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In the minimal supersymmetric extension of the Standard Model (MSSM) the Higgsino mass parameter
μ appears both in the masses of the Higgs bosons and in the neutralino mass matrix. Electroweak finetuning
therefore prefers small values of jμj. On the other hand, binolike neutralinos make a good dark matter
candidate. We show that current direct search limits then impose a strong lower bound on jμj, in particular
for μ > 0 or if the masses of the heavy Higgs bosons of the MSSM are near their current limit from LHC
searches; these bounds on jμj are typically much stronger than the ones from collider physics. There is
therefore some tension between fine-tuning and neutralino dark matter in the MSSM. We also provide
simple analytical expressions which in most cases closely reproduce the numerical results.
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I. INTRODUCTION

Softly broken supersymmetry alleviates the electroweak
hierarchy problem [1,2]. In supersymmetric theories there
are no quadratically divergent radiative corrections to the
masses of Higgs bosons. Increasing lower bounds of the
masses of superparticles from searches at the LHC [3]
nevertheless imply sizable loop corrections to the masses of
Higgs bosons in realistic supersymmetric models. This
leads to fine-tuning if soft breaking masses are treated as
uncorrelated [4,5]. However, this source of fine-tuning
might be greatly reduced in models with a small number of
independent soft breaking parameters, typically defined at a
very large renormalization scale, which introduce correla-
tions between weak-scale parameters [6].
On the other hand, the minimal supersymmetric exten-

sion of the standard model (MSSM) [7,8] also requires a
supersymmetric contribution to Higgs and Higgsino
masses; this mass parameter is usually called μ. Searches
for charginos at LEP imply [3] jμj≳ 100 GeV. Since μ
enters the Higgs potential already at tree-level, a value of jμj
much above MZ inevitably leads to fine-tuning. There is
thus general agreement in the discussion of fine-tuning
issues in the MSSM that—given the experimental lower

bound—smaller values of jμj are preferred, with the
necessary degree of fine-tuning increasing like jμj2.
The same parameter μ also sets the mass scale for the

Higgsinos in the MSSM1; as already noted, this is the origin
of the lower bound on jμj. This establishes a connection
between fine-tuning and the phenomenology of the neu-
tralinos and charginos in the MSSM.
One of the attractive features of the MSSM with exact

R-parity is that it automatically contains a candidate
particle to form the cosmological dark matter whose
existence can be inferred from a host of observations,
assuming only that Einsteinian (or indeed Newtonian)
gravity is applicable at the length scales of (clusters of)
galaxies [10]. This candidate is the lightest neutralino χ̃01
[11], whose mass is bounded from above by jμj. Given that
naturalness arguments prefer a small value of jμj, one might
assume that the most natural dark matter candidate in the
MSSM is a light Higgsino-like neutralino. However,
in minimal cosmology a Higgsino-like neutralino has the
correct relic density only for jμj ≃ 1.2 TeV [12], which
would lead to permille-level electroweak fine-tuning.
A winolike LSP would have to be even heavier. One can
appeal to nonstandard cosmologies, e.g., including non-
thermal production mechanisms, in order to give a lighter
Higgsino–light neutralino the correct relic density; how-
ever, such scenarios are already quite strongly constrained
by indirect dark matter searches [13].
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1This can be avoided only if one introduces additional non-
holomorphic soft-breaking Higgsino mass terms [9]; however,
most supersymmetry breaking mechanisms do not generate such
terms. We will therefore not consider this possibility here.
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In this article we therefore assume that the bino mass
parameter M1 < jμj, so that the LSP eigenstate is domi-
nated by the bino component; M1 can be taken positive
without loss of generality. Also in this case fine-tuning
would prefer jμj to be not far aboveM1. On the other hand,
if jμj ≃M1 the LSP has sizable Higgsino and bino
components, and hence generically sizable couplings to
the neutral Higgs bosons of the MSSM. Such mixed
neutralinos tend to have rather large scattering cross
sections on matter, in potential conflict with strong
lower bounds on this quantity from direct dark matter
searches [3]. This is true in particular for the so-called
“well-tempered neutralino” [14], a bino-Higgsino mixture
with the correct relic density in minimal cosmology.
In this article we explore this connection quantitatively,

by deriving a lower bound on the difference jμj −M1 from
the upper bound on the neutralino-nucleon scattering cross
section found by the Xenon collaboration [15]. We do this
both numerically, and using a simple approximation for the
binolike neutralino eigenstate which is very accurate in the
relevant region of parameter space. The resulting lower
bound on jμj is much stronger than the trivial constraint
jμj > M1 which follows from the requirement of a binolike
LSP; this is true in particular if M1 and μ have the same
sign. An upper bound on jμj from fine-tuning consider-
ations therefore leads to a considerably stronger upper
bound on M1 from direct dark matter searches.
A binolike neutralino will often have too large a relic

