 −m2
13

v1
v3

−m2
23

v2
v3

�
: ðA7dÞ
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Further, the charged scalar mass matrix can be completely diagonalized with the use of the rotation matrix Oγ2 [given in
Eq. (6)] as

Oγ2 · ðBCÞ2 ·OT
γ2 ¼ diagð0; m2

Hþ
1

; m2
Hþ

2

Þ: ðA8Þ

Thus, we will have the following relations:

m2
Hþ

1

cos2 γ2 þm2
Hþ

2

sin2γ2 ¼ ðB2
CÞ22; ðA9aÞ

cos γ2 sin γ2ðm2
Hþ

2

−m2
Hþ

1

Þ ¼ ðB2
CÞ23; ðA9bÞ

m2
Hþ

1

sin2 γ2 þm2
Hþ

2

cos2 γ2 ¼ ðB2
CÞ33: ðA9cÞ

These equations in conjunction with Eq. (A7) will enable us to solve for λ7, λ8, and λ9 as given below,

λ7 ¼
ðm2

Hþ
1

−m2
Hþ

2

Þ
2v2

�
ð−3þ c2β2Þ

c2γ2
c2β2

þ 4 tan β2
tan 2β1

s2γ2
cβ2

�
−
ðm2

Hþ
1

þm2
Hþ

2

Þ
v2

− λ10
tan β2
sβ1

− λ11
tan β2
cβ1

þ 2m2
12

v2sβ1cβ1c
2
β2

; ðA10aÞ

λ8 ¼
m2

Hþ
1

v2

�
−2s2γ2 þ tan β1

s2γ2
sβ2

�
−
m2

Hþ
2

v2

�
2c2γ2 þ tan β1

s2γ2
sβ2

�
− λ10sβ1 cot β2 − λ12 tan β1 þ

2m2
13

v2cβ1sβ2cβ2
; ðA10bÞ

λ9 ¼ −
m2

Hþ
1

v2

�
2s2γ2 þ cot β1

s2γ2
sβ2

�
þ
m2

Hþ
2

v2

�
−2c2γ2 þ cot β1

s2γ2
sβ2

�
− λ11cβ1 cot β2 − λ12 cot β1 þ

2m2
23

v2sβ1sβ2cβ2
; ðA10cÞ

where the other three couplings ðλ10; λ11 & λ12Þ can be replaced using Eq. (A6).

3. CP-even scalar sector

The mass terms in the neutral scalar sector can be extracted from the potential as

Vmass
S ¼ ð h1 h2 h3 Þ

M2
S

2

0
B@

h1
h2
h3

1
CA; ðA11aÞ

where M2
S is the 3 × 3 symmetric mass matrix whose elements are given by

ðM2
SÞ11 ¼ 2v21λ1 −

v2v3ðv2λ11 þ v3λ12Þ
2v1

þm2
12

v2
v1

þm2
13

v3
v1

; ðA11bÞ

ðM2
SÞ12 ¼ v1ðv2ðλ7 þ λ4Þ þ v3λ10Þ þ

v3
2
ð2v2λ11 þ v3λ12Þ −m2

12; ðA11cÞ

ðM2
SÞ13 ¼ v1ðv3ðλ8 þ λ5Þ þ v2λ10Þ þ

v2
2
ðv2λ11 þ 2v3λ12Þ −m2

13; ðA11dÞ

ðM2
SÞ22 ¼ 2v22λ2 −

v1v3ðv1λ10 þ v3λ12Þ
2v2

þm2
12

v1
v2

þm2
23

v3
v2

; ðA11eÞ

ðM2
SÞ23 ¼ v3ðv2ðλ6 þ λ9Þ þ v1λ12Þ þ

v1
2
ð2v2λ11 þ v1λ10Þ −m2

23; ðA11fÞ

ðM2
SÞ33 ¼ 2v23λ3 −

v1v2ðv1λ10 þ v2λ11Þ
2v3

þm2
13

v1
v3

þm2
23

v2
v3

: ðA11gÞ
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This mass matrix should be diagonalized via the following orthogonal transformation:

