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Nonunitary neutrino mixing in the light neutrino sector is a direct consequence of type-I seesaw neutrino
mass models. In these models, light neutrino mixing is described by a submatrix of the full lepton mixing
matrix and, then, it is not unitary in general. In consequence, neutrino oscillations are characterized by
additional parameters, including new sources of CP violation. Here we perform a combined analysis of
short and long-baseline neutrino oscillation data in this extended mixing scenario. We did not find a
significant deviation from unitary mixing, and the complementary data sets have been used to constrain the
nonunitarity parameters. We have also found that the T2K and NOvA tension in the determination of the
Dirac CP-phase is not alleviated in the context of nonunitary neutrino mixing.
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I. INTRODUCTION

Current neutrino oscillation data [1–3] implies that
neutrinos are massive particles. The smallness of the
neutrino masses arises naturally in the seesaw mechanism
[4–8]. The type-I seesaw mechanism requires the existence
of new heavy neutral leptons. In this scenario, lepton
mixing has to be extended to account for the new heavy
states. Therefore, the 3 × 3 submatrix of the full lepton
mixing matrix, that describes the mixing among the light
neutrino states, is not unitary anymore. Although the
predictions for nonunitarity in high-scale seesaw models
are negligible, larger deviations from unitarity are generally
expected in low-scale type-I seesaw models, such as the
inverse and linear seesaw variants [9–14]. For the case of
very heavy neutral leptons, with masses above the electro-
weak scale, precision and flavor observables can constrain
the allowed size of nonunitarity to the per-mille level
[15–17]. Likewise, direct searches for heavy neutral leptons
at different experiments set strong limits on the heavy-light
mixing for a wide range of masses [18–20].
Here we will focus on the complementary information

on nonunitarity that can be obtained from neutrino

experiments. The present analysis updates the analyses
of Refs. [15,16] by including new and relevant data and
also by improving the treatment of near detectors. The next
generation of neutrino experiments is expected to improve
the sensitivity to the nonunitarity of the neutrino mixing
matrix in the near future [21–25].
Model independent parametrizations of the nonunitary

mixing matrix can be obtained under the assumption that
the new neutral particles are heavy enough to not be
directly produced and, therefore, do not participate in
neutrino oscillations [26–28]. A convenient parametriza-
tion of the nonunitary submatrix is obtained by multiplying
the standard unitary three-neutrino mixing matrix on the
left with a triangular matrix [28]. This parametrization is
independent of the number of new particles [28]. Note that,
although seesaw mechanisms with relatively light new
states [29] could account for the observed short-baseline
anomalies [30–41], here we consider only relatively heavy
new states, such that the nonunitarity of the mixing matrix
is mainly constrained by neutrino oscillation data.
In recent years, lots of efforts have been put to study the

effects of a possible deviation from unitarity of three-
neutrino mixing [22,23,42–52]. In particular, it was shown
that the presence of such deviations can affect the sensi-
tivity to standard neutrino oscillation parameters in current
and future neutrino experiments [15,16,53–57].
In this paper we perform dedicated analyses of short

and long-baseline data in presence of nonunitary neutrino
mixing. We show that a combined analysis of the data
of the short-baseline appearance experiments NOMAD
and NuTeV and the long-baseline experiments MINOS=
MINOSþ, T2K and NOvA allows us to constrain all the
nonunitarity parameters.
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We also study the effects of the new source of CP
violation due to nonunitary mixing on the measurement of
the standard CP-violating phase δ in T2K and NOvA [45].
In particular, we investigate if CP violation due to non-
unitarity can ease the tension between the measurements of
δ in T2K and NOvA [1,3,58].
The plan of the paper is as follows: in Sec. II we

summarize the notation used in the paper and provide the
expressions of the neutrino oscillation probabilities relevant
for our work. In Sec. III we discuss nonunitary neutrino
mixing in short baseline experiments. The main technical
details about the long-baseline experiments considered in
our analysis are discussed in Sec. IV. The results of our
combined analysis of short and long-baseline data are then
discussed in Secs. V and VI. Finally, in Sec. VII we draw
our conclusions.

II. NONUNITARY NEUTRINO MIXING

In type-I seesaw models, which extend the light neutrino
sector with several new heavy neutral leptons, the full
unitary lepton mixing matrix for 3 light neutrino states and
n − 3 heavy neutral leptons is

Un×n ¼
�
N S

V T

�
: ð1Þ

The 3 × ðn − 3Þ matrix S and the ðn − 3Þ × 3 matrix V
describe the mixing between light and heavy states. The
ðn − 3Þ × ðn − 3Þ matrix T contains the mixing among the
heavy states,while themixing among the light neutrino states
is given by the 3 × 3 matrix N, that can be written as [28]