density in minimal cosmology. This can be cured either by
assuming nonstandard cosmology (e.g., a period of late
entropy production [16,17] or by assuming a low reheat
temperature [18]), or—for not too smallM1—by arranging

for coannihilation with a charged superparticle, e.g., a τ̃
slepton [19], which can still have escaped detection by
collider experiments if it is close in mass to the lightest
neutralino. Neither of these modifications changes the cross
section for neutralino-proton scattering significantly. By
not imposing any relic density constraint our result thus
becomes less model dependent. This, as well as the use of
the more recent, and considerably stronger, Xenon-1T
constraint and the approximate analytical derivation of
the constraint on jμj, distinguishes our analysis from that
of Ref. [20].
The rest of this article is organized as follows. In the

following section we review neutralino mixing, both exact
and using a simple approximation. We also give the
relevant expressions for the neutralino-nucleon scattering
cross section, and discuss the accuracy of our analytical
approximation. In Sec. III we present the resulting lower
bound on the difference jμj −M1 as a function of M1,
before concluding in Sec. IV.

II. FORMALISM

In this section we briefly review the neutralino masses
and mixings in the MSSM, as well as the spin-independent
contribution to neutralino-nucleon scattering.

A. The neutralinos in the MSSM

The neutralinos are mixtures of the two neutral gauginos
(the bino B̃ and the neutral wino W̃3) and two neutral
Higgsinos h̃0d, h̃

0
u associated with the two SUð2Þ Higgs

doublets required in the MSSM. The resulting mass matrix
in the B̃, W̃3, h̃

0
d, h̃

0
u basis is given by [8]:

M0 ¼

0
BBB@

M1 0 −MZ cos β sin θW MZ sin β sin θW
0 M2 MZ cos β cos θW −MZ sin β cos θW

−MZ cos β sin θW MZ cos β cos θW 0 −μ
MZ sin β sin θW −MZ sin β cos θW −μ 0

1
CCCA: ð1Þ

Here M1 and M2 are soft breaking masses for the bino
and wino, respectively, μ is the Higgsino mass parameter,
θW is the weak mixing angle, MZ ≃ 91 GeV is the mass of
the Z boson, and tan β ¼ hH0

ui=hH0
di is the ratio of the

vacuum expectation values (VEVs) of the two neutral
Higgs fields. The mass matrix is diagonalized by the
4 × 4 matrix N, such that the ith neutralino eigenstate is
given by

χ̃0i ¼ Ni1B̃þ Ni2W̃3 þ Ni3h̃
0
d þ N14h̃

0
u: ð2Þ

Here we are interested in scenarios where the lightest
neutralino χ̃01, which is our dark matter candidate, is
dominated by the bino component. This requires

jM1j < jM2j, jμj. We will assume that these mass param-
eters are real; nontrivial complex phases would contribute
to CP violation, which is strongly constrained by upper
bounds on the electric dipole moments of the electron and
neutron [21]. Without loss of generality we take M1 to be
positive, but allow both signs for μ. jM2j is constrained
significantly by searches for charginos and neutralinos at
the LHC [3]; as long as jM2j ≫ M1 the sign of M2 is
essentially irrelevant for our analysis.
Evidently the mixing between the gaugino and Higgsino

states is controlled by the mass of the Z boson. If the
difference between the gaugino masses and jμj is larger
than MZ, all mixing angles will therefore be quite small,
allowing for an approximate perturbative diagonalization of
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the mass matrix (1). In particular, the components of a
binolike χ̃01 can then be approximated by [22,23]

N12 ≃ −M2
Z cos θW sin θW

M1 þ μ sin 2β
ðM1 −M2ÞðM2

1 − μ2Þ ;

N13 ≃ −MZ sin θW
M1 cos β þ μ sin β

ðM2
1 − μ2Þ ;

N14 ≃MZ sin θW
M1 sin β þ μ cos β

ðM2
1 − μ2Þ ;

N11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − N2

12 − N2
13 − N2

14

q
: ð3Þ

In Fig. 1 we compare these approximate expression
with exact results. Evidently the approximation works
very well for μ −M1 ≥ 2MZ or so. Since we took a very
large value of M2 the wino component essentially van-
ishes in this example; however, the first Eq. (3) shows that
it only appears at second order in MZ, and is therefore
always much smaller than the Higgsino components in the
region of interest. In this figure we have chosen μ to be
positive. The second and third Eq. (3) shows that this
increases the Higgsino components. As a result, for μ < 0
the approximation (3) becomes very accurate already
for jμj −M1 ≥ 1.5MZ.