Oα ·M2
S ·O

T
α ≡

0
B@

m2
h 0 0

0 m2
H1

0

0 0 m2
H2

1
CA; ðA12Þ

where Oα has already been defined in Eq. (9). Inverting the above Eq. (A12), we get

M2
S ≡OT

α ·

0
B@

m2
h 0 0

0 m2
H1

0

0 0 m2
H2

1
CA ·Oα; ðA13Þ

which enables us to solve for the remaining six lambdas as follows:

λ1 ¼
m2

h

2v2
c2α1c

2
α2

c2β1c
2
β2

þ m2
H1

2v2c2β1c
2
β2

ðcα1sα2sα3 þ sα1cα3Þ2 þ
m2

H2

2v2c2β1c
2
β2

ðcα1sα2cα3 − sα1sα3Þ2

þ tan β1 tan β2
4c2β1

ðλ11sβ1 þ λ12 tan β2Þ −
m2

12

2v2
tan β1
c2β1c

2
β2

−
m2

13

2v2
tan β2
c3β1c

2
β2

; ðA14aÞ

λ2 ¼
m2

h

2v2
s2α1c

2
α2

s2β1c
2
β2

þ m2
H1

2v2s2β1c
2
β2

ðcα1cα3 − sα1sα2sα3Þ2 þ
m2

H2

2v2s2β1c
2
β2

ðcα1sα3 þ sα1sα2cα3Þ2

þ tan β2
4s2β1 tan β1

ðλ10cβ1 þ λ12 tan β2Þ −
m2

12

2v2
cot β1
s2β1c

2
β2

−
m2

23

2v2
tan β2
s3β1c

2
β2

; ðA14bÞ

λ3 ¼
m2

h

2v2
s2α2
s2β2

þm2
H1
c2α2s

2
α3

2v2s2β2
þm2

H2
c2α2c

2
α3

2v2s2β2
þ s2β1
8tan3β2

ðλ10cβ1 þ λ11sβ1Þ −
m2

13

2v2
cβ1

tan β2s2β2
−
m2

23

2v2
sβ1

tan β2s2β2
; ðA14cÞ

λ4 ¼
1

4v2s2β1c
2
β2

½ðm2
H1

−m2
H2
Þfð−3þ c2α2Þs2α1c2α3 − 4c2α1sα2s2α3g − 2ðm2

H1
þm2

H2
Þs2α1c2α2 �

þm2
h

v2
s2α1c

2
α2

s2β1c
2
β2

−
tan β2
s2β1

ð2λ10cβ1 þ 2λ11sβ1 þ λ12 tan β2Þ − λ7 þ
m2

12

v2
1

sβ1cβ1c
2
β2

; ðA14dÞ

λ5 ¼
m2

h

v2
cα1s2α2
cβ1s2β2

−
m2

H1

v2cβ1s2β2
ðcα1s2α2s2α3 þ sα1cα2s2α3Þ þ

m2
H2

v2cβ1s2β2
ðsα1cα2s2α3 − cα1s2α2c

2
α3Þ

−
sβ1

2 tan β2
ð2λ10 þ λ11 tan β1Þ − λ12 tan β1 − λ8 þ

m2
13

v2
1

cβ1sβ2cβ2
; ðA14eÞ

λ6 ¼
m2

h

v2
sα1s2α2
sβ1s2β2

þm2
H1

v2
cα2

sβ1s2β2
ð−2sα1sα2s2α3 þ cα1s2α3Þ −

m2
H2

v2
cα2

sβ1s2β2
ð2sα1sα2c2α3 þ cα1s2α3Þ

−
cβ1

2 tan β2
ðλ10 cot β1 þ 2λ11Þ − λ12 cot β1 − λ9 þ

m2
23

v2
1

sβ1sβ2cβ2
: ðA14fÞ

APPENDIX B: FLAVOR OBSERVABLES IN THE Z3HDM

1. Computing b → sγ

The nonstandard contributions to the one-loop b → sγ amplitude in our Z3HDM scenario are shown in Fig. 6.
Since the one-loop contributions come from the charged scalar only, the NP amplitudes will depend only on the parameters
tan β1, tan β2, mHþ

