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We propose a gauged two-Higgs-doublet model featuring an anomalous Peccei-Quinn symmetry,
Uð1ÞPQ. Dangerous tree-level flavor-changing neutral currents, common in two-Higgs-doublet models, are
forbidden by the extra gauge symmetry,Uð1ÞX. In our construction, the solutions to the important issues of
neutrino masses, dark matter, and the strong CP problems are interrelated. Neutrino masses are generated
via a Dirac seesaw mechanism and are suppressed by the ratio of the Uð1ÞX and the Uð1ÞPQ breaking
scales. Naturally small neutrino masses suggest that the breaking of Uð1ÞX occurs at a relatively low scale,
which may lead to observable signals in near-future experiments. Interestingly, spontaneous symmetry
breaking does not lead to mixing between the Uð1ÞX gauge boson, Z0, and the standard Z. For the expected
large values of the Uð1ÞPQ scale, the associated axion becomes “invisible,” with Dine-Fischler-Srednicki-
Zhitnitsky-like couplings, and may account for the observed abundance of cold dark matter. Moreover, a
viable parameter space region, which falls within the expected sensitivities of forthcoming axion searches,
is identified. We also observe that the flavor-violating process of kaon decaying into pion plus axion,
Kþ → πþa, is further suppressed by the Uð1ÞX scale, providing a rather weak lower bound for the axion
decay constant fa.
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I. INTRODUCTION

The origin of small neutrino masses and the nature of
dark matter (DM) are two of the most pressing issues with
no answers within the Standard Model (SM) of particle
physics. Nevertheless, there exist plenty of other open
questions suggesting the need of physics beyond the SM,
e.g., the nonobservation of a CP-violating phase in the
strong interaction sector.
The observation of neutrino oscillations [1–3] has led to

an understanding that, contrary to the SM picture, neutrinos
are massive, albeit extremely light. A plethora of new
physics proposals has been put forward to explain the
smallness of neutrino masses: from the seesaw mechanism
and its various realizations, see, e.g., [4]—relying on new
physics at very large scales—to radiative mechanisms
[5–8], which take place at much lower scales, possibly
within experimental reach. On the experimental side, many
efforts have been helping us to determine not only neutrino

masses per se but also other intrinsically related properties,
such as neutrino mass ordering and absolute scale, CP
phase and whether neutrinos are their own antiparticles [9].
Another major drawback of the SM is the absence of a

suitable candidate to account for the observed dark matter
relic abundance [10], whose evidence arises from many
sources [11]: from studies of galaxy rotation curves to
cosmic microwave background data. Among the most
appealing DM candidates, there are the weakly interacting
massive particles or WIMPs, which, despite various exper-
imental searches, have not yet been observed [12]. On the
other hand, axions—originally proposed as a key ingre-
dient of the Peccei-Quinn (PQ) solution to the strong CP
problem [13–15] (for reviews, see [16,17])—define another
well-known class of DM candidates [18–20], having the
advantage of being capable to evade strong constraints
coming from WIMP searches.
The exciting possibility of linking neutrino masses to

dark matter and the strong CP problem via axions has been
investigated in different scenarios. For Majorana neutrinos,
the implementation of seesaw mechanisms, where the large
seesaw scale is identified with the PQ scale—already
considered many decades ago [21,22]—has been explored
in various proposals more recently, see, e.g., [23–28].
Additionally, the case for Dirac neutrinos has also become
the subject of several studies [29–33]. The latter case has
been attracting more attention over the last few years since
experiments, such as searches for neutrinoless double beta
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decays [34], have not so far found any evidence for lepton
number violation, which could confirm the Majorana
nature of neutrinos.
In this work, we propose a model in which the issues of

neutrino masses, dark matter and strong CP problem are
addressed simultaneously. The SM group is enlarged by an
extra gauge symmetry, Uð1ÞX, as well as the global Peccei-
Quinn symmetry, Uð1ÞPQ. The model contains two Higgs
doublets, as in two-Higgs-doublet models (2HDMs) [35],
plus two singlets. As a result of the Uð1ÞX charge distribu-
tion, the Higgs doublets couple to different fermions, pre-
venting the emergence of dangerous flavor-changing neutral
currents (FCNCs) at tree level. In the fermion sector, a
minimal field content, including extra quarks and neutral
leptons, is added to ensure gauge anomaly cancellation as
well as a consistent generation of neutrino masses. Different
constructions of 2HDMs with a Uð1ÞX symmetry have
already been proposed to explain the suppression of
FCNCs [36], along with the implementation of WIMP
[37] and axion [38] dark matter candidates, seesaw mecha-
nism for the neutrino masses [39–41] and other phenom-
enological issues [42].
Neutrino masses are generated via a Dirac seesaw mecha-

nism, coming with the suppression factor vφ=vσ, where vφ
and vσ are the Uð1ÞX and Uð1ÞPQ scales, respectively.
Naturally small neutrino masses suggest that the breaking
of Uð1ÞX occurs at a relatively low scale, vφ ≪ vσ, which
may lead to observable signals in near-future experiments.
Interestingly, spontaneous symmetry breaking does not lead
tomixing between theUð1ÞX gauge boson,Z0, and the SMZ.
For the expected large values of the Uð1ÞPQ scale, vσ, the
associated axion becomes “invisible,” with Dine-Fischler-
Srednicki-Zhitnitsky (DFSZ)-like couplings [43,44], and
may account for the observed abundance of cold darkmatter.
Moreover, a viable parameter space region, which falls
within the expected sensitivities of forthcoming axion
searches, is identified. Therefore, the alluring axion-neutrino
interplay renders the model theoretically consistent and
phenomenologically rich.
The remaining of the paper is organized as follows. In

Sec. II, we discuss the model building rationale and present
the field content and symmetry properties. In Sec. III, the
scalar spectrum is derived, and the orthonormalization of the
Goldstone bosons is thoroughly discussed. Next, in Sec. IV,
we obtain the gauge spectrum, augmented by the new boson
Z0, and elucidate the nonmixing property between Z and Z0.
The fermion sector is explored in Sec. V, where the mixing
patterns between the extra and the standard fermions are
obtained via the diagonalization of their mass matrices.
Naturally small neutrino masses are shown to be generated
via a Dirac seesaw mechanism. We turn our attention to the
axion physics in Sec. VI, where we show the main axion
properties, derive the model-dependent axion couplings
to photons and fermions as well as investigate relevant

phenomenological consequences. Our final remarks are
made in Sec. VII.

II. MODEL BUILDING

We start by considering a 2HDM with a Uð1ÞX gauge
symmetry under which the Higgs doublets, Φu and Φd,
carry different charges, forbidding the appearance of
dangerous Higgs-mediated FCNCs. In addition to the
Higgs doublets, we introduce a SUð2ÞL Higgs singlet, φ,
also charged under the new local group. We assume that φ
acquires a vacuum expectation value (VEV) above the
electroweak scale, spontaneously breaking Uð1ÞX and
generating a mass to the associated gauge boson Z0.
Taking advantage of the presence of two Higgs doublets,
fundamental ingredients of DFSZ-type axion models, an
anomalous PQ symmetry Uð1ÞPQ is implemented. This is
made possible with the introduction of a second singlet, σ,
whose large VEV breaks Uð1ÞPQ, triggering the PQ
mechanism that solves the strong CP problem. The
(pseudo-)Goldstone boson of the Uð1ÞPQ spontaneous
breaking is identified with the axion field, and it can play
the role of cold dark matter.
In order for the Peccei-Quinn symmetry to be realized

à la DFSZ, the Higgs doublets must also be charged
under Uð1ÞPQ, and each of them, namely Φu and Φd,
should couple to either the right-handed up-type
quarks, uaR, or down-type quarks, daR, respectively.
However, if only standard quarks are present, Uð1ÞX
anomaly cancellation—in particular, for the ½SUð3ÞC�2 ×
Uð1ÞX anomaly—is achieved once the scalar doublets
are identically charged under Uð1ÞX: XΦu

¼ XΦd
.