B. Neutralino-nucleon scattering in the MSSM

In the limit of vanishing neutralino velocity only two
kinds of interactions contribute to neutralino-nucleon
scattering. One of them depends on the spin of the target
nucleus; this contribution is usually subdominant for heavy
target nuclei like xenon or germanium, which currently
yield the tightest constraints for neutralino masses above

10 GeVor so. The spin independent contributions dominate
because their contribution to the scattering cross section off
heavy nuclei scales like the square of the nucleon number.
They originate from the effective Lagrangian [11]

Leff
SI ¼ fqχ̃01χ̃

0
1q̄q ð4Þ

which describes the interactions of neutralinos with
quarks. Here we have limited ourselves to the leading,
dimension-6, operator; strong lower bounds on squark
masses [3] imply that dimension-8 operators due to squark
exchange [24] can safely be ignored.
Squark exchange also contributes at dimension 6.

However, this contribution is proportional to the mass of
the quark [11]. That is of course also true for Higgs
exchange contributions. However, at least the lighter
neutral Higgs boson, whose mass we now know to be
125 GeV, lies about an order of magnitude below the
current lower bound on first generation squark masses. For
cross sections near the current bound, squark exchange
diagrams therefore contribute only at the 1% level at best,
which is well below the uncertainty of the Higgs exchange
contribution. We therefore ignore them in our analysis.
However, we do allow for the contribution of the heavier

neutral Higgs boson. The effective neutralino-quark cou-
pling fq is thus given by

fq ¼
X
ϕ¼h;H

mq
gϕχ̄χgϕq̄q

m2
ϕ

: ð5Þ

Note that we factored the quark mass out of the Higgs
couplings to quarks, making the latter independent of the
quark mass; the couplings to up- and down-type quarks still
differ, however. They are given by [25]:

ghūu ¼
−g cos α
2MW sin β

≃
−g
2MW

;

ghd̄d ¼
g sin α

2MW cos β
≃

−g
2MW

;

gHūu ¼
−g sin α
2MW sin β

≃
g

2MW tan β
;

gHd̄d ¼
−g cos α
2MW cos β

≃
−g tan β
2MW

: ð6Þ

Here α is the mixing angle between the two neutral Higgs
bosons, g is the SUð2Þ gauge coupling and MW ≃ 80 GeV
is the mass of the W boson. The couplings of the 125 GeV
Higgs boson are known to be quite close to those of the SM
Higgs boson [3]. Moreover, none of the heavier Higgs
bosons of the MSSM have yet been found. Both observa-
tions can easily be satisfied in the so-called decoupling
limit, where the mass of the neutral CP-odd Higgs boson
satisfies m2

A ≫ M2
Z. In that limit the other heavy MSSM

Higgs bosons also have masses very close to mA, and the

FIG. 1. The bino and Higgsino components of the lightest
neutralino eigenstate as a function of μ, for fixedM1 ¼ 300 GeV,
M2 ¼ 3 TeV and tan β ¼ 10. The simple approximation of
eqs. (3) (dashed curves) describes the exact results (solid) very
well once μ −M1 ≥ 2MZ. The insert shows how the two sets of
curves approach on a linear scale, for μ ≤ 400 GeV.

IMPACT OF THE BOUNDS ON THE DIRECT SEARCH FOR … PHYS. REV. D 104, 075031 (2021)

075031-3



mixing angle α satisfies cos α ≃ sin β, sin α ≃ − cos β. This
leads to the simplifications in the Higgs couplings to quarks
given after the ≃ signs in Eqs. (6). In particular, the
couplings of the lighter Higgs boson h then approach
those of the SM Higgs, in agreement with observation.
The couplings of the heavier neutral Higgs boson H to up-
type quarks is suppressed by 1= tan β, while its couplings
to down-type quarks are enhanced by tan β. Barring
cancellations, H exchange is therefore important only
for tan2 β ≫ 1.
The Higgs bosons couple to one gaugino and one