N ¼ NNPU ¼

0
B@

α11 0 0

α21 α22 0

α31 α32 α33

1
CAU: ð2Þ

Here,U is the standard unitary three-neutrinomixingmatrix.
Therefore, all the nonunitary newphysics effects are encoded
in the triangular matrix NNP, which depends on three real
positive diagonal parameters αii, and three complex param-
eters αij (i ≠ j), which can be decomposed in their moduli
jαijj and their arguments, ϕij, which introduce new sources
of CP violation.
The nonunitarity parameters can be expressed in terms of

the mixing angles of the full matrix Un×n. The diagonal
parameters are given by

αii ¼ cincin−1…ci4; ð3Þ

where cij ¼ cos θij are the cosines of the new mixing
angles θij of the matrix Un×n describing the mixing
between the light and heavy states. The nondiagonal
parameters can be written as

α21 ¼ c2nc2n−1…c25η24η̄14 þ c2n…c26η25η̄15c14 þ � � �
þ η2nη̄1nc1n−1…c14; ð4Þ

α32 ¼ c3nc3n−1…c35η34η̄24 þ c3n…c36η35η̄25c24 þ � � �
þ η3nη̄2nc2n−1…c24; ð5Þ

α31 ¼ c3nc3n−1…c35η34c24η̄14 þ c3n…c36η35c25η̄15c14

þ � � � þ η3nc2nη̄1nc1n−1…c14; ð6Þ

with ηij ¼ sin θije−iδij , where δij is the CP phase associated
to the angle θij (not to be confused with ϕij ¼ argðαijÞ,
which in general depend on these δ’s). The nondiagonal
parameters are related to the diagonal ones through the
triangular inequality [16] (see Appendix A)

jαijj ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − α2iiÞð1 − α2jjÞ

q
: ð7Þ

In the following, we briefly review the oscillation proba-
bilities relevant for the experiments discussed in this paper.
The general expression for the neutrino oscillation prob-
ability in the να → νβ channel is given by

Pαβ ¼ jðNN†Þαβj2 − 4
X
k>j

ℜ½N�
αkNβkNαjN�

βj�sin2
�Δm2

kjL

4E

�

þ 2
X
k>j

ℑ½N�
αkNβkNαjN�

βj� sin
�Δm2

kjL

2E

�
: ð8Þ

Note that the first term of the probability is not equal to δαβ
as in the unitary case (it depends only on the values of the α
parameters, as one can see from Eq. (A5) in Appendix A).
This means that, in presence of nonunitary neutrino mixing,
a zero-distance flavor conversion is possible. Apart from
this, the neutrino oscillation probability has the same
structure as in the standard case with U replaced by N.
In what follows, we drop terms which are cubic products of
the “small” parameters sin θ13, Δm2

21=Δm2
31 and jα21j. In

this approximation, the vacuum νμ disappearance proba-
bility in presence of nonunitarity is given by [28]

Pμμ ¼ α422P
st
μμ þ α322jα21jPI1

μμ þ 2jα21j2α222PI2
μμ; ð9Þ

where Pst
μμ is the standard unitary oscillation probability in

vacuum and the new terms are given by

PI1
μμ ¼−8sinθ13 sinθ23 cos2θ23 cosðδ−ϕ21Þsin2

�
Δm2

31L
4E

�
ð10Þ

þ 2 cos θ23 sin 2θ12 sin2 θ23 cosϕ21

× sin

�
Δm2

31L
2E

�
sin

�
Δm2

21L
2E

�
ð11Þ
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and

PI2
μμ ¼ 1 − 2 sin2 θ23 sin2

�
Δm2

31L
4E

�
: ð12Þ

The νμ → νe appearance probability is given by

Pμe ¼ ðα11α22Þ2Pst
μe þ α211α22jα21jPI

μe þ α211jα21j2: ð13Þ

Again, Pst
μe is the standard unitary oscillation probability

and the new term is given by

PI
μe ¼ −2

�
sin2θ13 sinθ23 sin

�
Δm2

31L
4Eν

�

× sin

�
Δm2

31L
4Eν

þ δ−ϕ21

��

þ cosθ13 cosθ23 sin2θ12 sinϕ21 sin

�
Δm2

21L
2Eν

�
: ð14Þ

In addition to the standard parameters, the oscillation
probabilities under consideration depend on α22, α11,
jα21j, and ϕ21. The remaining nonunitarity parameters
contribute only through matter effects [15,16] to the
oscillation probabilities considered here.
It should be noted that, in many experiments, the

spectrum at a far detector is inferred from the measured
spectrum at a near detector. In this case, the oscillation
probability needs to be corrected including the nonunitary
effects which have already occurred at very short distances.
This becomes important in the analysis of several of the
experiments considered here, see Appendix B.
Let us also remind that one can translate parameters

characterizing nonunitarity in terms of other para-
meterizations, such as the one defining the light mixing
matrix as N ¼ ð1 − ηÞU [26,46] that is often used to study
the effects of nonunitary neutrino mixing. In this param-
eterization, η is a Hermitian 3 × 3 matrix that describes
the unitarity violations. Comparing the expressions of NN†

in the two parameterizations, one can find that, at first order
of the η parameters, α211 ≃ 1–2ηee, α11α

�
21 ≃ −2ηeμ, and

α222 þ jα21j2 ≃ 1–2ημμ. Therefore, for small unitarity viola-
tions, we have the direct approximate relations αii ≃ 1 − ηii
and α�21 ≃ −2ηeμ.