1
, mHþ

2
, and γ2. To find the amplitudes, we simply extend the analysis of a NFC 2HDM [52,53] for a
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scenario with two differentHþ. Following Ref. [54], the branching ratio for b → sγ is controlled by theCeff
7L andC

eff
7R Wilson

coefficients,

BRðb → sγÞ
BRðb → ceν̄Þ ¼

6α

πB

				V
�
tsVtb

Vcb

				
2

½jCeff
7Lj2 þ jCeff

7Rj2�; ðB1Þ

where the normalization by Brðb → ceν̄Þ helps canceling some of the hadronic uncertainties. The effective Wilson
coefficients read

Ceff
7L ¼ η16=23C7L þ 8

3
ðη14=23 − η16=23ÞC8L þ

X8
i¼1

hiηai ; ðB2aÞ

Ceff
7R ¼ η16=23C7R þ 8

3
ðη14=23 − η16=23ÞC8R; ðB2bÞ

where, as in the usual analysis of 2HDMs [54], the leading log QCD corrections in the SM are described by

ai ¼



14
23
; 16

23
; 6

23
; − 2

23
; 0.4086; −0.4230; −0.8994; 0.1456

�
; ðB2cÞ

hi ¼



626126
272277

; − 56281
51730

; − 3
7
; − 1

14
; −0.6494; −0.0380; −0.0186; −0.0057

�
; ðB2dÞ

and η ¼ αsðMZÞ=αsðμÞ, where μ is the QCD renormalization scale μ ≈ 221 MeV. Taking into account the absence of tree-
level FCNCs, the coefficients in Eqs. (B2a) and (B2b) can be recast as

C7L ¼ ASM
γ þ Aþ

γL; C7R ¼ ms

mb
ASM
γ þ Aþ

γR; ðB3aÞ

C8L ¼ ASM
g þ Aþ

gL; C8R ¼ ms

mb
ASM
g þ Aþ

gR; ðB3bÞ

where the Aþ terms correspond to our NP (charged Higgs) contributions. These contributions can be further broken down
into

Aþ
γL;R ¼ 1

V�
tsVtb

X
q¼u;c;t

V�
qsVqb

�
C1L;RðyqÞ þ

2

3
C2L;RðyqÞ

�
; ðB4aÞ

Aþ
gL;R ¼ 1

V�
tsVtb

X
q¼u;c;t

V�
qsVqbC2L;RðyqÞ; ðB4bÞ

with yq ¼ m2
q=M2

Hþ , and

FIG. 6. NP contributions to b → sγ in the Z3HDM. H�
i stands for both charged scalars (i ¼ 1, 2).
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C1L;RðyqÞ ¼
yq
4

�
½F̄ 2ðyqÞ − F̄ 1ðyqÞ�

�
m2

s;b

m2
q
Y2 þ X2

�
þ 2XY½F̄ 1ðyqÞ − F̄ 0ðyqÞ�

�
; ðB5aÞ

C2L;RðyqÞ ¼
yq
4

�
½F 2ðyqÞ − F 1ðyqÞ�

�
m2

s;b

m2
q
Y2 þ X2

�
− 2XYF 1ðyqÞ

�
; ðB5bÞ

in which X and Y are the charged Higgs coupling to left- and right-handed quarks, respectively, and the loop functions are
given by

