
Symmetry finder: A method for hunting symmetry in neutrino oscillation

Hisakazu Minakata *

Center for Neutrino Physics, Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA

(Received 26 June 2021; accepted 27 September 2021; published 18 October 2021)

Symmetry in neutrino oscillation serves for a better understanding of the physical properties of the
phenomenon. We present a systematic way of finding symmetry in neutrino oscillation, which we call
symmetry finder (SF). By extending the known framework in vacuum into a matter environment, we derive
the SF equation, a powerful machinery for identifying symmetry in the system. After learning lessons on
symmetry in the Zaglauer-Schwarzer system with matter equivalent to the vacuum symmetry, we apply the
SF method to the [P. B. Denton et al., Compact perturbative expressions for neutrino oscillations in matter,
J. High Energy Phys. 06 (2016) 051.] (DMP) perturbation theory to first order. We show that the method is
so powerful that we uncover the eight reparametrization symmetries with the 1 ↔ 2 state exchange in
DMP, denoted as IA, IB, …, IVB, all new except for IA. The transformations consist of both fundamental
and dynamical variables, indicating their equal importance. It is also shown that all the symmetries
discussed in this paper can be understood as the Hamiltonian symmetries, which ensures their all-order
validity and applicability to varying density matter.
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I. INTRODUCTION

In the theory of neutrino oscillation symmetry plays an
important role, yielding useful relations between the
observables. CPT symmetry implies that the neutrino
and antineutrino probabilities are equal, Pðνβ → ναÞ ¼
Pðν̄β → ν̄αÞ in vacuum. Time reversal T: Even though T
symmetry itself is broken in nature [1], it yields a
generalized symmetry, an invariance of the S matrix under
T transformation accompanied with complex conjugation
of the complex numbers in the theory. The generalized
T symmetry holds not only in vacuum but also in matter. As
symmetry often brings us useful consequences, finding
symmetry and its use in the exploration of physical
properties of neutrino oscillations should lead us to a
deeper understanding of the phenomenon.
Not so surprisingly, T-odd quantities obey a few remark-

able identities and general regularities in the oscillation
probability. They include the Naumov [2] and Toshev [3]
identities, whose former implies that the Jarlskog factor in
matter must be proportional [4] to the Jarlskog factor in
vacuum, Jr ≡ c12s12c213s13c23s23 [5]. The dependence of
the CP phase δ, the lepton counterpart of the quark CP
phase [6], on the oscillation probability is also strongly

constrained in matter to the single and double harmonics
(sine and cosine of δ and 2δ) [7], which allows simple and
informative representations by the CP- or T-conjugate
biprobability diagrams [8,9]. For a broader view of CP
and T violation see, e.g., Ref. [10].
It is the purpose of this paper to present a systematic way

of uncovering symmetry in neutrino oscillations. Such a
method should be welcome as it makes symmetry consid-
eration handy and thereby contributes to a clearer physics
understanding. Now, we must note that symmetry in
neutrino oscillation is not necessarily the one which contains
spacetime reflection, despite that we have started our
description from it. In a perturbative treatment of neutrino
oscillation by Denton et al. [11], dubbed as DMP hereafter, a
relabeling or reparametrization symmetry is found. It is
an invariance of the probability under the transforma-
tions λ1 ↔ λ2, cosψ → ∓ sinψ , sinψ → � cosψ . Here,
λi=2E (i ¼ 1, 2, 3) denote the eigenvalues of the
Hamiltonian with E being neutrino energy and ψ the mixing
angle θ12 in matter. In this paper we will find a new family of
these symmetries in the same theory.
The other examples of the reparametrization symmetry

with the eigenstate exchange in the solar- and atmospheric-
resonance perturbation theories are later discussed in
Ref. [12]. An interpretation of these symmetries as the
“dynamical symmetry,1” as opposed to the Hamiltonian*hisakazu.minakata@gmail.com
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1A dynamical symmetry is the symmetry that has no hint in the
Hamiltonian of the system, but the one which indeed arises after the
system is solved.The symmetryoften comeswith the transformations
written by the variables that are used to diagonalize the Hamiltonian.
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symmetry, is also given in Ref. [12]. An alternative view of
these symmetries as due to rephasing invariance of the S
matrix is presented in Ref. [13]. In this paper, we will shed
more light on the nature of these relabeling or reparamet-
rization symmetries by bringing the new symmetries in
DMP into this context. Through a renewed discussion on
symmetry from the Hamiltonian point of view, we will be
able to sharpen up our previous statement on the
Hamiltonian symmetry.
We start our discussion from what we call the “symmetry

finder” (SF) equation in vacuum [14]. It is nothing but the
expression of the flavor basis state (i.e., wave function) ν in
terms of the mass eigenstate ν̌ in the following two different
ways:

ν ¼ Uðθ23; θ13; θ12; δÞν̌ ¼ Uðθ023; θ013; θ012; δ0Þν̌0; ð1:1Þ
where the quantitieswith “prime” imply the transformed ones
and ν̌0 may involve eigenstate exchanges and/or rephasing of
thewave functions. Since the SF equation represents the same
flavor state by the two different sets of the physical
parameters, it implies a symmetry. See Sec. III for more
details.
We utilize the SF equation in its generalized form in

matter to uncover new symmetries associated with the
mass-eigenstate exchange 1 ↔ 2. We first treat the exact
solution of neutrino oscillation under a uniform matter
density, the Zaglauer-Schwarzer system [15] in Sec. IV.
Then, as the highlight of the SF symmetry discussion, it
will be applied to the DMP framework [11] in Secs. V and
VI. The DMP perturbation theory gives an approximate but
very accurate description of neutrino oscillation in matter
with uniform matter density [16], and at the same time
displays a clear physical picture that covers the entire
kinematical region of the terrestrial neutrino experiments
[13]. In fact, we will uncover the eight symmetries whose

seven are new, with interesting varying features of the
mixed fundamental and dynamical symmetries. See the
summary Table I in Sec. V H. Because of the frequent
usage of the term such as “the DMP system” or “the DMP
framework,” we sometimes abbreviate them as just “DMP”
hereafter.
A few words on the type of symmetry we are going to

discuss in this paper. It does not involve the transformations
that connect our world to the other one, such as
Δm2

31 → −Δm2
31, or θ12 ≤ π

4
to θ12 ≥ π

4
.2 By restricting

the symmetry transformation into the ones that keep the
system to remain in our world, it inevitably takes the form
of reparametrization or relabeling symmetry. Implications
of the newly observed reparametrization symmetry are
discussed in Secs. VI and VII.

II. THE THREE NEUTRINO EVOLUTION IN
MATTER IN THE νSM

In this paper, we restrict ourselves into discussions
within the neutrino-mass-embedded Standard Model,
νSM for short. We discuss symmetry that exists in the
oscillation probability in the standard three-flavor neutrino
system defined by the Hamiltonian in the flavor basis

H¼ 1

2E

8>><
>>:
U

2
64
m2

1 0 0

0 m2
2 0

0 0 m2
3

3
75U†þ

2
64
aðxÞ 0 0

0 0 0

0 0 0

3
75
9>>=
>>;
; ð2:1Þ

TABLE I. All the symmetries of the 1 ↔ 2 eigenstate exchange type in the DMP system that have been uncovered in this paper are
summarized. They are found in a systematic way by solving the SF equation with appropriate ansatz, as some of them (symmetries IA,
IB, and IVB) are fully explained in Sec. V. The symmetry denoted as, e.g., “symmetry X” in this table is called “symmetry X-DMP” in
the text, where X ¼ IA, IB, IIA, IIB, IIIA, IIIB, IVA, and IVB. In this table the notations are such that λj (j ¼ 1, 2) are the eigenvalues of
2EH, and ψ and ϕ denote θ12 and θ13 in matter, respectively.