Therefore, to have XΦu
≠ XΦd

so that Uð1ÞX is respon-
sible for the absence of Higgs-mediated FCNCs, we
need to extend the quark sector of our model in such a
way that all Uð1ÞX anomalies vanish.
In the quest for minimal solutions, we add n pairs of

quarks (vectorlike under the SM group), knL;R, carrying
the same electric charge qk, and try to find minimal sets
of ðn; qkÞ for which all Uð1ÞX anomalies are canceled.
This is obviously only possible if the new quarks are
chirally charged under Uð1ÞX, and, for simplicity, we
assume that they get their Uð1ÞX charges, as well as
masses, via tree-level couplings to φ. We can divide our
search into two major cases depending on whether the
right-handed charged leptons, eaR, couple to Φd, as in
the type-I DFSZ model or type-II 2HDM, or Φu, as in
the type-II DFSZ model or flipped (type-Y) 2HDM.
In the former case, one of the simplest solutions is
ðn; qkÞ ¼ ð3; 2=3Þ, whereas for the latter case, we find
ðn; qkÞ ¼ ð3;−1=3Þ. In this work, we focus on the
second case, which requires n ¼ 3 pairs of extra quarks
carrying the same electric charge as the down-type
quarks: qk ¼ −1=3.
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At last, we include three right-handed neutrinos, νaR, and
three pairs of neutral leptons naL;R, which are vectorlike
under the gauge symmetries. The presence of such fields
allows for a consistent generation of small neutrino masses
via a Dirac seesaw mechanism, taking place via an inter-
play among all scales in the model.
In Table I, we present the fermion and scalar contents

together with their symmetry transformations. In the
Uð1Þglobal column, we have five independent charges
that can be linked to the five Abelian symmetries in
the model: Uð1ÞY , Uð1ÞX, promoted to local, as well
as Uð1ÞPQ, Uð1ÞB, and Uð1ÞL, where the last two are
the baryon and lepton number symmetries. For instance,
let us choose the generator basis to be ðq0nL ; q0QL

;
q0Φu

; q0φ; q0σÞ. In this case, the symmetries Uð1ÞL and
Uð1ÞB are generated by (1,0,0,0,0) and ð0; 1=3; 0; 0; 0Þ,
respectively. For Uð1ÞY, the generator can be identified
as ð0; 1=6; 1=2; 0; 0Þ, which is clearly linearly indepen-
dent, but not necessarily orthogonal, with respect to the
previous two generators. The generators of the last two
symmetries, Uð1ÞX and Uð1ÞPQ, are also linearly inde-
pendent among themselves and with respect to the other
three. By construction, the generator of Uð1ÞX has a
nonzero fourth and a zero fifth entry: ðXnL; XQL

;
XΦu

; Xφ ≠ 0; Xσ ¼ 0Þ, whereas Uð1ÞPQ is the only sym-
metry for which the last entry must be different from
zero: ðPQnL; PQQL

; PQΦu
; PQφ; PQσ ≠ 0Þ. The exact

charges that define these generators will be properly
derived in the next section once the scalar spectrum is
obtained, in particular, when the orthogonal Goldstone
bosons are identified. This procedure allows for the

unambiguous identification of the physical charges, pre-
venting any misleading choice [45]. Finally, the Uð1Þafree
column represents a subgroup ofUð1Þglobal, containing only
anomaly-free solutions. To findUð1Þafree, we impose that all
the coefficients arising from the anomalies below must
vanish

I∶ ½SUð3ÞC�2 ×Uð1Þglobal; II∶ ½SUð2ÞL�2 ×Uð1Þglobal; III∶ ½Uð1ÞY �2 × Uð1Þglobal;
IV∶ Uð1ÞY × ½Uð1Þglobal�2; V∶ ½Grav�2 ×Uð1Þglobal; VI∶ ½Uð1Þglobal�3: ð1Þ

For instance, the vanishing of the anomaly coefficient in I is
achieved for q0σ ≡ lσ ¼ 0. As for the coefficient II, in
addition to the previous constraint, its vanishing requires
that q0nL ≡ lnL ¼ −3lQL

þ lΦu
þ lφ. Once these two con-

straints are imposed, all anomaly coefficients vanish
identically, as shown in the Appendix A. Consequently,
after the imposition of two constraints, the number of
independent charges goes from five, in the Uð1Þglobal
column, to only three, in the Uð1Þafree column. Such
charges can be grouped in the basis ðlQL

; lΦu
; lφÞ and be

identified as the generators of Uð1ÞB−L: ð1=3; 0; 0Þ, Uð1ÞY :
ð1=6; 1=2; 0Þ, and Uð1ÞX: ðXQL

; XΦu
; Xφ ≠ 0Þ.

Although the symmetries Uð1ÞY , Uð1ÞX, and Uð1ÞPQ are
all broken spontaneously, theUð1ÞB−L symmetrywill remain
intact, ensuring the Dirac nature of neutrinos, whose masses
are generated via a (Dirac) seesaw mechanism.

III. SCALAR SECTOR

The scalar potential can be written as

V ¼ μ2dðΦ†
dΦdÞ þ μ2uðΦ†

uΦuÞ þ μ2σðσ�σÞ þ μ2φðφ�φÞ þ λdðΦ†
dΦdÞ2 þ λuðΦ†

uΦuÞ2 þ λσðσ�σÞ2
þ λφðφ�φÞ2 þ λduðΦ†

dΦdÞðΦ†
uΦuÞ þ λ̃duðΦ†

dΦuÞðΦ†
uΦdÞ þ λσφðσ�σÞðφ�φÞ þ λdσðΦ†

dΦdÞðσ�σÞ
þ λdφðΦ†

dΦdÞðφ�φÞ þ λuσðΦ†
uΦuÞðσ�σÞ þ λuφðΦ†

uΦuÞðφ�φÞ − ½λ4ðΦ†
dΦuÞðσφÞ þ H:c:�: ð2Þ

TABLE I. Fermions, scalars and their symmetry transforma-
tions. The GSM column shows the field transformations under the
SM group. In the Uð1Þglobal column, we present the independent
charges associated with the five global symmetries of the model,
includingUð1ÞPQ for which q0σ ≡ PQσ ≠ 0. Amongst them, three
satisfy anomaly-free conditions, displayed in the Uð1Þafree col-
umn, including Uð1ÞX for which lφ ≡ Xφ ≠ 0.

GSM Uð1Þglobal Uð1Þafree
LaL ð1; 2;−1=2Þ q0nL − q0Φu

− 2q0σ − q0φ −3lQL

eaR ð1; 1;−1Þ q0nL − 2q0Φu
− 2q0σ − q0φ −3lQL

− lΦu

νaR ð1; 1; 0Þ q0nL − q0φ −3lQL
þ lΦu

naL ð1; 1; 0Þ q0nL −3lQL
þ lΦu

þ lφ
naR ð1; 1; 0Þ q0nL − q0σ −3lQL

þ lΦu
þ lφ

QaL ð3; 2; 1=6Þ q0QL
lQL

uaR ð3; 1; 2=3Þ q0QL
þ q0Φu

lQL
þ lΦu

daR ð3; 1;−1=3Þ q0QL
− q0Φu

− q0σ − q0φ lQL
− lΦu

− lφ
kaL ð3; 1;−1=3Þ q0QL

− q0Φu
− q0σ − q0φ lQL

− lΦu
− lφ

kaR ð3; 1;−1=3Þ q0QL
− q0Φu

− q0σ lQL
− lΦu

Φu ð1; 2; 1=2Þ q0Φu
lΦu

Φd ð1; 2; 1=2Þ q0Φu
þ q0σ þ q0φ lΦu

þ lφ
φ ð1; 1; 0Þ q0φ lφ
σ ð1; 1; 0Þ q0σ 0
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In the limit λ4 → 0, the scalar potential has four independent Uð1Þ global symmetries related to the phase redefinitions
allowed for each scalar field. When the λ4 term is introduced, one of the four possible linear combinations of these
symmetries is explicitly broken so that V is left invariant under only three Abelian groups. Two of them can be identified
with the gauged Uð1ÞY and Uð1ÞX symmetries, while the remaining one is the global Uð1ÞPQ symmetry. As discussed in
Sec. II, the Uð1ÞPQ (Uð1ÞX) charges can be obtained from the Uð1Þglobal (Uð1Þafree) column in Table I when taking
q0σ ≡ PQσ ≠ 0 (lφ ≡ Xφ ≠ 0).
In order to derive the scalar spectrum, we decompose the scalar doublets as

Φu;d ¼ ðϕþ
u;d;ϕ

0
u;dÞT with ϕ0

u;d ¼
vu;dþ su;dffiffiffi

2
p exp

�
i
au;d
vu;d

�
; ð3Þ

with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2u þ v2d

q
≡ v ¼ 246 GeV, whilst for the singlets, we have

φ ¼ vφ þ sφffiffiffi
2

p exp

�
i
aφ
vφ

�
and σ ¼ vσ þ sσffiffiffi

2
p exp

�
i
aσ
vσ

�
: ð4Þ

Once all scalars acquire VEVs, the following spontaneous symmetry breaking pattern takes place

