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This work presents a first full one-loop computation of vector boson scattering (VBS) within the non-
linear effective field theory given by the bosonic sector of the usually called electroweak chiral Lagrangian
(EChL). The computation is performed in the most general case of covariant Rξ gauges and is compared
through all this work with the Standard Model case, whose computation in these covariant gauges is also
novel and is presented also here. The calculation of the one-loop VBS amplitude is performed using the
diagrammatic method by means of the one-particle-irreducible (1PI) Green functions that are involved in
these scattering processes. The central part of this work is then devoted to the renormalization of all the
n-legs one-loop 1PI Green functions involved. This renormalization is performed in the most general off-
shell case with arbitrary external legs momenta. We then describe in full detail the renormalization
program, which within this context of the EChL, implies to derive all the counterterms for both the
electroweak parameters, like boson masses and gauge couplings, and those for the EChL coefficients.
These later are crucial for the renormalization of the new divergences typically appearing when computing
loops with the lowest chiral dimension Lagrangian. We present here the full list of involved divergences and
counterterms in the Rξ gauges and derive the complete set of renormalization group equations for the EChL
coefficients. In the last part of this work, we present the EChL numerical results for the one-loop cross
section in the WZ channel and compare them with the SM results.

DOI: 10.1103/PhysRevD.104.075013

I. INTRODUCTION

The use of Effective Field Theories (EFTs) to describe
the phenomenology of new physics beyond the Standard
Model (SM) of elementary particle interactions is nowa-
days a quite generalized tool when comparing theoretical
predictions with experimental data. The most appealing
feature of an Effective Field Theory (EFT) approach is that
it can be used as a generic test of the new physics without
specifying the underlying ultraviolet fundamental theory
that originates such low energy theory. For a proper EFT, it
is sufficient to require it to preserve the same symmetries of
the SM, in particular, the SUð3ÞC × SUð2ÞL ×Uð1ÞY
gauge invariance, and to be able to deal with quantum
corrections, providing a framework for renomalization. The
physical active fields in these EFTs are as in the SM, and
include fermions (quarks and leptons), gauge bosons (both

electroweak (EW) and strong) and the Higgs field. At
present, the most popular EFTs are the Standard Model
Effective Field Theory (SMEFT) and the Higgs Effective
Field Theory (HEFT) (for a review see, for instance, [1]).
The main difference between these two EFTs is the
realization of the EW gauge symmetry in the scalar sector,
i.e., in the system formed by the Higgs particle, H, and the
three EW would be Golstone bosons, named here πa

(a ¼ 1; 2; 3). It is important to recall that, within the SM
context, this scalar system is the responsible for the mass
generation of all the SM particles, via the Higgs mecha-
nism, once the EW symmetry, SUð2ÞL ×Uð1ÞY , is sponta-
neously broken down to the electromagnetism subgroup,
Uð1Þem. One crucial point to notice is that these three
associated GBs to this breaking are indeed the same three
GBs that are associated to the spontaneous breaking of the
EWchiral symmetry, SUð2ÞL × SUð2ÞR → SUð2ÞLþR. This
EW chiral symmetry is an exact global symmetry of the SM
scalar sector in the limit of vanishing EW gauge couplings,
i.e., g and g0 set to zero, and is the main responsible for
protecting the mass relation mW ¼ mZ cos θW from large
radiative corrections. Thus, SUð2ÞLþR is sometimes called
custodial symmetry group.
The realization of both the EW gauge symmetry and the

EW chiral symmetry in the scalar sector is linear in the SM
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and the SMEFT, whereas it is non-linear in the HEFT. The
Higgs boson and the three GBs are placed together in a
linear representation in the case of SM and SMEFT, given
by the usual doublet ΦT ¼ ðiπþ; ððH þ vÞ − iπ3Þ= ffiffiffi

2
p Þ,

with π� ¼ ðπ1 ∓ iπ2Þ= ffiffiffi
2

p
, whereas they are treated differ-

ently in the HEFT. In this HEFT, the three GBs are put
together in a non-linear representation, usually by an
exponential parametrization, UðπaÞ ¼ expðiπaτa=vÞ with
v ¼ 246 GeV and τa ¼ 1; 2; 3 the Pauli matrices, and the
Higgs boson, in contrast, is a singlet under all the involved
symmetries. This difference between linear and non-linear
behaviour of the EW scalar sector in the two EFTs, SMEFT
and HEFT, is not just a mere choice of parametrization but
it contains important differences in their respective pheno-
melogical implications. The main reason of this relevant
difference is because of the different hierarchies in the
ordering and importance of the participating effective
operators in both approaches. To understand deeply this
main difference one has to place the comparison of both
EFTs not only at the tree level, but also beyond the tree
level, i.e., including OðℏÞ loop corrections, and dealing
with the important renormalization issue in both theories.
In contrast to the usual ordering based on canonical
dimension counting in the SMEFT, the ordering of effective
operators in the HEFT is by construction done by increas-
ing powers of their chiral dimension, starting in chiral
dimension 2, next chiral dimension 4, and so on. This
implies that the ordering in the importance of the HEFT
effective operators is given in terms of an expansion in
powers of momenta, ðp=ð4πvÞÞn, where 4πv ∼ 3 TeV sets
typically the maximum energy scale of applicability in
this EFT.
In this mentioned chiral counting it is important to notice

that all EW mass scales are treated as soft mass scales,
therefore, counting equally as momentum, namely, ∂μ,mW,
mZ,mH, gv, g0v ∼OðpÞ. This also orders the importance of
the loop corrections in this EFT. This reasoning is done in
analogy to the usual Chiral Perturbation Theory (ChPT) of
low energy QCD [2–4], where the most important con-
tributions come from pion loops (the so called chiral loops
of QCD or GB loops) which naturally come with the loop
factors ð1=ð4πfπÞÞn, where 4πfπ ∼ 1.2 GeV, and the
polynomial contributions in powers of the external
momenta, pn, introduced by the derivative interactions
of the GBs in this non-linear approach. The renormalization
program of ChPT is well known and very successful and
teaches us the way to proceed in the non-linear EFTs. It
relays on the key point that the chiral dimension four
operators act as well as counterterms of the one-loop
corrections generated by the lowest chiral dimension
two operators. Thus, when computing an observable in
ChPT to OðℏÞ, like for instance the pion-pion scattering
amplitude, it is sufficient to compute loops of pions with
the lowest order chiral dimension two Lagrangian, and to
treat the chiral dimension four operators at the tree level,

acting simultaneously as counterterms to renormalize the
loop divergenges generated from those loops. The approach
followed by the HEFT is very similar to the one of ChPT. It
also organizes the ordering of the effective operators by
their increasing chiral dimension as LHEFT¼L2þL4þ…,
and the renormalization program is implemented in practice
by computing loops with just L2 and treating L4 to tree
level and simultaneously using it as counterterms to
renormalize the loop divergences generated by those loops.
Thus, the renormalization of the EFT coefficients in L4 is
dictated by the loop divergences generated from L2. The
difference with respect to ChPT is that in the HEFTall kind
of loops participate, with gauge bosons, scalar bosons (GBs
and Higgs boson), etc., not only GB loops. This renorm-
alization program is totally different in the case of SMEFT
where the effective operators, which are ordered by their
increasing canonical dimension, four, five, six and so on, as
LSMEFT ¼ Lc4 þ Lc5 þ Lc6 þ…, are treated all at both the
tree and the loop level, and the so-called Wilson coef-
ficients of those effective operators participate in the loop
contributions to a given observable. This sets important
differences also on the hierarchies of the quantum correc-
tions on both EFT approaches.
We focus here on the HEFT and more concretely on the

bosonic sector, with EW gauge bosons, GBs and the Higgs
boson, assuming that the fermion sector is as in the SM.
The corresponding effective Lagrangian of the HEFT in
that case is usually called the electroweak chiral Lagrangian
(EChL). The main focus of this work is on the one-loop
renormalization program for this EFT when applied to a
practical computation of physical scattering processes. In
particular, we focus here on the most sensitive observables
to the new physics in the case of an hypothetical underlying
strongly interacting UV theory, which are the vector boson
scattering (VBS) processes, with V ¼ W�; Z vector bosons
in the external legs (for a recent review on VBS see, for
instance, [5]). At high energies compared to the gauge
boson masses, and by virtue of the Equivalence Theorem
(ET), the VBS amplitude for external longitudinal vector
bosons, is approximately equal to the scattering amplitude
with the vector bosons replaced by the corresponding GBs,
π�, π3, and, therefore, one expects to find in observables
like the cross section σðVLVL → VLVLÞ the most promi-
nent signals of the underlying UV strongly interacting
theory. This expectation is in close analogy to the case of
the pion-pion scattering predictions from ChPT being one
of the best low energy hints of the strongly interacting
underlying QCD dynamics. In that case, it is well known
that a linear approach to the pions self-interactions (the so-
called sigma model) does not provide as good predictions
of the pion-pion scattering rates as it does the non-linear
ChPT approach.
In this work we present the computation within the

EChL of the full one-loop scattering VBS amplitudes
including all OðℏÞ radiative corrections from the complete
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bosonic sector and the corresponding cross sections. We
use the standard Feynman diagrammatic approach and
describe the full renormalization program also in terms
of one-loop Feynman diagrams. We organize this compu-
tation in terms of the involved one-particle-irreducible
(1PI) Green functions, with two, three and four external
legs, and perform by the first time in the literature this full
one-loop computation in the generic Rξ gauges. This is a
crucial point of the computation since it provides a good
check of the gauge invariance of the result. For definiteness,
we will describe the details of the computation for the
particular VBS channel, WZ → WZ, and leave for future
works the details of the other VBS channels. We also
present a comparison of our renormalization program for
the non-linear EFT with previous related works in the
literature. The one-loop renormalization of the EChL has
been studied in [6–8]. These works are focused, in contrast
to our work, in the renormalization of the Lagrangian itself
and use the path integral formalism and the background
field method to compute the one-loop divergences that have
to be renormalized by the redefinition of the EChL
coefficients. They use in addition the equations of motion
to reduce the number of independent effective operators.
Our computation in contrast does not make use of the
equations of motion since our objective is to compute off-
shell renormalized 1PI Green functions. On the other hand,
the one-loop VBS amplitudes within the EChL were
computed previously in [9–11] but using the ET, namely,
taking into account only the scalar sector, with external
GBs and with pure scalar loops of GBs and Higgs bosons,
and considering massless GBs. Also the one-loop renorm-
alization program within the EChL in [12] is performed in
the pure scalar theory. In this latter reference they consider
the off-shell effects and therefore use the full set of effective
operators of the scalar sector. Our work here represents,
therefore, the first full one-loop computation of VBS with
all relevant features included: off-shell renormalized 1PI
Green functions, all effective operators up to chiral dimen-
sion four taken into account, massive gauge bosons in the
VBS amplitudes (we do not use the ET), full bosonic loops
with gauge bosons and scalar bosons and full renormaliza-
tion program using the Rξ gauges. Our one-loop VBS
results within the EChL are, therefore, complete and
include all finite radiative corrections from the bosonic
sector. The renormalization conditions are fixed here in the
on-shell scheme for the EW parameters, like masses and
couplings, and in the MS scheme for the effective operator
coefficients. One of the most interesting results in this work
is our finding of the MS renormalized EChL coefficients
and their running with the renormalization scale, that we
compute from the involved renormalized 1PI Green func-
tions with the generic Rξ gauges and that we find
independent on the ξ gauge-fixing parameter.
The paper is organized as follows. The main features of

the EChL with Rξ gauge-fixing and the relevant operators

for VBS processes are presented in Section II. The
diagrammatic computation of VBS in terms of the 1PI
functions is described in Section III. The central part of the
work is in Section IV where the renormalization program is
presented in detail, including the prescriptions for regu-
larization and renormalization assumed and the summary of
all the results from the renormalization process. All the
divergent counterterms and the derived renormalization
group equations are also presented in this section. A
discussion on the Slavnov-Taylor identities and the pecu-
liarities of the Higgs tadpole in the non-linear EFT and the
comparison with the SM case is also included in this
section. The numerical results for the one-loop WZ
scattering process within the EChL and the SM are
presented and discussed in Section V. Finally, we conclude
in Section VI. The Appendixes summarize some technical
aspects of the computation. Appendix A collects the
relevant Feynman Rules (FRs) and the chosen conventions.
Appendix B contains the generic one-loop diagrams
involved. Appendixes C-D contain the technical details
of the comparison between the SM and the EChL compu-
tation, including the discussion on the STI and the Higgs
tadpole role.

II. THE ELECTROWEAK CHIRAL LAGRANGIAN
USING THE Rξ GAUGE-FIXING

In this section we shortly summarize the most relevant
pieces of the EChL for the present computation, and
introduce some necessary notation. The active fields of
the EChL are the EW gauge bosons, Wa

μ (a ¼ 1, 2, 3) and
Bμ, that are associated to SUð2ÞL and Uð1ÞY , respectively,
the three GBs πa (a ¼ 1; 2; 3), and the Higgs boson H.
The GBs are introduced in a non-linear representation,
usually via the exponential parametrization, by means of
the matrix U:

UðπaÞ ¼ eiπ
aτa=v; ð2:1Þ

where, τa, a ¼ 1; 2; 3, are the Pauli matrices and
v ¼ 246 GeV. Under a EW chiral transformation of
SUð2ÞL×SUð2ÞR, given by L∈SUð2ÞL and R∈ SUð2ÞR,
the field U transforms linearly as LUR†, whereas the GBs
πa transform non-linearly. This peculiarity implies multiple
GBs interactions, not just among themselves but also with
the other fields, and it is the main feature of this non-linear
EFT, which is clearly manifest in the following expansion:

UðπaÞ ¼ I2 þ i
πa

v
τa −

2πþπ− þ π3π3

2v2
I2

− i
ð2πþπ− þ π3π3Þπa

6v3
τa þ…; ð2:2Þ

where I2 is the unity matrix and the dots stand for terms
with four or more GBs.
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TheH field is, in contrast to the GBs, a singlet of the EW
chiral symmetry and the EW gauge symmetry and, con-
sequently, there are not limitations from symmetry argu-
ments on the implementation of this field and its interactions
with itself andwith the other fields.Usually, in theEChL, the
interactions of H are introduced via generic polynomials.
The EW gauge bosons are introduced in the EChL by

means of the SUð2ÞL ×Uð1ÞY gauge prescription, namely,
via the covariant derivative of the U matrix, and by the
SUð2ÞL and Uð1ÞY field strength tensors, as follows:

DμU¼ ∂μUþ iŴμU− iUB̂μ;

Ŵμν ¼ ∂μŴν−∂νŴμþ i½Ŵμ;Ŵν�; B̂μν ¼ ∂μB̂ν−∂νB̂μ;

ð2:3Þ

where Ŵμ ¼ gWa
μτ

a=2, and B̂μ ¼ g0Bμτ
3=2. For the con-

struction of the EChL and in addition to these basic
building blocks, it is also customary to use the following
objects:

Vμ ¼ ðDμUÞU†; DμO ¼ ∂μOþ i½Ŵμ; O�: ð2:4Þ

The physical gauge fields are given, as usual, by:

W�
μ ¼ 1ffiffiffi

2
p ðW1

μ ∓ iW2
μÞ; Zμ ¼ cWW3

μ − sWBμ;

Aμ ¼ sWW3
μ þ cWBμ; ð2:5Þ

where we use the short notation sW ¼ sin θW and
cW ¼ cos θW , with θW the weak angle.
For the present computation we include in the EChL all

the relevant effective operators, organized as usual by their
chiral dimension into two terms: L2, with chiral dimension
two and L4 with chiral dimension four. As already said in
the introduction, for this chiral counting, we consider that
all involved masses count equally as momentum, namely,
with chiral dimension one. Consequently, ∂μ, mW, mZ, mH,
gv, g0v, λv ∼OðpÞ. Thus, for the present work, the relevant
SUð2ÞL ×Uð1ÞY gauge invariant EChL is given, in
short, by

LEChL ¼ L2 þ L4: ð2:6Þ

The relevant chiral dimension two Lagrangian is as follows,

L2 ¼
v2

4

�
1þ 2a

H
v
þ b

�
H
v

�
2

þ…

�
Tr½DμU†DμU�

þ 1

2
∂μH∂μH − VðHÞ − 1

2g2
Tr½ŴμνŴ

μν�

−
1

2g02
Tr½B̂μνB̂

μν� þ LGF þ LFP; ð2:7Þ

where, LGF, and LFP, are the gauge-fixing Lagrangian and
Fadeev-Popov Lagrangian, respectively, and VðHÞ is the
Higgs potential, which we take here as,

VðHÞ ¼ 1

2
m2

HH
2 þ κ3λvH3 þ κ4

λ

4
H4; ð2:8Þ

with m2
H ¼ 2λv2. The new physics BSM in L2 is encoded

in the chiral coefficients a, b, κ3 and κ4. These are all
generically different from one, which is their reference SM
value. In Eq. (2.7) above, the dots stand for terms with more
than two Higgs bosons (allowed by the fact that H is a
singlet in this non-linear EFT) but we omit them here since
they do not enter in our VBS processes of interest, neither at
tree level nor at one-loop level.
The relevant chiral dimension four Lagrangian is organ-

ized here as follows:

L4 ¼ Lno−Higgs
4 þ Lone−Higgs

4 þ Ltwo−Higgs
4 þ…; ð2:9Þ

where ‘no-Higgs’ means effective operators not including
the Higgs field, ‘one-Higgs’ means effective operators
including one Higgs field, and so on, and the dots again
means operators which do not enter in the present
computation.
The list of operators in Lno−Higgs

4 were given long ago in
[13] and summarize the complete set of CP and SUð2ÞL ×
Uð1ÞY gauge invariant effective operators, including both
custodial preserving and custodial breaking ones. We take
them from this reference, although using a different
notation:

Lno−Higgs
4 ¼a0ðm2

Z−m2
WÞTr½Uτ3U†Vμ�Tr½Uτ3U†Vμ�þa1Tr½UB̂μνU†Ŵμν�þia2Tr½UB̂μνU†½Vμ;Vν��−ia3Tr½Ŵμν½Vμ;Vν��

þa4Tr½VμVν�Tr½VμVν�þa5Tr½VμVμ�Tr½VνVν�þa6Tr½VμVν�Tr½Uτ3U†Vμ�Tr½Uτ3U†Vν�
þa7Tr½VμVμ�Tr½Uτ3U†Vν�Tr½Uτ3U†Vν�−

a8
4
Tr½Uτ3U†Ŵμν�Tr½Uτ3U†Ŵμν�

−i
a9
2
Tr½Uτ3U†Ŵμν�Tr½Uτ3U†½Vμ;Vν��þa10Tr½Uτ3U†Vμ�Tr½Uτ3U†Vμ�Tr½Uτ3U†Vν�Tr½Uτ3U†Vν�

þa11Tr½DμVμDνVν�þa12Tr½Uτ3U†DμDνVν�Tr½Uτ3U†Vμ�þa13
2
Tr½Uτ3U†DμVν�Tr½Uτ3U†DμVν�. ð2:10Þ
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The relation with the notation in [13] is: a0 ¼ β1, a1 ¼ ðg=g0Þα1, a2 ¼ ðg=g0Þα2, a3 ¼ −α3, a4 ¼ α4, a5 ¼ α5; a6 ¼ α6,
a7 ¼ α7, a8 ¼ −g2α8, a9 ¼ −gα9, a10 ¼ α10=2, a11 ¼ α11, a12 ¼ α12=2 and a13 ¼ α13.
The set of relevant chiral dimension four effective operators with one-Higgs field and two-Higgs fields are taken from

[14], but using a different notation:

Lone−Higgs
4 ¼−aHBB

H
v
Tr½B̂μνB̂

μν�−aHWW
H
v
Tr½ŴμνŴ

μν�þa□VV
□H
v

Tr½VμVμ�

þaH0

H
v
ðm2

Z−m2
WÞTr½Uτ3U†Vμ�Tr½Uτ3U†Vμ�þaH1

H
v
Tr½UB̂μνU†Ŵμν�

−
aH8

4

H
v
Tr½Uτ3U†Ŵμν�Tr½Uτ3U†Ŵμν�þaH11

H
v
Tr½DμVμDνVν�þaH13

2

H
v
Tr½Uτ3U†DμVν�Tr½Uτ3U†DμVν�þ…

þa□0

�
m2

Z−m2
W

v2

�
□H
v

Tr½Uτ3U†Vμ�Tr½Uτ3U†Vμ�þ iad1
∂νH
v

Tr½UB̂μνU†Vμ�þ iad2
∂νH
v

Tr½ŴμνVμ�

þad3
∂νH
v

Tr½VνDμVμ�þ iad4
∂νH
v

Tr½Uτ3U†Ŵμν�Tr½Uτ3U†Vμ�þad5
∂νH
v

Tr½Uτ3U†DμVμ�Tr½Uτ3U†Vν�;

Ltwo−Higgs
4 ¼ a□□

□H□H
v2

þ…; ð2:11Þ

where the dots again mean operators which are not relevant
for the present computation. The relation of our EChL
coefficients in the above L4, which are refer jointly as ai
coefficients, with those in [14] is as follows: aHBB ↔ PB,
aHWW ↔ PW , a□VV ↔ P7, aH0 ↔ PT , aH1 ↔ P1,
aH8 ↔ P12, aH11 ↔ P9, aH13 ↔ P16, a□0 ↔ P25,
ad1 ↔ P4, ad2 ↔ P5, ad3 ↔ P10, ad4 ↔ P17, ad5 ↔ P19

and a□□ ↔ P□H.
Notice that we have used a specific notation for some of

the ai’s in Lone−Higgs
4 that refer explicitly to those operators

that are replicas of the structures in Lno−Higgs
4 but with an

extra factor given by (H=v). For instance, aH0 versus a0,
aH1 versus a1, etc. Alternative sets of effective operators,
with a reduced number of operators in the list by the use of
the equations of motion, can be found in the literature (see,
for instance, [8]).
Regarding the quantization of the EChL we choose here

to use the same gauge-fixing Lagrangian, LGF, as in the SM
for the linear covariant Rξ gauges [15], in which the tree
level mixing between gauge bosons with their correspond-
ing GB are absent. Some features of Rξ gauge-fixing and
renormalization within the context of the EChL were
already studied long ago in [16,17] when the Higgs particle
was not included explicitly in the Lagrangian (see also
[18]). Generically, the quantization of the EChL requires
the insertion of appropriate gauge-fixing functions Fj

involving the EW gauge bosons and the GBs. This
gauge-fixing Lagrangian can be written in terms of the
physical basis as follows:

LGF ¼ −FþF− −
1

2
F2
Z −

1

2
F2
A; ð2:12Þ

where the gauge-fixing functions are:

F� ¼ 1ffiffiffi
ξ

p ð∂μW�
μ −ξmWπ

�Þ; FZ ¼
1ffiffiffi
ξ

p ð∂μZμ−ξmZπ
3Þ;

FA ¼
1ffiffiffi
ξ

p ð∂μAμÞ; ð2:13Þ

and ξ is the typical gauge-fixing parameter of theRξ gauges.
From the above gauge-fixing functions, F�, FZ and FA,

one derives the corresponding Faddeev-Popov Lagrangian
[19], by:

LFP ¼
X

i;j¼þ;−;Z;A
c̄i
δFi

δαj
cj; ð2:14Þ

where cj are the ghost fields and αj (j ¼ þ;−; Z; A) are
the corresponding gauge transformation parameters under
the local transformations SUð2ÞL ×Uð1ÞY given by L ¼
eigτ⃗·α⃗LðxÞ=2 and R ¼ eig

0τ3αYðxÞ=2. The corresponding gauge
field transformations are as in the SM. However, the scalar
transformations in this non-linear EFT are

δH¼ 0;

δπ� ¼mWα
�∓ ig

2
α�π3�gðc2w− s2wÞ

2cw
αZπ

�� igswαAπ�

þmW

3v2
ð−α�πþπ−þα∓π�π�−α�π3π3Þ

þmZ

3v2
αZπ

3π�þ…

δπ3¼mZαZ−
ig
2
ðα−πþ−αþπ−Þ

þmW

3v2
ðαþπ−π3þα−πþπ3Þ−2mZ

3v2
αZπ

þπ−þ…;

ð2:15Þ
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which differ from the corresponding ones in the SM. In
particular, two main differences respect to the SM arise
from this ghost Lagrangian which are worth mentioning: 1)
within the EChL there are not interactions among the Higgs
boson and ghost fields, and 2) there are new interactions
with multiple GBs and two ghost fields.
As a general comment to the EChL above, notice that we

do not use the equations of motion to reduce the number of
effective operators since, as already stated in the introduc-
tion, we are interested on the computation of VBS in terms
of the off-shell renormalized 1PI Green functions, thus we
keep the track of all the involved EChL coefficients into our
computation. For the same reason, we do not apply either
any Higgs field redefinition and keep explicitly the track as
well of all the off-shell Higgs effects.
The summary of all the relevant FRs for the present

computation is presented in Appendix A. We have also
added the corresponding FRs within the SM, for a clear
comparison.

III. DIAGRAMMATIC COMPUTATION: VBS
FROM 1PI GREEN FUNCTIONS

For definiteness in the description of our computational
procedure, and to fix some convenient notation, we focus
in this section on the VBS channel WZ → WZ. The
detailed study of other VBS channels is postponed for
future works. The amplitude of our interest here is, there-
fore, AðWZ → WZÞ. Following the standard counting
rules of the EChL, the full one-loop scattering amplitude
can be splitted into two parts, as follows:

AðWZ→WZÞEChL¼Að0ÞðWZ→WZÞþAð1ÞðWZ→WZÞ
≡AEChLFull ; ð3:1Þ

where the leading order (LO), Oðp2Þ, and the next to
leading order contributions (NLO), Oðp4Þ, are denoted as
Að0Þ and Að1Þ respectively, and are given by:

Að0ÞðWZ → WZÞ≡AEChLð2Þ
Tree ; ð3:2Þ

Að1ÞðWZ → WZÞ≡AEChLð4Þ
Tree þAEChLð2Þ

Loop : ð3:3Þ

This means, that to compute the LO amplitude in this EChL
context, one uses the Feynman rules from L2 at the tree
level, and to compute the NLO correction one adds the
contribution from L4 at the tree level and the contribution
from the loops using L2. This reflects the typical double
role of L4 in the chiral Lagrangian approach. On the one
hand, it adds an extra tree level contribution to the
scattering amplitude, and on the other hand it also
acts as generator of new counterterms that are needed to
remove the extra divergences emerging from the loops
computed with L2 and that are not removable by a simple
redefinition (counterterms) of the parameters in L2. This

renormalization procedure of the extra divergences, which
is well known in the context of ChPT, works also properly
here for the EChL and its application to the computation of
finite VBS amplitudes, as will be seen in detail in the next
section. Notice also that the previous splitting in Eq. (3.1)
of the EChL amplitude into Að0Þ and Að1Þ can be done in a
different way, attending instead to the two parts of different
order in the quantum corrections expansion, i.e., in powers
of ℏ. Thus, one can split the full one-loop amplitude,
alternatively, as follows:

AEChLFull ¼ AEChLð2þ4Þ
Tree þAEChLð2Þ

Loop ; ð3:4Þ
where, the tree level amplitude, Oðℏ0Þ, is:

AEChLð2þ4Þ
Tree ¼ AEChLð2Þ

Tree þAEChLð4Þ
Tree ; ð3:5Þ

and the one-loop correction, Oðℏ1Þ, is AEChLð2Þ
Loop . Since, in

our posterior analysis of the full one-loop results within the
EChL we plan to compare them with the corresponding SM
full results, which we have also computed here in parallel, it
is then convenient to also fix the notation here for the SM
case. The full one-loop SM amplitude is then defined as the
sum of the SM leading-order (LO) contribution, that, in this
case, is the tree level part of Oðℏ0Þ, and the SM next-to-
leading order (NLO) contribution, that is the one-loop part
of Oðℏ1Þ. In short, it is given by:

ASMFull ¼ ASMTree þASMLoop : ð3:6Þ

To our knowledge, the SM computation presented here is
the first full bosonic one-loop computation in the literature
of WZ → WZ scattering using the Rξ gauges, and, there-
fore, we believe it is interesting by itself, in addition to be
the obvious reference to compare our EChL computa-
tion with.
As already said, our purpose in this paper is to organize

the computation of the full one-loop amplitude in terms of
the basic building blocks in any QFT which are the 1PI
Green functions. Taking into account that we work in
generic Rξ gauges, this procedure by means of 1PI
functions has the advantage of requiring a more demanding
renormalization program, since all the off-shell effects of
external legs in the 1PI functions must be considered.
Concretely, in the next section we will fix our renormaliza-
tion program in the Rξ gauges that makes finite all the
relevant 1PI Green functions for arbitrary external legs (off-
shell) momenta and no transversality condition for the EW
gauge bosons is applied. The ξ-dependence of all the
divergences involved in these 1PI functions will be followed
explicitly and, in this sense, the extraction of the new
counterterms given by the EChL coefficients ai will be
more complicated in these Rξ gauges, but they will provide
an excellent check of the gauge invariance of these new
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counterterms. We continue next with the presentation of the
amplitude in terms of the 1PI functions and postpone all
these renormalization issues for the next section, Section IV.
Generically, the full amplitude can be organized in terms

of the contributing 1PI functions as follows:

AEChLFull ¼ Að0Þ þA1−leg þA2−legs þA3−legs

þA4−legs þAres; ð3:7Þ
whereAn−legs means theOðℏÞ contribution from the n-legs
1PI function to the amplitude, and we have separated
explicitly the extra contribution from the finite residues of
the external gauge bosons Ares. Regarding the 1-leg 1PI
function (i.e., the tadpole T̂ of the Higgs boson), a priori, it
enters in many parts of the different diagrams contributing
to the amplitude, but as it will be seen in the next section,
one can set this renormalized Green function equals to zero
by a convenient renormalization condition, and then A1−leg
simply vanishes.
We next specify the particular 1PI functions

contributing to the amplitude of our interest. For defi-
nitess, here and in the following of this work, we fix the
notation for the momenta assignments and Lorentz
indexes as follows:

Wþ
λ ðpþÞZρðp0Þ → Wþ

σ ðkþÞZκðk0Þ; ð3:8Þ

where pþ;0 and kþ;0 (with pþ þ p0 ¼ kþ þ k0) are the
incoming and outcoming momenta of the gauge bosons,
with polarization vectors ϵλðpþÞ; ϵρðp0Þ; ϵσðkþÞ and
ϵκðk0Þ, respectively. Thus, the amplitude A can be
written as:

A ¼ AλρσκϵλðpþÞϵρðp0ÞϵσðkþÞ�ϵκðk0Þ�; ð3:9Þ

where the tensor amplitudewith explicit Lorentz indexes is
defined by Aλρσκ. The complete set of full 1PI functions and
full propagators that contribute to the full one-loop ampli-
tude AðWZ → WZÞ are displayed graphically in Fig. 1.
These full one-loop functions are represented in this figure
by black balls and are denoted by quantities with a hat, in
order to be distinguished from the corresponding leading
order quantities (without the hat). These full functions
include: 1) the full propagators, Δ̂HH, Δ̂ππ, Δ̂WW , Δ̂Wπ and
Δ̂πW ; 2) the full 1PI vertex functions with three-legs, Γ̂WWZ,
Γ̂πWZ, Γ̂HWW , Γ̂HZZ, Γ̂ZZA and Γ̂ZZZ; and 3) the full 1PI
vertex functionwith four-legs, Γ̂WZWZ. Notice, that some of
these full functions contain contributions of both orders,
Oðℏ0Þ andOðℏ1Þ, whereas others are pureOðℏ1Þ functions.
For instance, the functions Δ̂Wπ , Δ̂πW , Γ̂ZZA and Γ̂ZZZ get
only NLO contributions since they vanish at LO.
Consequently, when providing the amplitude to a given
order in powers of ℏ one has to keep accordingly the
same powers in the involved products of full functions.
Thus, in products like Γ̂μλρ

WWZΔ̂
WW
μν Γ̂νσκ

WWZ there are several

contributions inside: 1) LO contributions Γμλρ
WWZΔWW

μν Γνσκ
WWZ

and 2) NLO contributions from the corresponding correc-
tions in each of the full functions. On the other hand, the
propagators ΔAA, ΔZZ and the vertex function ΓWWA, enter
just at leading order in this computation. We can then
simply read the various contributions by grouping them
together, for instance, by s, t, u and contact c channels as
follows:

Aλρσκ ¼ Aλρσκ
s þ Aλρσκ

t þ Aλρσκ
u þ Aλρσκ

c ; ð3:10Þ

where the amplitudes by channels in terms of the full
functions that enter at one-loop level read as follows:

FIG. 1. Full 1PI functions (black balls) contributing to the full one-loop amplitude AðWZ → WZÞ.
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iAλρσκ
s ¼ iΓ̂μλρ

WWZð−iÞΔ̂WW
μν iΓ̂νσκ

WWZþ iΓμλρ
WWZΔ̂

Wπ
μ iΓσκ

πWZ

þ iΓλρ
πWZΔ̂

πW
ν iΓνσκ

WWZþ iΓ̂λρ
πWZiΔ̂

ππiΓ̂σκ
πWZ

iAλρσκ
t ¼ iΓ̂λρ

HWWiΔ̂
HHiΓ̂σκ

HZZþ iΓμλρ
WWAiΔAA

μν iΓ̂νσκ
ZZA

þ iΓμλρ
WWZiΔZZ

μν iΓ̂νσκ
ZZZ

iAλρσκ
u ¼ iΓ̂μλκ

WWZð−iÞΔ̂WW
μν iΓ̂νσρ

WWZþ iΓμλκ
WWZΔ̂

Wπ
μ iΓσρ

πWZ

þ iΓλκ
πWZΔ̂

πW
ν iΓνσρ

WWZþ iΓ̂λκ
πWZiΔ̂ππiΓ̂σρ

πWZ

iAλρσκ
c ¼ iΓ̂λρσκ

WZWZ: ð3:11Þ

For the forthcomming section dealing with the renormal-
ization program, it is convenient to write the previous full
propagators in terms of 1PI functions with two-legs,
therefore, in terms of the self-energies. For the case of
gauge boson propators, we introduce some convenient
Lorentz tensors which are usefull to decompose them into
their transverse (T) and longitudinal (L) parts by:

−iΔ̂WW
μν ðqÞ ¼ −iΔ̂WW

T ðq2ÞTμν − iΔ̂WW
L ðq2ÞLμν; ð3:12Þ

where,

Tμν ¼ gμν −
qμqν

q2
; Lμν ¼ qμqν

q2
; ð3:13Þ

which fulfil the following useful properties:

Tμν þ Lμν ¼ gμν; TμνTνρ ¼ Tμ
ρ; LμνLνρ ¼ Lμ

ρ;

TμνLνρ ¼ 0; Tμνqν ¼ 0; Lμνqν ¼ qμ: ð3:14Þ
The full self-energies, involving gauge bosons can sim-
ilarly be decomposed as:

Σ̂μν
WWðqÞ ¼ Σ̂T

WWðq2ÞTμν þ Σ̂L
WWðq2ÞLμν: ð3:15Þ

For themixed self-energies connecting aWwith a π, we use
the following decomposition:

Σ̂μ
WπðqÞ ¼

qμ

mW
Σ̂Wπðq2Þ; ð3:16Þ

and we have the corresponding one to the full propagator:

Δ̂Wπ
μ ðqÞ ¼ qμ

mW
Δ̂Wπðq2Þ: ð3:17Þ

Then, the simple expressions of the full propagators in
terms of the full self-energies, Σ̂, to be used at the one-loop
level, are summarized by:

iΔ̂HHðq2Þ ¼ iΔHH þ iΔHHð−iÞΣ̂HHiΔHH;

iΔ̂ππðq2Þ ¼ iΔππ þ iΔππð−iÞΣ̂ππiΔππ;

−iΔ̂WW
T ðq2Þ ¼ −iΔWW

T − iΔWW
T iΣ̂T

WWð−iÞΔWW
T ;

−iΔ̂WW
L ðq2Þ ¼ −iΔWW

L − iΔWW
L iΣ̂L

WWð−iÞΔWW
L ;

Δ̂Wπðq2Þ ¼ ΔWπ − iΔWW
L Σ̂WπiΔππ; ð3:18Þ

where all functions on the right hand side are functions of
q2 and we have used the conventions for signs, ‘i’ factors,
and Lorentz decompositions as shown in Fig. 2 for the self-
energies Σ̂. The involved Rξ gauges propagators at LO are
summarized by:

iΔHH ¼ i
q2−m2

H
; −iΔWW

T ¼ −i
q2−m2

W
;

−iΔWW
L ¼ −iξ

q2−ξm2
W
; iΔππ ¼ i

q2−ξm2
W
; ΔWπ ¼ 0:

−iΔAA
T ¼−i

q2
; −iΔAA

L ¼−iξ
q2

;