Higgsino current state. As a result, their couplings to
neutralino mass eigenstates are proportional to the product
of gaugino and Higgsino components [25]:

ghχ̄χ ¼
1

2
gðN12 − tan θWN11ÞðN13 sin αþ N14 cos αÞ;

gHχ̄χ ¼
1

2
gðN12 − tan θWN11ÞðN14 sin α − N13 cos αÞ: ð7Þ

Using the approximation (3) and assuming the decoupling
limit for the Higgs sector, these become

ghχ̄χ ¼
g0MZ sin θW

2

M1 þ μ sin 2β
M2

1 − μ2
;

gHχ̄χ ¼
g0MZ sin θW

2

μ cos 2β
M2

1 − μ2
; ð8Þ

where g0 ¼ g tan θW is the Uð1ÞY gauge coupling.
Equations (8) are the basis for our approximate analytical

results. In Fig. 2 we show the ratio of the approximate to the
exact hχ̃01χ̃

0
1 coupling as function of jμj, forM1 ¼ 150 GeV

and tan β ¼ 8. We see that the approximation works to
better than 10% once jμj −M1 ≥ 2MZ. For M2 ¼ 3 TeV
(which can be taken to represent the limit M2 → ∞ here)

and large, positive μ (solid black curve) the approximation
works to better than 2% even for mA ¼ 1 TeV. Keeping
μ > 0 but reducingM2 to 0.3 TeV, as predicted by gaugino
mass unification [8] (short-dashed blue curve) actually
improves the quality of the approximation (which assumed
M2 → ∞) for μ ≲ 400 GeV. The approximation tends to
overestimate the true coupling, and allowing a finite M2

increases the exact coupling, as can be seen from the first
Eq. (3): for M1 < M2; jμj, the wino component N12 is
negative, which increases the absolute value of the first
parenthesis in Eqs. (7). Note also that our approximation
works to about 5% in this case if μ is large, i.e., the effect of
taking M2 ¼ 2M1 rather than M2 → ∞ is quite small, as
anticipated.
For M2 ¼ 3 TeV and negative μ (dot-dashed red curve)

the ratio of approximate and exact results reaches a mini-
mum at jμj ≃ 400 GeV and then increases again. For some
value of μ the hχ̃01χ̃

0
1 coupling vanishes. In our analytical

approximation this happens at μ ¼ −M1= sinð2βÞ ¼
−609 GeV, as shown by the first Eq. (8), whereas the exact
numerical (tree-level) coupling vanishes at μ ¼ −602 GeV.
While this differs from the prediction of our approximation
only by about 1%, the ratio of the two couplings can deviate
from 1 significantly near this zero—in fact, it will diverge at
the exact location of the zero. Note also that the red dotted
curve, which is for mA ¼ 3 TeV, keeps decreasing even at
jμj ¼ 500 GeV; this indicates that for large jμj the main
contribution to the (small) deviation between exact and
approximate hχ̃01χ̃

0
1 coupling for mA ¼ 1 TeV comes from

assuming the decoupling limit in the Higgs sector, rather
than from using the approximate neutralino eigenstate (3).
Finally, for mA ¼ 1 TeV reducingM2 to 2M1 (long-dashed
green curve) again improves the accuracy of the approxi-
mation, since it increases the exact coupling, as discussed for
μ > 0 above.
One conclusion to be drawn from Fig. 2 is that

M2 ¼ 2M1 and M2 → ∞ give very similar couplings of
the LSP to neutral Higgs bosons, except if this coupling is
very small due to a cancellation. Moreover, reducingM2 in
most cases increases the coupling to h, hence the limit of
large M2 gives the weakest, i.e., most conservative, bound
on jμj. We finally note that scenarios with M2 ¼ 2M1 are
quite severely constrained by LHC searches if M1 ∼
100 GeV [26,27]. In the remainder of this article we will
therefore assume M2 to be very large.
The total spin-independent neutralino-proton scattering

cross section can be written as [11]

σχpSI ¼ 4μ2χp
π

jGp
s j2; ð9Þ

where μχp ¼ mpmχ̃0
1
=ðmp þmχ̃0

1
Þ is the reduced mass of

the neutralino-proton system, and the effective neutralino-
proton coupling is given by

200 300 400 500

|µ| [GeV]

0.9

1

1.1

1.2

1.3

1.4

1.5

g ap
p/g

ex
ac

t

M
2
 = 3 TeV, µ > 0

M
2
 = 0.3 TeV, µ > 0

M
2
 = 0.3 TeV, µ < 0

M
2
 = 3 TeV, µ < 0

M
2
 = 3 TeV, m

A
 = 3 TeV, µ < 0

FIG. 2. The ratio of the approximate and exact hχ̃01χ̃
0
1 coupling,

given by the first Eq. (7) and the first Eq. (8), respectively,
for M1 ¼ 150 GeV and tan β ¼ 8. Most curves assume
mA ¼ 1 TeV, but the dotted red curve is for mA ¼ 3 TeV.
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Gp
s ¼ −