III. NONUNITARYMIXING AT SHORT-BASELINE
EXPERIMENTS

In this section we discuss the effects of nonunitarity in
short-baseline (SBL) νμ → νe and ν̄μ → ν̄e oscillation
experiments and we derive the most stringent bounds on
the nonunitarity parameters that can be obtained from the
current data. We consider only these channels because

other channels, that have been considered in Ref. [16], give
less stringent bounds on the nonunitarity parameters that
are relevant for the combined analysis with the data of long-
baseline experiments discussed in Sec. V.
Considering that in the analysis of the data of short-

baseline experiments Pst
μe and PI

μe in Eq. (13) are negligible,
the effective probability of νμ → νe and ν̄μ → ν̄e transitions
takes the very simple form

PSBL
μe ¼ α211jα21j2: ð15Þ

Therefore, short-baseline experiments are only sensitive to
the energy-independent zero-distance effect coming from
the first term in Eq. (8).
There are several short-baseline νμ → νe and ν̄μ → ν̄e

oscillation experiments that did not find any indication in
favor of these transitions. The data were analyzed using the
standard unitary two-neutrino mixing approximation,
where the transition probability depends on the mixing
parameter sin2 2ϑ and the squared-mass difference Δm2. In
this case, for large values of Δm2, oscillations are averaged
and the oscillation probability is simply equal to sin2 2ϑ=2.
Therefore, it is possible to obtain the bound on the
probability Psbl

μe in each of these short-baseline experiments
from the value of the χ2 as a function of sin2 2ϑ at a
sufficiently large fixed value of Δm2. Such bounds on Psbl

μe

can be used to constrain the nonunitarity parameters
through Eq. (15).
In the following we consider the short-baseline experi-

ments NOMAD [59] and NuTeV [60], that give the most
stringent bounds on Psbl

μe .
NOMAD was actually an experiment designed to search

for short-baseline νμ → ντ appearance. However, due to the
good electron identification efficiency, it could also be used
to look for short-baseline νe appearance from a νμ beam
through the charged current reaction νe þ N → e− þ X.
NOMAD collected data from 1995 to 1998, running
principally in neutrino mode. The exposure corresponds
to 5.1 × 1019 protons on target (POT) in neutrino mode and
only 0.44 × 1019 in antineutrino mode. They did not find
any evidence of νμ → νe oscillations.
Also the NuTeV collaboration performed a search for

short-baseline νμ → νe and ν̄μ → ν̄e appearance. NuTeV
used the 800 GeV proton beam from Tevatron and collec-
ted data in the time period of 1996–1997. The usage of
focusing magnets allowed for separate analyses of νμ → νe
and ν̄μ → ν̄e. No evidence of appearance was found for
either oscillation channel. Here we use the results from the
combined analysis of neutrino and antineutrino oscillation
channels.
Note that, in the two experiments described above, the

appearance signal is inferred from the νμ-disappearance
spectrum. Therefore, the effective oscillation probability
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measured by these experiments is given by (see Eq. (B5) in
Appendix B)

Peff;SBL
μe ¼ α211jα21j2

ðα222 þ jα21j2Þ2
; ð16Þ

instead of Eq. (15).
The bounds that can be obtained from the short-baseline

NOMAD and NuTeV data are shown in Fig. 1. The blue
(red) lines correspond to NOMAD (NuTeV) data, while the
black line is obtained from the combination of both
experiments. Note that short-baseline experiments cannot
constrain any of the αij parameters independently, but only
the combination of them which determines the obser-
vable transition probability in Eq. (16). We find that both
experiments have similar sensitivities to the zero-distance
appearance probability, obtaining Peff;SBL

μe < 6 × 10−4 at
90% C.L., while the combined bound is Peff;SBL

μe < 4 ×
10−4ð6 × 10−4Þ at 90% (99%) C.L. In Sec. V we will
combine short-baseline and long-baseline neutrino data to
improve the sensitivity on the nonunitary mixing. This
combination can be easily done by transforming the χ2

results in terms of Pμe, as plotted in Fig. 1, to a χ2 function
depending on α11, jα21j and α22 using Eq. (16).
We considered also the NOMAD [61] bounds on short-

baseline νμ → ντ and νe → ντ transitions,
1 that allow us to

constrain the nonunitarity parameters jα31j and jα32j. Since
the NOMAD signal prediction was obtained correcting the
Monte Carlo by using a sample of νμ charged-current events
from the data [61], in analogy with Eq. (B5) in Appendix B,
the effective oscillation probabilities are given by