−iΔZZ
T ¼ −i

q2−m2
Z
; −iΔZZ

L ¼ −iξ
q2−ξm2

Z
: ð3:19Þ

As commented previously, only ΔHH, ΔWW
T , ΔWW

L and Δππ

are involved in the LO contribution to the amplitude in
Eq. (3.1). On the other hand, the relevant vertex functions at
LO are:

iΓμνρ
WWZ ¼ −igcwVμνρ; iΓσκ

πWZ ¼ g0swmWgσκ;

iΓλρ
HWW ¼ iagmWgλρ; iΓσρ

HZZ ¼ iag
mZ

cw
gσρ;

iΓλρσκ
WZWZ ¼ −ig2c2wSλσ;ρκ;

iΓμνρ
WWA ¼ −igswVμνρ; iΓνσκ

ZZA ¼ iΓνσκ
ZZZ ¼ 0; ð3:20Þ

where the Lorentz structures Vμνρ and Sλσ;ρκ are summa-
rized in Eq. (A1).
Finally, for completeness, we end this section presenting

the computation of the LO amplitude using the Rξ gauges.
This can be easily done by plugging the corresponding LO
functions of Eq. (3.19) and Eq. (3.20) in Eq. (3.11).
Namely, using Γ instead of Γ̂, and Δ instead of Δ̂.
Then, we get the result for the LO amplitude in the Rξ

gauge, which corresponds to the tree level diagrams in
Fig. 3. It is given by:

FIG. 2. Diagrammatic Lorentz conventions corresponding to the self-energies of two gauge bosons (left), two scalars (middle) and
gauge boson with a scalar (right). Incoming momenta are understood.
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Að0Þ ¼ ðAð0Þλρσκ
s þ Að0Þλρσκ

t þ Að0Þλρσκ
u þ Að0Þλρσκ

c Þ
× ϵλðpþÞϵρðp0ÞϵσðkþÞ�ϵκðk0Þ�; ð3:21Þ

with:

Að0Þλρσκ
s ¼ g2c2w

1

s −m2
W
Vμλρ
WWZTμνVνσκ

WWZ

þ g2c2w
ξ

s − ξm2
W
Vμλρ
WWZLμνVνσκ

WWZ

− g02s2wm2
W

1

s − ξm2
W
gλρgσκ;

Að0Þλρσκ
t ¼ −a2g2

mWmZ

cw

1

t −m2
H
gλσgρκ;

Að0Þλρσκ
u ¼ g2c2w

1

u −m2
W
Vμλκ
WWZTμνV

νσρ
WWZ

þ g2c2w
ξ

u − ξm2
W
Vμλκ
WWZLμνV

νσρ
WWZ

− g02s2wm2
W

1

u − ξm2
W
gλκgσρ;

Að0Þλρσκ
c ¼ −g2c2wSλσ;ρκ: ð3:22Þ

Some more comments on this LO result are in order. First,
notice that the corresponding result of the SM amplitude at
LO is simply obtained from this same formula by setting
a ¼ 1. Second, we have checked explicitly the gauge
invariance of the LO result, namely, that the dependence
on ξ disappears in the final amplitude as expected. The
cancellation of the ξ-dependent terms is achieved once
the external gauge bosons are on-shell, i.e., by contracting
the tensorial amplitude with their corresponding polariza-
tion vectors in Að0Þ of Eq. (3.21). Concretely, the cancella-
tion of the ξ-dependent terms occurs separately in the two
channels s andu, and it happens between the two terms in the
second lines (coming from theW andGBpropagators) of the
corresponding s and u amplitudes in Eq. (3.22). More

explicitly, using the transversality and on-shell conditions
of the external gauge bosons one gets in the s channel:

Vμλρ
WWZLμνVνσκ

WWZϵλðpþÞϵρðp0ÞϵσðkþÞ�ϵκðk0Þ�

¼ ðm2
Z−m2

WÞ2
s

ϵðpþÞ · ϵðp0ÞϵðkþÞ� · ϵðk0Þ� ð3:23Þ

and the ξ-dependence from the two terms in the second
line of the s channel amplitude in Eq. (3.22) then cancels.

The contribution from these two terms to Að0Þ
s then finally

reduce to:

−g2
s4w
c2w

m2
W

s
ϵðpþÞ · ϵðp0ÞϵðkþÞ� · ϵðk0Þ�; ð3:24Þ

consequently, leading to a gauge invariant amplitude, as
expected. The cancellation in the u channel contribution,

Að0Þ
u proceeds in a similar way.

IV. RENORMALIZATION PROGRAM

A. Generalities

In this section we present our renormalization program to
compute the renormalized 1PI functions within the EChL
in covariant Rξ gauges which are the basic pieces in our
computation of the VBS amplitudes. Within a diagram-
matic approach, these renormalized 1PI functions, denoted
here generically by Γ̂n−legs, can be decomposed into three
pieces as follows:

Γ̂n−legs ¼ ΓTree
n−legs þ ΓLoop

n−legs þ ΓCT
n−legs: ð4:1Þ

where, within the context of the EChL we are working with,
ΓTree means contributions from tree level Lagrangian,
L2 þ L4, ΓLoop are the contributions from the unrenormal-
ized one-loop diagrams using the interaction vertices of L2

only, and ΓCT summarizes the contributions from all the
counterterms. For the analytical computation of these
three pieces we use the codes and tools specified next.
We have implemented our model with FeynRules [20],

FIG. 3. Diagrams at LO contributing to WþZ → WþZ in the covariant Rξ gauges.
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generated and drawn the Feynman diagrams by FeynArts
[21], performed the main calculations with FormCalc and
LoopTools [22] and added some extra checks of the
involved one-loop divergences using FeynCalc [23] and
the code Package-X [24]. Also, a comparison with respect
to the SM has been perfomed in parallel and a summary of
the corresponding SM results are collected in Appendix C,
for completeness.
In the following of this section we describe the details of

the renormalization program. First we set the regularization
and multiplicative renormalization prescriptions, and fix
the renormalization conditions. Second, we discuss the
Slavnov-Taylor identity in these Rξ gauges. Third, we
present the various contributions to the 1PI functions as
well as the solutions for the counterterms involved. Finally,
we derive the values of the renormalized EChL coefficients
and set the corresponding renormalization group equations
(RGEs) describing the running of these coefficients.

B. Regularization and renormalization prescriptions

The regularization procedure of the loop contributions is
performed with dimensional regularization [25], in D ¼
4 − ϵ dimensions, as usual. This method has the advantage
that preserves all the relevant symmetries in the bosonic
sector of the theory, including EWchiral symmetry (remem-
ber that we do not consider the fermionic contributions and
the Dirac γ5 is not involved in this work). Consequently, the
scale of dimensional regularization is set to μ and all the one-
loop divergencies are expressed in terms of:

Δϵ ¼
2

ϵ
− γE þ logð4πÞ: ð4:2Þ

Regarding the renormalization procedure, the counterterms
of all the parameters and fields appearing in the tree level
Lagrangian, L2 þ L4, are generated by the usual multipli-
cative renormalization prescription that relates the bare
quantities (here denoted by a specific sub- or super-script
with a label 0) and the renormalized ones (here with no
specific sub- or super-script labels). In our present case, the
relevant relations are summarized as follows:

H0 ¼
ffiffiffiffiffiffi
ZH

p
H; B0μ ¼

ffiffiffiffiffiffi
ZB

p
Bμ;

W1;2;3
0μ ¼

ffiffiffiffiffiffiffi
ZW

p
W1;2;3

μ ; π1;2;30 ¼
ffiffiffiffiffiffi
Zπ

p
π1;2;3;

v0 ¼
ffiffiffiffiffiffi
Zπ

p
ðvþ δvÞ; λ0 ¼ Z−2

H ðλþ δλÞ;
g00 ¼ Z−1=2

B ðg0 þ δg0Þ; g0 ¼ Z−1=2
W ðgþ δgÞ;

ξ01;2 ¼ ξð1þ δξ1;2Þ;
a0 ¼ aþ δa; b0 ¼ bþ δb;

κ03;4 ¼ κ3;4 þ δκ3;4; a0i ¼ ai þ δai; ð4:3Þ

where the Zi renormalization constants are set as usual to
Zi ¼ 1þ δZi. Some comments on this Eq. (4.3) are in order.

Our final results for both the renormalized 1PI functions and
the VBS scattering amplitudes are expressed in terms of the
renormalized quantities,mW ,mZ,mH, g, g0, v, a, ai’s, etc. It
should be noticed that for theWZ → WZ case, the renorm-
alization of the b, κ3;4 and λ parameters do not enter and,
therefore, the associated counterterms will not be present in
the renormalized 1PI functions. Besides, the ghost counter-
terms do not enter either, and we omit to show them for
shortness. In contrast, the renormalization of the covariant
gauge parameters do enter and are relevant for the present
paper. Notice that in Eq. (4.3) we have set a common
renormalized ξ parameter for all the involved EW gauge
bosons. The associated counterterms δξ1;2, introduced in
Eq. (4.26), play an important role in the renormalization of
the charged unphysical propagators. We refer here to the
charged unphysical propagators as in reference [26],
namely, formed by the charged Goldstone bosons π� and
the gauge bosons W�. The discussion on the renormaliza-
tion of the involved functions for this charged unphysical
sector, Σ̂L

WW , Σ̂Wπ and Σ̂ππ , and their relations will be
presented in the subsection IV E. Finally, one can easily
relate the corresponding counterterms for the EW param-
eters in the physical basis with the previous counterterms in
Eq. (4.3). In particular,

δZA ¼ c2wδZB þ s2wδZW;

δZZ ¼ s2wδZB þ c2wδZW;

δZZA ¼ swcwðδZW − δZBÞ ¼
swcw

c2w − s2w
ðδZZ − δZAÞ;

δm2
W ¼ m2

W

�
−δZW þ δZπ þ 2

δg
g
þ 2δv

v

�
;

δm2
Z ¼ m2

Z

�
−δZZ þ δZπ þ 2c2w

δg
g
þ 2s2w

δg0

g0
þ 2δv

v

�
;

δm2
H ¼ m2

H

�
−2δZH þ δZπ

2
þ δλ

λ
þ 2δv

v

�
; ð4:4Þ

where, our conventions for the mass counterterms are:

m0 2
H ¼ m2

H þ δm2
H; m0 2

W ¼ m2
W þ δm2

W;

m0 2
Z ¼ m2

Z þ δm2
Z: ð4:5Þ

Finally, regarding the renormalization conditions we adopt
here a hybrid prescription in which we choose the on-shell
(OS) scheme for the EW parameters in the lowest order
Lagrangian L2 and the MS scheme for all the EChL
coefficients a and ai. These particular conditions will
provide the specific values of all the counterterms involved
in the present computation. Concretely, our renormalization
conditions read as follows:
(a) Vanishing (Higgs) tadpole:

T̂ ¼ 0: ð4:6Þ
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(b) The pole of the renormalized propagator of the Higgs
boson lies at m2

H and the corresponding residue is
equal to 1:

Re½Σ̂HHðm2
HÞ� ¼ 0; Re

�
dΣ̂HH

dq2
ðm2

HÞ
�
¼ 0: ð4:7Þ

(c) Properties of the photon: residue equal one; no A − Z
mixing propagators; and the electric charge defined
like in QED, since there is a remnant Uð1Þem electro-
magnetic gauge symmetry:

Re

�
dΣ̂T

AA

dq2
ð0Þ

�
¼ 0; Σ̂T

ZAð0Þ¼ 0; Γ̂μ
γeejOS¼ ieγμ:

ð4:8Þ
(d) The poles of the transverse renormalized propagators

of the W and Z bosons lie at q2 ¼ m2
W and q2 ¼ m2

Z,
respectively:

Re½Σ̂T
WWðm2

WÞ� ¼ 0; Re½Σ̂T
ZZðm2

ZÞ� ¼ 0: ð4:9Þ
(e) The poles of the renormalized propagators in the

unphysical charged sector fW�; π�g lie at q2 ¼ ξm2
W.

Therefore:

Re½Σ̂L
WWðξm2

WÞ� ¼ 0; Re½Σ̂ππðξm2
WÞ� ¼ 0: ð4:10Þ

(f) MS scheme for all the involved EChL coefficients.
In particular for a, b, κ3;4 in Eq. (2.7) and the ai’s in

Eqs. (2.10)–(2.11).
It is important to stress that the previous renormalization

conditions on all the EChL parameters determine both the
divergent and finite parts of all the counterterms. In
particular, the physical masses mW , mZ and mH coincide
with the corresponding renormalized ones in theOS scheme.
On the other hand, notice that the residue for the Higgs and
photon fields are set to one in the previous conditions, but the
residues ZW;Z, for the gauge bosonsW and Z, are not set to
one. These finite residues are given, respectively, by:

ZW ¼ 1þRe

�
dΣ̂T

WW

dq2
ðm2

WÞ
�
; ZZ ¼ 1þRe

�
dΣ̂T

ZZ

dq2
ðm2

ZÞ
�
:

ð4:11Þ
Therefore, they contribute via Ares in Eq. (3.7) to the WZ
scattering as follows:

Ares ¼
�
Re

�
dΣ̂T

WW

dq2
ðm2

WÞ
�
þRe

�
dΣ̂T

ZZ

dq2
ðm2

ZÞ
��

Að0Þ;

ð4:12Þ

since each external WðZÞ provides a factor Z1=2
WðZÞ to the

observable S matrix.

C. Summary of contributions to the renormalized
1PI functions

We collect here the various contributions to the renor-
malized 1PI functions, including the specific counterterms
according to our previous prescriptions especified in
subsection IV B. For the 2-legs functions and the corre-
sponding self-energies we use the conventions defined in
Fig. 2. For the 3-legs and 4-legs functions we use the
conventions defined in Fig. 4. All these functions depend
on the momenta of the external legs which are generically
off-shell. By using momentum conservation one can reduce
the independent momenta to 2 and 3 for the 3-legs and
4-legs functions respectively. For the generic 3-legs func-
tion with one external scalar S (with momentum q) and two
EW gauge bosons Vμ, V 0

ν (with momenta k1, k2) we choose
the gauge bosons momenta as independent variables and
the generic function can be decomposed into Lorentz
structures as gμν, kμ2k

ν
1, k

μ
1k

ν
1, k

μ
1k

ν
2 and kμ2k

ν
2. Notice that

the last three structures can be omitted if we impose the
transversality conditions to the gauge bosons, i.e.,
ki · ϵðkiÞ ¼ 0. However we keep them here since we are
interested on the full vertex functions off-shell. Similarly,
we choose the momenta of the W bosons as independent
variables of the Γ̂μνρ

WWV (middle panel of Fig. 4) resulting in
the Lorentz structures gμνkρ1, g

μνkρ2, g
νρkμ1, g

νρkμ2, g
ρμkν1 and

gρμkν2. For the case of Γ̂ZZA and Γ̂ZZZ we choose the Z
bosons momenta. The 4-legs vertex functions of the right
panel have Lorentz structures gμνgρσ, gμρgνσ and gμσgνρ even
at OðℏÞ as we found explicitly.
We list in the following the various contributions to the

renormalized n-legs functions. We include not only the 1PI
functions that are needed for the present computation of
WZ → WZ scattering, already mentioned in Section III, but
also some additional ones since we wish to determine
separately the renormalization of all the involved EW
parameters and EChL coefficients in Eqs. (2.10)–(2.11).

FIG. 4. Diagrammatic Lorentz conventions corresponding to the 3-legs (iΓ̂μν
SVV 0 , iΓ̂μνρ

WWV ) and 4-legs (iΓ̂μνρσ
VV 0WW) Green functions,

relevant for our observables of interest. The generic scalar here, S, can be a Goldstone boson or a Higgs boson. The vector bosons V here,
refer generically to the corresponding EW gauge boson, W, Z, γ. All momenta are incoming.
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1. 1-leg function (Higgs tadpole)

iT̂ ¼ iTLoop − iδT; δT ¼
�
−δm2

H=2þ 2λv2
�
δv
v
þ δZπ

2

�
þ δλv2 − 2λv2δZH

�
v ð4:13Þ

2. 2-legs functions

−iΣ̂HHðq2Þ ¼ −iΣLoop
HH ðq2Þ þ iðδZHðq2 −m2

HÞ − δm2
HÞ þ i

2a□□

v2
q4; ð4:14Þ

iΣ̂T
WWðq2Þ ¼ iΣTLoop

WW ðq2Þ − iðδZWðq2 −m2
WÞ − δm2

WÞ;
iΣ̂T

AAðq2Þ ¼ iΣTLoop
AA ðq2Þ − iδZAq2 − ig2s2wða8 − 2a1Þq2;

iΣ̂T
ZZðq2Þ ¼ iΣTLoop

ZZ ðq2Þ − iðδZZðq2 −m2
ZÞ − δm2

ZÞ − ið2g02m2
Za0 þ ð2g2s2wa1 þ g2c2wa8 þ ðg2 þ g02Þa13Þq2Þ;

iΣ̂T
ZAðq2Þ ¼ iΣTLoop

ZA ðq2Þ − iðδZZAq2 −m2
Zswcwðδg=g − δg0=g0ÞÞ − iðg2swcwa8 − gg0ðc2w − s2wÞa1Þq2: ð4:15Þ

iΣ̂L
WWðq2Þ ¼ iΣLLoop

WW ðq2Þ þ i

�
−
1

ξ
ðq2 − ξm2

WÞδZW þ δm2
W þ q2

δξ1
ξ

�
− iq2g2a11;

Σ̂Wπðq2Þ ¼ ΣLoop
Wπ ðq2Þ þ δξ2 − δξ1

2
m2

W þ q2g2a11;

−iΣ̂ππðq2Þ ¼ −iΣLoop
ππ ðq2Þ þ iððq2 − ξm2

WÞδZπ − ξδm2
W − ξm2

Wδξ2Þ − i
g2

m2
W
q4a11: ð4:16Þ

3. 3-legs functions

iΓ̂μν
HAA ¼ iΓLoop

HAA þ i
g2s2w
v

ðaHBB þ aHWW − aH1 þ aH8=2Þððq2 − k21 − k22Þgμν − 2kμ2k
ν
1Þ;

iΓ̂μν
HAZ ¼ iΓLoop

HAZ þ i
ag2swv
2cw

�
δg
g
−
δg0

g0

�
gμν

þ i
g2sw
vcw

ð−s2waHBB þ c2waHWW þ ð1=2 − c2wÞaH1 þ c2waH8=2Þððq2 − k21 − k22Þgμν − 2kμ2k
ν
1Þ

þ i
g2sw
4vcw

ðad1 þ ad2 þ 2ad4Þððq2 þ k21 − k22Þgμν − 2ðkμ1 þ kμ2Þkν1Þ;

iΓ̂μν
HZZ ¼ ia

g2v
2c2w

gμν þ iΓLoop
HZZ þ ag2v

2c2w

�
δa
a
þ 2δg

g
c2w þ 2δg0

g0
s2w þ δv

v
þ δZH

2
þ δZπ

2

�
gμν

− i
g2

2vc2w

��
4s2wm2

ZaH0 þ
�
−2c4waHWW − 2s4waHBB − 2s2wc2waH1 − c4waH8 − aH13

þ s2wad1 − c2wad2 − 2c2wad4 − 4s2w
m2

Z

v2
a□0 − 2a□VV

�
q2

þ ð2c4waHWW þ 2s4waHBB þ 2s2wc2waH1 þ c4waH8 þ aH13Þðk21 þ k22Þ
�
gμν

þ ð−s2wad1 þ c2wad2 þ ad3 þ 2c2wad4 þ 2ad5Þðkμ1kν1 þ kμ2k
ν
2Þ þ 2ðad3 þ 2ad5 − aH11Þkμ1kν2