GSM ⊗ Uð1ÞXð⊗ Uð1ÞPQ ⊗ Uð1ÞB ⊗ Uð1ÞLÞ → SUð3ÞC ⊗ Uð1ÞEMð⊗ Uð1ÞB ⊗ Uð1ÞLÞ; ð5Þ

where GSM stands for the SM gauge group and the global symmetries are shown in parentheses. Notice that, as discussed in
Sec. II, no scalar field is charged under the accidentalUð1ÞB andUð1ÞL symmetries so that they remain fully conserved. The
breaking of five generators leads to four would-be Goldstone bosons, absorbed by the gauge sector, plus a pseudo-
Goldstone boson, the axion, as we derive in what follows.
Substituting Eqs. (3) and (4) into Eq. (2), we extract the following tadpole equations

vu½2μ2u þ 2λuv2u þ v2dðλdu þ λ̃duÞ þ λuφv2φ þ λuσv2σ� ¼ λ4vdvφvσ;

vd½2μ2d þ 2λdv2d þ v2uðλdu þ λ̃duÞ þ λdφv2φ þ λdσv2σ� ¼ λ4vuvφvσ;

vφð2μ2φ þ 2λφv2φ þ λdφv2d þ λuφv2u þ λσφv2σÞ ¼ λ4vuvdvσ;

vσð2μ2σ þ 2λσv2σ þ λdσv2d þ λuσv2u þ λσφv2φÞ ¼ λ4vuvdvφ: ð6Þ

To find the physical spectrum, we solve the equations above for the dimensionful parameters μu, μd, μφ, and μσ, and plug
them back into the potential.
The scalar spectrum contains two charged fields, which are defined in terms of ðϕ�

u ;ϕ�
d Þ as

ϕ� ¼ 1

v
ðvuϕ�

d − vdϕ�
u Þ ⇒ mϕ� ¼ v2

2vuvd
ðλ4vσvφ − λ̃duvuvdÞ;

G� ¼ 1

v
ðvdϕ�

d þ vuϕ�
u Þ ⇒ mG� ¼ 0: ð7Þ

The first field, ϕ�, is a physical charged scalar, whose mass can be around the electroweak scale, as in 2HDMs, as long as λ4
remains very small. The smallness of such a parameter is naturally protected since in its absence the potential exhibits an
enhanced symmetry. The second scalar, G�, which remains massless, is the Goldstone boson absorbed by the gauge sector,
making the SM vector boson W� massive.
For the neutral fields, we divide them into the CP-even and the CP-odd components. Starting with the CP-even scalars,

in the basis ðsu; sd; sφ; sσÞ, we can write the squared mass matrix below

M2
s ¼

0
BBBBBB@

2λuv2u þ λ4vdvφvσ
2vu

⋆ ⋆ ⋆
vuvdðλdu þ λ̃duÞ − λ4vφvσ

2

λ4vuvφvσ
2vd

þ 2λdv2d ⋆ ⋆
λuφvuvφ −

λ4vdvσ
2

λdφvdvφ −
λ4vuvσ

2
λ4vuvdvσ

2vφ
þ 2λφv2φ ⋆

λuσvuvσ −
λ4vdvφ

2
λdσvdvσ −

λ4vuvφ
2

λσφvφvσ −
λ4vuvd

2

λ4vuvdvφ
2vσ

þ 2λσv2σ

1
CCCCCCA: ð8Þ
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The matrix in Eq. (8) contains the three energy scales
present in the model, and it is expected that two scalars will
be heavy with masses proportional to the VEVs vφ and vσ.
It is a typical feature of the axion models that the mass
matrix of the CP-even scalars contains hierarchical vacuum
expectation values. To have a Higgs boson consistent with
the observed one, an adjustment of the parameters is
required. We will not develop it further once this is not
the focus of the present work.

A. CP-odd sector: Identifying Goldstone bosons
and Abelian charges

As a result of the polar parametrization in Eqs. (3) and
(4), the terms in the potential involving only the CP-odd
states can be succinctly written as

VðaiÞ ¼ −
λ4
2
vuvdvφvσ cos

�
au
vu

−
ad
vd

þ aφ
vφ

þ aσ
vσ

�
: ð9Þ

Upon expanding the cosine function, we find that only one
state becomes massive at this point. The massive state is
proportional to the argument of the cosine function, which,
when normalized, translates to

A ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2σðv2φv2 þ v2uv2dÞ þ v2φv2uv2d

q
× ðvdvφvσau − vuvφvσad þ vuvdvσaφ þ vuvdvφaσÞ;

ð10Þ

with a squared mass given by

m2
A ¼ λ4

2

�
v2σðv2φv2 þ v2uv2dÞ þ v2φv2uv2d

vuvdvφvσ

�
: ð11Þ

The pseudoscalar field A becomes massless in the limit
λ4 → 0. In fact, as mentioned below Eq. (7), the absence of
the term λ4ðΦ†

dΦuÞðσφÞ þ H:c: implies the existence of an
extra global symmetry in the scalar potential whose
spontaneous breaking would identify the field A as the
associated Goldstone boson. Thus, under the assumption
that λ4 can be naturally small (λ4 ≪ 1), since its vanishing
increases the symmetries of the system, mA could also be
around the electroweak scale, for example. Moreover,
according to the VEV hierarchy, A couples predominantly
to the Standard Model fields once its components are
mainly along the au and ad field space directions.
As for the remaining fields, they are Goldstone bosons

associated with the spontaneous breaking of three Abelian
symmetries: Uð1ÞY , Uð1ÞX, and Uð1ÞPQ, defining a degen-
erate 3D space. In order to identify the three linearly
independent CP-odd scalars, it is instructive to write down
the conserved current associated with each Uð1Þ symmetry
in the model along the CP-odd scalars. As usual, we

assume that under a given global Uð1Þc symmetry, a scalar
field ϕ transforms as ϕ → expðiωccϕÞϕ, where cϕ is ϕ’s
Uð1Þc charge, and ωc is the infinitesimal continuous
parameter of Uð1Þc. Noether’s theorem tells us that the
presence of a Uð1Þc symmetry—in our case c ¼ Y;
X; PQ—implies the conservation of the following current

Jcμ ¼
X
ϕ

∂L
∂ð∂μϕÞ

δϕ

δωc
þ� � � ¼−i

X
ϕ

cϕϕ†∂μϕþH:c:þ� � � ;

ð12Þ

where the ellipsis corresponds to the contributions from all
nonscalar fields charged under the symmetry. Using the
polar decomposition for the scalars, as in Eqs. (3) and (4),
we find the conserved current along the CP-odd scalars
to be

Jcμjaϕ ¼
X
ϕ

cϕvϕ∂μaϕ ¼ fG∂μGc; ð13Þ

where, in the last step, we have defined the linear
combination

Gc ¼
1

fG

X
ϕ

cϕvϕaϕ; ð14Þ

with f2G ¼ P
ϕ c

2
ϕv

2
ϕ. The field Gc is precisely the

massless field associated with the spontaneously broken
Uð1Þc generator as predicted by Goldstone’s theorem
(h0jJcμjGci ¼ ipμGc).
We are now well equipped to determine the Goldstone

bosons by applying the expression in Eq. (14) to our model.
Moreover, by imposing the physical condition of ortho-
gonality among the CP-odd states, we are able to fix the
Uð1Þ charges of the scalars in terms of the VEVs, ensuring
that the charges in Table I are unambiguously chosen.
The first (would-be) Goldstone boson, GZ ≡GY , comes

from the breaking of Uð1ÞY and is absorbed by the massive
vector boson Z via the Higgs mechanism. As only the
SUð2ÞL doublets carry hypercharge, we can use Eq. (14) to
obtain, as expected,

GZ ¼ 1

v
ðvuau þ vdadÞ: ð15Þ

Notice thatGZ is automatically orthogonal to A, as it should
be. Had we not known beforehand the hypercharges of the
doublets, we could also have identified Eq. (15) from its
orthogonality to A, which would in turn provide us with the
relation YΦu

¼ YΦd
.