Peff;SBL
μτ ¼ jα22α�32 þ α21α

�
31j2

ðα222 þ jα21j2Þ2
≥
ðα22jα32j − jα21jjα31jÞ2

ðα222 þ jα21j2Þ2
;

ð17Þ

Peff;SBL
eτ ¼ α211jα31j2

ðα222 þ jα21j2Þ2
: ð18Þ

Unfortunately, thevery complicated analysis of theNOMAD
data presented in Ref. [61] cannot be reproduced outside of
the NOMAD collaboration. Therefore, we considered an
approximate χ2 obtained with a linear interpolation of the
bounds published in Ref. [61].

IV. LONG-BASELINE EXPERIMENTS:
MINOS=MINOS+ , T2K, AND NOVA

As we showed in Sec. II, if the light neutrino mixing
matrix is not unitary, new correlations arise among the
standard oscillation parameters and the parameters char-
acterizing nonunitarity. We use the MINOS=MINOSþ data
sample from Ref. [63] as well as the most recent data from
the long-baseline (LBL) experiments T2K [64] and NOvA
[65] to search for deviations from unitarity.
The Main Injector Neutrino Oscillation Search (MINOS)

is an accelerator-based neutrino oscillation experiment
studying muon neutrinos produced by the NuMI beam
facility at Fermilab and detected at the far (near) detector
located at 735 km (1.04 km) from the source. During the
MINOS data taking period, the neutrino beam peaked at an
energy of 3 GeV. Later, the beam was tuned to cover larger
energies, with an energy peak at 7 GeV, for the upgraded
version of the experiment, MINOSþ. Here we consider
data corresponding to an exposure of 10.56 × 1020 POT in
MINOS (mostly in neutrino mode, only 3.36 × 1020 POT
were gathered in antineutrino mode) and 5.80 × 1020 POT
in MINOSþ (in neutrino mode), collected in the same
detectors [63].
The T2K collaboration observed events induced by

neutrinos and antineutrinos, corresponding to an exposure
at Super-Kamiokande of 1.97 × 1021 POT in neutrino mode
and 1.63 × 1021 POT in antineutrino mode. T2K observed
318 (137) muon (antimuon) events and 94 (16) electron
(positron) events. In addition, 14 electron events with an
associated pion were recorded. These results allowed the
T2K collaboration to exclude CP-conserving values of δ at
about 2σ confidence level [66].
NOvA has reached 13.6 × 1020 POT in neutrino mode

[67] and 12.5 × 1020 POT in antineutrino mode, observing
212 (105) muon (antimuon) events and 82 (33) electron
(positron) events. Unlike T2K, the latest NOvA neutrino
and antineutrino data prefer values of the CP-violating
phase δ close to 0.8π, in tension with the T2K result.
The most recent T2K and NOvA data as well as the

relevant technical information have been extracted from

FIG. 1. Δχ2 profiles obtained from our analysis of NOMAD
(blue line) and NuTeV (red line) data and from the combination
of the two data sets (black line).

1For simplicity, we neglected the weaker limits obtained in the
contemporary CHORUS experiment [62] and in other previous
experiments.
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Refs. [66,65], respectively. For the energy reconstruction
we assume Gaussian smearing adding bin-to-bin efficien-
cies, which are adjusted to reproduce the best-fit spectra
reported by the experimental collaborations. Our statistical
analysis includes several sources of systematic uncertain-
ties, related to the signal and background predictions.
We perform the analysis of the experimental data using
GLoBES [68,69] in combination with a package which
calculates the oscillation probabilities in matter in presence
of nonunitary neutrino mixing, developed for the analysis
in Ref. [16]. Since the spectra at the far detectors of T2K
and NOvA are inferred from the measured spectra at their
near detectors, the effective appearance and disappearance
oscillation probabilities relevant for these experiments
need to be corrected due to zero distance effects at the
near detector, see Appendix B. Substituting Eq. (9) into
Eq. (B4), we obtain the effective disappearance probability
in T2K and NOvA