þ 2ð2c4waHWW þ 2s4waHBB þ 2s2wc2waH1 þ c4waH8 − s2wad1 þ c2wad2 þ 2c2wad4Þkμ2kν1
�
;
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iΓ̂μν
HW−Wþ ¼ ia

g2v
2

gμνþ iΓLoop
HWWþ i

ag2v
2

�
δa
a
þ2δg

g
þδv

v
þδZH

2
þδZπ

2

�
gμν

− i
g2

2v
ðð−ð2aHWW þad2þ2a□VVÞq2þ2aHWWðk21þk22ÞÞgμν

þðad2þad3Þðkμ1kν1þkμ2k
ν
2Þþ2ðad3−aH11Þkμ1kν2þ2ð2aHWW þad2Þkμ2kν1Þ;

iΓ̂μν
πþW−A ¼−

gg0vcw
2

gμνþ iΓLoop
πWA−

gg0vcw
2

�
δg
g
þδg0

g0
þδv

v
þδZπ

�
gμνþg2sw

v
ðð−ða1−a2þa3−a8þa9−2a11Þq2

þða1−a2þa3−a8þa9Þk21þða1þa2−a3−a8−a9Þk22ÞgμνÞ
þ4a11k

μ
1k

ν
1þ2a11k

μ
1k

ν
2þ2ða1−a2þa3−a8þa9Þkμ2kν1−2ða2−a3−a9Þkμ2kν2Þ;

iΓ̂μν
πþW−Z ¼

gg0vsw
2

gμνþ iΓLoop
πWZ þ

gg0vsw
2

�
δg
g
þδg0

g0
þδv

v
þδZπ

�
gμν

−
g2

vcw
ðð4s2wm2

Za0− ðs2wa1− s2wa2þ s2wa3þc2wa8−c2wa9−2s2wa11þ2a12þa13Þq2

þðs2wa1− s2wa2− ð1þc2wÞa3þc2wa8−c2wa9þa13Þk21þðs2wa1þ s2wa2þð1þc2wÞa3þc2wa8þc2wa9þa13Þk22Þgμν
þ2ða3þðs2w−c2wÞa11−a12Þkμ1kν1þ2ðs2wa11−a12Þkμ1kν2þ2ð−s2wa2−c2wa3−c2wa9þa11−2a12þa13ÞÞkμ2kν1
þ2ðs2wa1− s2wa2þ s2wa3þc2wa8−c2wa9þa13ÞÞkμ2kν1Þ; ð4:17Þ

iΓ̂μνρ
W−WþA ¼ −igswVμνρ þ iΓLoop

WWA − igswVμνρ þ ig3swðgμνða11kρ1 − ða1 − a2 þ a3 − a8 þ a9 − a11Þkρ2Þ
þ gρνða11kμ1 þ ða1 − a2 þ a3 − a8 þ a9Þkμ2ÞÞ;

iΓ̂μνρ
W−WþZ ¼ −igcwVμνρ þ iΓLoop

WWZ − igcwVμνρ þ i
g3

cw
ðgμνðða3 − s2wa11 þ a12Þkρ1 þ ðs2wa1 − s2wa2 − c2wa3 þ c2wa8 − c2wa9

− s2wa11 þ a12 þ a13Þkρ2Þ þ gνρðða3 − s2wa11 þ a12Þkμ1 − ðs2wa1 − s2wa2 − ð1þ c2wÞa3 þ c2wa8 − c2wa9 þ a13Þkμ2Þ
þ gρμð−2a3kν1 − a3kν2ÞÞ;

iΓ̂μνρ
ZZA ¼ iΓLoop

ZZA ;

iΓ̂μνρ
ZZZ ¼ iΓLoop

ZZZ : ð4:18Þ

4. 4-legs functions

iΓ̂μνρσ
AAW−Wþ ¼ −ig2s2wSμν;ρσ þ iΓLoop

AAWW − ig2s2wSμν;ρσ − ig4s2wa11ðgμρgνσ þ gμσgνρÞ;

iΓ̂μνρσ
AZW−Wþ ¼ −ig2swcwSμν;ρσ þ iΓLoop

AZWW − ig2swcwSμν;ρσ þ i
g4sw
cw

ð2a3gμνgρσ − ð−a3 þ s2wa11 − a12Þðgμρgνσ þ gμσgνρÞÞ;

iΓ̂μνρσ
ZZW−Wþ ¼ −ig2c2wSμν;ρσ þ iΓLoop

ZZWW − ig2c2wSμν;ρσ þ i
g4

c2w
ð2ð2c2wa3 þ a5 þ a7Þgμνgρσ

− ð2c2wa3 − a4 − a6 þ s4wa11 − 2s2wa12Þðgμρgνσ þ gμσgνρÞÞ;

iΓ̂μνρσ
W−WþW−Wþ ¼ ig2Sμρ;νσ þ iΓLoop

WWWW þ ig2Sμρ;νσ þ i
g4

c2w
ð2ð−2a3 þ a4 þ a8 − 2a9 þ 2a13Þgμρgνσ

− ð−2a3 − a4 − 2a5 þ a8 − 2a9 þ 2a13Þðgμνgρσ þ gμσgνρÞÞ: ð4:19Þ

Notice that, to simplify the notation, in all the previous
equations, Eq. (4.13) through Eq. (4.19), we have dropped
the superindex 0 in all the bare a0i coefficients which are the
ones entering in these equations. Remember that these bare
coefficients a0i are the sum of the renormalized coefficients

plus the counterterms, according to our prescription defined
in Eq. (4.3). Therefore, the ai coefficients appearing in the
previous equations, Eq. (4.13) through Eq. (4.19), really
mean ai þ δai, where ai is the rermormalized EChL
coefficient and δai is the corresponding counterterm.
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Regarding the contributions from the one-loop diagrams
to the Green functions (generated by L2), we classify them
generically into four categories accordingly to the particles
in the loops: (i) loops with just scalar bosons, i.e., with H
and/or π (called ‘chiral’ loops in short), (ii) loops with both
gauge and scalar bosons (called ‘mix’ in short reference to
mixed loops), (iii) loops with only gauge bosons (called
‘gauge’ loops in short), and (iv) loops with only ghosts
(called ‘ghost’ loops in short). Then we compute the loops
contributions in the Rξ gauges, generically called here by
ΓLoop
n−legs, as the sum of all these loops:

ΓLoop
n−legs ¼ Γchiral

n−legs þ Γmix
n−legs þ Γgauge

n−legs þ Γghost
n−legs: ð4:20Þ

For this purpose, we have calculated analytically the many
Feynman loop diagrams (there are more than 500 in the
computation of the WZ → WZ scattering amplitude) by
using Mathematica [27]. More precisely, we have imple-
mented our model with FeynRules [20], generated and
drawn all the Feynman diagrams by FeynArts [21], per-
formed themain calculationswith FormCalc and LoopTools
[22] and incorporate some additional checks using FeynCalc
[23] and Package-X [24]. The generic loop diagrams enter-
ing in the specific 1PI functions that participate in the present
computation of the WZ → WZ scattering amplitude are
summarized in Appendix B.
On the other hand, the loop diagrams contributing to the

1-leg funtion (EChL Higgs tadpole), not explicitly drawn,
are the loops with just scalars (H and π), and the loops with
just gauge bosons (W and Z). The analytical result for these
loop contributions to the Higgs tadpole in the Rξ gauges is:

iTLoop ¼ i
1

32π2v
ð3κ3m2

HA0ðm2
HÞ þ 2að6m2

WA0ðm2
WÞ

− 4m4
W þ 3m2

ZA0ðm2
ZÞ − 2m4

ZÞÞ; ð4:21Þ

where A0ðm2Þ ¼ ðΔϵ þ logðμ2=m2Þ þ 1Þm2.
At this point, it is important to remark that the Higgs

tadpole in the EChL is ξ-independent, in contrast to the SM
case. Therefore, the tadpole is a gauge invariant quantity
within the EChL. This interesting feature is a consequence
of the Higgs boson being a singlet field in this non-linear
EFT approach, in contrast to the SM (and SMEFT) case
where the Higgs is a component of a doublet field.
Furthermore, the Higgs field does not couple to the ghost
fields in the EChL (in contrast to the linear realization of
SM and SMEFT where the Higgs does couple to the
ghosts), as we have seen in the presentation of the EChL
Feynman rules in Section II. Therefore, the ghosts loops do
not participate in this 1-leg function and also decouple from
other 1PI functions with external H fields. The comparison
with the SM case is summarized in the Appendixes C–D.

D. Divergences of the one-loop contributions

Due to the lengthy full analytical results of all the
involved 1PI functions to one-loop in the Rξ gauge, we
do not include the explicit formulas for these ΓLoop

n−legs here,
and instead we present just their corresponding analytical
divergent (singular) contributions. The list with these
OðΔϵÞ results is shown in the following.
The loops divergencies in 1- and 2-legs 1PI functions are:

iTLoopjdiv ¼ i
Δϵ

16π2
3

2v
ðκ3m4

H þ 2að2m4
W þm4

ZÞÞ;

−iΣLoop
HH ðq2Þjdiv ¼ i

Δϵ

16π2
3

2v2
ða2q4 − 2a2ð2m2

W þm2
ZÞq2 þ ð3κ23 þ κ4Þm4

H þ ð4a2 þ 2bÞð2m4
W þm4

ZÞÞ;

iΣTLoop
WW ðq2Þjdiv ¼ i

Δϵ

16π2
g2

12
ðð51 − a2 − 12ξÞq2 þ 3ða2 − bÞm2

H þ 3ð9 − 3a2 þ 4ξÞm2
W − 9m2

ZÞ;

iΣTLoop
AA ðq2Þjdiv ¼ i

Δϵ

16π2
e2ð4 − ξÞq2;

iΣTLoop
ZZ ðq2Þjdiv ¼ i

Δϵ

16π2
g2

12

��
4 −

1þ a2

c2w
þ 12c2wð4 − ξÞ

�
q2þ3ða2 − bÞm

2
H

c2w
þ 12m2

Wð3þ ξÞ − 18m2
Z − 9a2

m2
Z

c2w

�
;

iΣTLoop
ZA ðq2Þjdiv ¼ i

Δϵ

16π2
eg
2cw

ðð1=3þ 2c2wð4 − ξÞÞq2 þm2
Wð3þ ξÞÞ;

iΣLLoop
WW ðq2Þjdiv ¼ i

Δϵ

16π2
g2

4
ða2q2 þ ða2 − bÞm2

H þ ð9 − 3a2 þ 4ξÞm2
W − 3m2

ZÞ;

iΣLoop
Wπ ðq2Þjdiv ¼ i

Δϵ

16π2
g2

4
ð−a2q2 − ða2 − bÞm2

H − ð3 − 3a2 þ 8ξ=3Þm2
W þ ð3 − 2ξ=3Þm2

ZÞ;

−iΣLoop
ππ ðq2Þjdiv ¼ i

Δϵ

16π2

�
a2

v2
q4 þ q2

v2
ðða2 − bÞm2

H − ð3þ 3a2 − 4ξ=3Þm2
W − ð3 − 4ξ=3Þm2

ZÞ
�
: ð4:22Þ
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The loops divergencies in the SðqÞVμðk1ÞV 0
νðk2Þ 1PI functions are:

ΓLoop
HAAjdiv ¼ 0;

iΓLoop
HAZ jdiv ¼ i

Δϵ

16π2
g2sw
v

amWmZðξþ 3Þgμν;

iΓLoop
HZZ jdiv ¼ i

Δϵ

16π2
g2

12vc2w
ðð3að2þ a2Þq2 þ aða2 − bÞðk21 þ k22Þ − 3ða2 − bÞð2a − 3κ3Þm2

H − 18abm2
Z

þ 24am2
Wc

2
wðξþ 3Þ − 36am2

WÞgμν þ 2aða2 þ 2bÞðkμ1kν1 þ kμ2k
ν
2Þ þ 12a3kμ1k

ν
2Þ;

iΓLoop
HWW jdiv ¼ i

Δϵ

16π2
g2

12v
ðð3að2þ a2Þq2 þ aða2 − bÞðk21 þ k22Þ − 3ða2 − bÞð2a − 3κ3Þm2

H − 18abm2
W

þ 6am2
Wð4ξþ 9Þ − 18am2

ZÞgμν þ 2aða2 þ 2bÞðkμ1kν1 þ kμ2k
ν
2Þ þ 12a3kμ1k

ν
2Þ;

iΓLoop
πWAjdiv ¼ −

Δϵ

16π2
g2sw
6v

ðgμνð3a2q2 þ ð1 − a2Þk22 þ 3ða2 − bÞm2
H þ 9ð1 − a2Þm2

W − 9m2
Z þ 2ð4m2

W þm2
ZÞξÞ

þ 6a2kμ1k
ν
1 þ 3a2kμ1k

ν
2 − ð1 − a2Þkμ2kν2Þ;

iΓLoop
πWZjdiv ¼

Δϵ

16π2
g2

12vcw
ðgμνð6s2wa2q2 þ ð1 − a2Þk21 − ð1 − a2Þðc2w − s2wÞk22 þ 2s2wð3ða2 − bÞm2

H þ 9ð1 − a2Þm2
W

− 9a2m2
Z þ 2ð4m2

W þm2
ZÞξÞÞ þ ð−1þ 7a2 − 12c2wa2Þkμ1kν1 þ 6s2wa2k

μ
1k

ν
2 þ ð−1þ 2c2w þ 7a2 − 2c2wa2Þkμ2kν2Þ:

ð4:23Þ

The loops divergencies in the W−
μ ðk1ÞWþ

ν ðk2ÞVρ 1PI functions are:

iΓLoop
WWAjdiv ¼ i

Δϵ

16π2
g3sw
12

ðgμνðkρ1ð33 − 4a2 − 18ξÞ − kρ2ð33þ 2a2 − 18ξÞÞ
þ gνρðkμ1ð33 − 4a2 − 18ξÞ − 2kμ2ð−33þ a2 þ 18ξÞÞ þ ð−33þ a2 þ 18ξÞgρμð2kν1 þ kν2ÞÞ;

iΓLoop
WWZjdiv ¼ i

Δϵ

16π2
g3

24cw
ðgμνðkρ1ð1þ 5a2 þ c2wð66 − 8a2 − 36ξÞÞ − kρ2ð1 − 7a2 þ c2wð66þ 4a2 − 36ξÞÞÞ

þ gνρðkμ1ð1þ 5a2 þ c2wð66 − 8a2 − 36ξÞÞ − 2kμ2ð−1þ a2 þ c2wð−66þ 2a2 þ 36ξÞÞÞ
þ ð−1þ a2 þ c2wð−66þ 2a2 þ 36ξÞÞgρμð2kν1 þ kν2ÞÞ: ð4:24Þ

The Zμðk1ÞZνðk2ÞVρ 1PI functions are finite.
The loops divergencies in the VμV 0

νW−
ρWþ

σ 1PI functions are:

iΓLoop
AAWW jdiv ¼ −i

Δϵ

16π2
g4s2w
12

ðð24ξþ a2 − 15ÞSμν;ρσ − 3a2ðgμρgνσ þ gμσgνρÞÞ;

iΓLoop
AZWW jdiv ¼ −i

Δϵ

16π2
g4swcw
24

ðð48ξ − 33þ 2c2wða2 þ 1Þ þ a2ÞSμν;ρσ þ 8ð2 − 3c2wÞa2ðgμρgνσ þ gμσgνρÞÞ;

iΓLoop
ZZWW jdiv ¼ −i

Δϵ

16π2
g4

24c2w
ðð48c4wξ − 32c4w − a4 þ 3a2b − 2a2s2wð2þ c2wÞ − 3b2=2 − 1þ 4s2wc2wÞSμν;ρσ

− ða4 þ 3a2b − 3a2s2wð1þ 2c2wÞ − 3b2=2þ 3s2wc2wÞðgμρgνσ þ gμσgνρÞÞ;

iΓLoop
WWWW jdiv ¼ i

Δϵ

16π2
g4

24
ðð48ξþ 2a4 − 30ÞSμρ;νσ − 3ð−2a4 þ 2a2b − b2 − 2Þðgμρgνσ þ gμσgνρÞÞ: ð4:25Þ

All these divergent contributions will set the values of the OðΔϵÞ counterterms, both for the EW parameters and the ai
coefficients, that are relevant for our computation of the VBS amplitudes. These will be presented in Section IV F.