Symmetry Vacuum parameter transformations Matter parameter transformations

Symmetry IA None λ1 ↔ λ2, cψ →∓ sψ , sψ → �cψ .
Symmetry IB θ12 → −θ12, δ → δþ π. λ1 ↔ λ2, cψ → �sψ , sψ → �cψ .
Symmetry IIA θ23 → −θ23, θ12 → −θ12. λ1 ↔ λ2, cψ → �sψ , sψ → �cψ .
Symmetry IIB θ23 → −θ23, δ → δþ π. λ1 ↔ λ2, cψ →∓ sψ , sψ → �cψ .
Symmetry IIIA θ13 → −θ13, θ12 → −θ12. λ1 ↔ λ2, ϕ → −ϕ,

cψ → �sψ , sψ → �cψ
Symmetry IIIB θ13 → −θ13, δ → δþ π. λ1 ↔ λ2, ϕ → −ϕ,

cψ →∓ sψ , sψ → �cψ .
Symmetry IVA θ23 → −θ23, θ13 → −θ13. λ1 ↔ λ2, ϕ → −ϕ,

cψ →∓ sψ , sψ → �cψ .
Symmetry IVB θ23 → −θ23, θ13 → −θ13, λ1 ↔ λ2, ϕ → −ϕ,

θ12 → −θ12, δ → δþ π. cψ → �sψ , sψ → �cψ .

2In contrast, it is argued in Ref. [17] that the sign-Δm2 and the
θ23 octant degeneracies can be understood as a consequence of
the symmetries, though approximate ones, which connect the
systems with differing signs of Δm2

31 [8] and the worlds with
θ23 ≤ π

4
and θ23 ≥ π

4
[18].
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where E is the neutrino energy and mi (i ¼ 1, 2, 3) the
neutrino masses of ith mass eigenstate. In Eq. (2.1), U≡
UMNS denotes the standard 3 × 3 lepton flavor mixing
matrix [19] which relates the flavor neutrino states to the
vacuum mass eigenstates as να ¼ Uαiνi, where α runs over
e, μ, τ, and the mass eigenstate index i runs over 1,2, and 3.
The functions aðxÞ in (2.1) denote the Wolfenstein matter
potential [20] due to charged current (CC) reactions

aðxÞ ¼ 2
ffiffiffi
2

p
GFNeE≈ 1.52× 10−4

�
YeρðxÞ
g cm−3

��
E

GeV

�
eV2:

ð2:2Þ

Here,GF is the Fermi constant, andNe is the electron number
density in matter. ρðxÞ and Ye denote, respectively, thematter
density and number of electrons per nucleon in matter.
InSecs. IVandV, our treatment assumes theuniformmatter

density approximation.Whereas in Sec. VI wherewe discuss
the Hamiltonian view of the symmetries, we get rid of this
restriction but keep variation of matter density sufficiently
mild such that the adiabatic approximation applies.

A. The SOL convention of the flavor mixing matrix

We use, throughout this paper, the solar (SOL) con-
vention [14,21] for the lepton mixing matrix

USOL ¼

2
64
1 0 0

0 c23 s23
0 −s23 c23

3
75
2
64

c13 0 s13
0 1 0

−s13 0 c13

3
75

×

2
64

c12 s12eiδ 0

−s12e−iδ c12 0

0 0 1

3
75

≡U23ðθ23ÞU13ðθ13ÞU12ðθ12; δÞ; ð2:3Þ

in which e�iδ is attached to the sine of the “solar angle” θ12,
with δ being the leptonCP phase. We note that sij ≡ sin θij,
etc., are the common abbreviated notations. We will see in
Sec. III that the SOL convention is the most convenient one
to discuss the symmetries that involve the 1–2 mass
eigenstate exchange and the CP phase δ. With the SOL
convention, we obtain exactly the same oscillation prob-
ability as the one calculated by using the well known
Particle Data Group (PDG) [22] convention, as to be seen
immediately below. Thus, there is no reason for being
afraid of using the SOL convention, despite its unfamiliar
status.3

The mixing matrix in the SOL and the PDG conventions
are related by [21]

USOL ¼

2
64
1 0 0

0 e−iδ 0

0 0 e−iδ

3
75UPDG

2
64
1 0 0

0 eiδ 0

0 0 eiδ

3
75: ð2:4Þ

Then, their flavor-basis Hamiltonian and the neutrino states
in both conventions are related to each other by

HSOL ¼

2
64
1 0 0

0 e−iδ 0

0 0 e−iδ

3
75HPDG

2
64
1 0 0

0 eiδ 0

0 0 eiδ

3
75;

νSOL ¼

2
64
1 0 0

0 e−iδ 0

0 0 e−iδ

3
75νPDG; ð2:5Þ

where HSOL and νSOL (HPDG and νPDG) denote the
Hamiltonian written with the use of the U matrix of the
SOL (PDG) convention and the neutrino flavor state under
the convention. The Smatrix obeys the same relation as that
of the Hamiltonian in Eq. (2.5). It means that both the
Hamiltonian and the S matrix are identical up to the phase
redefinition of neutrino wave functions. Therefore, the
oscillation probability calculated with HSOL is identical
with the one obtained with the usual PDG convention U
matrix, as stated above.
In Sec. V we will face another convention change, the

atmospheric (ATM) to the SOL conventions of the U
matrix, where e�iδ is attached to s23 in the ATM con-
vention. Therefore, we give here the corresponding trans-
formation rule between the ATM and SOL conventions
[21]:

HSOL ¼

2
64
1 0 0

0 e−iδ 0

0 0 1

3
75HATM

2
64
1 0 0

0 eiδ 0

0 0 1

3
75;

νSOL ¼

2
64
1 0 0

0 e−iδ 0

0 0 1

3
75νATM: ð2:6Þ

The ATM convention of the U matrix is used in
Refs. [11,13,21,24], and the references cited therein.

III. SYMMETRY FINDER FOR NEUTRINO
OSCILLATION IN VACUUM

A. Symmetry finder equation

In vacuum the flavor eigenstate ν is related to the mass
eigenstate ν̂ as

ν ¼ U23ðθ23ÞU13ðθ13ÞU12ðθ12; δÞν̂: ð3:1Þ

Using the SOL convention U matrix in Eq. (2.3), one can
easily prove the relation [14]

3Yet, the SOL convention of the mixing matrix has been used
in an analysis of the parameter correlations in the theory with
unitarity violation [23].
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U12ðθ12;δÞ

2
64
ν1

ν2

ν3

3
75¼U12

�
θ12þ

π

2
;δ

�264
−eiδν2
e−iδν1
ν3

3
75

¼U12

�
π

2
−θ12;δ�π

�264
eiδν2

−e−iδν1
ν3

3
75: ð3:2Þ

We show below that this equation is a powerful tool for
uncovering symmetry in neutrino oscillation in a vacuum.
For this reason, we denote Eq. (3.2) and its extension in
matter as the SF equation.
It is easy to observe that the relation (3.2) implies

symmetry [14]. The first equality means that the use of
θ012 ¼ θ12 þ π

2
and the exchanged (and rephased) mass

eigenstates 1 ↔ 2 produces the same oscillation proba-
bility. Since rephasing does not affect the observables, the
first equality in Eq. (3.2) implies the 1 ↔ 2 exchange
symmetry under the transformation

Symmetry IA-vacuum: m2
1↔m2

2; c12→−s12; s12→c12;

ð3:3Þ

where the existence of an alternative choice, c12 → s12 and
s12 → −c12 (θ12 → θ12 − π

2
), is understood. Similarly, the

second equality in (3.2) implies the symmetry of the
probability under the transformation

Symmetry IB-vacuum : m2
1↔m2

2; c12↔ s12; δ→δ�π:

ð3:4Þ

Throughout this paper we will observe pairing of the
symmetries, the types “A” and “B,” where A does not
contain δ, while B does. The question of how the pair
should be chosen in the presence of many symmetries will
be answered in the treatment of the DMP perturbation
theory in Secs. V and VI, in which we will observe eight
symmetries.
There are many ways to confirm that the transformations

of symmetries IA and IB above leave the oscillation
probability invariant. One can do it by using the explicit
expressions of the probability in vacuum. One can also
show the invariance of the S matrix elements [14] or the
invariance of the vacuum part of the Hamiltonian (2.1).4

See the comment at the end of Sec. VI C. The last path,
finding a symmetry by the SF equation followed by
confirmation of its validity by examining the

Hamiltonian, anticipates the route we will take in our
treatment of the symmetries in DMP.