F kðtÞ ¼
Z

1

0

dx
ð1 − xÞk

xþ ð1 − xÞt ¼
1

ðkþ 1Þt 2F1

�
1; 1; kþ 2;

t − 1

t

�
; ðB6aÞ

F̄ kðtÞ ¼
Z

1

0

dx
xk

xþ ð1 − xÞt ¼
1

ðkþ 1Þt 2F1

�
1; kþ 1; kþ 2;

t − 1

t

�
; ðB6bÞ

where pFqða; b; c; dÞ is the hypergeometric function. Finally, the SMamplitude is given by (keeping only the top contribution)

ASM
γ ¼

�ð2 − 3xtÞ
2

F 1ðxtÞ þ
ð2þ xtÞ

2
F 2ðxtÞ þ xtF 0ðxtÞ þ

4

3
F 0ðxtÞ −

ð6 − xtÞ
3

F 1ðxtÞ þ
ð2þ xtÞ

3
F 2ðxtÞ

�
−
23

36
; ðB7aÞ

ASM
g ¼

�
2F 0ðxtÞ −

ð6 − xtÞ
2

F 1ðxtÞ þ
ð2þ xtÞ

2
F 2ðxtÞ

�
−
1

3
; ðB7bÞ

where xt ¼ m2
t =M2

W . So far, we have presented the analysis of the b → sγ processes in a 2HDMwhere FCNCs are absent. To
extend these results to our model, we redefine Eqs. (B4) and (B5) to account for both charged Higgs contributions,

Aþ
γL;R ¼ 1

V�
tsVtb

X
q¼u;c;t

V�
qsVqb

X
i¼1;2

�
Ci
1L;RðyiqÞ þ

2

3
Ci
2L;RðyiqÞ

�
; ðB8aÞ

Aþ
gL;R ¼ 1

V�
tsVtb

X
q¼u;c;t

V�
qsVqb

X
i¼1;2

Ci
2L;RðyiqÞ; ðB8bÞ

where now yiq ¼ m2
q=M2

Hþ
i
, and

Ci
1L;RðyqÞ ¼

yq
4

�
½F 2ðyqÞ − F 1ðyqÞ�

�
m2

s;b

m2
q
Y2
i þ X2

i

�
þ 2XiYi½F̄ 1ðyqÞ − F̄ 0ðyqÞ�

�
; ðB9aÞ

Ci
2L;RðyqÞ ¼

yq
4

�
½F 2ðyqÞ − F 1ðyqÞ�

�
m2

s;b

m2
q
Y2
i þ X2

i

�
− 2XiYiF 1ðyqÞ

�
; ðB9bÞ

wherewe can see theXi andYi couplings now carry an index, denoting theHþ
1 andHþ

2 chiral (PL andPR) couplings to quarks.
In the present model, these couplings can be extracted from Eqs. (18a) and (18b),

X1 ¼ − cot β2 sin γ2; ðB10aÞ

Y1 ¼ − tan β2

�
cot β1 cos γ2

sin β2
þ sin γ2

�
; ðB10bÞ

X2 ¼ cot β2 cos γ2; ðB10cÞ

Y2 ¼ − tan β2

�
cot β1 sin γ2

sin β2
− cos γ2

�
: ðB10dÞ
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We now have all the relevant information needed to
compute the b → sγ branching ratio in our model. As
advertised, the only dependencies on the BSM degrees of
freedom are through tan β1, tan β2, and γ2, which control
the couplings, the charged Higgs masses, mHþ

1
and mHþ

2
,

which will affect the loop functions. Finally, the SM
prediction for the b → sγ branching ratio can be found
in Ref. [55] and the experimental values in [19].