Peff;LBL
μμ ¼ α422P

st
μμ þ α322jα21jPI1

μμ þ 2jα21j2α222PI2
μμ

ðα222 þ jα21j2Þ2
: ð19Þ

Since jα21j is small, the leading dependence on α22 of the
first term in the numerator is practically cancelled by the
denominator. Therefore, T2K and NOvA can not set strong
constraints on α22. Likewise, the bounds on jα21j are weak
and not competitive with that of SBL experiments dis-
cussed in Sec. III. However, this ensures that the meas-
urement of the standard oscillation parameters is robust in
the presence of nonunitarity.
In the case of MINOS=MINOSþ [63], we adopted

the analysis procedure followed by the experimental col-
laboration for the search of active-sterile neutrino oscillations
in Ref. [63]. We adapted the public MINOS=MINOSþ code
to account for nonunitary neutrino oscillations, instead of
active-sterile oscillations. In this code, the spectra at both
detectors are fitted simultaneously assuming the MINERvA
flux prediction [70], that was obtained with hadronic data
and, hence, is independent of neutrinomixing. Therefore, the
analysis of theMINOS=MINOSþ data sample is sensitive to
the zero-distance effect and allows us to put stringent bounds
on the nonunitarity parameters.
Another difference with respect to the analysis of T2K

and NOvA is that, in the analysis of MINOS=MINOSþ
data, NC events are considered in addition to CC events.
The NC sample is sensitive to the following sum of the
muon neutrino survival probability plus the electron and tau
neutrino appearance probabilities, which deviates from
unity in the case of nonunitarity (and active-sterile) mixing:

PNC
μ ¼

X
α¼e;μ;τ

Pμα≈ ½ðα11α22Þ2Pst
μeþα422P

st
μμþðα22α33Þ2Pst

μτ�;

ð20Þ
where we have considered only the dominant effects
of the diagonal nonunitarity parameters, and Pst

μα is the

standard probability of νμ → να transitions in the unitary
three-neutrino mixing scenario (with

P
α¼e;μ;τ P

st
μα ¼ 1).

Equation (20) shows that the analysis of MINOS=
MINOSþ NC events can constrain all the tree diagonal
α’s, but since α11 and α22 are better constrained by
MINOS=MINOSþ CC and other data, the NC analysis
is mainly relevant for constraining α33. Moreover, using the
inequality in Eq. (7), one can also constrain jα31j and jα32j.
Therefore, the analysis of the full MINOS=MINOSþ data
sample allows us to fully constrain the nonunitarity of the
light neutrino mixing matrix.

V. BOUNDS ON NONUNITARITY PARAMETERS

In this section we present the results of our combined
analysis of short and long-baseline data in the presence
of nonunitary neutrino mixing. In the context of long-
baseline neutrino oscillations, many new parameters have
to be considered in the analysis. Regarding the standard
parameters, we keep the reactor mixing angle and the
solar parameters fixed at sin2 θ13 ¼ 0.022, sin2 θ12 ¼ 0.318
and Δm2

21 ¼ 7.5 × 10−5 eV2, respectively [1]. We have
checked that fixing the reactor angle or minimizing over it
within its allowed 3σ-range has no effect on the results
of the current analysis. It is sufficient to consider the
range determined from the unitary fit of reactor data
because the νe survival probability at reactor experiments
is simply given by Pee ¼ α411P

st
ee [28]. Therefore, the factor

α411 basically takes the role of a new flux normalization and
the measurement of θ13 using event ratios from detectors at
different baselines (as done by the current reactor experi-
ments) is robust under nonunitary deviations of neutrino
mixing. The solar parameters play only a minor role in
the context of the long-baseline experiments considered
here and can be safely kept fixed at their best fit values.
Regarding the nonunitarity parameters, those associated to
the third row of the nonunitarity matrix NNP, α3i, enter the
oscillation probabilities relevant for T2K and NOvA only
via matter effects and their effect is very small, as shown in
Ref. [16]. However, they can be accessed in MINOS=
MINOSþ through neutral current events. The remaining
parameters (sin2 θ23, Δm2

31, δ, α22, α11, jα21j and ϕ21) are
varied freely in the analysis of all experiments. In the case
of MINOS=MINOSþ, we also vary α33, that can be
measured through the NC events, which are not included
in the analyses of NOvA and T2K data. Using the relation
in Eq. (7) we can also bound the off-diagonal parame-
ters, α3i.

2

Since T2K and NOvA show a limited sensitivity to
the nonunitarity parameters, we start the analysis with
MINOS=MINOSþ data and then subsequently add

2We verified that the sensitivity to these parameters comes
exclusively from Eq. (7).

NONUNITARY NEUTRINO MIXING IN SHORT AND LONG- … PHYS. REV. D 104, 075030 (2021)

075030-5



short-baseline results and next T2K and NOvA data. In
Fig. 2 we show the sensitivity to different nonunitarity
parameters from the analysis of MINOS=MINOSþ,
MINOS=MINOSþ plus short-baseline experiments and
the combination of all data samples. It should be noted that
MINOS=MINOSþ on its own can put strong limits on
nonunitarity (see the green lines in Fig. 2). Notice aswell that
the bound on jα21j from MINOS=MINOSþ does not come
from the νμ → νe appearance channel, which has very small
statistics, but from the combined constraints on α11 and α22

and the use of the inequality in Eq. (7). The addition of short-
baseline data (see the black lines in Fig. 2) has very little
impact on the sensitivity to the diagonal parameters α11 and
α22, but improves the bound on jα21j. After combining with
the data from T2K and NOvA (see the magenta lines in
Fig. 2), the volumes of the allowed regions further shrink,
since degeneracies among nonunitarity and standard oscil-
lation parameters break, thanks to the better determination of
the standard parameters in T2K and NOvA in comparison
with MINOS=MINOSþ.