B. Clarification and interpretation of
symmetries IA and IB in vacuum

Now a clarifying remark must be made: The notation
θ012 ¼ θ12 þ π

2
, which is used for simplicity of expression of

Eq. (3.2), may be confusing because it requires one to
expand the region of definition of θ12 outside of what is
usually taken, 0 ≤ θ12 ≤ π

2
[22]. While it is possible, we do

not choose this option in this paper. What we have meant
for symmetry IA is, therefore, an invariance under the
transformation in which c12 is replaced by −s12, and s12 is
replaced by c12 simultaneously with the 1 ↔ 2 state
exchange m2

1 ↔ m2
2 under the condition that both the

initial and the transformed θ12 remain in the region
0 ≤ θ12 ≤ π

2
. We apply this principle to all the mass

eigenstate exchange symmetries 1 ↔ 2 in this paper. As
a matter of fact, we restrict ourselves to the region of θ12 as
0 ≤ θ12 ≤ π

4
, the favored region [26] first observed exper-

imentally by Davis et al. [27]. Under this prescription, the
symmetry IB in Eq. (3.4) has nothing to do with the so-
called “dark-side” discussion [28,29].
Then the question would be: What is the interpretation of

symmetries IA and IB in a vacuum? The answer is that the
SF equation (3.2) offers three different descriptions of the
unique (i.e., identical) world. If one computes the flavor
basis neutrino wave functions by using Eq. (3.1) with the
three different ways of the 1–2 space rotation, one obtains
the identical expressions of νe, νμ, and ντ in terms of the
three mass eigenstate components ν1, ν2, and ν3. Therefore,
symmetries IA and IB are both the relabeling or repar-
ametrization symmetries 1 ↔ 2 associated with the trans-
formations of θ12 and possibly δ. It is intriguing to see
whether the similar pairing structure of types A and B
prevails in matter.

IV. SYMMETRY FINDER FOR NEUTRINO
OSCILLATION IN MATTER

In this and the following two sections, we extend the
symmetry finding framework in neutrino oscillation, sym-
metry finder, into the matter environments. In neutrino
oscillation in matter, we often encounter the situation that
all or some of the mixing angles and the CP phase δ
becomes matter dressed. This is the case in the systems we
will treat, all become matter dressed in the Zaglauer-
Schwarzer (ZS) system, and only θ12 and θ13 are
altered to matter-affected ones in DMP. For notational
simplicity and unity we denote the changes in notations
for the mixing parameters from vacuum to matter-dressed
ones as

θ12 → ψ ; θ13 → ϕ; θ23 → η; δ → δ̃; ð4:1Þ

4In fact, the symmetry IA-vacuum leaves the whole Hamil-
tonian H in Eq. (2.1) invariant, as the matter potential term does
not transform. Using this feature the author of Ref. [25] discussed
how one can organize the perturbative expansion in such a way
that the symmetry is respected in each order.
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throughout Secs. IV–VI, except that θ23 and δ are kept
matter undressed in the latter two sections. Hereafter, we
use the abbreviated notations cψ ≡ cosψ , sϕ ≡ sinϕ, etc.

A. The Zaglauer-Schwarzer system

Now we apply the SF method to the ZS system in this
section as a simple extension of the SF equation in vacuum.
The authors of Ref. [15] exactly solved the three-flavor
neutrino evolution in matter with uniform density. The
flavor neutrino eigenstate is related to the matter propaga-
tion eigenstate ν̂ in the SOL convention as

ν ¼ U23ðηÞU13ðϕÞU12ðψ ; δ̃Þν̂: ð4:2Þ

Then, the expressions of the oscillation probability in
various channels in matter can be obtained by doing the
replacement given in Eq. (4.1) in the formulas in vacuum.
The expressions of the matter-dressed mixing angles and
the CP phase are given in Ref. [15]. Though they are given
in the PDG convention, one can easily translate them into
the ones in the SOL convention by using Eq. (2.4).
The exact expressions of the three eigenvalues of 2EH

are obtained in Ref. [30], which are denoted here as λi
(i ¼ 1, 2, 3). Our notation is such that, in the normal mass
ordering, λ3 > λ2 > λ1 in the region of a large positive
matter potential defined in Eq. (2.2). This prescription for
defining λi will be used also in the discussion of the DMP
system in Sec. V. Thanks to the complete parallelism
between neutrino oscillations in vacuum and in matter
we can immediately conclude, by using the SF equation in
matter with replacement (4.1) in Eq. (3.2), that the matter
versions of symmetry IA and symmetry IB in the ZS
system exist:

Symmetry IA-ZS : λ1 ↔ λ2; cψ → −sψ ; sψ → cψ ;

Symmetry IB-ZS : λ1 ↔ λ2; cψ ↔ sψ ; δ̃ → δ̃� π:

ð4:3Þ

Notice that these are the symmetries whose transformations
consist only of the matter-dressed variables. None of the
fundamental parameters, the ones in the original
Hamiltonian in Eq. (2.1), transform.

B. Fundamental vs dynamical symmetries

A clarifying remark is in order on our terminology: In
this paper, we often use the terms, “fundamental variables”
and “dynamical variables.” The fundamental variables are
meant to be the mixing parameters in the flavor basis
Hamiltonian in Eq. (2.1). In contrast, dynamical variables
are characterized as the variables by which the Hamiltonian
is diagonalized exactly (ZS case) or approximately (DMP
case) [13]. In the systems discussed in this paper, therefore,
the dynamical variables are the matter-dressed variables.

A dynamical symmetry is the symmetry without its trace
in the Hamiltonian of the system, but the one which indeed
arises after the system is solved. Hence, it often happens that
the dynamical symmetry has transformations written by the
variables that are used to diagonalize the Hamiltonian. On
the contrary, if the symmetry is described solely by the
fundamental variables, it is called the fundamental sym-
metry. We will see later that most of the symmetries in DMP
have the mixed fundamental-dynamical character.

C. Generic i ↔ j state exchange symmetry?

A natural question would be: Why should we restrict
ourselves to the 1 ↔ 2 exchange symmetry? How about a
1 ↔ 3 exchange symmetry, for example? It is a very good
point, but we do not know a complete answer about the
feasibility of such an extension.
Suppose that we take a different parametrization of theU

matrix such as U ¼ U23ðθ023ÞU12ðθ012ÞU13ðθ013; δ0Þ by
exchanging the order of U13 and U12 rotations (see, e.g.,
Ref. [31]). Then, the similar treatment can go through in
vacuum and in matter, which would lead to an analogous
discussion of the 1 ↔ 3 exchange symmetry. But, θ0ij (i,
j ¼ 1, 2, 3) and δ0 in this new parametrization is completely
different from those in our conventional parametrization.
Rewriting the newly obtained 1 ↔ 3 exchange symmetry
transformations written with θ0ij (i, j ¼ 1, 2, 3) and δ0 by the
three angles and CP phase in our SOL or PDG convention
U matrix would be a formidable task.
Therefore, in principle, one could discuss the 1 ↔ 3 or

2 ↔ 3 exchange symmetries in the sameway aswe do, but no
useful output is expected if we write the symmetry trans-
formations by the angles and theCP phase in theU matrix of
our usual conventions. For this reason we restrict our
discussions to the 1 ↔ 2 exchange symmetry in this paper.