ONE-LOOP RENORMALIZATION OF VECTOR BOSON … PHYS. REV. D 104, 075013 (2021)

075013-15



E. Slavnov-Taylor identity in the unphysical
charged sector

Before presenting ourmain results on the renormalization
of theL2 parameters and ai coefficients in Section IV F, it is
illustrative to discuss first an important aspect related to the
gauge invariance of the EChL: the Slavnov-Taylor Identity
(STI) corresponding to the unphysical charged sector, in
particular the equation relating the two-legs functions of the
W and π fields. The validity of this relation among the self-
energies in this unphysical sector at the renormalized level
and for arbitrary external momentum is one of the key points
for the ξ-invariance of the NLO EChL predictions. Setting
properly this equation at the renormalized level also guar-
antees the same poles structure at the NLO as in the LO for
all the unphysical propagators as reflected in Eq. (4.10),
which is very convenient from the practical computational
aspects. The corresponding Slavnov-Taylor relations among
the self-energies in the unphysical neutral sector, i.e., for
fA; Z; π3g, can also be set in a similar way. However, the
details in this sector aremore involved andwe do not present
them here since they are not needed for the present
computation of WZ scattering. We then focus next in the
charged unphyical sector and summarize the basic points of
the STI.
After the introduction of LGF and LFP in Eq. (2.7), the

original SUð2ÞL ×Uð1ÞY gauge invariance of the classical
Lagrangian is lost. However, the EChL is invariant under
the BRS transformations [28] that involve the ghost fields.
The BRS symmetry induces relations among the various
Green functions involved, called the Slavnov-Taylor iden-
tities (STIs) [29,30]. A special case of interest here is the
relation between the propagators of the unphysical charged
sector, fW�; π�g which then leads to the corresponding
relations among self-energies.
In oder to get these relations and to understand how are

they written in terms of renormalized quantities let us first
consider the corresponding gauge-fixing Lagrangian of the
charged sector in terms of the bare quantities. This can be
written as follows:

L0
GF ¼ −

�
1ffiffiffiffiffi
ξ01

p ∂μWþ
0μ −

ffiffiffiffiffi
ξ02

q g0v0
2

πþ0

�

×

�
1ffiffiffiffiffi
ξ01

p ∂μW−
0μ −

ffiffiffiffiffi
ξ02

q g0v0
2

π−0

�
; ð4:26Þ

where two independent gauge-fixing bare parameters ξ01 and
ξ02 have been used (for this presentation we follow closely
[26,18]). Then we use the prescription in Eq. (4.3), to write
this Lagragian in terms of renormalized quantities. In
particular, remember that we have chosen just one common
renormalized gauge parameter ξ with ξ01;2 ¼ ξð1þ δξ1;2Þ.
Then, the leading order GF Lagrangian in terms of the
renormalized quantities corresponds to the first term on the
l.h.s. of Eq. (2.12), i.e., to:

LGF¼−
�

1ffiffiffi
ξ

p ∂μWþ
μ −

ffiffiffi
ξ

p gv
2
πþ

��
1ffiffiffi
ξ

p ∂μW−
μ −

ffiffiffi
ξ

p gv
2
π−

�
:

ð4:27Þ

One can use Eq. (4.26) to get the relevant STI in terms of the
undressed propagators in momentum-space. This reads as
follows:

q2ΔWW
L ðq2Þ þ 2

ffiffiffiffiffiffiffiffiffi
ξ01ξ

0
2

q
q2ΔWπðq2Þ− ξ01ξ

0
2m

0 2
W Δππðq2Þ ¼ ξ01:

ð4:28Þ

We then write the above propagators in terms of the
undressed 2-leg functions at one-loop precision and arrive
to the following relation among undressed self-energies:

q2ΣLLoop
WW ðq2Þþ2q2ΣLoop

Wπ ðq2Þ−m2
WΣ

Loop
ππ ðq2Þ¼ 0: ð4:29Þ

Finally, by adding the corresponding counterterms, given
explicitly in Eq. (4.16), one arrives to the wanted STI in
terms of the renormalized quantities at the one-loop level.
This reads as follows:

q2Σ̂L
WWðq2Þ þ 2q2Σ̂Wπðq2Þ −m2

WΣ̂ππðq2Þ

¼ q2 − ξm2
W

ξ
fSTðq2Þ; ð4:30Þ

where the q2 dependent function fSTðq2Þ on the r.h.s of this
STI, which is finite, has been defined as:

fSTðq2Þ ¼ −ðδZW − δξ1Þq2 þ ξδm2
W þ ξm2

WðδZπ þ δξ2Þ:
ð4:31Þ

Some comments about the previous Eq. (4.30) are in order.
First, this STI and the renormalization conditions of
Eq. (4.10) ensure that Σ̂Wπðξm2

WÞ ¼ 0, or equivalently,
the poles of the renormalized charged propagators are
located at q2 ¼ ξm2

W at the one-loop level. Second, it is
important to notice that the new physics effects encoded in
the a11 coefficient, which enters separately in each self-
energy, cancel in this particular combination of renormal-
ized self-energies. Then, interestingly, this STI in Eq. (4.30),
using the Rξ gauges, has the same formal expression in the
EChL as in the SM [26]. However, it is also important to
notice that the role played by the tadpole in the SM is
different than in the EChL, as it is shown in Appendix D.
Again, the fact that theH field is a singlet in the EChL case
introduces some peculiarities respect to the linear realiza-
tions like the SM and the SMEFT. For a verification and
discussion of the STIs in the SM and SMEFT using the
background field method see also [31].
Finally, due to the relevance of the STIs in the con-

sistency of the theory, we will impose the validity of
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Eq. (4.29) at the renormalized level. Namely, we set in
Eq. (4.30):

fSTðq2Þ ¼ 0 ∀ q2 ð4:32Þ

This is equivalent to set an additional renormalization
condition in the unphysical sector valid for all external
momenta (i.e., not only at q2 ¼ ξm2

W), and implies that
each coefficient of this linear function of q2 vanishes,
resulting in:

δξ1 ¼ δZW ; δξ2 ¼ −δZπ −
δm2

W

m2
W

: ð4:33Þ

These conditions in Eq. (4.32) (or, equivalently, in
Eq. (4.33)) and Eq. (4.10) fix then the four counterterms
of the unphysical charged sector (δξ1, δξ2, δZπ and δa11).
It is important to stress that the particular gauge-
fixing and renormalization conditions in the unphysical
sector do not affect the physical S-matrix elements.
However, the simplifications induced by the use of the
STIs and the consequent specific cancellations among
the ξ-dependent terms of the various contributions in the
different channel diagrams do depend on the concrete
formulation of the unphysical sector. In this sense, among
the many arbitrary prescriptions for this unphysical
sector, we choose a particular one via the renormalization
conditions given by Eq. (4.10) and Eq. (4.33). This is
mainly motivated by the interplay between the unphysical
self-energies invloved in the s- and u-channels of the WZ
scattering process of our interest in Fig. 1 and the
cancellations of the ξ-dependent terms that we have seen
occur in both channels of the LO amplitude. Our
prescription then replicates these cancellations also at
the NLO.

F. Renormalization of the EFT parameters

In this section we present the results for the renormal-
ization of the EFT parameters. These include the EW
parameters entering in L2, like g, g0, etc., and the EChL
coefficients, namely, the ones entering in L2, like a, etc,
and the ones entering in L4, i.e., the ai coefficients.
With our previously described diagrammatic procedure

of renormalization of all the 1PI functions we can derive
the divergent parts, i.e., of OðΔϵÞ, for all the involved
counterterms. These are called here in short δϵ.
Alternatively, these divergent parts can also be derived
by using the renormalization conditions introduced in
Section IV B which allow to write the parameter counter-
terms in terms of the undressed 1PI functions. In fact,
we have used this second procedure as a check of our
results that we obtain with the first procedure. Regarding
the finite contributions to all these counterterms, they
are also determined by these renormalization conditions
and, indeed, we use them in the final numerical

computation of the WZ scattering in the next section.
Therefore, we postpone the introduction of the finite
contributions for the next section and focus here in
the derivation of the divergent parts of the EChL
counterterms.
The determination of the divergent parts of all the

counterterms for the EChL parameters follows immediately
from the requirement of getting finite all the renormalized
1PI functions at arbitrary values of the external leg
momenta, i.e., off-shell 1PI functions. This means that
the cancellation of the OðΔϵÞ contributions must occur at
all external momenta, and it proceeds between the loop
contributions in all these 1PI functions and the involved
counterterms. One then requires that these cancellations
occur in each involved Lorentz structure and in each term
in the momentum powers expansion and all these lead to a
system of equations with a number of unknowns, the δϵ’s,
than one solves globally. In practice, one can conven-
iently solve this system in a sequential form, first solving
the 1-leg function, then the 2-legs functions, with the
previous solutions then solving the 3-legs and finally the
4-legs functions. This provides the solution for all δϵ of
both the EW parameters and the EChL coefficients
jointly. For instance, the case of the Higgs self-energy
illustrates clearly this procedure. Setting the cancellation
of the OðΔϵÞ contributions in all the terms of Σ̂HHðq2Þ of
Eq. (4.14), namely, in the terms of order q4, q2 and q0, and
using our result for ΣLoop

HH ðq2Þjdiv in Eq. (4.22) one derives
easily δϵa□□, δϵZH and δϵm2

H. One can proceed similarly
with the other self-energies of the gauge bosons and
the π bosons in Eq. (4.15) and the other 1PI functions. At
this point, it is worth remarking that the divergencies of
the CTs for the EW parameters are determined by just the
1- and 2-legs 1PI functions whereas the divergencies of
the CTs for the EChL coefficients are determined by all
the 1PI functions. These new CTs in the EChL coef-
ficients cancel the extra divergencies arising in the loop
diagramas (generated by L2) of all the 1PI functions and
for arbitrary (off-shell) external momenta.
The summary of the sequential settings regarding the

EW parameters can be read as follows: 1) Σ̂HH sets δϵZH

and δϵm2
H, 2) Σ̂

T
WW sets δϵZW and δϵm2

W, 3) Σ̂ππ sets δϵZπ

(and δϵξ2), 4) Σ̂Wπ and Σ̂L
WW set δϵξ1 and δϵξ2, 5) Uð1Þem

gauge invariance sets δg0=g0 ¼ 0, 6) Σ̂T
ZA then sets δϵg=g, 7)

with the previous δϵZπ , δϵZW , δϵm2
W and δϵg=g, then one

derives δϵv=v, 8) the tadpole T̂ then sets δϵλ=λ, or it
can also be derived alternatively from δϵZH, δϵm2

H, δϵg=g
and δϵv=v, 9) finally, the CTs in the neutral gauge sector
δϵZZ, δϵm2

Z and δϵZA are derived from Σ̂T
ZZ, Σ̂T

AA and Σ̂T
AZ

jointly.
Regarding the EChL coefficients, the δϵ’s are fixed, in

summary, as follows: 1) Σ̂HH sets δϵa□□, 2) Σ̂ππ sets δϵa11
(it is also set by Σ̂L

WW and Σ̂Wπ), 3) Σ̂T
ZZ, Σ̂T

AZ and Σ̂T
AA jointly
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set δϵa0, δϵða1 þ a13Þ and δϵða8 þ a13Þ, 4) Γ̂HWW sets
δϵa=a, 5) Γ̂HWW , Γ̂HZZ, Γ̂HAZ and Γ̂HAA jointly set all the
δϵai’s in Lone−Higgs

4 , 6) Γ̂WWZ, Γ̂WWA, Γ̂πWZ and Γ̂πWA set
jointly δϵa2, δϵa3, δϵa8, δϵa9, δϵa12 and δϵa13 [and using
this latter one then solves a1 separately from 3)], 6) Γ̂WWWW

sets δϵa4 and δϵa5 and Γ̂ZZWW sets δϵða4 þ a6Þ and
δϵða5 þ a7Þ. Therefore, the two together also set δϵa6
and δϵa7. 7) Finally, one can use extra functions and
relations among them as a check of the previous findings.
For instance, one can use Γ̂AAWW and Γ̂AZWW regarding the

checks in the 4-legs functions, and the relations in
Eq. (4.33) regarding the two-legs functions in the unphys-
ical sector.
We list in the following the results for all these divergent

counterterms for the EFT parameters. We collect together
the CTs for the EW parameters, and separately those for the
EChL coefficients.

1. Divergent CTs for the EW parameters

The results are the following:

δϵZH ¼ Δϵ

16π2
3a2

v2
ð2m2

W þm2
ZÞ; δϵT ¼ Δϵ

16π2
3

2v
ðκ3m4

H þ 2að2m4
W þm4

ZÞÞ;

δϵm2
H ¼ Δϵ

16π2
3

2v2
ðð3κ23 þ κ4Þm4

H − 2a2m2
Hð2m2

W þm2
ZÞ þ ð4a2 þ 2bÞð2m4

W þm4
ZÞÞ;

δϵZB ¼ −
Δϵ

16π2
g02

12
ð1þ a2Þ; δϵZW ¼ Δϵ

16π2
g2

12
ð51 − a2 − 12ξÞ;

δϵm2
W ¼ −

Δϵ

16π2
g2

12
ð3ða2 − bÞm2

H þ ð78 − 10a2Þm2
W − 9m2

ZÞ;

δϵm2
Z ¼ Δϵ

16π2
g2

12c2w
ð−3ða2 − bÞm2

H þ ð7ð1þ a2Þ þ 2ð−43þ a2Þc2wÞm2
W þ ð10þ a2Þm2

ZÞ;

δϵg0=g0 ¼ 0; δϵg=g ¼ −
Δϵ

16π2
g2

2
ð3þ ξÞ;

δϵξ1 ¼
Δϵ

16π2
g2

12
ð51 − a2 − 12ξÞ;

δϵξ2 ¼
Δϵ

16π2
1

3v2
ð6ða2 − bÞm2

H þ ð69 − 19a2 þ 4ξÞm2
W − ð18 − 4ξÞm2

ZÞ;

δϵZπ ¼ −
Δϵ

16π2
1

v2
ðða2 − bÞm2

H − ð3þ 3a2 − 4ξ=3Þm2
W − ð3 − 4ξ=3Þm2

ZÞ;

δϵv=v ¼ Δϵ

16π2
2ðm2

W þm2
ZÞ

3v2
ξ: ð4:34Þ

Some comments about these results are in order. First of all, we notice that the ξ parameter enters in these
counterterms, as it is expected in renormalization with Rξ gauges. This also happens in the SM case,
which we have also analyzed for completeness and comparison and whose results are collected in Eq. (C5). Concretely,
we find in both the EChL and the SM, that the ξ parameter enters in the divergencies of the CTs corresponding to g, ZW ,
ξ1;2, Zπ and v. As we can see by an explicit comparison, only δϵg0=g0, δϵg=g coincide in both theories. δϵZB, δϵZW and δϵξ1
coincide for a ¼ 1. In general all the other EW CTs are different in both theories. One of the new features of this non-
linear EFT is that δϵT, δϵm2

H, δϵm
2
W and δϵm2

Z are ξ-independent separately. In contrast, in the SM case, only the proper
contributions of both tadpole and mass counterterms to the pole of the propagators (fδm2) are ξ-independent, as we show
in Eq. (D11). Finally, notice also that the divergent part of the combination ðδv=vþ δZπ=2Þ is ξ-independent in the
EChL.

2. Divergent CTs for the EChL coefficients

The results are the following
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δϵa ¼ Δϵ

16π2
3

2v2
ðða2 − bÞða − κ3Þm2

H þ aðð1 − 3a2 þ 2bÞm2
W þ ð1 − a2Þm2

ZÞÞ;

δϵa0 ¼
Δϵ

16π2
3

8
ð1 − a2Þ; δϵa1 ¼

Δϵ

16π2
1

12
ð1 − a2Þ; δϵa2 ¼ −δϵa3 ¼

Δϵ

16π2
1 − a2

24

δϵa4 ¼ −
Δϵ

16π2
ð1 − a2Þ2

12
; δϵa5 ¼ −

Δϵ

16π2
1

24

�
a4 þ 4a2 − 3a2bþ 3

2
b2 þ 1

�
;

δϵa6 ¼ δϵa7 ¼ δϵa8 ¼ δϵa9 ¼ δϵa10 ¼ δϵa12 ¼ δϵa13 ¼ 0; δϵa11 ¼
Δϵ

16π2
a2

4
;

δϵaHBB ¼ δϵaHWW ¼ Δϵ

16π2
aða2 − bÞ

12
; δϵa□VV ¼ −

Δϵ

16π2
að2þ a2Þ

4
;

δϵaH0 ¼
Δϵ

16π2
3að1 − bÞ

4
; δϵaH1 ¼

Δϵ

16π2
aða2 − bÞ

6
; δϵaH11 ¼ −

Δϵ

16π2
aða2 − bÞ

2
;

δϵad1 ¼ −δϵad2 ¼
Δϵ

16π2
aða2 − bÞ

6
; δϵad3 ¼

Δϵ

16π2
aða2 þ bÞ

2
;

δϵaH8 ¼ δϵaH13 ¼ δϵa□0 ¼ δϵad4 ¼ δϵad5 ¼ 0;

δϵa□□ ¼ −
Δϵ

16π2
3a2

4
: ð4:35Þ

Some comments about these results are in order. First of all,
we wish to remark that we have found no ξ-dependent piece
in any of all these results for the CTs in the EChL
coefficients, in contrast to the previous results for the
CTs of the EW parameters. This ξ-independence in the
results for the δϵai’s is not trivial at all, since its derivation
involves ξ-dependent terms from the loop diagrams every-
where. Obviously, this result is welcome, and on the other
hand, it is also expected since by construction all the
operators in L4 are separately SUð2ÞL ×Uð1ÞY gauge
invariant. Therefore, they do not mix under gauge trans-
formations. Secondly, we see that just a subset of these
coefficients get divergent CTs, concretely: a0, a1, a2, a3,
a4, a5, a11, a (remember that the renormalization of b, κ3
and κ4 do not enter here), aHWW , aHBB, a□VV , aH0, aH1,
aH0, aH11, ad1, ad2, ad3 and a□□. The remaining ai’s do not
get divergent counterterms and, therefore, the correspond-
ing operators in L4 are not needed to cancel the extra
divergencies generated by L2. We also see in these results
that some of these CTs vanish for the choice
a ¼ b ¼ κ3 ¼ κ4 ¼ 1, and some others do not, like a5,
a11, a□VV and a□□. The particular choice b ¼ a2 also
produces some simplifications and fewer divergent CTs are
found. Concretely, we find vanishing δϵ’s for aHWW, aHBB,
aH1, aH11, ad1 and ad2 in that case.
At this point, we believe it is worth comparing our results

in Eq. (4.35) with some previous results of the EChL one-
loop divergencies and counterterms in the literature. This
comparison is a partial one in any case, since our results are
the only ones that apply to the most general and complete

case of off-shell one-loop 1PI functions, including 1-, 2-, 3-
and 4-legs functions, and including all types of loop
diagrams in the Rξ gauges.
The closest comparison of our results in the present work

is with our own previous results in [32]. In that paper we
also worked with the EChL in the Rξ gauges but focused
exclusively on the one-loop decay amplitudes of the Higgs
boson into γγ and γZ. There we found that some particular
combinations of EChL coefficients enter in those ampli-
tudes and they turned out to be finite, RGE invariant and,
therefore, not needed for the cancellation of the one-loop
divergences involved in these Higgs decays. Using the
notation in the present paper, these combinations are:

cHγγ ¼ aHBB þ aHWW − aH1; ð4:36Þ

cHγZ ¼ 1

c2w

�
−aHBBs2w þ aHWWc2w −

1

2
aH1ðc2w − s2wÞ

�
:

ð4:37Þ

for H → γγ and H → γZ respectively. This result is in
agreement with Eq. (4.35) since we also get here the same
cancellation in those combinations of the correspond-
ing δϵai’s.
Another example of observable where there appear

cancellations of divergences in the involved combination
of EChL coefficients is in γγ → WW and γγ → ZZ scatter-
ing. This was studied in [11] where the one-loop amplitude
for the scattering processes with final longitudinal gauge
bosons VLVL (with VV ¼ WW;ZZ) was computed using
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the equivalence theorem, i.e., using Aðγγ → VLVLÞ ≃
Aðγγ → ππÞ and within the approximation of considering
only chiral loops, i.e., loops with Higgs and GBs. The
masses of GBs were set to cero (as in the Landau gauge,
i.e., for ξ ¼ 0). The combinations of EChL coefficients
found in [11] for Aðγγ → ππÞ, which are finite and RGE
invariant, using the notation of the present paper, are:

cγ ¼ aHBB þ aHWW − aH1 in πþπ− and π0π0; ð4:38Þ

and also

ða1 − a2 þ a3Þ in πþπ−: ð4:39Þ

Again this result is in agreement with Eq. (4.35), as can be
checked by the cancellation of the corresponding combi-
nations of δϵai ’s. Also in [11] the EW precision ‘oblique’ S
parameter was related with the coefficient a1. The divergent
CT δϵa1 in Eq. (4.35) is also in agreement with the
corresponding divergence involved in the computation of
S in [11].
The VBS processes with WL and ZL in the external legs

were studied to one-loop within the EChL previously in
[9,10]. It was done by means of the ET, i.e., replacing the
external VL’s by the corresponding π’s, considering just
chiral loops and assuming massless GBs (as in Landau
gauge again, i.e., for ξ ¼ 0). In those works only inter-
actions among scalars were involved, and only a, b, a4 and
a5 appeared in the VBS amplitudes, since they assumed the
so-called isospin limit where no custodial breaking oper-
ators appear. Comparing the divergences for a, a4 and a5
(the renormalization of b does not enter in VBS) found in
[9,10] with our results in Eq. (4.35), we find agreement for
a and a4. The case of a5 is more tricky. We have checked
that when taking the isospin limit in the VBS amplitudes
with physical on-shell external gauge bosons (this limit
implies: mZ → mW , g0 → 0, cW → 1 and no custodial
breaking operators) and considering the full set of operators
in L4, it turns out that a5 allways appears combined with
others. Concretely, it appears in the following combination
of EChL coefficients:

ã5 ¼ a5 −
a
2
a□VV þ a2

4
a□□: ð4:40Þ

From our results in Eq. (4.35), our prediction for the
divergence in this ã5 is:

δϵã5 ¼ −
Δϵ

32π2

�
1

8
ðb − a2Þ2 þ 1

12
ð1 − a2Þ2

�
; ð4:41Þ

which is in agreement with the result for a5 in [9,10], where
these two coefficients, a□VV and a□□, were not considered.
At this point, it is interesting to remark that this combi-
nation in Eq. (4.41) indeed vanishes for a ¼ b ¼ 1.