X
q¼u;d;…

hpjmqq̄qjpi
X
ϕ¼h;H

gϕχ̄χgϕq̄q
m2

ϕ

: ð10Þ

For the light u, d, s quarks, the hadronic matrix elements
have to be computed using nonperturbative methods. Once
these are known, the contribution from heavy c, b, t quarks
can be computed perturbatively through a triangle diagram
coupling to two gluons [28]. One usually parameterizes
hNjmqq̄qjNi ¼ fTq

mp. We use the numerical values from
DarkSUSY [29]:

fTU≡
X

q¼u;c;t

fTq¼0.14; fTD≡
X

q¼d;s;b

fTq¼0.23: ð11Þ

We note that these numbers are somewhat uncertain, but
our values are rather conservative [30].
Putting everything together, using the approximate

expressions (3) for the lightest neutralino eigenstate and
assuming the decoupling limit, we find:

Gp
S jh ≃ −AmpðfTU þ fTDÞ

�
M1 þ μ sin 2β
m2

hðμ2 −M2
1Þ
�
;

Gp
S jH ≃ −Amp

�
fTU
tan β

− fTD tan β

�
×

�
μ cos 2β

m2
Hðμ2 −M2

1Þ
�
:

ð12Þ
Here we have introduced the constant

A ¼ gg0MZ sin θW
4MW

¼ 0.032: ð13Þ

It should be noted that tan β > 1 implies cosð2βÞ < 0.
Equations (11) imply that the term ∝ fTD always dominates
H exchange. Hence h and H exchange contribute with the
same sign if μ > 0 or μ sin 2β < −M1; they interfere
destructively for 0 > μ > −M1= sin 2β.

III. RESULTS

We are now ready to present our numerical results. We
wish to determine the lower bound on jμj that follows from
the nonobservation of neutralinos, which we assume to
form all of (galactic) dark matter. We will not be concerned
with very light neutralinos, where current bounds from
direct dark matter search are still quite poor [3]. For masses
above 20 GeV the most stringent current bound comes from
the Xenon-1T experiment [15]. In this range the bound is
well parametrized by

σmaxðmχ̃0
1
ÞXENON

¼
� mχ̃0

1

10 GeV
þ 2.7 × 104 GeV3

m3
χ̃0
1

�
× 10−47 cm2

¼
� mχ̃0

1

3.9 GeV
þ 7 × 104 GeV3

m3
χ̃0
1

�
× 10−20 GeV−2: ð14Þ

Figure 3 shows that this bound constrains the MSSM
parameter space quite severely, if we assume that the
lightest neutralino χ̃01 forms all of dark matter. Here we
have chosen M1¼150GeV, mA ¼ 1.8 TeV, M2 ¼ 3 TeV
and tan β ¼ 10; we saw at the end of Sec. II that the exact
value of M2 is basically irrelevant as long as it is
significantly larger than M1. As expected the predicted
cross section is largest for jμj ≃M1, which leads to strong
bino-Higgsino mixing. However, the Xenon-1T bound
requires jμj well above M1, i.e., the lightest neutralino
has to be binolike; note that values of jμj below 100 GeV
have not been considered here since they are excluded by
chargino searches at LEP for the given (large) value ofM2.
We saw above that in the allowed range of jμj the
approximation (8) works quite well. Equation (12) then
explains why the lower bound on jμj is considerably
weaker for μ < 0: evidently the two terms in the numerator
ofGp

S jh tend to cancel (add up) for positive (negative) μ. As
a result, for μ < 0 the contribution fromH exchange, which
contributes with opposite sign than the dominant h
exchange term, is relatively more important and further
reduces the cross section. In fact, the h exchange contri-
bution vanishes at μ ¼ −M1= sinð2βÞ ≃ 760 GeV. Due to
H exchange the actual zero of the cross section [24]—the
so-called “blind spot” [31]—already occurs at μ≃
−660 GeV. In contrast, for μ > 0 the (small) H exchange
contribution slightly strengthens the lower bound on μ,
which saturates at ∼590 GeV for mH → ∞. This value is
already uncomfortably large in view of fine-tuning
considerations.
This conclusion is reinforced by Fig. 4, which shows the

lower bound on μ −M1 in units of MZ as a function of M1

for four different values of tan β; the values of M2 and mA

FIG. 3. The predicted neutralino-proton scattering cross section
for M1 ¼ 150 GeV, M2 ¼ 3 TeV, mA ¼ 1.8 TeV and tan β ¼
10 as function of jμj, for positive (green) and negative (blue) μ.
The bound from the Xenon-1T collaboration is shown as black
dot-dashed line.
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are as in Fig. 3. The solid colored lines have been derived
numerically using DarkSUSY, whereas the black dashed
lines are based on the approximate diagonalization of the
neutralino mass matrix and assume the decoupling limit in
the Higgs sector. Recall that we ignore squark exchange, so
that only h and H exchange contribute to the spin-
independent scattering cross section. Using Eqs. (12) the
extremal values of μ that saturate the experimental upper
bound on the cross section can be computed analytically.
To this end we introduce the quantities