V. SYMMETRY FINDER IN THE DMP SYSTEM

We now discuss the SF equation and its application to the
1 ↔ 2 eigenstate exchange symmetry in the Denton et al.
framework [11]. Our treatment in this section is valid to
first order in the DMP perturbation theory. Later in Sec. VI,
we discuss the Hamiltonian proof of the symmetry, which,
in fact, guarantees its validity to all orders.
After brief recollections of the DMP perturbation theory

in Secs. VA and V B, we introduce the SF equation in DMP
in Sec. V C by taking into account the possible rephasing of
both the neutrino flavor and the energy eigenstates. By
using the SF equation we will find the eight symmetries in
DMP, which we call symmetry I-, II-, III-, and IV-DMP
doubled with the pairing of “A” (no δ) and “B” (with δ)
types. All eight symmetries are tabulated in the summary
Table I in section VH. All of them are the reparametrization
symmetries with the 1 ↔ 2 state exchange. Invariance of
the oscillation probability under the transformations listed
in Table I is verified explicitly by using the probability
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formulas given in Refs. [11,13], which is, however, left for
the readers as a simple exercise.5

A. DMP at the zeroth order

At the leading (zeroth) order in the DMP perturbation
theory, the flavor neutrino eigenstate is related to the
propagation eigenstate in matter as [11]

ν ¼ U23ðθ23ÞU13ðϕÞU12ðψ ; δÞν̂; ð5:1Þ

which is identical with the vacuum form (3.1) apart from
replacements θ12 → ψ and θ13 → ϕ. Or, starting from
Eq. (4.2) in the ZS system, η and δ̃ take the vacuum values
θ23 and δ. It must be a good approximation, given that the
matter effect modification is modest for them [15,32]. Then,
at the leading order, the DMP system possesses the sym-
metries akin to symmetries IA-ZS and IB-ZS in Eq. (4.3),
but with η and δ̃ replaced by θ23 and δ, respectively.

B. DMP expansion to first order

However, when the first order correction is added, the
structure of the SF equation changes. It can be obtained
most easily by the so-called V matrix method [33] as
done in Ref. [11], which takes the form in the SOL
convention as6

2
64
νe

νμ

ντ

3
75¼U23ðθ23ÞU13ðϕÞU12ðψ ;δÞ

×f1þϵc12s12 sinðϕ−θ13ÞWðψ ;δ;λ1;λ2Þg

2
64
ν1

ν2

ν3

3
75;

ð5:2Þ

where Wðψ ; δ; λ1; λ2Þ is defined by

Wðψ ; δ; λ1; λ2Þ≡

2
666664

0 0 −sψ
Δm2

ren
λ3−λ1

0 0 cψe−iδ
Δm2

ren
λ3−λ2

sψ
Δm2

ren
λ3−λ1

−cψeiδ
Δm2

ren
λ3−λ2

0

3
777775
:

ð5:3Þ

In Eqs. (5.2) and (5.3), the notations ϕ and ψ are defined in
Eq. (4.1), and their expressions are given inRef. [11]. ϵ is the

unique expansion parameter in theDMP perturbation theory
and is defined as

ϵ≡ Δm2
21

Δm2
ren

; Δm2
ren ≡ Δm2

31 − s212Δm2
21; ð5:4Þ

where Δm2
ren is the “renormalized” atmospheric Δm2

introduced in Ref. [24]. With this added structure that
comes from first-order corrections, we need a reformulation
of our symmetry hunting scheme using the SF equation.

C. Symmetry finder equation in DMP

In looking for the solution to the SF equation (5.2) we
introduce the ansatz

F

2
64
νe

νμ

ντ

3
75 ¼ FU23ðθ23ÞU13ðϕÞU12ðψ ; δÞG†G

× f1þ ϵc12s12 sinðϕ − θ13ÞWðψ ; δ; λ1; λ2Þg

× G†G

2
64
ν1

ν2

ν3

3
75; ð5:5Þ

for an alternative expression of the state, analogously as in
Eq. (3.2). In Eq. (5.5) we have introduced the flavor-state
rephasing matrix F, which is defined by

F≡
2
64
eiτ 0 0

0 eiσ 0

0 0 1

3
75; ð5:6Þ

and the generalized 1 ↔ 2 state exchange matrix G

G≡
2
64

0 −eiðδþαÞ 0

e−iðδþβÞ 0 0

0 0 1

3
75;

G† ≡
2
64

0 eiðδþβÞ 0

−e−iðδþαÞ 0 0

0 0 1

3
75; ð5:7Þ

where τ, σ, α, and β denote the arbitrary phases. Notice that
the rephasing matrices, both F and G in Eqs. (5.6) and
(5.7), take the nonvanishing, nontrivial (not unity) elements
in the 1–2 subsector. It is because we restrict ourselves into
the 1 ↔ 2 state exchange symmetry.

Now, we call the readers’ attention to the following:
since we have introduced the flavor-state rephasing
matrix F, θ23 and ϕ, in addition to δ, in principle, must
transform, as indicated in the explicit form of the SF
equation (5.5),

5We recommend arXiv version 3 of Ref. [13] for more
explicitly written formulas for verification.

6In the original reference [11], the expression of this SF
equation (5.2) is given in the ATM convention defined in Sec. II
A. The expression in Eq. (5.2) with (5.3) in the SOL convention
can be obtained by the transformation in Eq. (2.6) in Sec. II A.
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2
64
eiτ 0 0

0 eiσ 0

0 0 1

3
75
2
64
νe

νμ

ντ

3
75¼

2
64
1 0 0

0 c23 s23eiσ

0 −s23e−iσ c23

3
75
2
64

cϕ 0 sϕeiτ

0 1 0

−sϕe−iτ 0 cϕ

3
75
2
64

cψ sψeiðδþτ−σÞ 0

−sψe−iðδþτ−σÞ cψ 0

0 0 1

3
75
2
64
eiτ 0 0

0 eiσ 0

0 0 1

3
75G†

×Gf1þϵc12s12 sinðϕ−θ13ÞWðψ ;δ;λ1;λ2ÞgG†G

2
64
ν1

ν2

ν3

3
75: ð5:8Þ

Notice that rephasing not only of the flavor states να
(α ¼ e, μ, τ) but also the matter eigenstates νj (j ¼ 1, 2, 3)
does not affect the oscillation probability.
For s023 and s0ϕ, we restrict ourselves to the simple

solutions s23eiσ ¼ s023 and sϕeiτ ¼ s0ϕ. Apparently, there
is no other way as far as we remain in the present
formulation of the SF equation (5.8). Once we place this
restriction, we have to limit the possible solutions of τ and σ
to integer multiples of π, since otherwise we have to make
the mixing angles complex. We will see in the next
Sec. V D that it has a tremendous consequence to restrict
the solution space of the SF equation.