A second would-be Goldstone boson, GZ0 ≡ GX,
emerges when the gauged Uð1ÞX symmetry is spontane-
ously broken. GZ0 can be properly identified by noticing
that it has components along the scalars charged under
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Uð1ÞX, i.e., Φu;d and φ (see Table I), as well as it must be
orthogonal to A and GZ, giving

GZ0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2φ þ v2uv2d

v2

q �
−
v2dvu
v2

au þ
v2uvd
v2

ad þ vφaφ

�
: ð16Þ

By comparing Eqs. (16) and (14), we find the unambiguous
Uð1ÞX charge relations:

XΦu

Xφ
¼ −

v2d
v2

and
XΦd

Xφ
¼ XΦu

Xφ
þ 1 ¼ v2u

v2
: ð17Þ

Without loss of generality, we normalize theUð1ÞX charges
by setting: Xφ ¼ 1.
We would like to emphasize that once the orthogonality

among the Goldstone bosons is imposed, the Uð1ÞX
charges of the scalars in Table I cannot be chosen freely.
This feature leads to a very distinctive implication to the
extended gauge sector phenomenology: no tree-level mass
mixing between the SM and Uð1ÞX gauge bosons is
generated, as discussed in the next section.
Finally, we can proceed to the last CP-odd state, the

(pseudo-)Goldstone of the anomalous Uð1ÞPQ symmetry,
the axion a≡ GPQ, which can be easily obtained by
requiring it to be orthogonal to A, GZ, and GZ0 :

a ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2σ þ v2uv2dv

2
φ

v2uv2dþv2φv2

r �
−

v2dv
2
φvu

v2uv2d þ v2φv2
au þ

v2uv2φvd
v2uv2d þ v2φv2

ad −
v2uv2dvφ

v2uv2d þ v2φv2
aφ þ vσaσ

�
: ð18Þ

Once again, with the aid of Eq. (14), we identify the PQ charges of the scalars in terms of the VEVs:

PQΦu

PQσ
¼ −

v2dv
2
φ

v2uv2d þ v2φv2
;

PQΦd

PQσ
¼ v2uv2φ

v2uv2d þ v2φv2
; and

PQφ

PQσ
¼ −

v2uv2d
v2uv2d þ v2φv2

; ð19Þ

and, as a normalization condition, we can adopt PQσ ¼ 1.
Alternatively, the axion field above can be also identified

by adding an explicit Uð1ÞPQ-breaking term of the form
κσn þ H:c: to the potential. Since σ is not charged under the
other Abelian symmetries, see Table I, Uð1ÞY and Uð1ÞX
remain conserved. With the introduction of the new term,
the CP-odd spectrum would contain two massive fields,
one of which gets a mass proportional to κ. Then, in the
limit κ → 0—i.e., recovering the Uð1ÞPQ-invariant poten-
tial in Eq. (2)—the κ-dependent mass goes to zero, so that
the associated state can be identified with the Goldstone
boson emerging from the spontaneous breaking of Uð1ÞPQ.
Such a field is exactly the axion given by Eq. (18). We will
return to the axion field in Sec. VI to study its main
properties and phenomenological features.

IV. GAUGE SECTOR: UNMIXED Uð1ÞX
GAUGE BOSON

The relevant terms giving rise to gauge boson masses are

L ¼
X
i¼u;d

ðDμΦiÞ†ðDμΦiÞ þ ðDμφÞ†ðDμφÞ; ð20Þ

where the covariant derivatives are given by

DμΦi ¼ ð∂μ − igLT ·Wμ − igYYΦi
Bμ
Y − igXXΦi

Bμ
XÞΦi;

i ¼ u; d;

Dμφ ¼ ð∂μ − igXXφB
μ
XÞφ: ð21Þ

Notice that the kinetic term for σ has being omitted since σ
carries no local charge, i.e., Dμσ ¼ ∂μσ.
When the scalar fields acquire a VEV, the gauge bosons

become massive via the Higgs mechanism. The charged
gauge boson, W�

μ ¼ 1ffiffi
2

p ðW1
μ ∓ iW2

μÞ, whose associated

would-be Goldstone boson, G�, is defined in Eq. (7), gets
the mass mW� ¼ gv=2. The neutral gauge bosons, in the
basis (Wμ

3, Bμ
Y , Bμ

X), share the following squared mass
matrix

M2
NGB ¼ 1

4

0
B@

g2Lv
2 −gLgYv2 −2gLgXv2A

−gLgYv2 g2Yv
2 2gXgYv2A

−2gLgXv2A 2gXgYv2A 4g2Xv
2
φB

1
CA;

ð22Þ

with the dimensionless parameters A and B given by

A ¼ Xφ

v2

�
XΦu

Xφ
v2u þ

XΦu
þ Xφ

Xφ
v2d

�
¼ 0;

B ¼ X2
φ

v2φ

�
X2
Φu

X2
φ
v2u þ

ðXΦu
þ XφÞ2
X2
φ

v2d þ X2
φv2φ

�

¼ 1

v2v2φ
ðv2uv2d þ v2v2φÞ; ð23Þ

where, to obtain the right-hand sides of the equations
above, we have used the charges in Eq. (17) and the
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normalization condition Xφ ¼ 1, which follow from the
imposition of orthogonality among the Goldstone bosons.
Due to the vanishing of A, the mass matrix in Eq. (22)
becomes block diagonal. The upper 2 × 2 block mixes Wμ

3

and Bμ
Y and is precisely what one gets in the SM, so that its

diagonalization generates the massless photon field, Aμ,
and the massive Zμ. On the other hand, the Uð1ÞX field,
Z0
μ ≡ BXμ, remains unmixed,1 and its mass is

mZ0 ¼ gX

�
v2φ þ

v2uv2d
v2

�
1=2

: ð24Þ

The interesting observation that Z0 remains unmixed is not
exclusive of our construction. In fact, we expect this to
happen in other Uð1ÞX gauge extensions once one imposes
that all Goldstone bosons must be orthogonal. This,
however, shall be explored elsewhere.
From now on, we assume that Z0 is a heavy vector boson

with mZ0=gX ≃ vφ ¼ 10 TeV. With this benchmark choice,
our model’s predictions evade the current collider con-
straints on mZ0 , obtained from the analysis of dilepton final
states at the LHC [47,48]. Cosmological constraints related
to the effective number of extra relativistic species ΔNeff ≤
0.285 [10] are also relevant when selecting this benchmark.
The cosmological constraint onΔNeff can be translated into
a lower limit on mZ0=gX (vφ) since the light right-handed
neutrinos, νR, may thermalize with the SM fields in the
early Universe, via Z0-mediated interactions, and then
contribute to ΔNeff . While a detailed calculation of
ΔNeff is beyond the scope of the present work, we do
not expect that our model’s contribution to ΔNeff will vary
greatly with respect to that in Ref. [49] whose analyzed
model, a gauged Uð1ÞB−L construction, shares important
features with ours. Thus, the results in Ref. [49] have also
been taken into account when selecting the benchmark
vφ ¼ 10 TeV.

V. FERMION SECTOR

We now turn our attention to the fermion sector, starting
with the Yukawa interactions. The field content and its
symmetry transformations, as shown in Table I, allow us to
write the following renormalizable Yukawa Lagrangian:

−Ly ¼ yuabQaL
fΦu ubR þ ydabQaLΦddbR þ ykabφ

�kaLkbR

þ yμabμffiffiffi
2

p kaLdbR þ yeabLaLΦuebR þ ynabLaL
fΦd nbR

þ yαabφnaLνbR þ yβabσnaLnbR þ H:c: ð25Þ

The structure of the Yukawa Lagrangian is similar to that
of the so-called flipped or type-Y 2HDM in that the eR
and uR couple to the same Higgs doublet: Φu. Once the
scalar fields acquire VEVs, according to Eqs. (3) and (4),
all fermions become massive, as detailed in the next
subsections.

A. Charged fermion spectrum

We start by noticing that, similar to the flipped 2HDM,
both the charged leptons and the up-type quarks get masses
proportional to hΦui ¼ vu=

ffiffiffi
2

p
. The charged lepton masses

can be obtained from

Me ¼ yevuffiffiffi
2

p ; ð26Þ

a 3 × 3matrix, which can be diagonalized by performing the
biunitary transformation: ðUe

LÞ†MeUe
R ¼ diagðme;mμ; mτÞ.

Likewise, the 3 × 3 up-type quark mass matrix is given by

Mu ¼ yuvuffiffiffi
2

p ; ð27Þ

and its diagonalization follows from the biunitary trans-
formation ðUu

LÞ†MuUu
R ¼ diagðmu;mc;mtÞ.

The remaining quarks, daL;R and kaL;R, when put
together in the basis DL;R ¼ ðd; kÞL;R, share the following
6 × 6 mass matrix

MD ¼ 1ffiffiffi
2

p
�
ydvd 0

yμμ ykvφ

�
; ð28Þ

where each element corresponds to a 3 × 3 block. The
diagonalization of MD follows from the biunitary trans-
formation ðUD

L Þ†MDUD
R ¼ diagðmd;ms;mb;M1;M2;M3Þ,

with theUD matrices being 6 × 6. At leading order, the first
three masses (mi) are proportional to the scale vd, while the
remaining masses (Mi) are proportional to vφ. The diag-
onalization ofMD can be performed using different Ansätze
for the unitary matrices UD

L;R [50–53]. Here, we adopt the
Ansatz in Refs. [51,52], which allows us to approximate the
unitary matrices UD

L;R as

UD
L;R ≡ RD

L;RV
D
L;R

≈
� ð1 − 1

2
BDBD†ÞVd BDVk

−BD†Vd ð1 − 1
2
BD†BDÞVk

�
L;R

; ð29Þ

where the 3 × 3 matrices BD
L ∝ ðμvdÞ=v2φ and BD

R ∝ μ=
vφ—up to the first order in vφ ≫ μ; vd—are obtained in
Appendix B. Assuming the benchmark ðvd; μ; vφÞ ¼
ð102; 103; 104Þ GeV, we have that these matrices come
with the following suppression factors: BD

L ∝ 10−3 and
BD
R ∝ 10−1.