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
πσmax

p

2Am2
p

;

cμ ¼
ðfTD þ fTUÞ sin 2β

m2
h

−
ðfTD tan β − fTU cot βÞ cos 2β

m2
H

;

c1 ¼
fTD þ fTU

m2
h

: ð15Þ

The quantity A has been defined in Eq. (13), and the
normalized hadronic matrix elements fTD and fTU in
Eqs. (11). As noted above, the contribution ∝ fTU to the
H exchange contribution is essentially negligible. cμ
collects terms in the Higgs exchange amplitude that are
proportional to μ; only h exchange contributes to c1, which
gets multiplied with M1 in this amplitude. The extremal
values of μ are then given by

μ� ¼ cμ
2κ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2μ
4κ2

þM2
1 þ

c1M1

κ

s
: ð16Þ

The dashed lines in Fig. 4 correspond to the positive
solution μþ.
We see that this approximation describes the numerical

results very well even for the smallest value of M1 we
consider. In particular, the rather strong dependence on
tan β originates from the sin 2β factor in the h exchange
contribution to cμ, see the second Eq. (15); H exchange is
always subdominant for our choice mH ¼ 1.8 TeV. The
tan β dependence becomes somewhat weaker for larger
values of M1, where the c1 term becomes more important
which is independent of tan β.
Evidently the Xenon-1T bound is quite constraining for

μ > 0. For example, if we interpret electroweak fine-tuning
considerations as requiring jμj < 500 GeV, one finds
tan β > 10 for M1 ≥ 20 GeV, and M1 < 115ð165Þ GeV
for tan β ¼ 20ð50Þ.
We noted above that LHC searches significantly con-

strain the wino mass parameter ifM1 ≲ 100 GeV; the most
sensitive searches are usually those for final states con-
taining three leptons, which dominantly originate from
χ̃�1 χ̃

0
2 production. The same searches in principle also probe

the production and decay of Higgsino-like states. However,
we note that for given mass of the wino- or Higgsino-
like states, σðpp → W̃�W̃0Þ ≃ 2σðpp → h̃�h̃0Þ even after
summing over both Higgsino states. Moreover, in the
Xenon-allowed region we have μ −M1 > mh. The average
branching ratio of the two Higgsino-like neutralinos into a
Z boson plus LSP is then only about 50%, the other 50%
going into h plus LSP, which has much larger back-
grounds.2 LHC constraints on Higgsino-like states are
therefore much weaker than those on winolike states; in
fact, we are not aware of any published LHC bounds
that apply to our scenario, where M1 < jμj < M2.

3

Moreover, we checked that in the Xenon-allowed region,
the branching ratios for h → χ̃01χ̃

0
1 and for Z → χ̃01χ̃

0
1 are

well below the current bounds. In our scenario the strongest
bound on μ therefore indeed comes from direct dark
matter searches.
As noted in the Introduction, we generally do not require

the LSP to have the correct thermal relic density in minimal
cosmology. We note that for most of the parameter space
shown in Fig. 4 the relic density predicted in this frame-
work comes out much too large if all sfermions are heavy.
For example, setting all slepton soft breaking masses to

FIG. 4. The lower bound on jμj −M1, in units of MZ, that
follows from the upper bound on the neutralino-proton scattering
cross section derived by the Xenon-1T collaboration, for μ > 0.
We have again chosen M2 ¼ 3 TeV and mA ¼ 1.8 TeV. The
solid lines show numerical results obtained using DarkSUSY for
different values of tan β, while the dashed curves are based on the
approximate analytical diagonalization of the neutralino mass
matrix, see Eq. (16).

2This can be understood from the electroweak equivalence
theorem [32–34] according to which the longitudinal Z boson
acts essentially like the neutral would-be Goldstone mode G0 at
sufficiently high energy; in the decoupling limit, G0 and h reside
in the same SUð2Þ doublet. Exact expressions for the relevant
branching ratios can, e.g., be found in Ref. [35].