The renormalization of the EChL coefficients was also
studied in [12]. In this case, they considered the pure scalar
theory, i.e., only the Higgs and GBs sector of the EChL and
worked with massless GBs (as in Landau gauge, with
ξ ¼ 0.). No gauge or ghost fields were included and,
therefore, no gauge-fixing. The considered operators were
custodial preserving. The renormalization of one-loop 1PI
functions, for 1-leg, 2-legs, 3-legs and 4-legs, was per-
formed for off-shell external legs. We find agreement in the
divergences found for the subset of ai ’s involved in the
scalar sector (the coefficients in the notation of [12] are
specified inside the parentheses). Concretely, we agree in: a
(aC), a4 (c11), a5 (c6), a11 (c9), a□VV (c7), ad3 (c10), and
a□□ (c□H).
The renormalization of the EChL was studied in the path

integral formalism, using the background field method, in
[6–8]. The most complete comparison of our results should
be done with the bosonic loop results of [7,8] since they
also included all loops of scalar and gauge particles.
However, the comparison with the path integral results is
tricky since they use the equations of motion to reduce the
number of operators in the Lagrangian. Therefore, some
off-shell divergences do not appear in their results and
some others are redefined by the use of the equations of
motion. They also use redefinitions of the fields (in
particular the Higgs field) to reach the canonical kinetic
term in the Lagrangian. On the other hand, the para-
metrization used in [7,8] is also very different than here
and not straightforward to compare with. In any case,
solving these differences of parametrizations and doing
some algebra, we have found agreement in the divergences
of the following subset of coefficients (the coefficients in
the notation of [7,8] are specified inside the parentheses):
a0 (β1), a1 (XU1), a2 (XU7), a3 (XU8), a4 (D2) and
ã5 (D1).

3. RGEs and running EChL coefficients

Finally, to close the renormalization section we include
here the results for the RGEs and running EChL coeffi-
cients. These are easily derived from the previous results in
Eq. (4.35) and taking into account the relation between the
renormalized and bare coefficients given in Eq. (4.3) by
a0i ¼ ai þ δai. In the MS scheme (recall that μ is the scale
of dimensional regularization in D ¼ 4 − ϵ dimensions),
the running aiðμÞ can be written as follows:

aiðμÞ ¼ a0i − δaiðμÞ; δaiðμÞ ¼ δϵai −
γai
16π2

log μ2;

δϵai ¼
Δϵ

16π2
γai ; ð4:42Þ

where we have written the divergent δϵai in terms of the
anomalous dimension γai of the corresponding effective
operator. The running and renormalized ai’s can then be
related, in practice, by:
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aiðμÞ ¼ ai þ
γai
16π2

log μ2: ð4:43Þ

The set of RGEs for all the ai’s then immediately follow:

aiðμÞ ¼ aiðμ0Þ þ
1

16π2
γai log

�
μ2

μ02

�
; ð4:44Þ

where the specific value of γai for each coefficient can be
read from Eq. (4.35). The RGEs can also be written,
alternatively, as:

daiðμÞ
d log μ

¼ γai
8π2

: ð4:45Þ

Notice that the coefficients (or combination of coefficients)
with vanishing δϵ do not run, therefore, they are RGE
invariants. Finally, notice also that, in the scattering
amplitude of our interest in this work, AðWZ → WZÞ
only the following reduced list of running coefficients
enter: aðμÞ, a0ðμÞ, a1ðμÞ, a2ðμÞ, a3ðμÞ, a4ðμÞ, a5ðμÞ,
a11ðμÞ, aHWWðμÞ, aHBBðμÞ, aH1ðμÞ, ad1ðμÞ, ad2ðμÞ,
a□VVðμÞ and a□□ðμÞ.

V. NUMERICAL RESULTS FOR WZ SCATTERING

In this section we present the numerical results of the
one-loop radiative corrections to the VBS cross section for
the particular channel WZ → WZ and postpone the other
VBS channels for future works. ThisWZ channel illustrates
the main features of the complex NLO cross section
computation within the EChL and also serves as a good
reference case to compare with the SM case. For the
numerical estimation of the cross section we use LoopTools
[22]. Due to the lengthy and time consuming computation
with many one-loop diagrams involved (more than 500),
we have chosen in this numerical computation the Feynman
’t Hooft gauge (ξ ¼ 1), and we have restricted ourselves to
the custodial preserving operators that are needed as
counterterms. Furthermore, we have assumed the relation
b ¼ a2 and taken the values κ3 ¼ κ4 ¼ 1 in the EChL
coefficients of L2. With these simplifying assumptions, the
EChL coefficients participating in our computation of
σðWZ → WZÞ are reduced to the following ones: a, a1,
a2, a3, a4, a5, a11, a□VV and a□□. Regarding the EW input
parameters, for the numerical estimates we have chosen
mW, mZ and GF.
Before presenting the numerical results, we comment

briefly on three preliminar checks that we have done on the
computing procedure.
Firstly, in addition to the previously commented ana-

lytical checks of cancellations of the divergent OðΔϵÞ
contributions, we have also checked numerically that with
this subset of EChL coefficients the full one-loop cross
section σðWZ → WZÞ is finite. For this check, we use an
indirect method: Concretely, we have checked numerically

the independence of the full one-loop cross section with the
value of the μ parameter of dimensional regularization,
which is a high precision test since this μ parameter enters
in the very many loops participating in the radiative
corrections.
Secondly, we have also checked analytically that when

using the so-called isospin limit, which implies taking
mW ¼ mZ, the tree level amplitude from L4 depends on
an even more reduced subset of coefficients: a, a3, a4, a5,
a□VV and a□□. Then, taking the high energy limit
in this amplitude,

ffiffiffi
s

p
≫ mW, mH, the involved parameters

are finally reduced to: a, a3, a4, and ã5, with ã5 ¼ a5−
ða=2Þa□VV þ ða2=4Þa□□, already mentioned in Eq. (4.40).
Here, we do not use those approximations of taking the
isosplin limit nor the high energy limit, but it is worth
knowing these analytical results for the interpretation of the
final complete numerical results presented in this section.
Thirdly, we have also checked the already known results

for σðWZ → WZÞ at the tree level in [33] that showed that
under the hypothesis of similar size for all the ai coef-
ficients, the ones that contribute the most to the cross
section are a4 and a5 (and a3 to a milder level), specially at
the high energies of Oð1 TeVÞ. In this reference (and
others, see for instance [34]) it was also shown the
dominance, at large energies, of the polarized cross section
with longitudinal external gauge bosons.
Considering all these features summarized above, we

have restricted our numerical analysis of the NLO cross-
section to the longitudinal polarization state WLZL →
WLZL channel, studied the effects from the most relevant
EChL renormalized coefficients, a, a4 and a5, and fixed
b ¼ a2 and ai ¼ 0 for the rest of renormalized coefficients
in all our plots in this section. In that case, notice that a5 and
ã5 coincide. Then, we analyze in the following the results
for the six chosen benchmark cases:
(1) a ¼ 1, a4 ≠ 0, a5 ¼ 0
(2) a ¼ 1, a4 ¼ 0, a5 ≠ 0
(3) a ¼ 0.9, a4 ≠ 0, a5 ¼ 0
(4) a ¼ 0.9, a4 ¼ 0, a5 ≠ 0
(5) a ¼ 1, a4 ≠ 0, a5 ≠ 0
(6) a ¼ 0.9, a4 ≠ 0, a5 ≠ 0

In these benchmark cases we have considered two different
values of the a parameter: the case of a ¼ 1 that connects
with the SM results, and the BSM case of a ¼ 0.9
(compatible with present data, see for instance [35]).
The choice of non-vanishing a4 and a5 have been set, to
both positive and negative values, with modulus within the
interval (10−3, 10−4) which are compatible with present
data (see, for instance [36]). However, it should be noticed
that the concrete constraints on these parameters depend, in
fact, on the unitarization method used (for a recent study
see, for instance, [33]). On the other hand, notice also that
the special choice a ¼ 1 reduces considerably the number
of involved divergences and therefore the number of
divergent counterterms in the EChL coefficients.
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Concretely, for a ¼ 1, there only remain non vanishing δϵ’s
for a5, a11, a□VV and a□□, whereas a4 and the combination
defining ã5 give vanishing δϵ therefore leading to RGE
invariant coefficients.

The results for the benchmark cases 1) and 2) are shown
in Fig. 5, left and right panels, respectively. Those for 3)
and 4) are shown in Fig. 6, left and right panels, respec-
tively. Finally, the cases 5) and 6) are shown in Fig. 7, left

FIG. 5. Cross-section predictions forWþ
LZL → Wþ

LZL within the EChL corresponding to a ¼ 1, b ¼ a2, κ3 ¼ κ4 ¼ 1 and varying a4
(left) and a5 (right). The rest of ai ’s are set to zero. The μ scale is set to μ ¼ 1 TeV. Dashed lines are the tree level predictions. Solid lines
are the full one-loop predictions. The solid red (pink) lines correspond to the full (tree) SM prediction. The relative size of the one-loop
prediction respect to the tree level one defined by means of δ1−loop is also shown (lower plots in the upper panels). The predictions for the
lowest partial wave aJ with J ¼ 0 are also displayed (lower panels). The unitarity violating regions in these plots are indicated by the
shadowed areas.
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and right panels, respectively. In all cases we have
computed: a) the total cross section (upper panels), b)
the lowest partial wave amplitude jaJj with J ¼ 0 (lower
panels) and c) the quantity δ1−loop that provides the relative

size of the one-loop correction in the full one-loop results
respect to the tree level prediction. It is defined by:

δ1−loop ¼ ðσFull − σTreeÞ=σTree ð5:1Þ

FIG. 6. Cross-section predictions for Wþ
LZL → Wþ

LZL within the EChL corresponding to a ¼ 0.9, b ¼ a2, κ3 ¼ κ4 ¼ 1 and varying
a4 (left) and a5 (right). The rest of ai ’s are set to zero. The μ scale is set to μ ¼ 1 TeV. Dashed lines are the tree level predictions. Solid
lines are the full one-loop predictions. The solid red (pink) lines correspond to the full (tree) SM prediction. The relative size of the one-
loop prediction respect to the tree level one defined by means of δ1−loop is also shown (lower plots in the upper pannels). The predictions
for the lowest partial wave aJ with J ¼ 0 are also displayed (lower pannels). The unitarity violating regions in these plots are indicated
by the shadowed areas.
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All these evaluated quantities are displayed as functions of
the center of mass energy

ffiffiffi
s

p
of the WZ → WZ scattering

process, in the interval 300 GeV <
ffiffiffi
s

p
< 3000 GeV.

The disallowed areas by the partial wave unitarity bound

ja0j > 1 are also displayed (in grey) in the b) plots. The
corresponding predictions for the SM case are also shown
in all the plots, for comparison. Specifically, using
our notation introduced in Section III, we include the

FIG. 7. Cross-section predictions for Wþ
LZL → Wþ

LZL within the EChL corresponding to a ¼ 1 (upper-left), a ¼ 0.9 (upper-right),
b ¼ a2, κ3 ¼ κ4 ¼ 1 and varying a4 and a5 simultaneously. The rest of ai ’s are set to zero. The μ scale is set to μ ¼ 1 TeV. Dashed lines
are the tree level predictions. Solid lines are the full one-loop predictions. The solid red (pink) lines correspond to the full (tree) SM
prediction. The relative size of the one-loop prediction respect to the tree level one defined by means of δ1−loop is also shown (lower plots
in the upper panels). The predictions for the lowest partial wave aJ with J ¼ 0 are also displayed (lower panels). The unitarity violating
regions in these plots are indicated by the shadowed areas.
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predictions for: SMFull, SMTree, EChLFull, EChL
ð2þ4Þ
Tree and

the corresponding δ1−loop.
Let us first discuss the results in Fig. 5. Looking at these

plots we learn the following features. Since a ¼ 1 in these
plots, there is a connection between the EChL predictions
and the SM ones. Indeed the matching of the EChL and SM
predictions occur for ai ¼ 0, as expected, both at the tree
and one-loop level. Similarly, all the lines in this figure
converge to the SM line at low energies, both at the tree
level and at the one-loop level.
The (EW) one-loop prediction within the SM is by itself

interesting. To our knowledge, the analytical EW one-loop
SM result in the Rξ gauge has not been provided in the
literature for this particular WZ → WZ channel. The
previous full one-loop evaluations of the EW radiative
corrections affecting the VBS processes are numerical and
have been done in the context of the LHC. These numerical
estimates therefore involve many more diagrams than those
considered here, since the relevant subprocesses for the
production of two EW gauge bosons at the LHC include
the initial quarks in the protons and not all of them have the
VBS configuration. In addition, final state fermions from
the final EW gauge boson decays are also usually consid-
ered. In particular, the EWone-loop corrections at the LHC
for the doubly charged channel,WþWþ, were computed in
[37] and for the WZ channel in [38]. The EW one-loop
corrections in the polarized case for WZ have been studied
in [39]. Although the comparison of our SM numerical
results with those commented LHC works is not immediate
nor can be done with high precision for the reasons
explained above, it is however possible to make a rough
comparison of the relative size of the correction, δ1−loop. For
WþWþ, it was found in [37] a large and negative one-loop
radiative correction of up to δ1−loop ∼ −16% in the VBS
energy range of Oð1 TeVÞ typically reached at the LHC.
For WZ, it was found in [38] a similar size of the EW one-
loop correction of up to δ1−loop ∼ −16% at the relevant
LHC energies. Our SM numerical results for the EW one-
loop radiative corrections in WZ → WZ scattering, shown
in Fig. 5, are clearly compatible with those LHC results.
First, Fig. 5 shows that the SM tree level cross-section for
theWZ channel (pink line) is nearly flat with

ffiffiffi
s

p
(reaching

about ∼55 pb), whereas the SM full one-loop cross-section
(red line) is slightly decreasing with energy and it lays
below the tree level one in the whole studied energy
interval. Therefore the interference effect from the one-
loop contribution is destructive. The size of the one-loop
correction relative to the tree level prediction (red line in the
δ1−loop plot) reaches the maximum negative value of about
δ1−loop ∼ −16% at the upper part of the studied intervalffiffiffi
s

p
∼ 3000 GeV which is similar to the previous one-loop

results, in [37,38], commented above.
Next we comment on the EChL results in this Fig. 5.

Regarding the tree level estimates, first we see that the

EChL predictions at the LO, i.e., from L2, coincide with the

SM predictions at LO (pink line), i.e., EChLð2Þ
Treeja¼1 ¼

SMTree, as expected. Second, we see that the tree level
EChL predictions including both L2 and L4, given by

EChLð2þ4Þ
Tree (dashed lines), display a different behaviour

with
ffiffiffi
s

p
than EChLð2Þ

Tree. This is due to the effect from the
involved ai which can be summarized, at the amplitude
level, as ðf1 þ f2aiÞ, where at high energies f1 and for
a ¼ 1 tends to a constant value (like in the SM), whereas f2
goes as s2, giving the polynomial Oðp4Þ dependence in
powers of the external momentum, typical in the chiral
expansion. These chiral Lagrangian features can also be
seen in the predictions of the partial wave amplitudes in the
lower plots. When squaring the amplitude, the tree level
cross section receives a linear contribution in the EChL
coefficient, of OðaiÞ, and a quadratic contribution of
Oða2i Þ. The effect beyond the SM from the ai coefficient
then comes from the competition of these two contributions
and their comparison with the LO one. The sign of ai also
matters. It turns out that the contribution from the linear
term is destructive for positive ai and constructive for
negative ai. The quadratic contribution is always construc-
tive. And this is true for both coefficients, a4 (left panel)
and a5 (right panel). For the lowest ja4j (ja5j) values of
10−4 the linear term dominates up to about 2000 GeV
(2500 GeV) and explains the behaviour with energy from
threshold up around this energy, giving a tree level
prediction below (above) the LO one for positive (negative)
coefficient, as the dashed orange (brown) lines indicate
compared with the pink lines. Above that energies (i.e.,
above about 2000 GeV for a4 and 2500 GeV for a5) the
quadratic term starts dominating the ai effect and all the

tree level predictions EChLð2þ4Þ
Tree grow faster with energy,

crossing above the LO prediction, EChLð2Þ
Tree. For larger

ja4;5j values of 10−3 this crossing above the LO prediction
occurs at lower energies and produces the pattern shown in
the dashed light green lines in these plots, corresponding to
the positive coefficients. The tree level prediction first
decreases with energy, producing a minimum (at about
900 GeV in the a4 case and at about 1200 GeV in the a5
case) and then increases with energy. The tree level
predictions reach the highest values at the highest studied
energies, leading to very large cross sections (generically
larger for a4 than for a5) which indeed enter into the
unitarity violating region (see the corresponding plot
for the partial wave below) for the largest 10−3 values at
around 2400 GeV for a4 and 2800 GeV for a5. The
predictions for the lower values of 10−4 lay all in the
unitarity preserving region.
Regarding the NLO predictions within the EChL in

Fig. 5, they can be generically and jointly summarized by
noticing that all the EChLFull lines (solid lines other than
the red and pink ones) follow approximately the same
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pattern with energy as the corresponding tree level ones,