1For simplicity, we are neglecting the kinetic mixing term
which could also lead to Z − Z0 mixing. Nevertheless, loop-
suppressed contributions are expected to appear. See, e.g., [46],
for a discussion on the topic.
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B. Neutrino spectrum: Dirac seesaw mechanism

In this section, we show how neutrinos get naturally
small masses via a type-I Dirac seesaw mechanism, which
receives contributions from all the three energy scales
present in the model.
The neutral lepton masses come from the last three terms

in Eq. (25). When writing NL;R ¼ ðν; nÞL;R as the basis, we
have the following 6 × 6 mass matrix

MN ¼ 1ffiffiffi
2

p
�

0 ynvd
yαvφ yβvσ

�
; ð30Þ

with each element representing a 3 × 3 block.
The mass terms above are strictly of a Dirac type since

Uð1ÞB−L is conserved. This can be easily understood by
noticing that, as discussed in Sec. II, the field charges under
Uð1ÞB−L are obtaining by taking lQL

¼ 1=3 and lΦu
¼ lφ ¼

0 in the last column of Table I. Therefore, because no scalar
field is charged under Uð1ÞB−L, this symmetry is not
broken spontaneously, implying that neutrinos, as well
as all the other fermions, are necessarily Dirac fermions.
The texture of the Dirac mass matrix MN and the

assumed VEV hierarchy (vσ ≫ vφ ≫ vd) indicate that a
type-I seesaw mechanism is in place. The diagonaliza-
tion of MN is achieved by a biunitary transformation
ðUN

L Þ†MNðUN
R Þ¼diagðmν0

1
;mν0

2
;mν0

3
;mn0

1
;mn0

2
;mn0

3
Þ, which

can be divided into two steps by writing UN
L;R ¼ RN

L;RV
N
L;R

[51,52], given in Appendix B, similar to what has been
done with the UD

L;R matrices in Eq. (29). When the first
transformation (with RN

L;R) is performed, we obtain the
seesaw-suppressed mass matrix for the active neutrinos

mν ≃
ynðyβÞ−1ðyαÞTffiffiffi

2
p vdvφ

vσ
¼ Yν

effffiffiffi
2

p vdvφ
vσ

; ð31Þ

whose diagram is shown in Fig. 1. Small neutrino
masses ≲0.1 eV can be naturally obtained when the
Uð1ÞX-breaking scale is much smaller than the PQ
scale: vφ=vσ ≪ 1. For instance, taking vd ¼ 102 GeV,

vφ ¼ 104 GeV, and vσ ¼ 1012 GeV, sub-eV neutrino
masses are obtained for Yν

eff ≲ 10−4.
For large vσ , as in our benchmark above, the associated

invisible axion can also account for the observed
dark matter relic density. Therefore, the origin of small
neutrino masses, a solution for the strong CP problem and
the nature of dark matter go hand in hand in our con-
struction. To illustrate the viability of our model, in Sec. VI
(see Fig. 2), we identify a parameter space region within
which the above-mentioned issues can be solved and that
can be probed by forthcoming experimental searches.
Furthermore, small neutrino masses, being proportional
to vφ=vσ, also rely on the existence of a moderate Uð1ÞX
scale (vφ ¼ 10 TeV). Therefore, TeV-scale Uð1ÞX signa-
tures, mediated by, e.g., the extra gauge boson, Z0, may also
be within the reach of current or near-future experiments,
such as the high-luminosity LHC.

C. Fermion couplings to vector bosons

In the previous sections, we have shown that our
construction extends the SM field content not only by
adding an extra gauge boson but also extra neutral leptons
(nL;R; νR) and down-type quarks (kL;R), which mix with
their SM siblings. In what follows, we show that, due to
these extra ingredients, fermions and vector bosons couple
in a nonstandard way.
The kinetic Lagrangian for fermions, giving rise to the

fermion-vector boson interactions, can be, as usual, repre-
sented by

LDF ¼
X
F;j

Fj iγμDμFj; ð32Þ

where F spans through all the fermion fields in Table I
and j through their generations, and Dμ is the covariant
derivative, as in Eq. (21).
Let us start by describing the fermion couplings to the

massive neutral vector bosons Z and Z0, which remain
unmixed at tree level, as discussed in Sec. IV. Upon
expanding the covariant derivative terms and transforming
the fields to their mass bases, we can write the fermion
couplings to the massive neutral vector bosons as

LN:C: ¼
X
Z̃;F0

X
j;l

fZμ F0
j γμ½gVZ̃F0 − gA

Z̃F0γ5�jlF0
l; ð33Þ

where Z̃ ¼ Z; Z0, and F0 ¼ e0; N0; u0, and D0 are the mass
states defined in the previous sections. Since the extra
neutral leptons and down-type quarks mix with the SM
fields, FCNCs, mediated by both Z and Z0, appear and are
governed by the factors

XFL;R ¼ ðUF
L;RÞ†diagð03; I3ÞUF

L;R; ð34Þ
where UF

L;R are the 6 × 6 unitary matrices that diagonalize
the generalized down-type quark and neutral lepton mass

FIG. 1. Dirac seesaw diagram: neutrino masses suppressed by
ratio of the Uð1ÞX and the Uð1ÞPQ breaking scales: vφ=vσ .
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matrices in Eqs. (28) and (31), respectively, and I3 (03) is
the 3 × 3 identity (zero) matrix. The full vector and axial
couplings are presented in Table II, in which we used the
Uð1ÞX charge definitions in Eq. (17), with the normaliza-
tion Xφ ¼ 1, as well as XQL

¼ 1=3.
For instance, from the coefficients in Table II and

Eqs. (29) and (34), we find that the most relevant source
of FCNC is given by the following Lagrangian involving
the (known) down-type quarks and the Z boson

LZ
FCNC ¼ gL

2 cos θW
Zμd0iLγμðVd†

L BD
LB

D†
L Vd

LÞijd0jL þ � � � ;

with i; j ¼ d; s; b: ð35Þ

Nevertheless, these interactions are very suppressed in our
model by the reason that, as derived in Appendix B,
BD
L ∝ ðμvdÞ=v2φ ≃ 10−3, where we have assumed

ðvd; μ; vφÞ ¼ ð102; 103; 104Þ GeV. Therefore, the flavor-
violating contributions come with an estimated suppres-
sion factor of at least 10−6, which is well below the
current limit (<10−3) obtained from processes such as
B → sγ, Bs → μþμ− and Bs − Bs mixing [54,55]. For the
neutral leptons, the flavor-violating contributions, sup-
pressed by vσ ¼ 1012 GeV, are much smaller and can be
also safely neglected.
When it comes to the charged vector bosons, W�, we

also expect corrections to the SM contributions due to the
presence of the extra fermions in our model. The relevant
interactions are

Lc:c: ¼
gLffiffiffi
2

p
h
u0jLγ

μðUq
mixÞjld0lL þ ν0jLγ

μðUl†
mixÞjle0lL

þ u0jLγ
μðUu†

L FD
LV

k
LÞjlk0lL

þ n0jLγ
μðVn†

L FN†
L Ue

LÞjle0lL
i
Wþ

μ þ H:c:; ð36Þ

where

Uq
mix ¼ Uu†

L

�
1 −

1

2
BD
LB

D†
L

�
Vd
L;

Ul
mix ¼ Ue†

L

�
1 −

1

2
BN
LB

N†
L

�
Vν
L; ð37Þ

are our model quark and lepton mixing matrices, oftentimes
called Cabibbo-Kobayashi-Maskawa and Pontecorvo-
Maki-Nakagawa-Sakata matrices. Contrary to the SM case,
these matrices are not unitary due to the new contributions
coming from the mixing with the extra fermions encoded in
BD
L and BN

L . The deviations from unitarity are, however,
very suppressed since they are roughly of the order ðBD

L Þ2 ∼
ðμvd=v2φÞ2 ¼ 10−6 and ðBN

L Þ2 ∼ ðvd=vσÞ2 ¼ 10−20.
Finally, for the sake of completeness, we provide the

fermion couplings to photons, which, as expected, are
given by

LAμ
¼ eAμ

X
j

QF0
j
F0
jγ

μF0
j; ð38Þ

where F0 varies through all the fermion mass bases and
eQF0 represents the electric charge of F0.