Under the ansatz s23eiσ ¼ s023 and sϕeiτ ¼ s0ϕ, the SF
equation (5.8) can be decomposed into the following first
and second conditions: The first condition reads

2
64

cψ sψeiðδþτ−σÞ 0

−sψe−iðδþτ−σÞ cψ 0

0 0 1

3
75
2
64
eiτ 0 0

0 eiσ 0

0 0 1

3
75G†

¼ U12ðψ 0; δþ ξÞ; ð5:9Þ

while the second condition takes the form

ϵc12s12 sinðϕ − θ13Þ

2
666664

0 0 −cψeiα
Δm2

ren
λ3−λ2

0 0 −sψe−iðδþβÞ Δm2
ren

λ3−λ1

cψe−iα
Δm2

ren
λ3−λ2

sψeiðδþβÞ Δm2
ren

λ3−λ1
0

3
777775

¼ ϵc012s
0
12 sinðϕ0 − θ013Þ

2
666664

0 0 −s0ψ
Δm2

ren
λ3−λ2

0 0 c0ψe−iðδþξÞ Δm2
ren

λ3−λ1

s0ψ
Δm2

ren
λ3−λ2

−c0ψeiðδþξÞ Δm2
ren

λ3−λ1
0

3
777775
: ð5:10Þ

D. How to solve the DMP SF equation?

We analyze the first condition (5.9). It is not difficult to
show that it entails the conditions

cψ 0 ¼ −sψe−iðα−τÞ ¼ −sψeiðβþσÞ;

sψ 0 ¼ cψeiðβþτ−ξÞ ¼ cψe−iðα−σ−ξÞ; ð5:11Þ
and the consistency conditions for the phases

αþ β − τ þ σ ¼ 0 ðmod 2πÞ; τ − σ − ξ ¼ 0;�π;

ð5:12Þ
where all the solutions of the phases are modulo 2π. In the
second equation in Eq. (5.12), a classification naturally
appeared:

Class I∶ τ−σ¼ ξ; Class II∶ τ−σ¼ ξ�π: ð5:13Þ

Since we have restricted τ and σ to integer multiples of π,
Eq. (5.11) dictates that α, β, and ξ must also be integer
multiples of π. That is, all the ξ, τ, σ, α, and β must be
integer multiples of π. Then, the procedure for obtaining
solutions to the SF equation is as follows:

(i) To choose an ansatz for ξ. In this paper we try only
the limited choices, ξ ¼ 0; π.

(ii) To choose class I or class II. Then, find all possible
solutions for τ, σ, α, and β.

(iii) Verify the solution against the second condi-
tion (5.10).

It is interesting to observe that the A-type and B-type
pairings naturally arise from the choices ξ ¼ 0 or π, which
ultimately came from the first condition in the SF equa-
tion (5.8). This and the other consequences will be
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explained in Sec. V H. Though we do not know if the
solutions are complete, we did not make any serious effort
to go outside of the current framework.7

E. Symmetries IA and IB in DMP

Let us analyze the SF equation in Eqs. (5.9) and (5.10).
We first recover the λ1 ↔ λ2 exchange symmetry, the one
found in the original DMP work [11], which is denoted as
“symmetry IA-DMP” for the classification purpose:

Symmetry IA-DMP : λ1↔ λ2; cψ →∓ sψ ; sψ →�cψ :

ð5:14Þ

Since no transformation of the fundamental variables is
involved, we can set τ ¼ σ ¼ 0. Following the prescription
in Sec. V D we try the two cases, ξ ¼ 0 and ξ ¼ π. Notice
that ξ is the parameter that causes a possible shift of δ in the
transformed system, as in Eq. (5.9).

1. Case of ξ = 0: Class I

It is easy to observe, with Eqs. (5.11) and (5.12), that
there are two solutions of α and β, α ¼ β ¼ 0 for the upper
sign and α ¼ π; β ¼ −π for the lower sign in Eq. (5.14),
respectively. The consistency with the second condition
(5.10) can easily be checked. Therefore, it is shown that
symmetry IA-DMP in Eq. (5.14) is the solution to the SF
equation in DMP.

2. Case of ξ =π: Class II

Let us explore the case of ξ ¼ π to look for a new
solution. If we try the cases of α ¼ π; β ¼ −π, and
α ¼ β ¼ 0, we obtain cψ 0 ¼ sψ , sψ 0 ¼ cψ (cψ 0 ¼ −sψ ,
sψ 0 ¼ −cψ ) for the former (latter) case. Then, the second
condition tells us that the sign flip of s12 is required. Thus,
we have found a new symmetry “symmetry IB-DMP” as a
solution to the SF equation:

Symmetry IB-DMP : θ12 → −θ12; δ → δþ π;

λ1 ↔ λ2; cψ → �sψ ; sψ → �cψ : ð5:15Þ

Thus, we have found that the pairing structure of the 1 ↔ 2
exchange symmetry with A (δ free) and B (with δ) types
prevails in DMP.
A question might be: After we find more symmetries,

which will be the case, why is the pairing of symmetries IA
and IB mandatory, e.g., not IIA and IB? The answer to this
question will be given in a clear way in the discussion of the
Hamiltonian viewpoint of the symmetries in Sec. VI.

F. Consistency check among the transformations

It is important to verify the mutual consistency between
the transformations that are involved in the symmetries. We
do it here for symmetries IA- and IB-DMP, but it should be
repeated when we find another new symmetry later.
The expressions of the eigenvalues λ1 and λ2 can be

expressed as

λ1 ≡ c2ψλ− þ s2ψλ0 − 2cψsψA;

λ2 ≡ s2ψλ− þ c2ψλ0 þ 2cψsψA; ð5:16Þ

where A≡ ϵc12s12cϕ−θ13Δm
2
ren.

8 In symmetry IA-DMP,
the transformation between cψ and sψ is such that A
remains invariant. But since cψsψ → −cψsψ , the eigenvalue
exchange λ1 ↔ λ2 occurs by the ψ transformation. In
symmetry IB-DMP, on the other hand, the transformation
between cψ and sψ is such that A flips sign while cψsψ is
invariant. Therefore, the transformations of λi and ψ are
mutually consistent in both symmetries symmetry IA and
symmetry IB in DMP.

G. Symmetry IVB-DMP

It would be a little cumbersome for the readers to follow
the similar discussions for the remaining six symmetries.
But we need to discuss at least one case in which the
rephasing matrix F matrix plays a role. Therefore, we
investigate here the most involved case in which all the
fundamental and dynamical parameters transform, which
will be termed as “symmetry IVB-DMP.” The results of the
remaining five symmetries will be given in the summary
Table I in Sec. V H, which also includes the ones discussed
in the text.
We examine the case of class II and ξ ¼ π. In class II,

τ − σ ¼ ξ� π ¼ 0 (mod. 2π), there are only the two cases,
τ ¼ σ ¼ 0 and τ ¼ σ ¼ π. Since the former is already
examined in Sec. V E which resulted in symmetry IB-DMP,
we concentrate here on the case τ ¼ σ ¼ π.
Within these restrictions, we can find the following two

solutions: First solution: α ¼ 0, β ¼ 0; and second solu-
tion: α ¼ π; β ¼ −π. It is easy to recognize, by following
the procedure described in Sec. V D, that the above two
solutions lead to the solutions of the first condition (5.11) as

cψ 0 ¼ �sψ ; sψ 0 ¼ �cψ ; ð5:17Þ

where the upper (lower) sign in Eq. (5.17) corresponds to
the first (second) solution of α, β. Notice that due to the
nonvanishing flavor basis neutrino rephasing phases, τ and
σ, the vacuum mixing angles θ23 and θ13 must transform as

7A real challenge would be to formulate the SF equation with
an extended exchange symmetry that involves the three mass
eigenstates, which is, however, far beyond the scope of this paper.