EChLð2þ4Þ
Tree (dashed lines). This is in clear concordance with

the typical behaviour in ChPT where both the ai contri-
butions from L4 and the loop contributions from L2 count
equally in the chiral counting, and provide together the
NLO term in the chiral expansion (i.e., in the expansion in
powers of the external momentum). Furthermore, we also
see in these plots that all these EChL one-loop predictions
for the cross-section lay below the EChL tree level ones
and, therefore, they provide a negative one-loop correction
δ1−loop, as it happens in the SM case. For ja4j (or ja5j) of
10−4 it reaches a maximum of about δ1−loop ∼ −15%, and
for ja4j (ja5j) of 10−3 the maximum decreases slightly to
around δ1−loop ∼ −10% (−12%). For the high energy region
the relative size of the one-loop correction in general
decreases due to the dominance of the quadratic terms
already mentioned above.
Let us nowmove on to the results in Fig. 6 that summarize

our findings for a ≠ 1. First of all, we see that fora ¼ 0.9 the
equivalence between the LOpredictionwithin the EChL and

the SM is lost. Specifically, the EChLð2Þ
Treeja¼0.9 prediction

(light blue lines) clearly separates from the SM one (pink
lines), growing with

ffiffiffi
s

p
and reaching values of up to

∼350 pb at the highest studied energies of 3000 GeV.
Then all the other EChL predictions shown in these plots
converge at the lowest energies to this LO-EChL result and
not to the LO-SM one. When looking at the pattern with
growing energy, the qualitative behaviour of all the lines
basically replicate those of the previous figure, but now the
departures and interference effects occur respect to this LO-
EChL prediction (light blue lines). Again, the effects from
the a4;5 coefficients show a similar pattern as before with
constructive (destructive) contributions for the negative
(positive) cases. The main difference respect to previous
figure for a ¼ 1, is in the size of the full one-loop cross
section which gets larger for a ¼ 0.9 and also the relative
one-loop contribution respect the tree level one gets larger
and it to happens to change the sign for the largest studied
values of the ai coefficients at the high energies. For ja4;5j of
10−4 we get a maximum negative value of about δ1−loop∼
−20%, and for ja4j (ja5j) of 10−3 we get a maximum
negative value of around δ1−loop ∼ −12% (−20%) and a
maximum positive value of around δ1−loop ∼ 8% (20%).
We next move to Fig. 7, where the effects from both a4

and a5 are considered together for the two cases a ¼ 1 (left
panels) and a ¼ 0.9 (right panels). In general, these two
coefficients lead to combined effects that provide larger
cross sections when they are of same sign than when they
are of opposite sign. The pattern of the EChL tree level
cross section predictions as a function of these two
parameters for fixed

ffiffiffi
s

p
, provides the typical contours

with elliptical shape in the ða4; a5Þ plane. For high energies
in the OðTeVÞ range, and for relative large values of these
parameters of Oð0.01Þ the ellipsis has the longer axis

within the quadrants with opposite sign a4;5 and the shorter
axis within the quadrants with same sign a4;5, leading to
stronger constraints from experimental data in this later
case (see for instance, [33] and[40]). These same features of
the EChL tree level prediction for the two cases with same/
opposite signs for a4 and a5 can be seen in Fig. 7, but now
as a function of

ffiffiffi
s

p
. As we can see in this figure, the

dominance of the cross section for the same sign case over
the opposite sign case occurs for the a ¼ 1 case (left panel)
and for very large energies, above 2400 GeV, due to the
small values jai ∼ 10−4j assumed here. The most important
results in this figure are the EChL one-loop predictions that
again lay below the corresponding tree level ones for all the
a4;5 values considered in the case a ¼ 1 (left plots) and they
are above the tree level predictions only at the highest
energies for a ¼ 0.9 (purple lines in the right plots). This
implies that the one-loop corrections get negative and the
maximum reached values for δ1−loop are around ∼−15% for
a ¼ 1 and around ∼−20% for a ¼ 0.9. It should be noticed
that in this figure, in addition to �10−4 we have chosen
another different value for ja4;5j. Then the predictions in grey
in this Fig. 7 correspond to those specific values taken in [34]
to which we wish to compare with. In this reference an
approximation to compute the EChLone-loop corrections in
WLZL → WLZL was done, consisting in taking just the
loop-corrections from scalars (i.e., the chiral loops) to
evaluate the real part of the amplitude, whereas the imagi-
nary part was not computed but instead was replaced by the
LO squared (by means of the Optical Theorem). Our full
results for a ¼ 0.9 (solid grey lines in the right panel),
including all loops give interestingly very similar numerical
predictions for high energies, say above 1 TeV, than those in
figure 2 of [34], indicating that these chiral loops are indeed
the dominant ones at these high energies. This was indeed
expected from the general features of ChPT but getting this
result from the complex one-loop computation within theRξ

gauges is not a trivial task at all.
Finally, to end this section, we have analyzed further the

issue of perturbative unitarity within the EChL and com-
pare with the SM case. To perform such analysis one must
use the full one-loop results for the partial wave amplitudes
and check the validity of the unitarity condition involving
the real and imaginary parts of the partial wave, namely,
checking the validity of the equation Im½aJ� ¼ jaJj2 that is
derived from the elastic unitarity condition of the scattering
matrix, according to the Optical Theorem. We have
checked in Fig. 8 that this condition for J ¼ 0 is fullfiled
perturbatively at all the studied energies in both the full
one-loop SM (dots in red) and full one-loop EChL
predictions (dots in blue). Obviously the tree level pre-
dictions fail this relation since they are real for both the SM
and EChL. The interesting finding is that, in the EChL case,
this unitarity condition is fulfilled perturbatively in the

sense of ChPT, namely, Im½að1Þ0 � ¼ jað0Þ0 j2. In other words,
the NLO correction unitarizes the LO prediction. In our
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opinion, this a valuable result given the complexity of the
full one-loop computation involving many loop diagrams
of all types (more than 500), that generate finally this
imaginary part. The unitarity condition is then fullfiled
perturbatively but it is not accomplished, however, with the
full quantities in both the imaginary and real part. Namely,
the values of Im½aFull0 � and jaFull0 j2 differ in the EChL,
mainly for large a4;5 EChL coefficients and at high
energies, and this leads to the crossing over the unitary
bound, ja0j > 1, as can be seen for instance in some the
lines in the previous figures of this section.

VI. CONCLUSIONS

In this paper we have computed the one-loop corrections
to WZ → WZ scattering within the context of the non-
linear EFT determined by the bosonic sector of the EChL.
This is a novel and full (EW) one-loop computation of the
VBS amplitude within the covariant Rξ gauges that
accounts for all kind of bosonic loop diagrams including:
EW gauge bosons, Goldstone bosons, the Higgs boson and
the ghost fields. For this computation we have used a
diagrammatic method where the renormalization of the full
one-loop amplitude is performed by first computing the
involved renormalized 1PI Green functions which is a more
demanding computation since it requires the renormaliza-
tion to be implemented at the off-shell Green functions

level, i.e., for arbitrary external legs momenta. We have
then established the systematics for the renormalization
program of all the off-shell 1PI one-loop functions. The
regularization method that we have used through this work
is dimensional regularization in D ¼ 4 − ϵ dimensions
where all the divergences are given in terms of Δϵ ¼
2=ϵ − γE þ logð4πÞ and the associated energy scale μ
appears typically in logarithms. As renormalization pre-
scription we use multiplicative renormalization and fix the
renormalization parameters and associated counterterms in
a hybrid way: for the EW parameters involved (EW wave
functions, masses and couplings) we use the OS scheme,
whereas for all the EChL coefficients denoted generically
by ai we chose the MS scheme.
After computing the very many loop diagrams involved

in the renormalization of the 1-leg, 2-legs, 3-legs and 4-legs
1PI functions we extract all the divergences in the Rξ

gauges and present here all the needed counterterms to
renormalize these divergences. We summarize in
Eqs. (4.34)–(4.35) the analytical results that we have found
for all of the divergent counterterms, both for the EW
parameters and the EChL coefficients, respectively.
Whereas the ξ appears in the analytical results of the
EW parameters counterterms, we find in contrast, that all
the δai’ s counterterms are ξ-independent. This implies that
the EChL coefficients are gauge invariant. Within this non-
linear EFT, the EChL coefficients of the effective operators
in the Lagrangian with chiral dimension four act as
countertems of the extra divergencies generated by the
Lagrangian with chiral dimension two. Thus our results for
the δai’s, which are ξ-independent, together with the ones
for the EW parameters, summarize all the needed counter-
terms to find finite off-shell 1PI and, therefore, also to
arrive to a finite prediction for the VBS amplitude at one-
loop. We have also presented the derived results for the
running coefficients aiðμÞ and their corresponding RGEs.
Out of the full set of ai ’s only, a subset of them have non-
vanishing divergent counterterms δϵ, and therefore, only the
corresponding subset of running coefficients aiðμÞ do run
indeed with the scale. Saying this in different manner, the
remaining coefficients or combination of coefficients with
δϵ ¼ 0 are RGE invariants. On the other hand, the fact that
the RGEs found are written separately for each coefficient
aiðμÞ and not as a coupled system of differential equations
implies that these coefficients do not mix under RGEs. In
addition, we have also discussed in this work, the relevance
of the STI and the role played by the Higgs tadpole which
we also find different in the EChL than in the SM.
We have also presented the results in parallel for the one-

loop computation for the SM VBS amplitude and the
corresponding 1PI Green functions involved within the Rξ

gauges which we believe are also novel results. Our SM
results are interesting by themselves and deserve some
discussion to them, but we have focused on the SM
comparison with our EChL results.

FIG. 8. Check of perturbative unitarity in the one-loop pre-
dictions for the lowest partial wave a0 in both the EChL with
a ¼ 0.9 and the SM. The 10 blue (red) points are the EChL (SM)
predictions for the ten chosen energies,

ffiffiffi
s

p ½GeV� ¼ 300, 600,
900, 1200, 1500, 1800, 2100, 2400, 2700, 3000, from left to right
along the diagonal line in this plot.
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In the last part of this work we have presented the
numerical results for the full one-loop cross section of the
longitudinal polarized gauge bosons σðWLZL → WLZLÞ.
For this numerical computation we have set the Feynman
’t Hooft gauge and considered only the subset of EChL
coefficients of the custodial preserving effective operators
that are needed as counterterms. We have further assumed
the simplifying relation b ¼ a2 among the most relevant
coefficients, a and b of the lowest order Lagrangian and set
κ3 ¼ κ4 ¼ 1 in the Higgs boson potential, as in the SM. The
full one-loop cross section σðWLZL → WLZLÞ is then
analyzed as a function of the most relevant renormalized
EChL coefficients, a, a4 and a5 and as a function of the
energy of the VBS process. To cover different scenarios for
these coefficients we have explored six benchmark cases,
which address the study of the effects from a4 and a5
varying their modulus in the interval ð10−3 − 10−4Þ and
considering the two cases of positive and negative coef-
ficients. The a parameter is fixed to either 1, the SM
reference value, or to the BSM value of 0.9. From our
systematic study of the size of the one-loop corrections in
the cross section respect the tree level one by means of the

δ1−loop quantity we conclude that the one-loop corrections
within the EChL are of comparable size to the SM ones
which has also been computed and presented here. For
the SM one-loop corrections in the explored energy
interval of (300 GeV, 3000 GeV) we find negative values
reaching a maximum size of δ1−loop ∼ −16%. For the EChL
case and varying the EChL coefficients in the benchmark
cases mentioned above, we find in this same energy
interval negative values reaching a maximum size of
δ1−loop ∼ −20%, and we also find positive values reaching
a maximum size of δ1−loop ∼þ20%. These numerical
results are just for the WZ → WZ channel but we expect
similar sizeable corrections in other VBS and VBF proc-
esses. These other processes are left for future works.
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i
2
ag2vgμν i

2
g2vgμν

i
2c2w

ag2vgμν i
2c2w

g2vgμν

1
2
gg0vf�cw;∓swggμν 1

2
gg0vf�cw;∓swggμν
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APPENDIX A: RELEVANT FEYNMAN RULES

In this Appendix we summarize all the relevant Feynman
rules participating in the computation using the Rξ gauges.
In Tables I–V we collect those relevant Feynman rules for

TABLE II. Additional relevant EChL Feynman rules from L2, in the scalar sector, participating in the loops contributions to VBS
processes. All momenta are incoming. The corresponding SM rules are included for comparison.

Interaction EChL SM

−3iκ3 m2
H
v −3i m2

H
v

− 2i
v ap1 · p2 −i m2

H
v

−3iκ4 m2
H

v2 −3i m2
H

v2

− 2i
v2 bp1 · p2 −i m2

H
v2

− i
3v2 ð2pþ ·p0þ þ 2p− · p0− − ðpþ þ p0þÞ · ðp− þ p0−ÞÞ −2i m2

H
v2

i
3v2 ð2pþ · p− þ 2p0 · p0

0 − ðpþ þ p−Þ · ðp0 þ p0
0ÞÞ −i m2

H
v2

0 −3i m2
H

v2
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the EChL interaction vertices coming from L2 of Eq. (2.7)
and the corresponding SM Feynman rules for a clear
comparison between them. We use the following short
notation for the standard Lorentz tensors of the gauge
boson self couplings:

Vμνρðp−; pþ; p0Þ ¼ gμνðp− − pþÞρ þ gνρðpþ − p0Þμ
þ gρμðp0 − p−Þν;

Sμν;ρσ ¼ 2gμνgρσ − gμρgνσ − gμσgνρ; ðA1Þ

TABLE III. Additional relevant EChL Feynman rules from L2, with one gauge boson, participating in the loops contributions to VBS
processes. In the rules with ‘f; g’, the first and second arguments correspond to the photon and Z boson, respectively. All momenta are
incoming. The corresponding SM rules are included for comparison.

Interaction EChL SM

agpμ∓ 1
2
gðp∓ − pHÞμ

∓ i
2
gðp∓ − p0Þμ ∓ i

2
gðp∓ − p0Þμ

igfsw; c
2
w−s2w
2cw

gðp− − pþÞμ igfsw; c
2
w−s2w
2cw

gðp− − pþÞμ

a g
cw
pμ
0

1
2cw

gðp0 − pHÞμ

b g
v p

μ∓ 0

g
3v ð2p� − p∓ − p0∓Þμ 0

g
3v ðp0 þ p0

0 − 2p∓Þμ 0

2ia g
v fsw; c

2
w−s2w
2cw

gðp− − pþÞμ 0
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and, to shorten the tables, we present together the photon
and Z boson interaction vertices in most of the Feynman
rules. In that cases, the first coupling corresponds to the
photon and the second one to the Z.

APPENDIX B: RELEVANT ONE-LOOP
DIAGRAMS

Here we present the relevant one-loop diagrams entering
in the computation of the 1PI functions within the EChL. In
order to shorten the number of diagrams in the full list that

is generated with FeynArts [21], we have grouped them by
different topologies and used a generic notation for the
internal propagators: dashed lines refer to all possible scalar
particles S, namely, Higgs boson and Goldstone bosons;
wavy lines refer to all possible EW gauge bosons; and
dotted lines refer to the ghost fields.
The generic loop diagrams entering in the specific 1PI

functions that participate in the present computation of the
WZ → WZ scattering amplitude are then summarized in
the following figures: Fig. 9 (self-energies), Fig. 10 (VVV),
Fig. 11 (πWZ), Fig. 12 (HVV), and Fig. 13 (WZWZ).

TABLE IV. Additional relevant EChL Feynman rules from L2, with two gauge bosons, participating in the loops contributions to VBS
processes. All momenta are incoming. The corresponding SM rules are included for comparison.

Interaction EChL SM

i
2
bg2f1; 1

c2w
ggμν i

2
g2f1; 1

c2w
ggμν

∓ag2 s2w
cw
gμν ∓g2 s2w

2cw
gμν

0 i
2
g2gμν

f−2ig2s2wgμν; 0g i
2c2w

g2fðc2w − s2wÞ2; 1ggμν

− 4i
v ag

2s2wgμν 0

∓ 1
v bg

2 s2w
cw
gμν 0

� 2
3v g

2 s2w
cw
f2; 1ggμν 0
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As we have remarked in Appendix A, the Feynman rules
in the EChL from L2 and the SM are different, and in
consequence the loop-diagrams contributions are also
different in both theories. These differences can be sum-
marized in 5 categories: (i) the self interactions among GBs
have momentum dependence in the EChL (this is a typical
feature of the non-linear EFTs), in contrast to the SM case,
(ii) In the EChL there are new interactions of the Higgs with
gauge bosons interactions given by the a and b coefficients,

and these coincide with the SM ones only for a ¼ b ¼ 1,
(iii) interactions of gauge bosons with multiple (more than
2) scalars are present in the EChL but not in the SM (these
are also typical in the non-linear EFTs), (iv) there are not
Higgs-ghosts interactions in the EChL (since H is a
singlet), in contrast to the SM, (v) there are interactions
of ghosts with multiple GBs in the EChL (due to the non-
linear GBs transformations under SUð2ÞL × Uð1ÞY) that
are not present in the SM. Other differences due to κ3;4 ≠ 1

TABLE V. Additional relevant EChL Feynman rules from L2, involving ghosts, participating in the loops contributions to VBS
processes. All momenta are incoming (except for the c’s, given by the arrows). The corresponding SM rules are included for
comparison.

Interaction EChL SM

�igfsw; cwgpμ �igfsw; cwgpμ

�igfsw; cwgpμ �igfsw; cwgpμ

∓igfsw; cwgpμ ∓igfsw; cwgpμ

0 − i
4
g2vf1; 1

c2w
gξ

� 1
2
g2vfsw; c

2
w−s2w
2cw

gξ � 1
2
g2vfsw; c

2
w−s2w
2cw

gξ

� 1
4cw

g2vξ � 1
4cw

g2vξ

i
12
g2f1; 2

c2w
gξ 0
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do not affect the present computation of the one-loop WZ
scattering amplitude. The previous remarked differences
give rise to different results for the loops computation in the
EChL and the SM: (i)–(ii) derive in different results for the
same topological diagrams in both theories; (iii)–(v) pro-
duce different (presence or absence) diagrams depending
on the theory. We comment these issues in more detail for
each relevant 1PI in our computation, in the following.
We start with Fig. 9 corresponding to the self-energies. In

the Higgs boson self-energy (first column) the ghosts do

not participate in the EChL case but they are present in the
SM computation. All the results in the EChL depend on a
or b and the resulting momentum dependence in the self-
energy is quite different due to the different behaviour of
the scalar loop diagrams (chiral loops) in the EChL and the
SM. The second column corresponds to Σππ , in which the
momentum dependence from the chiral loop diagrams is
also quite different and there is an additional topology (the
last one) coming from the two GB with two ghosts
interactions proper of the EChL. The main difference in

FIG. 9. Generic loop diagrams for the self-energies in the EChL. Dashed lines represent the Higgs boson and the GB bosons, wavy
lines represent the EW gauge bosons, and dotted lines are the ghost fields. The same notation is used in the loop diagrams of all the
figures.
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the self-energy connecting a W with its corresponding GB
(third column) arises from the first topology since it is not
present in the SM. The ΣWW topologies are the same in both
theories, but the results involving scalars differ. Notice that
the pure gauge and ghost loops give the same contributions
in both theories.
The 1PI Green functions corresponding to three gauge

bosons within the EChL are collected in Fig. 10. The

generic topologies are the same as in the SM. However the
corresponding results differ only for the loop diagrams with
scalars. The contributions from pure gauge and ghost loops
coincide in the EChL and the SM.
Regarding the πWZ Green function of Fig. 11, the first

three topologies are genuine of the EChL and are not
present in the SM since they involve interactions of three
scalars with two or one gauge bosons. The remaining

FIG. 10. Generic loop diagrams for the WWZ, ZZA and ZZZ Green functions in the EChL.
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diagrams with scalars in the loop give different results in
both theories. However, the pure gauge and ghost loops
coincide again.
The one-loop diagrams for the 3-legs 1PI involving the

Higgs and two gauge bosons (WW and ZZ) are showed in
Fig. 12. The first (first and second) topologies of HWW
(HZZ) are present in the EChL, but they are not present in
the SM, since they involve interactions of three scalars
with one gauge boson. As before, the remaining diagrams
with scalars in the loops also differ, but the loops with
only gauge bosons coincide in both theories. However,
there are no diagrams with ghost in the loops within
the EChL.
The observations for the WZWZ 1PI function (in

Fig. 13) are the same than in the three gauge bosons ones.
In particular, all the generic topologies coincide in the
EChL and the SM (also the pure gauge and ghost loops
predictions) while the corresponding results differ for the
diagrams with scalars.