VI. AXION PHYSICS

In this section, we bring our attention back to the axion
field and discuss some of its relevant properties. To do so, it
is convenient to rewrite the axion field, according to
Eq. (14), as [56]

a¼ 1

fPQ
½vuPQΦu

auþvdPQΦd
adþvφPQφaφþvσPQσaσ�;

ð39Þ
where the PQ charges, defined in Eq. (19) with PQσ ¼ 1,
as well as fPQ, reparametrized in terms of two angles

PQΦu
¼ −ðcos β cos θÞ2; PQΦd

¼ ðsin β cos θÞ2;
PQφ ¼ −ðsin θÞ2; ð40Þ
and

fPQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2σ þv2φsin4θþ cos4θðv2dsin4βþ v2ucos4βÞ

q
; ð41Þ

where β and θ are defined as

tan β ¼ vu
vd

and tan θ ¼ vuvd
vφv

: ð42Þ

TABLE II. Vector and axial fermion couplings to Z and Z0, where gV;AZ ¼ ½gL=ð4 cos θWÞ� × g̃V;AZ and
gV;AZ0 ¼ ðgX=2Þ × g̃V;AZ0 . The primed fermion fields represent the mass states, and XFL;R , defined in Eq. (34), lead
to flavor violation.

e0 N0 ¼ ðν0; n0Þ u0 D0 ¼ ðd0; k0Þ
g̃VZ ð4 sin2 θW − 1ÞI3 I6 − XNL ð1 − 8

3
sin2 θWÞI3 ð4

3
sin2 θW − 1ÞI6 þ XDL

g̃AZ −I3 I6 − XNL I3 −I6 þ XDL

g̃VZ0 ðv2dv2 − 2ÞI3 −ð2þ v2d
v2ÞI6 þ v2u

v2 X
NL þ XNR ð2

3
− v2d

v2ÞI3 ð2
3
− v2u

v2ÞI6 −
v2u
v2 X

DL þ XDR

g̃AZ0 − v2d
v2 I3

v2d
v2 I6 þ v2u

v2 X
NL − XNR

v2d
v2 I3

v2u
v2 I6 −

v2u
v2 X

DL − XDR
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Notice that the first angle follows the conventional defi-
nition of β in 2HDM scenarios [35], whilst θ is expected to
be small due to the assumed VEV hierarchy vσ ≫ vφ ≫ v.
Thus, the axion field is predominantly projected along the
CP-odd component of the singlet σ: a ≃ aσ, and fPQ ≃ vσ.
It is also worth pointing out that the charges in Eq. (40)
satisfy the relation

PQΦu
− PQΦd

þ PQΦφ
¼ −PQσ ¼ −1; ð43Þ

which arises from the only non-Hermitian term in the scalar
potential, i.e., λ4ðΦ†

dΦuÞðσφÞ.
In order to solve the strong CP problem through the

Peccei-Quinn mechanism, the Uð1ÞPQ symmetry must
yield a nonzero ½SUð3ÞC�2 × Uð1ÞPQ anomaly coefficient
Cag. This leads to the effective interaction for the axion
field with the gluon field strength Gb

μν:

Lagg ¼ −
αs
8π

Cag

fPQ
aGb

μνG̃
b;μν; ð44Þ

in which αs ¼ gs=ð4πÞ, where gs is the strong interac-
tion coupling constant, and G̃b;μν ≡ ϵμνσρGb

σρ=2 is the
dual field strength. As we shall see in Eq. (49), the
model has indeed a nonvanishing anomaly coefficient
Cag ¼ 3PQσ ¼ 3. From this, we define the axion decay
constant fa ¼ fPQ=NDW as well as the domain wall
number NDW ¼ Cag ¼ 3 for the model. The same domain
wall number occurs in the DFSZ-type model with the
non-Hermitian term Φ†

uΦdσ in the scalar potential, but
contrasts with the DFSZ-type model having instead the
non-Hermitian term Φ†

uΦdσ
2, which leads to NDW ¼ 6

(see [57], for example).
The axion mass arises from nonperturbative QCD effects

[14]. The leading order axion mass is given by

ma ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mumd

p
mu þmd

mπfπ
fa

≈ 5.7

�
1012 GeV

fa

�
μ eV; ð45Þ

in which mu (md) is the up-quark (down-quark) mass, mπ

the pion mass, fπ ≃ 93 MeV and fa the pion and the axion
decay constants [14]. Corrections to this formula, including
higher orders in chiral perturbation theory and through
lattice simulations, were obtained in [58–60]. Taking into
account the benchmark vσ ¼ 1012 GeV for the Uð1ÞPQ
symmetry scale, defined in Eq. (41), we have that
fa ≃ vσ=NDW , which leads to the axion mass ma ≃ 17μeV.
Despite being very light, axions can account for a part

of or even the total cold dark matter in the Universe, with
their production realized through the vacuum realignment
mechanism [18–20]. If the Uð1ÞPQ symmetry breaking
happened before or during the inflationary period of the
Universe and was not restored afterwards, it is estimated

that the axion field gives rise to a contribution to the dark
matter relic density given by [57,61,62]

Ωah2 ≈ 0.12Fθ2i

�
fa

9 × 1011 GeV

�
1.165

; ð46Þ

where θi is the initial misalignment angle which assumes
values in the interval [−π, π], and the factor F accounts for
anharmonicities that may occur in the axion potential. For
example, with the benchmark fa ≃ 3.3 × 1011 GeV, the
axion could comprise the totality of the observed cold dark
matter, i.e., ΩCDMh2 ¼ 0.12 [10], if Fθ2i ≈ 3.2. This is
consistent with cosmological observations if the Hubble
expansion rate during inflation satisfies the constraint
Hinf ≲ 107 GeV [63], which follows from the nonobser-
vation of isocurvature fluctuations in the cosmic microwave
background arising from quantum fluctuations of the
axion field.

A. Axion coupling to photons

The interaction between an axion and two photons can
be expressed as

Laγγ ¼ −
gaγ
4

aFμνF̃μν; ð47Þ

where the coupling gaγ is

gaγ ≈
α

2πfa

�
Caγ

Cag
− 1.95

�
; ð48Þ

with α being the fine-structure constant. The factor −1.95 is
model independent and comes from the ratio between
the up- and down-quark masses, showing up in the
calculation due to the mixing between axions and pions
[23]. Moreover, we have the model dependent con-
tribution Caγ=Cag—oftentimes defined as E=N in the
axion literature—where Caγ and Cag are, respectively,
the ½Uð1ÞQ�2 ×Uð1ÞPQ and ½SUð3ÞC�2 ×Uð1ÞPQ anomaly
coefficients, defined by

Caγ ≡ 2
X

f¼fermions

ðPQfL − PQfRÞðQfÞ2 ¼ 2PQσ;

Cag ≡
X

q¼quarks

ðPQqL − PQqRÞ ¼ 3PQσ: ð49Þ

This result, Caγ=Cag ¼ 2=3, is precisely what one gets in
the type-II DFSZ model. Therefore, although our model
has extra quarks which contribute to both Caγ and Cag, the
ratio Caγ=Cag remains the same as in the DFSZ case.
In Fig. 2, we plot our model prediction for the axion-

photon coupling as a function of the axion mass (solid
green line) and also show the current constraints coming
from experimental searches, cosmology and astrophysics
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(other solid lines)—CAST [64–66], ADMX [67–71],
HB bound [72,73], HDM [74–76]—as well as pre-
dicted experimental sensitivities (dashed lines)—
ABRACADABRA [77,78], MADMAX [79], IAXO
[80], ALPS II [81–83]. In addition, we highlight the
preferred range in the jgaγj −ma plane for natural neutrino
masses once the limits from the Planck Collaboration
[10,84] (orange band), and KATRIN experiment [85]
(yellowþ orange bands) are imposed; the relevant best
fit values [9] for the normal ordering scenario are assumed,
andwe also takevd ¼ 102 GeV,vφ ¼ 104 GeV.The orange
band starts at ma ¼ 10−6 eV (fa ¼ 5.7 × 1012 GeV)—
so that the axion field may be capable of explaining the
observed DM relic density—reproducing the lightest
possible mass for the heaviest neutrino, i.e., mν3 ¼ Δm31,
for an effective Yukawa Yν

eff ¼ 1.2 × 10−3. As a criterion
to select natural neutrino masses, we only consider
those masses whose effective Yukawa couplings are at
least of the size of the SM electron Yukawa, i.e.,
ðYν

effÞmin ≡ Ye
SM ¼ ffiffiffi

2
p

me=v ≃ 2.9 × 10−6. The shaded
region spans to the right of the plot up until the effective
Yukawa reaches its minimum value, ðYν

effÞmin, and the
corresponding neutrino mass reproduces the largest possible
value for mν3 according to constraints coming from the

Planck Collaboration (orange)—
P

j mνj < 0.12 eV—and
KATRIN (orangeþ yellow)—mee < 1.1 eV. Finally, we
would like to point out that, within these shaded regions,
the model’s prediction, i.e., the solid green line, also falls
within the projected sensitivities of axion dark matter
searches (MADMAX and ADMX)—dashed lines in brown.