8λ− and λ0 are the pre-θ12 rotation eigenvalues, which are
identical to the ones in Ref. [24]. λ− and λ0 are the second-largest
and smallest eigenvalues in the asymptotic region a → þ∞ in the
normal mass ordering.
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θ23 → −θ23 and θ13 → −θ13. Then, the θ13 transformation
induces the ϕ → −ϕ transformation, because sin 2ϕ ∝
sin 2θ13 [11]. Finally, the consistency with the second
condition (5.10) requires the θ12 transform as θ12 → −θ12.
Thus, we have obtained a new symmetry that we call

“symmetry IVB-DMP”:

Symmetry IVB-DMP∶

θ23 → −θ23; θ13 → −θ13; θ12 → −θ12; δ → δþ π;

λ1 ↔ λ2; ϕ → −ϕ; cψ → �sψ ; sψ → �cψ : ð5:18Þ

Consistency between the λ1 ↔ λ2 exchange and the ψ
transformation is maintained. As in the case of symmetry
IB-DMP, A≡ ϵc12s12cϕ−θ13Δm

2
ren flips sign while cψsψ is

invariant. Thus, transformations of ψ are consistent with the
eigenvalue exchange. See Eq. (5.16). With regard to ψ ,
sψcψ ¼ 1

2
sin 2ψ transform as [11]

sψcψ ¼ ϵc12s12cϕ−θ13Δm
2
ren

λ2 − λ1
→ sψcψ ; ð5:19Þ

under the transformation in Eq. (5.18), and cos 2ψ as

c2ψ − s2ψ ¼ λ0 − λ−
λ2 − λ1

→ −ðc2ψ − s2ψ Þ: ð5:20Þ

Therefore, the transformations of the vacuum variables, the
fundamental parameters, and the dynamical variables are
mutually fully consistent.

H. The whole structure of 1 ↔ 2 exchange
symmetry in DMP

We are ready to present all the solutions of the SF
equation, thereby displaying the whole structure of 1 ↔ 2
exchange symmetry in DMP. We do this by presenting
Table I for the eight or the pair-doubled four symmetries in
DMP. Interested readers can easily follow the procedure
described in Sec. V D to reproduce these results. To help
this task, we provide the supplementary information in
Table II to show how each symmetry corresponds to which
solution of the SF equation. As noticed before, symmetry
IA-DMP in the first line in Tables I and II was noticed in
Ref. [11], but the remaining seven symmetries are all new.
In Table I, the pairing of the type-A (no δ is involved)

and type-B (δ is involved) symmetries is clearly visible for
all the symmetries I, II, III, and IV. It arises because,
roughly speaking, the transformations θ12 → −θ12 and δ →
δþ π are equivalent for the symmetry purposes in one case,
and simultaneous usage of both transformations produces a
null transformation in the other, as their effects are both
multiplicative. This structure is already implicit in the SOL
convention of the U matrix in which the factor e�iδ is
attached to s12.

9 But, again, we emphasize that the
symmetries are valid in the probabilities computed by
using the U matrix, e.g., in the PDG convention.
Can we claim that the symmetries of the 1 ↔ 2 state

exchange type discussed above are all the possible

TABLE II. The case of τ ¼ σ þ ξ is called class I, and τ ¼ σ þ ξ� π as class II. The labels “upper” and “lower” imply the upper and
lower signs in the corresponding columns in Table I.

Symmetry Class I or II, τ, σ, ξ α, β

Symmetry IA Class I, τ ¼ σ ¼ 0, ξ ¼ 0 α ¼ β ¼ 0 (upper)
α ¼ π; β ¼ −π (lower)

Symmetry IB Class II, τ ¼ σ ¼ 0, ξ ¼ π α ¼ π; β ¼ −π (upper)
α ¼ β ¼ 0 (lower)

Symmetry IIA Class II, τ ¼ 0; σ ¼ −π, ξ ¼ 0 α ¼ π, β ¼ 0 (upper)
α ¼ 0, β ¼ π (lower)

Symmetry IIB Class I, τ ¼ 0; σ ¼ −π, ξ ¼ π α ¼ 0, β ¼ π (upper)
α ¼ π, β ¼ 0 (lower)

Symmetry IIIA Class II, τ ¼ π, σ ¼ 0, ξ ¼ 0 α ¼ 0, β ¼ π (upper)
α ¼ π, β ¼ 0 (lower)

Symmetry IIIB Class I, τ ¼ π, σ ¼ 0, ξ ¼ π α ¼ π, β ¼ 0 (upper)
α ¼ 0, β ¼ π (lower)

Symmetry IVA Class I, τ ¼ σ ¼ π, ξ ¼ 0 α ¼ π; β ¼ −π (upper)
α ¼ β ¼ 0 (lower)

Symmetry IVB Class II, τ ¼ σ ¼ π, ξ ¼ π α ¼ β ¼ 0 (upper)
α ¼ π; β ¼ −π (lower)

9One should not misunderstand that the type-A and -B pairing
of the symmetry is due to a trivial consequence of the s12e�iδ

structure. When the type-A symmetry becomes type-B, the ψ
transformation changes from sin 2ψ → − sin 2ψ to sin 2ψ →
sin 2ψ (symmetries I and IV) or vice versa (symmetries II and
III). Thus, understanding the whole structure requires the SF
equation.
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symmetries in DMP? Of course, we cannot because the
ansatz we used to solve the SF equation are of limited ones.
Nevertheless, in view of the remarkable completeness of
the symmetry structure including the pairing of A- and
B-type symmetries, the possibility may not be immediately
excluded that the symmetries listed in Tables I and II
exhaust all the possible 1 ↔ 2 state exchange symmetries
in DMP.

VI. HAMILTONIAN VIEW OF THE 1 ↔ 2
EXCHANGE SYMMETRY IN MATTER

We now discuss the Hamiltonian view of the reparamet-
rization symmetry of the 1 ↔ 2 state exchange type in
matter. We primarily treat in this section the DMP system,
because the symmetries in the ZS system and in the vacuum
can easily be understood as one of the DMP’s symmetries

with appropriate replacements of the variables. It is also
worthwhile to mention that our focus on these 1 ↔ 2
exchange symmetries in DMP is due to their rich varieties,
exhibiting interesting features.

A. Hamiltonian view of the DMP system

The flavor basis Hamiltonian can be written in two ways,
by using the fundamental variables, which we callHLHS, or
by the dynamical (i.e., Hamiltonian diagonalizing) varia-
bles, which we call HRHS. Of course, they must be equal,

HLHS ¼ HRHS: ð6:1Þ

The explicit expressions of HLHS, and HRHS in the DMP
decomposed form into the unperturbed and perturbed terms
read in the SOL convention as

2EHLHS ¼ U23ðθ23ÞU13ðθ13ÞU12ðθ12; δÞ

2
64
m2

1 0 0

0 m2
2 0

0 0 m2
3

3
75U12ðθ12; δÞ†U13ðθ13Þ†U23ðθ23Þ† þ

2
64
aðxÞ 0 0

0 0 0

0 0 0

3
75; ð6:2Þ

2EHRHS ¼ U23ðθ23ÞU13ðϕÞU12ðψ ; δÞ

8>><
>>:

2
64
λ1 0 0

0 λ2 0

0 0 λ3

3
75þ ϵc12s12 sinðϕ − θ13ÞΔm2

ren

2
64

0 0 −sψ
0 0 cψe−iδ

−sψ cψeiδ 0

3
75
9>>=
>>;

×U†
12ðψ ; δÞU†

13ðϕÞU†
23ðθ23Þ: ð6:3Þ

Notice that HRHS is shown as the decomposed form, but it
is exact, namely, no approximation is made to derive
Eq. (6.3). We denote the first and second terms in HLHS
in Eq. (6.2) as Hvac and Hmatt, respectively. Similarly, we
denote the first and second terms inHRHS in Eq. (6.3) asH0

and H1, respectively. That is, HLHS ¼ Hvac þHmatt and
HRHS ¼ H0 þH1.