FIG. 2. 1σ (dashed) and 2σ (solid) allowed regions in three planes of the nonunitarity parameters obtained from our analysis of
MINOS=MINOSþ data (green), in combination with short-baseline oscillation data (black), and after combining with T2K and NOvA
data too (magenta).

FIG. 3. Δχ2 profiles for the diagonal (left) and nondiagonal (right) nonunitarity parameters obtained from the combined analysis of
short and long-baseline neutrino oscillation data.
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Figure 3 shows the marginal Δχ2 profiles for the
diagonal (left) and off-diagonal (right) nonunitarity para-
meters obtained from the combination of all the data
discussed above. The corresponding 90% and 99% C.L.
limits are summarized in Tab. I. Note that some of the
constraints on the nonunitarity parameters, particularly on
jα21j, are slightly weaker than those in Refs. [15,16,50].
This is due to the use of additional data beyond short and
long-baseline results in those references and also to the
consideration of the denominator in the effective short-
baseline oscillation probability, Eq. (16), in our current
work. However, the analysis of the MINOS=MINOSþ data
assuming the MINERvA flux prediction [70] allowed us to
improve significantly the bound on 1 − α22, that is about
twice as strong as in previous analyses [15,16].
As discussed at the end of Sec. IV, the analysis of

MINOS=MINOSþ neutral current data allows us to con-
strain α33 and, through the inequality (7), also jα31j and
jα32j. Moreover, in the global analysis of short-baseline
and long-baseline data, we also considered the NOMAD
bounds on the nondiagonal parameters jα31j and jα32j
discussed at the end of Sec. III. These results contribute
significantly to the improvement of the global bounds on
the nonunitarity parameters, especially for jα32j.

VI. CP VIOLATION WITH NONUNITARY MIXING

Let us now consider the measurement of CP violation in
the T2K and NOvA long-baseline experiments with the aim
of investigating if the effects of nonunitary mixing can
resolve the tension between the data of the two experiments
[1,3,58] in the case of a normal neutrino mass ordering. The
relevant CP violating phases are the standard Dirac CP
phase δ and the argument of the nonunitarity parameter α21,
ϕ21. Figure 4 shows the 1σ allowed regions in the ϕ21–δ
plane obtained from the analysis of T2K (blue regions) and
NOvA (red regions) by considering two sets of fixed values
of the nonunitarity parameters α11, α22, and jα21j. The first
set of nonunitarity parameters (left panel) corresponds to a
benchmark point well within the 90% C.L. bounds in
Table I, while the second set (right panel) corresponds
to a choice at the borders of the 90% and 99% C.L. limits
for α11 and α22, respectively, and near the border of the
99% C.L. bound for jα21j. As one can see, in both cases the
1σ T2K and NOvA allowed regions are almost completely
disjoint, as in the unitary case. These two examples
illustrate our general finding: the overlap of the regions
allowed by T2K and NOvA does not become significant
for any combination of the αij parameters that is allowed by
the data. Therefore, we conclude that, differently to what
happens with other new physics scenarios [71–73], the
nonunitarity of the neutrino mixing matrix cannot reduce
the tension between the T2K and NOvA measurements of
the CP phase δ in the case of a normal neutrino mass
ordering.
Let us remark that an analysis similar to that presented

here has been performed in Ref. [57]. The authors con-
sidered only T2K and NOvA data and obtained a pre-
ference for large deviations from unitarity, which are
excluded in our analysis. In particular, we find that their
best fit values, α11 ¼ 0.7 and jα21j ¼ 0.125, are disfavored
with very large significance, as it can be seen from Fig. 3.
This shows the great impact of short-baseline and

TABLE I. Bounds on the nonunitarity parameters obtained in
this analysis.

Parameter 90% C.L. 99% C.L.

1 − α11 <0.031 <0.056
1 − α22 <0.005 <0.010
1 − α33 <0.110 <0.220

jα21j <0.013 <0.023
jα31j <0.033 <0.065
jα32j <0.009 <0.017

FIG. 4. 1σ allowed regions in the (ϕ21, δ) plane obtained from the analysis of T2K (blue regions) and NOvA (red regions). The stars
indicate the corresponding best fit points. In each panel we fix α11, α22 and jα21j to the indicated values.
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MINOS=MINOSþ data in the analysis of nonunitarity in
the neutrino mixing.