B. Axion couplings to fermions

The charged leptons and the up-type quarks are charged
universally under Uð1ÞPQ, and, as a result, their couplings
to axions are necessarily flavor conserving and axial and
can be written as

LaF0 ¼ −ia
X
F0;j

F0
jðgaF0 Þjγ5F0

j; ð50Þ

where F0 ¼ e0; u0 and F0 ¼ F0
L þ F0

R are the mass states
that are associated with the flavor states via the unitary
transformations FL;R ¼ UF

L;RF
0
L;R with indices omitted.

The coefficients are given by

ðgae0 Þj ¼−
cos2 β cos2 θ

3fa
me0

j ; with me0
j ¼me;mμ;mτ;

ðgau0 Þj ¼
cos2 β cos2 θ

3fa
mu0

j and mu0
j ¼mu;mc;mt: ð51Þ

The axion couplings to the neutral leptons and the down-
type quarks bear similarities. In addition to the SM
fermions, both sectors contain new fields which transform
differently under the Uð1ÞPQ symmetry, inducing axion-
mediated FCNCs [86,87]. Due to flavor-violating inter-
actions, scalar and axial couplings appear, which can be
generically written as

LaF0 ¼ ia
X
F0;m;n

F0
m ½gSaF0 − gAaF0γ5�mnF

0
n; ð52Þ

with F0 ¼ N0; D0, and the mass basis, F0 ¼ F0
L þ F0

R, is
related to the flavor basis via F ¼ UF

L;RF
0. The scalar and

axial coefficients for the neutral leptons are given by

ðgSaN0 Þmn ¼
mN0

m −mN0
n

6fa

× ½ð1þ sin2 β cos2θÞXNL
mn − ð1þ sin2θÞXNR

mn�;

ðgAaN0 Þmn ¼
mN0

m þmN0
n

6fa

× ½ðcos2 β cos2 θ − 2Þδmn þ ð1þ sin2 θÞXNR
mn

þð1þ sin2 β cos2 θÞXNL
mn�; ð53Þ

with XNL;R defined according to Eq. (34), and the mN0
n are

the eigenvalues of the neutral lepton mass matrix in
Eq. (30). As for the down-type quarks, we have

FIG. 2. The green line shows our model prediction for jgaγj vs
ma. Constraints from experiments, cosmology and astrophysics
are also displayed: the solid lines delimit exclusion regions
(CAST [64–66], ADMX [67–71], HB bound [72,73], HDM
[74–76]), whereas the dashed lines indicate projected experi-
mental sensitivities (ABRACADABRA [77,78], MADMAX
[79], IAXO [80], ALPS II [81–83]). The shaded orange and
orangeþ yellow bands identify the preferred regions for neutrino
masses once the limits from the Planck Collaboration [10,84] and
KATRIN experiment [85] are considered, respectively, with effec-
tive Yukawas in the range 2.9 × 10−6 ≲ Yν

eff ≲ 1.2 × 10−3—see
text for details.
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ðgSaD0 Þmn ¼
mD0

m −mD0
n

6fa
½−sin2 β cos2 θXDL

mn − sin2 θXDR
mn�;

ðgAaD0 Þmn ¼
mD0

m þmD0
n

6fa
½sin2 β cos2 θ δmn

− sin2β cos2 θXDL
mn þ sin2 θXDR

mn�; ð54Þ

where mD0
m are the masses of the down-type quarks,

i.e., the eigenvalues of the mass matrix in Eq. (28);
XDL;R leads to FCNCs and follows from the definition
in Eq. (34).

C. Constraining f a with a flavor-violating process

It is possible to set constraints on the range of the
axion decay constant by confronting our model’s predic-
tions with experimental bounds on flavor-violating proc-
esses involving an axion, such as the decays of heavy
mesons. The most stringent constraint comes from the
process Kþ → πþa and is given in terms of its branching
ratio: BrðKþ → πþaÞ≲ 7.3 × 10−11 [88].
At tree level, this branching ratio is evaluated as [86,87]

BrðKþ → πþaÞ ¼ m3
K

16πΓtot

�
1 −

m2
π

m2
K

�
3
���� ðgSaD0 Þ12
ms −md

����2; ð55Þ

where Γtot ≃ 5.3 × 10−17 GeV is the total decay width of
Kþ, mK ¼ 493.677 MeV and mπ ¼ 139.57 MeV are the
kaon and pion masses [61], respectively, and the model-
dependent contribution can be written as

���� ðgSaD0 Þ12
ms −md

���� ¼ jsin2βcos2θXDL
12 þ sin2θXDR

12 j
6fa

: ð56Þ

The relevant flavor-violating terms can be obtained from
Eq. (34) and the Appendix B, leading to XD

12 ¼
ðVd†BDBD†VdÞ12. As derived in Appendix B, the matrices
BD represent the mixing between standard and new quarks
and, as such, are proportional to suppression factors
given in Table III. By singling out the suppression factors,
we can rewrite the XD

12 terms as XDL
12 ¼ ðμvdv2φ

Þ2YDL
12 and

XDR
12 ¼ ð μvφÞ2Y

DR
12 , where YD

12 represent all the matrix

element products. Finally, we can substitute these expres-
sions back into Eq. (55) and when comparing it with the
experimental limit, BrðKþ → πþaÞ≲ 7.3 × 10−11, we find
that fa must satisfy

fa ≳ 1.15 × 1011
�
μ2

v2φ
sin2 θ

�
jYDL

12 þ YDR
12 jGeV: ð57Þ

Considering the benchmark assumed in previous sec-
tions for the scales in the model, i.e., ðvd;μ;vφÞ¼
ð102;103;104ÞGeV, we find that ðμ2=v2φÞsin2θ≃8.3×10−7,

which leads to the weak constraint: fa ≳ 105jYDL
12 þ

YDR
12 jGeV. Thus, we observe that, since the FCNC con-

tributions arise from the mixing with non-SM heavy
quarks, the constraints on fa coming from flavor-violating
processes are weakened. As a result, in this construction,
supernovae limits on the axion decay constant [57] turn out
to be more stringent.

VII. CONCLUSIONS

We have proposed a gauged two-Higgs-doublet model
featuring an axion. Dangerous tree-level FCNCs, common
in 2HDMs, are forbidden by the extra Uð1ÞX gauge
symmetry. Our construction suggests that solutions for
the important issues of the nature of dark matter, the origin
of neutrino masses and the strong CP problem may arise
from the axion-neutrino interplay.
The extended scalar sector counts with two singlets, σ

and φ, in addition to the Higgs doublets, Φd and Φu. As
presented in Sec. III, when all scalars acquire VEVs, satis-
fying the hierarchy vσ ≫ vφ ≫ v ¼ ðv2d þ v2uÞ1=2, sponta-
neous symmetry breaking takes place giving rise to five
Goldstone bosons—four of which are, in fact, would-be
Goldstone bosons absorbed by the gauge sector, while the
last one is identified with a pseudo-Goldstone boson, the
axion. At low energies, the physical spectrum contains,
besides the usual 2HDM degrees of freedom, the ultralight
axion field, a, and a TeV-scale CP-even field. Moreover,
we have shown that the imposition of orthogonality
amongst the Goldstone bosons fixes the physical values
for theUð1ÞPQ andUð1ÞX charges. As a direct consequence
of this procedure, the tree-level mass mixing between the
SM and the extra gauge boson, Z0, vanishes identically.
The Yukawa sector bears similarities with the flipped (or

type-Y) 2HDM in that the right-handed charged leptons
and up-type quarks couple to the same Higgs doublet Φu,
while the down-type quarks and the neutral leptons couple
to Φd. To ensure gauge anomaly cancellation and generate
small neutrino masses, we have introduced extra quarks,
kaL;R, chirally charged under Uð1ÞX, right-handed neutri-
nos, νaR, and extra neutral leptons, naL;R. The extra quarks
get masses proportional to vφ and mix with the SM down-
type quarks, leading to FCNCs mediated not only by Z0 but
also a, the axion field. For the neutral leptons, a Dirac
seesaw mechanism generates small masses for the active
neutrinos, see Fig. 1. Neutrino mass suppression is con-
trolled by the ratio vφ=vσ, where we have taken vσ ¼
1012 GeV as the large PQ scale, suggesting that the Uð1ÞX
symmetry is broken at a much lower scale, vφ. On the other
hand, since Z0 and the quarks ka, get masses around vφ, this
scale is constrained from below by experiments and
cosmology. These features suggest that vφ lies within a
phenomenologically rich region, and we have assumed
vφ ¼ 104 GeV as a benchmark.