B. Transformation of HLHS

Let us first understand how HLHS in Eq. (6.2) transform.
Hvac transforms only by the fundamental (i.e., vacuum
mixing) parameters, and Hmatt remains intact. For sym-
metry IA, obviouslyHvac does not transform, as no vacuum
parameter transforms. For symmetry IB, the vacuum
parameters change as θ12 → −θ12 and δ → δþ π, but they
keep USOL and hence Hvac invariant, as they come into the
combination s12e�iδ. Therefore, HLHS is invariant under
both symmetries IA and IB.
For symmetry X, for X ¼ IIA and IIB (see Table I), one

can easily show that Hvac transforms the vacuum para-
meters transformation as

Hvac ≡
2
64
hee heμ heτ
hμe hμμ hμτ
hτe hτμ hττ

3
75 →

2
64

hee −heμ heτ
−hμe hμμ −hμτ
hτe −hτμ hττ

3
75;

ð6:4Þ

leaving a lozenge position minus. Then, the transformation
property of HLHS ¼ Hvac þHmatt can be expressed as a
phase redefinition, which is to be applied onto the flavor
and mass eigenstates

HLHS→RepðIIÞHLHSRepðIIÞ for X¼ IIA andIIB; ð6:5Þ

where we have introduced the rephasing matrix Rep(II) as

RepðIIÞ ¼

2
64
−1 0 0

0 1 0

0 0 −1

3
75: ð6:6Þ

That is, HLHS is invariant under the transformations of
symmetries IIA and IIB up to the phase redefinition of the
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flavor and mass eigenstates. The similar exercise can be
repeated for symmetry X, X ¼ IIIA-IIIB and IVA-IVB,
with the results:

HLHS → RepðIIIÞHLHS RepðIIIÞ for X ¼ IIIA and IIIB;

HLHS → RepðIVÞHLHS RepðIVÞ for X ¼ IVA and IVB;

ð6:7Þ

where we have similarly defined Rep(III) and Rep(IV) as

RepðIIIÞ¼

2
64
−1 0 0

0 1 0

0 0 1

3
75; RepðIVÞ¼

2
64
−1 0 0

0 −1 0

0 0 1

3
75: ð6:8Þ

Notice that all the rephasing matrix Rep(X) does not
distinguish between the A- and B-type symmetries.
Thus, the transformation property of HLHS can be
expressed as a phase redefinition, which is to be applied
onto the flavor and mass eigenstates.

C. Transformation of HRHS

We move on to the transformations of HRHS under
symmetry X, where X ¼ IA, IB, IIA, IIB, IIIA, IIIB,

IVA, and IVB. To make our treatment simpler we prepare
some minimal formulas here. We denote that U12ðψ ; δÞ →
U12ðXÞ under the transformations of symmetry X. An
explicit computation leads to the expressions

U12ðXÞ ¼

2
64

∓ sψ �cψeiδ 0

∓ cψe−iδ ∓ sψ 0

0 0 1

3
75 for X ¼ IA; IVA;

U12ðXÞ ¼

2
64

�sψ �cψeiδ 0

∓ cψe−iδ �sψ 0

0 0 1

3
75 for X ¼ IIA; IIIA;

ð6:9Þ

where the � signs are commensurate with those for the
A-type symmetries in Table I. U12ðXÞ of the B-type can be
obtained from the A-type one by the sign flip,� → ∓ and
∓ → � in Eq. (6.9).

1. Transformation of H0

We discuss the transformation of H0. One can show that

U12ðψ ; δÞdiagðλ1; λ2; λ3ÞU12ðψ ; δÞ† → U12ðXÞdiagðλ2; λ1; λ3ÞU12ðXÞ†
¼ RepðXÞU12ðψ ; δÞdiagðλ1; λ2; λ3ÞU12ðψ ; δÞ†RepðXÞ: ð6:10Þ

It is important to know that the rephasing matrices Rep(X)’s
for the transformation of HRHS are the same as those of
HLHS. For X ¼ IA and IB, RepðIÞ ¼ 1, which means that
theU12ðψ ; δÞpart ofH0 is invariant under the transformation
of X ¼ IA and IB. For the rest of X, X ¼ II, III, and IV, Rep
(X) are given in Eqs. (6.6) and (6.8) which imply that the
U12ðψ ; δÞ part ofH0 is invariant under the transformation up

to the rephasing matrix Rep(X).10 Notice again that Rep(X)
is the same for the A- and B-types for all X.

2. Transformation of H1

Similarly, the transformation of the U12ðXÞ part of H1

can be worked out to lead to

U12ðψ ; δÞ

2
64

0 0 −sψ
0 0 cψe−iδ

−sψ cψeiδ 0

3
75U12ðψ ; δÞ† → U12ðXÞ

2
64

0 0 −sψ
0 0 cψe−iδ

−sψ cψeiδ 0

3
75
����
X transformed

U12ðXÞ†

¼ SignðXÞRepðXÞU12ðψ ; δÞ

2
64

0 0 −sψ
0 0 cψe−iδ

−sψ cψeiδ 0

3
75U12ðψ ; δÞ†RepðXÞ;

where the prescription jX transformed implies that the trans-
formed variables of ψ and δ by the X transformation are to
be inserted, which, of course, depend on X. Rep(X) is the
same as defined in Eqs. (6.6) and (6.8). SignðXÞ ¼ þ for
IA, IIB, IIIA, IVB, and SignðXÞ ¼ − for IB, IIA, IIIB, IVA.

10As a matter of fact, Rep(IV) does nothing as far as the
transformation property of H0 is concerned for
X ¼ IVA and IVB. But, it is introduced to match the trans-
formation property of HLHS.

SYMMETRY FINDER: A METHOD FOR HUNTING SYMMETRY IN … PHYS. REV. D 104, 075024 (2021)

075024-11



In order for H1 to be invariant under these transforma-
tions, the minus sign from Sign(X) must be canceled
by an extra minus sign supplied from the prefactor
ϵc12s12 sinðϕ − θ13ÞΔm2

ren in Eq. (6.3). It is not difficult
to show that it indeed occurs. For IB and IIA, flipping the
sign of θ12 absorbs the minus sign. For IIIB and IVA
flipping the sign of θ13 − ϕ cancels the minus sign. For IA
and IIB no sign change occurs in the prefactor, and for IIIA
and IVB the sign change occurs twice, by flipping θ12 and
θ13-ϕ, resulting in no net change in sign. These features can
easily be confirmed by consulting Table I.
So far we have discussed how the transformations affect

the part O sandwiched by U12ðXÞ and U12ðXÞ† in HRHS.
The rephasing matrix Rep(X) that appeared in the trans-
formed part as Rep(X) U12ðXÞOU12ðXÞ† Rep(X) must be
extracted to both ends of the Hamiltonian. It is good to see
that passing through the rephasing matrix remedies the
flipped sign of sin θij for ij ¼ 23, 13, and 12. Also one
might wonder if passing through the rephasing matrix
might affect the other rotation matrix when correcting the
flipped sign of only sin θ23 and sin θ13 in symmetry II and
symmetry III, respectively. Upon computation, one recog-
nizes that this is carefully avoided.
Thus, we have shown that HRHS is invariant up to the

phase redefinitions of the flavor and mass eigenstates with
the same rephasing matrix Rep(X) as used for HLHS for
each symmetry X. The fact that the different rephasing
matrices Rep(X) are necessary for X ¼ I, II, III, and IV, but
they are the same for the type-A and type-B cases in each
Symmetry X, justifies the type-A and type-B pairing
scheme given in Table I.
Finally, we note that essentially the same manipulation

as used to show the invariance of H0 in symmetries IA and
IB can be used to show that the Hamiltonian of the ZS
system as well as in the vacuum is invariant under
symmetries IA and IB.

D. Implications of symmetry as a Hamiltonian
symmetry

In conclusion of our treatment in the previous sections,
we have shown that bothHLHS andHRHS in the flavor basis
Hamiltonians (6.2) and (6.3) are invariant under the trans-
formations of the eight 1 ↔ 2 exchange symmetries,
symmetry IA, IB, …, IVB given in Table I, up to the
phase redefinitions of the flavor and mass eigenstates
except for IA and IB. Therefore, these symmetries are
the Hamiltonian symmetries. In Sec. VII, we will clarify the
relationship between this statement and the similar one
made in Ref. [12].
What is the implication of the symmetry being the

Hamiltonian symmetry? This is one of the most important
questions in this paper, and we can make the following
statements:

(i) The Hamiltonian symmetry holds to all orders of
perturbation theory.