3LHC constraints would also depend on whether or not there
are other superparticles with mass between M1 and μ. For
example, for large tan β a single τ̃ state in this mass range would
further reduce the branching ratios of the Higgsino-like states into
gauge bosons.
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750 GeV, comfortably above recent LHC search
limits [36,37], we find Ωχ̃0

1
h2 above 30 (9) for

M1 ¼ 30ð150Þ GeV, and even for LSP mass near MZ=2
the predicted relic density is well above the desired value.
An exception occurs for LSP mass near mh=2, where the
predicted relic density can even be too low, and comes out
just right for two LSP masses slightly above and below
mh=2. ForM1 > mt annihilation into tt̄ pairs can reduce the
relic density. The size of the corresponding cross section
depends on the masses of the t̃ squarks. Their average mass
has to be large in order to reproduce mh ¼ 125 GeV, but
the mass splitting between the two t̃ states could be large.
If both stop masses are above 1.3 TeV, which ensures that
all current search limits [38,39] are satisfied, and keeping
slepton masses at 750 GeV, we still find Ωχ̃0

1
h2 > 3.5 for

M1 ¼ 200 GeV. However, for M1 > 100 GeV the pre-
dicted relic density can be made to agree with the
measurement even in minimal cosmology by introducing
a single light slepton; e.g. for M1 ¼ 200 GeV the correct
value is reproduced if there is a right-handed τ̃ with mass 7
or 8 GeV above the LSP. This would not change the (tree-
level) prediction for the LSP scattering cross section.4

As mentioned in the Inroduction, one can also assume
nonstandard cosmology, which (obviously) also would
not affect the LSP scattering cross section or LHC
phenomenology.
In Eq. (16) we have assumed that cμμþ c1M1 > 0,

which is always true for μ > 0. It remains true for values of
jμj below the “blind spot”; if H exchange is negligible this
corresponds to jμj sin 2β < M1. The negative solution in
Eq. (16) then gives the value of μ where the cross section
decreases below the lower bound when coming from μ ¼ 0.
Figure 5 shows that this again describes the exact numeri-
cally derived bound quite well: although the bound on
jμj −M1 is considerably weaker than for positive μ, we saw
in Eqs. (3) that there are cancellations in the small entries
of the χ̃01 eigenstate if μ < 0; since corrections to this
approximation are of order of the squares of these small
entries, for given jμj the approximation works better for
μ < 0. In this figure we only show results for
M1 ≥ 40 GeV, since for smaller values of M1 the bound
on jμj often is below the chargino search limit of about
100 GeV. Note that now the lower bound on jμj increases
with increasing tan β. This is because the “blind spot”
μ ¼ −M1= sin 2β moves to larger values of jμj for larger
tan β. In the limit tan β → ∞ the bound on jμj becomes
independent of the sign of μ.
Beyond the blind spot the sign of cμμþ c1M1 flips. This

region of parameter space can still be described by Eq. (16),

by simply setting κ → −κ everywhere. If H exchange is
negligible, this can easily make the argument of the root in
Eq. (16) negative, signaling that no solution exists. In this
case the cross section remains below the experimental
bound for all values of μ below the μ− solution in the
original eq. (16). For the parameters of Fig. 5 we find that
this is true for tan β > 8. For smaller values of tan β a
sizable region of parameter space (to the left and below
the red and green solid lines) beyond the blind spot is
again excluded.5

So far we have assumed that the heavy Higgs boson is
very heavy, so that its contribution to neutralino-proton
scattering is subdominant. In fact, there are several con-
straints on the masses of the heavy Higgs bosons in the
MSSM, which can be characterized by the mass of the CP-
odd Higgs boson, mA. The most robust bounds come from
direct searches for the heavy neutral Higgs bosons; the
most sensitive ones exploit their decay into τþτ− pairs. In
particular, a recent ATLAS analysis [42] is sensitive to mA
up to about 2 TeV, for very large tan β. For τþτ− invariant
masses around 400 GeV there seems to be some excess of
events. While not statistically significant, it leads to a
bound which is somewhat worse than the expected sensi-
tivity.6 We therefore chose a parameter set just on the
exclusion line, mA ¼ 400 GeV and tan β ¼ 8, in order to
illustrate the maximal possible effect from heavy Higgs

FIG. 5. The lower bound on jμj −M1, in units of MZ, that
follows from the upper bound on the neutralino-proton scattering
cross section derived by the Xenon-1T collaboration, for μ < 0;
the regions to the left of the upper red and green curves are also
excluded. Parameter values and notation are as in Fig. 4. The
insert shows that our analytical approximation works (even)
better for larger values of jμj, as expected.

4Since the LSP is a Majorana fermion, τ̃ − τ loops can
contribute to spin-independent neutralino-nucleon scattering only
via Higgs exchange [40], i.e., this would be a quite small
correction to the χ̃01χ̃

0
1ðh;HÞ vertices [41].

5These curves are reproduced very accurately by the approxi-
mate diagonalization of the neutralino mass matrix; we do not
show these results in order not to clutter up the figure too much.