VII. CONCLUSIONS

The nonunitarity of the light-neutrino mixing matrix is a
direct consequence of the celebrated seesaw mechanism.
Therefore, analyses testing its consequences or predictions
are very important for the hunt of new physics. Here we
present an analysis of short and long-baseline neutrino
oscillation data in the presence of nonunitary neutrino
mixing. We have found that neutrino oscillation experi-
ments can bound some of the nonunitarity parameters at
appreciable level. Our main results are summarized in
Fig. 3 and Table I. Most of the bounds derived on the dif-
ferent nonunitarity parameters are comparable in size with
the ones in literature [15,16]. However, we can highlight a
large improvement in the constraint on 1 − α22, which
improves previous limits at least by a factor of 2. Although
these results have been obtained from a combination of
neutrino oscillation experiments, the largest sensitivity to
nonunitarity comes from the analysis of MINOS=MINOSþ
data, as shown in Fig. 2.
We also investigated the effects of the new CP-violating

phase ϕ21 on the determination of the standard CP-
violating phase δ in the T2K and NOvA experiments. In
particular, we have shown that the new source of CP-
violation due to nonunitarity cannot decrease the current
tension between T2K and NOvA in the determination of δ.
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APPENDIX A: BOUNDS ON THE
OFF-DIAGONAL αij PARAMETERS

In this Appendix we present the proof of the validity of
the inequalities (7) for any value of the mixing. These
inequalities were obtained in Ref. [16], where they have
been proved assuming small unitarity violation.
Considering the full n × n unitary matrix Un×n in

Eq. (1), we have the unitary relations

X3
k¼1

Un×n
αk Un×n

βk
� þ

XN
k¼4

Un×n
αk Un×n

βk
� ¼ δαβ; ðA1Þ

that for α ≠ β imply

����X3
k¼1

Un×n
αk Un×n

βk
�
����
2

¼
����XN
k¼4

Un×n
αk Un×n

βk
�
����
2

: ðA2Þ

Applying the Cauchy-Schwarz inequality to the right-hand
side of (A2) and using the unitarity relation (A1) for α ¼ β,
we obtain

����X3
k¼1

Un×n
αk Un×n

βk
�
����
2

≤
�XN

k¼4

jUn×n
αk j2

��XN
k¼4

jUn×n
βk j2

�

¼
�
1−

X3
k¼1

jUn×n
αk j2

��
1−

X3
k¼1

jUn×n
βk j2

�
:

ðA3Þ

Considering the truncated 3 × 3 nonunitary submatrix of
Un×n, N, the bound (A3) reads

jðNN†Þαβj2 ≤ ð1 − ðNN†ÞααÞð1 − ðNN†ÞββÞ: ðA4Þ

In terms of the parametrization (2) of N, the matrix NN† is
given by

NN† ¼

0
B@

α211 α11α
�
21 α11α

�
31

α11α21 α222þjα21j2 α22α
�
32þα21α

�
31

α11α31 α22α32þα�21α31 α233þjα31j2þjα32j2

1
CA:

ðA5Þ

Therefore, we have the following three inequalities:
(1) From jðNN†Þeμj2 ≤ ð1 − ðNN†ÞeeÞð1 − ðNN†ÞμμÞ

we have

α211jα21j2 ≤ ð1 − α211Þð1 − α222 − jα21j2Þ: ðA6Þ

Then, it is straightforward to obtain the inequality
(7) for jα21j.

(2) jðNN†Þeτj2 ≤ ð1 − ðNN†ÞeeÞð1 − ðNN†ÞττÞ implies
that

α211jα31j2 ≤ ð1 − α211Þð1 − α233 − jα31j2 − jα32j2Þ:
ðA7Þ

Therefore,

jα31j2 ≤ ð1 − α211Þð1 − α233 − jα32j2Þ: ðA8Þ

The obvious inequality ð1−α233− jα32j2Þ≤ ð1−α233Þ
leads to the weaker constraint (7) for jα31j.

(3) jðNN†Þμτj2 ≤ ð1 − ðNN†ÞμμÞð1 − ðNN†ÞττÞ implies
that

jα22α32þα�21α31j2 ≤ ð1−α222− jα21j2Þ
× ð1−α233− jα31j2− jα32j2Þ: ðA9Þ
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This case is more complicated. Since

jα22α32 þ α�21α31j2 ≥ ðjα22jjα32j − jα21jjα31jÞ2;
ðA10Þ

there are two cases that need to be considered:
(a) jα22jjα32j ≤ jα21jjα31j. In this case there is not

even need of the inequality (A9), because from
the inequalities (7) for jα21j and jα31j we have