(ii) The symmetry is valid for the non-uniform matter
density profile, as far as the adiabaticity condition
holds, that is, under a mild variation of the matter
density.11

VII. NATURE OF THE 1 ↔ 2 EXCHANGE
SYMMETRY IN NEUTRINO OSCILLATION

IN MATTER

Can we draw a unified picture of all the 1 ↔ 2 exchange
symmetries in matter we have uncovered so far? Symmetry
IA-ZS, IB-ZS, and IA-DMP are the pure dynamical
symmetries in the sense that the symmetry transformations
are generated purely by the Hamiltonian diagonalizing, or
the matter-dressed variables, and no fundamental variable
[i.e., variable in the original Hamiltonian (6.2)] is involved.
By the symmetry transformations HLHS in Eq. (6.2) is left
intact, whereas HRHS transforms. But, of course, HRHS
remains invariant without the rephasing matrix, as sym-
metry IA-ZS, IB-ZS, and IA-DMP are symmetries, as
confirmed explicitly for the last one in Sec. VI C.
On the other hand, in symmetry IIA, IIB, IIIA, IIIB, IVA,

IVB in DMP, HLHS transforms by a part or all of the
fundamental variables transformations. Even more inter-
estingly HRHS transforms by both the fundamental as well
as the dynamical variables. As can be seen most clearly in
symmetry IIA, IIB, IIIA, and IIIB in DMP, one cannot take
a view that the transformations of the fundamental variables
induce those of the dynamical variables. Of course, the
transformations of the dynamical variables never generate
the transformations of the fundamental variables, as is
evident in symmetry IA-ZS, IB-ZS, and IA-DMP.
Therefore, to summarize:

(i) In the reparametrization symmetry with the 1 ↔ 2
state exchange in neutrino oscillation in matter, none
of the fundamental and the dynamical variables that
take part in the symmetry transformations are more
basic.12 They are just equally important and, of
course, transform in a mutually consistent way with
each other.

As mentioned in Sec. I, we have stated previously [12]
about symmetry IA-DMP that “these symmetries as the
dynamical symmetry, as opposed to the Hamiltonian
symmetry.” The statement refers to the feature that HLHS
in Eq. (6.2) does not transform by the symmetry IA. But,
now under a more complete view with bothHLHS andHRHS
in our sight, we say that symmetry IA is also the

11We suspect that a Hamiltonian symmetry implies the
symmetry in the oscillation probability for any matter density
profile as far as it is nonsingular. While we look forward to
investigating this point, for the time being, we try to remain in the
safe side by imposing the adiabaticity condition.

12This characteristic may be reminiscent of “nuclear democ-
racy” or “bootstrap,” the phrases for a feature of the S matrix
theory to stress that none of the elementary or composite particles
is fundamental [34].
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Hamiltonian symmetry, as HRHS receive the transformation
under symmetry IA, albeit it is invariant, of course.

VIII. CONCLUDING REMARKS

In this paper we have discussed the 1 ↔ 2 state
relabeling, or reparametrization symmetry in neutrino
oscillation in matter. We have developed a systematic
method called the symmetry finder, for uncovering sym-
metry in the neutrino oscillation probability in matter. We
first noticed that the Zaglauer-Schwarzer system pos-
sesses symmetries IA-ZS and IB-ZS (Sec. IV), the matter
equivalent of the known symmetries in vacuum [14].
Then, we have applied the SF scheme to the Denton et al.
[11] (DMP) framework formulated to first order in
perturbation theory to uncover new symmetries of the
1 ↔ 2 state exchange type. Thanks to this powerful
method of the SF equation, we have identified the eight
symmetries, symmetry IA, IB, IIA, IIB, IIIA, IIIB, IVA,
IVB in DMP, which are summarized in Table I. They are
all new symmetries apart from IA, which was found in
Ref. [11] and has stimulated our interests toward this
investigation.
We suspect that the above eight symmetries may be a

complete set of the reparametrization symmetry of the 1↔2
state exchange type, because of the special features of the
above set of the symmetries, exhausting the possibleways of
usage of thevacuumparameter transformation, aswell as the
A-type (δ free) and B-type (with δ) paired structure. But,
since our ansatz used to solve the SF equation is a quite
limited one, the above suspect cannot be a too strong one.
Notwithstanding whether the suspect is true or not, to the
best of our knowledge, we believe that this is the first
systematic treatment of the symmetry huntingmethod in the
neutrino oscillation probability in matter.
Probably, one of the nicest features in our treatment in

this paper is ascribed to the demonstration of all the 1 ↔ 2
state exchange reparametrization symmetry as the
Hamiltonian symmetry. That is, the symmetry transforma-
tions make the flavor basis Hamiltonian invariant, possibly
up to the neutrino flavor and mass eigenstate rephasing
factors. Once a symmetry is elevated to a Hamiltonian
symmetry, it follows that the symmetry holds to all orders
in perturbation theory, even though it was originally found
by using the first-order perturbation theory. It also follows
that the Hamiltonian symmetry is valid for systems with
varying matter densities.
We have restricted our discussions into the symmetry

whose transformations keep the system into our world,
thereby excluding the ones such as Δm2

31 → −Δm2
31, or

θ12 ≤ π
4
to θ12 ≥ π

4
. Then, our symmetry search has to be

limited inherently to reparametrization or relabeling sym-
metries, apart from spacetime symmetries such as CPT or
CP. To our view this is an acceptable limitation. Then, one
may ask what are more serious limitations that can or
cannot be circumvented. In Sec. IV C, we have already

discussed a difficulty in formulating the SF framework to
include the 1 ↔ 3 and 2 ↔ 3 exchange symmetry. A real
final challenge would be to formulate the SF equation with
an extended exchange symmetry that involves the three
mass eigenstates, which is, however, outside the scope of
this paper.
One may ask: What is the utility of such symmetries?

Our answer would be the following:
(i) The minimum practical utility of such symmetry is

to serve for a consistency check of the calculated
results of the oscillation probabilities.

(ii) Understanding the nature of the symmetry might
produce interesting physical interpretations.

We note that the first merit is not so negligible if a
researcher has to derive the expression of the oscillation
probability in an isolated place, which could happen in
pandemic eras.
However, the second point above may be more intriguing

and appealing. Therefore, let us examine it a little further.
An overview of the features of the symmetries discussed in
this paper may be summarized as the mixed fundamental
and dynamical symmetry, because the transformations are
carried out partly by the fundamental (i.e., vacuum) and
partly by the Hamiltonian-diagonalizing (matter-dressed)
variables. It appears that none of them is more basic in
nature for neutrino oscillations in matter, another example
of “nuclear democracy.”
But, then one may wonder why dynamical symmetry

could arise from the system under the matter potential, but
no neutrino self-interactions. Let us consider high-density
neutrino gases in which neutrino-neutrino interactions play
an important role. Such a fully interacting neutrino system
would be the best place for an investigation of dynamical
symmetry in its genuine sense. A mean-field treatment of
such a system may result in the neutrino system with the
external neutrino potential in its leading-order approxima-
tion. This system may be similar to the one we have
discussed in this paper, apart from the difference between
the external neutrino and electron potentials. If this reason-
ing is correct, we could have started seeing the dynamical
variables and the symmetry associated with them. Hence, it
would be very interesting to address the symmetry and
mutual relationship between the fundamental and dynami-
cal variables in such a system as the high density neutrino
gases [35,36]. A particular aspect of the similar nonlinear
system that is relevant for supernova neutrinos has been
much discussed recently; see, e.g., Ref. [37] and the
references therein.
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