DIAS, LEITE, and GONÇALVES PHYS. REV. D 104, 075014 (2021)

075014-12



Finally, we have studied the properties of the axion in
Sec. VI. The axion has components along all the scalars but
is mostly projected along the CP-odd component of the
singlet σ with a decay constant: fa ≃ vσ=NDW ¼ vσ=3. For
the chosen benchmark of vσ ¼ 1012 GeV, which leads to
naturally small neutrino masses, the associated axion may
account for the totality of the observed cold dark matter,
considering the preinflationary scenario for axion produc-
tion. Despite the presence of extra fermions, the axion
coupling to photons depends on the same anomaly coef-
ficient ratio as in the type-II DFSZ model: Caγ=Cag ¼ E=
N ¼ 2=3. Figure 2 shows that the preferred region for
neutrino masses and axion dark matter may be tested by
forthcoming axion experiments looking for axion-photon
interactions. Furthermore, we have derived the axion
couplings to fermions and noticed that a rather weak lower
bound for fa is obtained from flavor-violating processes,
such as Kþ → πþa, as a consequence of an additional
suppression from vφ.
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APPENDIX A: ANOMALY COEFFICIENTS

The full Lagrangian of our model—including the scalar
potential, Eq. (2), and the Yukawa interactions, Eq. (25)—
satisfies the Uð1Þglobal transformations defined by the
five independent charges: ðq0nL ; q0QL

; q0Φu
; q0φ; q0σÞ, given in

Table I. Among the global symmetries, only those which
lead to vanishing anomaly coefficients in Eq. (1) can be
safely promoted to local. To find the anomaly-free sol-
utions, we calculate the coefficients using the charges in the
Uð1Þglobal column and set them to zero, i.e.,

I ∝
X
quarks

ðq0L − q0RÞ ¼ 3q0σ ¼ 0;

II ∝
X
LL;QL

q0L ¼ −12q0σ þ 6q̃ ¼ 0;

III ∝
X

ðY2
Lq

0
L − Y2

Rq
0
RÞ ¼ 4q0σ −

3

2
q̃ ¼ 0;

IV ∝
X

ðYLq02L − YRq02R Þ ¼ 3q0σð6q0Φu
− 2q0QL

þ q0σÞ − 6q0Φu
q̃ ¼ 0;

V ∝
X

ðq03L − q03R Þ ¼ 9q0σ½7q02Φu
− ð6q0Φu

− 3q0QL
Þq0QL

− q02nL þ ð4q0nL − 2q0φÞq0φ�;
þ 9q02σ ð3q0Φu

− 3q0QL
þ 3q0nL − 4q0φÞ − 12q03σ − 18q02Φu

q̃ ¼ 0;

VI ∝
X

ðq0L − q0RÞ ¼ 6q0σ ¼ 0; ðA1Þ

where q̃ ¼ 3q0QL
þ q0nL − q0Φu

− q0φ; the sum in I takes
only quarks into account, II considers only fermion
doublets, whereas for the remaining coefficients all
fermions contribute. It is easy to see that the equations
above are simultaneously satisfied when q0σ ¼ q̃ ¼ 0,
reducing the number of free parameters from five to
three. Finally, by renaming the three independent charges
of this subset as ðlQL

; lΦu
; lφÞ, we obtain the Uð1Þafree

column of Table I.

APPENDIX B: DIAGONALIZATION

Our task is to diagonalize the fermion mass matrices
present in thiswork.To this end,wewill first see how toblock
diagonalize a Hermitian matrix. Then, we will block diag-
onalize a non-Hermitian matrix as a generalization of the
previous procedure. Last, we will show how all the fermion
mass matrices in this work can be fully diaogonalized.

1. Block diagonalization of Hermitian matrices

Consider a 6 × 6 Hermitian matrix M. If we want to
block diagonalize this matrix, it is sufficient to find a
unitary matrix R, such that

R†MR ¼ diagðM1;M2Þ; ðB1Þ

where Mi, i ¼ 1, 2, are 3 × 3 matrices. The procedure
outlined here will work whenever the matrix M can be
written as

M ¼
�
m1A1 m2A2

m2A
†
2 m3A3

�
; ðB2Þ

where, A1, A3 are Hermitian matrices, the entries of the
matrices Ai, i ¼ 1, 2, 3 are dimensionless and of order
unity, whereas mi represent mass scales that satisfy the
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hierarchy m3 ≫ m1; m2. To achieve the block diagonaliza-
tion, we parametrize the unitary matrix R as

R ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − BB†
p

B

−B†
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B†B

p
�
; ðB3Þ

where B is a general complex 3 × 3 matrix to be deter-
mined. The square roots should be seen as series expan-
sions in B [51,52]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − BB†

p
¼ 1 −

1

2
BB† −

1

8
BB†BB† − � � � : ðB4Þ

In turn, B can also be expanded as B ¼ B1 þ B2 þ
B3 þ � � �, where Bn is of order ϵn in the expansion
parameter ϵ ¼ m2=m3 ≪ 1. An alternative parametrization
for the matrix R can be found in Ref. [53].
Performing the matrix multiplication in Eq. (B1), we are

left with three independent matrix equations. We may solve
them to find B up to the desired expansion order. For our
present purposes, expanding up to first order is sufficient,
and we find that

B ≈ B1 ¼ ϵA2A−1
3 : ðB5Þ

2. Block diagonalization of non-Hermitian matrices

Now, consider a 6 × 6 non-Hermitian matrix MF. Our
next task is to block diagonalize the down-type quark and
the neutral lepton mass matrices. As neither of them is
Hermitian, instead of the unitary transformation in
Eq. (B1), a biunitary transformation is required to block
diagonalize each of them,

RF†
L MF RF

R ¼ diagðMF1 ;MF2Þ≡MF
block; ðB6Þ

where, RF
L;R are unitary matrices and F1;2 are the compo-

nents of the basis F ¼ D, N. The problem is solved if we
find the matrices RF

L;R. One way of doing it is to break the
biunitary transformation into two unitary transformations.
Multiplying Eq. (B6) by its Hermitian conjugate gives

MF
blockM

F†
block ¼ RF†

L MF MF†RF
L ≡DF

L: ðB7Þ

Similarly, inverting the product order, we multiply the
Hermitian conjugate by Eq. (B6) and find

MF†
blockM

F
block ¼ RF†

R MF†MFRF
R ≡DF

R: ðB8Þ

The matrices DF
L;R are block diagonal since MF

block

also is. The matrices MFMF† and MF†MF are
Hermitian, as a result, Eqs. (B7) and (B8) represent unitary

transformations, and we can make use of Eq. (B3) to find
the unitary matrices RF

L;R that block diagonalize MF, up to
the desired order. Thus, we can write the unitary matrices
that diagonalize MD and MN , in Eqs. (28) and (30),
respectively, in terms of the contributions in Table III.

3. Diagonalization of the mass matrices

We are ready to diagonalize the mass matrices of all
fermions present in this work. Consider a 6 × 6 block
diagonal matrix, MF

block, which is composed of two non-
Hermitian 3 × 3 blocks, MF1;2 . This is the structure for the
down-type quarks and neutral leptons of the model after the
block diagonalization. To completely diagonalize MF

block,
we need another biunitary transformation,

VF†
L MF

blockV
F
R ¼ MF0

; ðB9Þ

whereMF0
is the diagonal matrix for the mass eigenstates in

the basis F0 ¼ D0; N0, VF
L;R ¼ diagðVF1

L;R; V
F2

L;RÞ are 6 × 6

unitary matrices, and VF1;2
L;R are the unitary 3 × 3 matrices

that diagonalize the upper and lower blocks of
diagðMF1 ;MF2Þ, i.e., VFi†

L MFiVFi
R ¼ MF0

i , i ¼ 1, 2.
Comparing Eqs. (B6) and (B9), we find

ðRF
LV

F
LÞ†MFRF

RV
F
R ¼ MF0

; ðB10Þ

that is, the combined effect of two diagonalization steps is
equivalent to a complete diagonalization performed by the
unitary matrices

UF
L;R ≡ RF

L;RV
F
L;R: ðB11Þ

Therefore, we can summarize all the individual diagonal-
ization procedures as

UF†
L MFUF

R ¼ MF0
; ðB12Þ

where F ¼ e, N, u,D, and UF
R;L has the same dimension as

the corresponding mass matrix MF.

TABLE III. Approximation for the 3 × 3 matrices BF
L;R, with

F ¼ D, N, up to the first order term in the expansion. The orders
of magnitude of BF

L;R are given by the VEV relations for Yukawa
matrices of order unity.

D N

BF
L

μvd
v2φ

ydyμ†ðykyk†Þ−1 vd
vσ
ynyβ†ðyβyβ†Þ−1

BF
R

μ
vφ
yμ†ykðyk†ykÞ−1 vφ

vσ
yα†yβðyβ†yβÞ−1
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