α222jα32j2 ≤ ð1−α211Þ2ð1−α222Þð1−α233− jα32j2Þ
≤ ð1−α222Þð1−α233− jα32j2Þ; ðA11Þ

that gives the inequality (7) for jα32j.
(b) jα22jjα32j > jα21jjα31j. In this case, we have

jα22α32 þ α�21α31j ≥ jα22jjα32j − jα21jjα31j:
ðA12Þ

Therefore, from (A9) we obtain

jα22jjα32j≤ jα21jjα31j
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−α222− jα21j2Þð1−α233− jα31j2− jα32j2Þ

q
:

ðA13Þ

The maximum of the right-hand side with
respect to jα21j and jα31j is obtained for

jα21j ¼ jα31j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − α222
1 − α233 − jα32j2

s
: ðA14Þ

Substituting this value of jα21j in (A13), after
some manipulations, we obtain

jα22jjα32j ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − α222Þð1 − α233 − jα32j2Þ

q
:

ðA15Þ

The square of this inequality leads to the con-
straint (7) for jα32j.

In conclusion of this Appendix, let us remark that the
inequality (7) for jα31j is weaker than the constraint (A8),
that involves also jα32j, and the inequality (7) for jα32j is
weaker than the constraint (A9), that involves also jα21j,
jα31j, and the relative phase between α32 and α�21α31.
Therefore, in the analyses of experimental data that involve
more than one of the off-diagonal αij parameters one must
use the appropriate stronger constraint.

APPENDIX B: EFFECTIVE OSCILLATION
PROBABILITIES IN SBL AND LBL

EXPERIMENTS

In this Appendix we derive the effective oscillation
probabilities that are measured in the NOMAD [59] and
NuTeV [60] short-baseline experiments and those that are
probed in our analyses of the MINOS [63], T2K [64] and
NOvA [65] long-baseline data.
Neutrino oscillation experiments that observe να → νβ

oscillations detect charged leptons of flavor β that are
produced in a detector by a flux of neutrinos produced in a
source in association with charged leptons of flavor α. In
the effective three-neutrino nonunitary mixing scheme that
we are considering, only the three light massive neutrinos
are produced in the source. Since the effects of their sub-eV
masses can be neglected in the production and detection
processes, the number of νβ events in a detector D at a
distance L from a source of να’s is given by3

nDβ ¼ FD
β σSMβ PαβðLÞΦSM

α ; ðB1Þ

where the coefficient FD
β takes into account all the

quantities that characterize the detection processes (size,
running time, efficiency, etc.), σSMβ is the Standard Model
charged-current weak-interaction cross section for a mass-
less νβ, ΦSM

α is the flux of Standard Model massless να’s
produced by the source, and PαβðLÞ is the oscillation
probability in Eq. (8). Then, the flux ΦD

β of νβ obtained
from the measured number of events nDβ considering the
Standard Model charged-current weak-interaction cross
section σSMβ is

ΦD
β ¼ nDβ

FD
β σSMβ

¼ PαβðLÞΦSM
α : ðB2Þ

We analyzed the MINOS data by adapting the code in the
data release of Ref. [63] to the three-neutrino nonunitary
mixing scheme. Since the MINOS code uses the Standard
Model cross sections and the MINERνA PPFX flux [70]
obtained from hadron production data only, the analysis
corresponds to Eq. (B1) and the effective oscillation
probability coincides with PαβðLÞ in Eq. (8).
In the case of the T2K [64] and NOvA [65], we analyzed

the far-detector (FD) νe and νμ data considering the νμ flux
ΦND

μ measured at the near detector (ND), where the νμ
survival probability is given by the zero-distance expres-
sion P0

μμ ¼ ððNN†ÞμμÞ2. Hence, from Eq. (B2) the νβ flux
ΦFD

β at the far detector at the distance L from the neutrino
source is given by

3For simplicity, in this Appendix we omit the geometrical L−2

flux suppression that can be added in a straightforward way.
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ΦFD
β ¼ PμβðLÞ

ððNN†ÞμμÞ2
ΦND

μ ðβ ¼ e; μÞ: ðB3Þ

Therefore, the effective oscillation probabilities in our
analyses of the T2K and NOvA data are

Peff;LBL
μβ ¼ PμβðLÞ

ððNN†ÞμμÞ2
¼ PμβðLÞ

ðα222 þ jα21j2Þ2
ðβ ¼ e; μÞ:

ðB4Þ
Let us now consider the NOMAD [59] and NuTeV [60]

SBL experiments, that measured the ratio of νe and νμ

events in the same detector (D) at a practically zero-
distance. In this case, the constraint on the appearance
neutrino signal is inferred from the measured νμ flux and,
therefore, the effective νμ → νe oscillation probability is
given by the ratio of the measured νe and νμ fluxes:

Peff;SBL
μe ¼ ΦD

e

ΦD
μ
¼ P0

μe

P0
μμ

¼ jðNN†Þμej2
ððNN†ÞμμÞ2

¼ α211jα21j2
ðα222 þ jα21j2Þ2

:

ðB5Þ
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