2. Neutral meson mixing: ΔMBq

A very restrictive aspect of BSM models comes from
neutral meson oscillations. These processes, for models with-
out tree-level FCNCs, are forbidden at tree level, butmay have
sizable one-loop contributions. The left panel in Fig. 7
represents the SM contribution for such processes, whereas
the other two diagrams represent the additional contributions
in our Z3HDM scenario. To obtain some qualitative intuitions
we write the effective ΔF ¼ 2 Lagrangian as follows:

LΔF¼2
eff ¼ G2

FM
2
W

16π2
X

a;b¼u;c;t
i;j¼H�

1
;H�

2

λaλb ωaωb

�
Sðya; ybÞ

4
þ XiaXib½I1ðya; yb; yiÞ þ XjaXjbI2ðya; yb; yi; yjÞ�

�
OF: ðB11Þ

The SM contribution is encoded in Sðya; ybÞ, normalized
by a factor of 4 to account for the summation on the
charged Higgs. The I1ðya; yb; yiÞ contributions are due to
the mixed W� −H�

i boxes, and I2ðya; yb; yi; yjÞ are the
H�

i −H�
j boxes in Fig. 7. The above expression is valid in

the zero external momenta approximation, where the down-
type quark masses are taken to be zero. We use Xia to
denote the coupling between the charged HiggsH�

i and the
up-quark a, which, as seen in Eq. (B10a), are flavor
universal, i.e., X1a ¼ X1 ¼ − cot β2 sin γ2 and X2a ¼ X2 ¼
cot β2 cos γ2 forH�

1 andH�
2 , respectively. The quantities ya

and yi stand for the ratios m2
a=M2

W and m2
Hþ

i
=M2

W , respec-

tively. The specificities of the neutral meson under con-
sideration are contained in the CKM elements λa and the
dimension-six operators OF. For a generic meson,
P ¼ ðq̄1; q2Þ, these are defined as

λa ¼ ðV�
aq2Vaq1Þ; OF ¼ ðq̄1γμPLq2Þ2: ðB12Þ

Finally, the loop functions are given by

fðxÞ ¼ ðx2 − 8xþ 4Þ ln xþ 3ðx − 1Þ
ðx − 1Þ2 ; Sðya; ybÞ ¼

fðya; ybÞ
ya − yb

; ðB13aÞ

gðx; y; zÞ ¼ xðx − 4Þ ln x
ðx − 1Þðx − yÞðx − zÞ ; I1ðya; yb; yiÞ ¼ gðya; yb; yiÞ þ gðyb; yi; yaÞ þ gðyi; ya; ybÞ; ðB13bÞ

hðx; y; w; zÞ ¼ x2 ln x
ðx − yÞðx − wÞðx − zÞ ; ðB13cÞ

I2ðya; yb; yi; yjÞ ¼ hðya; yb; yi; yjÞ þ hðyb; ya; yi; yjÞ þ hðyi; ya; yb; yjÞ þ hðyj; ya; yb; yiÞ: ðB13dÞ

The limiting cases where, for instance, the same Higgs runs in the I2 box diagram should be carefully dealt with, as the
loop functions are only apparently divergent for xi ¼ xj, but indeed have a well-defined limit.

FIG. 7. Contributions toΔMBq
in the Z3HDM.H�

i stands for both charged scalars (i ¼ 1, 2). The first box diagram corresponds to the
SM amplitude. The diagrams with interchanged internal lines are not shown explicitly.
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Finally, we can obtain ΔMP from the effective Lagrangian,

ΔMP ¼ 2jMP
12j; MP

12 ¼ −
1

2MP
hP0jLΔF¼2

eff jP̄0i; ðB14aÞ

hP0jOP
FjP̄0i ¼ 2

3
f2PM

2
PBP; ðB14bÞ

where MP is the meson mass, fP its decay constant, and BP is its bag parameter. The 2HDM limit (with no tree-level
FCNCs) of Eq. (B11) can be easily extracted, taking some care on the symmetry factors. As in the b → sγ computations, it
would be possible to parametrize these results to match numerical results with higher-order corrections. The experimental
values which will determine the experimentally allowed region are taken from [19], whereas the relevant hadronic
parameters can be found in [56].
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