6CMS did not yet publish the corresponding analysis for the
full Run-2 data set.
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exchange.7 It should be noted that this choice leads to a
sizable contribution from charged Higgs boson loops to
radiative b → sγ decays [43,44]; however, these can be
compensated by postulating some amount of squark flavor
mixing [45].
The bound on jμj that results from the Xenon-1T

constraint for this choice of parameters is shown by the
black lines in Figs. 6; for comparison we also show results
for negligible H exchange (green curves). As noted earlier
for μ > 0 both Higgs bosons always contribute with equal
sign, so maximizing the H exchange contribution greatly
strengthens the lower bound on μ. The effect is especially
strong at smaller M1 since H exchange only contributes to
cμ, not to c1. The resulting lower bound on μ is always
above 950 GeV, i.e., in this region of parameter space a
binolike lightest neutralino would yield little benefit regard-
ing electroweak fine-tuning compared with the canonical
thermal Higgsino-like neutralino with μ≃1.2TeV. Of
course, the black line shows the maximal effect from H
exchange. For somewhat larger mA, away from the ATLAS
lower bound, the bound on μ will fall somewhere between
the black and green lines.
In sharp contrast, for μ < 0 the H exchange contribution

reduces the lower bound on jμj even further, by moving
the blind spot to smaller values of jμj. However, for
M1 ≤ 170 GeV the cross section beyond the blind spot
again increases above the Xenon-1T bound, leading to a
second excluded region. In fact, the allowed region around
the blind spot is very narrow for M1 ≤ 150 GeV. The right

frame of Fig. 6 therefore shows that for mA ¼ 400 GeV
values ofM1 below about 150 GeV require significant fine-
tuning, either to hone in on the blind spot, or in the
electroweak sector due to the large values of jμj required by
the Xenon-1T constraint away from the blind spot.

IV. SUMMARY AND CONCLUSIONS

In this paper we have shown that the upper bound on the
neutralino-proton cross section from the Xenon-1T experi-
ment leads to strong lower bounds on jμj if the bino mass
parameter M1 exceeds 20 GeV. We have assumed that the
lightest neutralino forms all of dark matter, but did not
require the correct thermal relic density in minimal cos-
mology. This constraint causes tension with electroweak
fine-tuning arguments, since in the MSSM with holomor-
phic soft breaking terms the Higgsino mass parameter μ
also contributes to the masses of the Higgs bosons. The
bound is usually significantly stronger for μ > 0; however,
also for μ < 0we found very strong constraints if the heavy
Higgs bosons are close in mass to current experimental
constraints and M1 ≤ 150 GeV. This argument can be
turned around to derive an upper bound on M1 from an
upper bound on jμj from electroweak fine-tuning; the latter
is, however, not easy to quantify unambiguously [46]. In
order to give a flavor of possible constraints, let us require
the “electroweak fine-tuning parameter” of Ref. [6] to be no
larger than 20, (loosely) corresponding to “5% electroweak
fine-tuning”. This implies μ2 < 10M2

Z, i.e., jμj<290GeV.
We see from Fig. 4 that the current Xenon-1T bound is then
sufficient to exclude all scenarios with μ > 0 and
M1 ≥ 20 GeV; recall that deviating from the decoupling
limit of the Higgs sector (see Fig. 6) or reducing the wino
mass (see the discussion of Fig. 2) increases the lower
bound on μ even more if μ > 0. The situation for μ < 0 is

FIG. 6. The lower bound on jμj −M1, in units of MZ, that follows from the upper bound on the neutralino-proton scattering cross
section derived by the Xenon-1T collaboration, for μ > 0 (left) and μ < 0 (right). We have chosenM2 ¼ 3 TeV and tan β ¼ 8; the black
(green) lines are formA ¼ 0.4ð5Þ TeV. In the right frame the enclosed region as well as the region below the green or lower black line are
excluded.

7We note in passing that this leads to two additional values of
M1 with the correct thermal relic density in minimal cosmology,
with LSP mass just above and slightly below 200 GeV; in
between these values the predicted relic density will be too low,
just as on the h-pole.
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more complicated; e.g., for large tan β and large mA, jμj <
290 GeV requires M1 ≤ 100 GeV (see Fig. 5), but for
smaller tan β and/or smallermA larger values ofM1 can still
be compatible with jμj < 290 GeV. Our analytical expres-
sions will help to easily update these constraints when
future direct dark matter searches are published.
The Xenon-1T bound becomes considerably weaker for

neutralino masses below 20 GeV, which we did not
consider in this paper. While even very small values of
M1 remain experimentally allowed as long as all sfermions
are sufficiently heavy [47], they do not appear particularly
plausible given the ever strengthening lower bounds on the
masses of the other gauginos (electroweak winos as well as

gluinos), chiefly from searches at the LHC [3]. In fact,
many models of supersymmetry breaking predict fixed
ratios between these masses [48], leading to strong lower
bounds on M1. Our analysis would then lead to even
stronger lower bounds on jμj.
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