APPENDIX C: THE SM CASE:
ONE-LOOP DIVERGENCES AND

CTs IN THE Rξ GAUGES

The renormalized 1PI functions within the SM are
obtained, as it is usual, by adding the tree part, the loop
contributions and the CTs, like in Eq. (4.1). In this
Appendix, we collect the results for the one-loop diver-
gences of the 1PI functions, as well as the corresponding
CTs for the SM case. To our knowledge, these have not
been provided in the literature in the Rξ gauges yet and,
therefore, they are worth to be considered by themselves.
Besides, we believe they are interesting to be compared
with the results within the EChL, which is our main
motivation in the present paper. For illustrative purposes
and to differentiate EChL and SM results clearly, we use
the ‘bar’ notation for all the 1PI functions in the SM, i.e.,
T̄, Σ̄i and Γ̄i denote the SM tadpole, self-energies and
n-legs functions, respectively.

FIG. 11. Generic loop diagrams for the πWZ Green functions in the EChL.
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FIG. 12. Generic loop diagrams for the HWW and HZZ Green functions in the EChL.
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FIG. 13. Generic loop diagrams for the WZWZ Green functions in the EChL.
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After the computation of all the relevant one-loop diagrams in the SM, already mentioned in the Appendix B, we find the
following SM results for the divergencies in 1- and 2-legs 1PI functions that should be compared with the EChL results
in Eq. (4.22):

iT̄Loopjdiv ¼ i
Δϵ

16π2
1

2v
ð3m4

H þ 6ð2m4
W þm4

ZÞ þm2
Hð2m2

W þm2
ZÞξÞ;

−iΣ̄Loop
HH ðq2Þjdiv ¼ i

Δϵ

16π2
1

2v2
ð−2ð3 − ξÞð2m2

W þm2
ZÞq2 þ 15m4

H þ 18ð2m4
W þm4

ZÞ þm2
Hð2m2

W þm2
ZÞξÞ;

iΣ̄TLoop
WW ðq2Þjdiv ¼ i

Δϵ

16π2
g2

12
ðð50 − 12ξÞq2 þ 3ð3þ ξÞð2m2

W −m2
ZÞÞ;

iΣ̄TLoop
AA ðq2Þjdiv ¼ i

Δϵ

16π2
e2ð4 − ξÞq2;

iΣ̄TLoop
ZZ ðq2Þjdiv ¼ i

Δϵ

16π2
g2

12

��
4 −

2

c2w
þ 12c2wð4 − ξÞ

�
q2þ12m2

Wð3þ ξÞ − 6ð3þ ξÞm2
Z − 3ð3þ ξÞm

2
Z

c2w

�
;

iΣ̄TLoop
ZA ðq2Þjdiv ¼ i

Δϵ

16π2
eg
2cw

ðð1=3þ 2c2wð4 − ξÞÞq2 þm2
Wð3þ ξÞÞ;

iΣ̄LLoop
WW ðq2Þjdiv ¼ i

Δϵ

16π2
g2

4
ð3þ ξÞð2m2

W −m2
ZÞ;

iΣ̄Loop
Wπ ðq2Þjdiv ¼ i

Δϵ

16π2
g2

4
ð−2ξm2

W þ 3m2
ZÞ;

−iΣ̄Loop
ππ ðq2Þjdiv ¼ i

Δϵ

16π2
g2

2
ð−2ð3 − ξÞð2m2

W þm2
ZÞq2 þ 3m2

H þ 12m4
W þ 6m4

Z þm2
Hð2m2

W þm2
ZÞξÞ: ðC1Þ

We find the following SM results for the loop divergen-
cies in the SðqÞVμðk1ÞV 0

νðk2Þ 1PI functions that should be
compared with the EChL results in Eq. (4.23):

Γ̄Loop
HAAjdiv¼ 0;

iΓ̄Loop
HAZ jdiv¼ i

Δϵ

16π2
g2sw
v

mWmZðξþ3Þgμν;

iΓ̄Loop
HZZ jdiv¼ i

Δϵ

16π2
g2

2vc2w
ð4c2wm2

Wð3þξÞ−6m2
W−3m2

ZÞgμν;

iΓ̄Loop
HWW jdiv¼ i

Δϵ

16π2
g2

2v
ð2m2

Wð3þ2ξÞ−3m2
ZÞgμν;

iΓ̄Loop
πWAjdiv¼−

Δϵ

16π2
g2sw
2v

ð2m2
Wξ−3m2

ZÞgμν;

iΓ̄Loop
πWZjdiv¼

Δϵ

16π2
g2s2w
2vcw

ð2m2
Wξ−3m2

ZÞgμν: ðC2Þ

We find the following SM results for the loop divergen-
cies in the W−

μ ðk1ÞWþ
ν ðk2ÞVρ 1PI functions that should be

compared with the EChL results in Eq. (4.24):

iΓ̄Loop
WWAjdiv ¼ i

Δϵ

16π2
g3sw
6

ð16 − 9ξÞðgμνðkρ1 − kρ2Þ
þ gνρðkμ1 þ 2kμ2Þ − gρμð2kν1 þ kν2ÞÞ;

iΓ̄Loop
WWZjdiv ¼ i

Δϵ

16π2
g3cw
6

ð16 − 9ξÞðgμνðkρ1 − kρ2Þ
þ gνρðkμ1 þ 2kμ2Þ − gρμð2kν1 þ kν2ÞÞ: ðC3Þ

As in the EChL, the SM Zμðk1ÞZνðk2ÞVρ 1PI functions
are finite.
Finally, we find the following SM results for the loop

divergencies in the VμV 0
νW−

ρWþ
σ 1PI functions that should

be compared with the EChL results in Eq. (4.25):

iΓ̄Loop
AAWW jdiv ¼ −i

Δϵ

16π2
g4s2w
6

ð12ξ − 7ÞSμν;ρσ;

iΓ̄Loop
AZWW jdiv ¼ i

Δϵ

16π2
g4swcw

6
ð12ξ − 7ÞSμν;ρσ;

iΓ̄Loop
ZZWW jdiv ¼ −i

Δϵ

16π2
g4c2w
6

ð12ξ − 7ÞSμν;ρσ;

iΓ̄Loop
WWWW jdiv ¼ i

Δϵ

16π2
g4

6
ð12ξ − 7ÞSμρ;νσ: ðC4Þ

Overall, the main difference of these SM results respect
to our previous EChL results is that all the SM divergences
found have the tree level Lorentz structure, or in other
words, the off-shell contributions in the SM are finite. This
fact can be understood since the SM is a fully renormaliz-
able theory while the EChL is renormalizable perturba-
tively in the chiral expansion. Namely, as we have
repeatedly said, the new operators and coefficients in L4

act as extra CTs and are the responsible for the cancelation
of the extra divergencies arising in the loop diagrams that
are generated by L2. This way, one obtains finite 1PI Green
functions in the EChL at all off-shell momenta.
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Finally, we summarize in the following the resulting
divergencies of the SM counterterms using the Rξ gauges
that should be compared with the EChL results in

Eq. (4.34). From the previous findings in this Appendix
we get the following SM results for the counterterms of the
EW parameters:

δϵZϕ ¼ Δϵ

16π2
3 − ξ

v2
ð2m2

W þm2
ZÞ; δϵT̄ ¼ Δϵ

16π2
1

2v
ð3m4

H þ 6ð2m4
W þm4

ZÞ þm2
Hð2m2

W þm2
ZÞξÞ;

δϵm2
H ¼ Δϵ

16π2
3

2v2
ð5m4

H þ ð−2þ ξÞm2
Hð2m2

W þm2
ZÞ þ 6ð2m4

W þm4
ZÞÞ;

δϵZB ¼ −
Δϵ

16π2
g02

6
; δϵZW ¼ Δϵ

16π2
g2

6
ð25 − 6ξÞ;

δϵm2
W ¼ −

Δϵ

16π2
g2

12
ðð68 − 6ξÞm2

W − ð9þ 3ξÞm2
ZÞ;

δϵm2
Z ¼ Δϵ

16π2
g2

12c2w
ðð14þ 6ξ − 84c2wÞm2

W þ ð11þ 3ξÞm2
ZÞ;

δϵg0=g0 ¼ 0; δϵg=g ¼ −
Δϵ

16π2
g2

2
ð3þ ξÞ;

δϵξ1 ¼
Δϵ

16π2
g2

6
ð25 − 6ξÞ;

δϵξ2 ¼
Δϵ

16π2
2

3v2
ð25m2

W − 9m2
ZÞ;

δϵv=v ¼ Δϵ

16π2
2m2

W þm2
Z

v2
ξ: ðC5Þ

Overall, we see that all the CTs, except δϵg0=g0 and δϵg=g,
are different in the SM and the EChL. The results for δϵZB,
δϵZW and δϵξ1 coincide in the EChL and the SM for a ¼ 1.
The tadpole and the mass CTs in the SM, contain an
explicit dependence on the ξ parameter, in contrast to the
EChL result. Since there is just one wave function
renormalization in the SM case, corresponding to the
whole doublet, the value for δϵZϕ, is different than δϵZH

and δϵZπ of the EChL. The results for δϵξ2 and δϵv=v are
also different in the SM and the EChL (they only coincide
for a ¼ b ¼ 1 in the Landau gauge). One of the most
important differences among the SM and EChL results
comes from the different role played by the Higgs tadpole
in both theories. In fact, it implies that within the SM, only
the proper contribution fδm2 of both tadpole δT and mass
counterterms δm2 to the pole of the propagators are
ξ-independent. In contrast to the EChL case, where due
to the genuine character of H being a singlet, the tadpole
and the mass counterterms are ξ-independent, separately, as
we have already said. We discuss these tadpole related
issues in more detail in the next Appendix.

APPENDIX D: TADPOLE RELATED ISSUES

Within the SM the Higgs tadpole appears due to the
linear H term in the potential once the doublet field is
expanded in terms of their component fields:

VSMðΦÞ ¼ −
1

2
m2

HΦ†Φþ λðΦ†ΦÞ2

¼ T̄H þm2
H

2
H2 þ T̄ðπþπ− þ π23=2Þ=v

þ λvðH3 þHπþπ− þHπ23Þ

þ λ

�
H4

4
þ π43

4
þ ðπþπ−Þ2 þH2π23

2

þH2πþπ− þ π23π
þπ−

�
; ðD1Þ

where the Φ doublet is defined as:

Φ ¼
� iπþ

vþH−iπ3ffiffi
2

p

�
: ðD2Þ

Notice that the tadpole T̄ is also present in the quadratic
terms of the GBs. At the leading order, the tadpole is absent
since T̄LO ¼ ð−m2

H=2þ λv2Þv ¼ 0 (due to the relation
among the tree level quantities setting m2

H ¼ 2λv2). At
the next to leading order, the tadpole is present and it must
be renormalized, starting with the bare tadpole given
by T̄0 ¼ ð−m0 2

H =2þ λ0v20Þv0.
Regarding the multiplicative renormalization prescrip-

tion in the SM, we use the usual choice for the scalar sector
given by:
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Φ0¼
ffiffiffiffiffiffi
Zϕ

p
Φ ⇒ H0 ¼

ffiffiffiffiffiffi
Zϕ

p
H; π1;2;30 ¼ ffiffiffiffiffiffi

Zϕ

p
π1;2;3;

v0¼
ffiffiffiffiffiffi
Zϕ

p ðvþδvÞ; λ0¼Z−2
ϕ ðλþδλÞ;

m02
H ¼m2

Hþδm2
H; ðD3Þ

where Zϕ ¼ 1þ δZϕ. Notice the difference in the SM with
respect to the EChL in Eq. (4.3) where we had two
renormalization constants ZH and Zπ . The use of just
one Zϕ in the scalar sector of the SM is convenient to
preserve the SUð2Þ invariance in the renormalization
procedure.
In the OS scheme, where the renormalized Higgs

boson mass is the physical mass, mH, and it is related
to the renormalized coupling λ and the renormalized v
by m2

H ¼ 2λv2, the counterterm associated to the SM
tadpole is:

δT̄ ¼
�
−δm2

H=2þm2
H

�
δv
v
−
δZϕ

2

�
þ δλv2

�
v; ðD4Þ

and the resulting counterterms for the linear and quadratic
contributions in the SM Higgs potential are:

δT̄H þ 1

2
ðδm2

H þm2
HδZϕÞH2 þ δT̄ðπþπ− þ π23=2Þ=v:

ðD5Þ

Therefore, the self-energies of the Higgs and charged GBs
in the SM are

−i ˆ̄ΣHHðq2Þ ¼ −iΣ̄Loop
HH ðq2Þ þ iðδZϕðq2 −m2

HÞ − δm2
HÞ;

−i ˆ̄Σππðq2Þ ¼ −iΣ̄Loop
ππ ðq2Þ þ iððq2 − ξm2

WÞδZϕ

− ξδm2
W − ξm2

Wδξ2 − δT̄=vÞ; ðD6Þ

and the main difference with the EChL result is the
presence of δT̄ in the SMGB self-energy. All the remaining
1PI Green functions in the SM have formally equal

contributions from the CTs to the corresponding ones of
the EChL by setting a ¼ b ¼ 1 and δa ¼ δai ¼ 0 in
Eqs. (4.15)–(4.19).
Since we impose the same OS renormalization condi-

tions of Eqs. (4.6)–(4.10) in both the SM and the EChL, but
there are less counterterms to be fixed in the SM than in the
EChL, then it is clear that a reduced number of 1PI
functions need to be renormalized in the SM respect to
the EChL case. Concretely, for the present computation
it is sufficient to renormalize the 1-leg and 2-legs functions
in the SM case. All the remaining 1PI will be finite in the
SM as it happens in any fully renormalizable theory.
Consequently, in the SM one can determine the renorm-
alization constant δZϕ from the residue of the Higgs boson
propagator in Eq. (4.7) and the counterterms of the
unphysical charged sector (only δξ1 and δξ2) by the pole
structure of the renormalized propagators in Eq. (4.10).
Finally, the tadpole has also implications in the STI for

the SM case, since it enters in all the reducible 2-legs Green
functions of the unhysical sector and its contribution
(contrary to the EChL case) do not cancel in the particular
combination of self-energies defining the STI. Let us see
this feature on more detail next.
Since we implement a (linear) covariant Rξ gauges as in

Eq. (2.12) within both EChL and SM, the STI in terms of
the undressed propagators in momentum-space is the same
as in Eq. (4.28). Once the undressed propagators are written
in terms of the reducible 2-legs Green functions, the
resulting STI at the one-loop level is:

q2ΓLLoop
WW þ 2q2ΓLoop

Wπ −m2
WΓ

Loop
ππ ¼ 0: ðD7Þ

However these reducible 2-legs functions differ within the
SM and EChL when they are written in terms of the 1PI
contributions, i.e., in terms of the self-energies and tadpole.
The difference comes from the non-linearity of the scalar
sector interactions and the a-dependence:

ΓLLoop
WW ¼ ΣLLoop

WW þ agmW
TLoop

m2
H

; Γ̄LLoop
WW ¼ Σ̄LLoop

WW þ gmW
T̄Loop

m2
H

;

ΓLoop
Wπ ¼ ΣLoop

Wπ − agmW
TLoop

m2
H

; Γ̄Loop
Wπ ¼ Σ̄Loop

Wπ −
gmW

2

T̄Loop

m2
H

;

ΓLoop
ππ ¼ ΣLoop

ππ − a
gq2

mW

TLoop

m2
H

; Γ̄Loop
ππ ¼ Σ̄Loop

ππ þ gm2
H

2mW

T̄Loop

m2
H

: ðD8Þ

With these definitions in Eq. (D7) we arrive to Eq. (4.29) in
the EChL, in which the tadpole contribution cancel out. The
analog expression in the SM is, in contrast:

q2Σ̄LLoop
WW þ 2q2Σ̄Loop

Wπ −m2
WΣ̄

Loop
ππ −

gmW

2
T̄Loop ¼ 0; ðD9Þ

where the presence of the tadpole is manifest. Adding the
corresponding counterterms and using the tadpole renorm-
alization OS condition, we have the same formal expres-
sion, corresponding to Eq. (4.30), at renormalized level in
the SM [26]:
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q2 ˆ̄ΣL
WWðq2Þ þ 2q2 ˆ̄ΣWπðq2Þ −m2

W
ˆ̄Σππðq2Þ

¼ q2 − ξm2
W

ξ
f̄STðq2Þ; ðD10Þ

with the finite function given by f̄STðq2Þ ¼
−ðδZW − δξ1Þq2 þ ξδm2

W þ ξm2
WðδZϕ þ δξ2Þ. Notice that

all the involved counterterms are already determined by the
conditions in Eqs. (4.6)–(4.10).

The last difference on the tadpole role in both theories
resides in its contribution to the poles of the physical
propagators. If we consider the counterterm contribution
independent of the momentum to the reducible 2-legs
Green functions (ΓHH, ΓT

WW and ΓT
ZZ), we arrive to the

following combination (fδm2) of both tadpole and mass’
counterterms to these reducible functions in both EChL
and SM

fδm2
HjEChL ¼ δm2

H −
3κ3m2

H

v
δT
m2

H
; fδm2

HjSM ¼ δm2
H −

3m2
H

v
δT̄
m2

H
;

fδm2
WjEChL ¼ δm2

W − agmW
δT
m2

H
; fδm2

WjSM ¼ δm2
W − gmW

δT̄
m2

H
;

fδm2
ZjEChL ¼ δm2

Z − ag
mZ

cw

δT
m2

H
; fδm2

ZjSM ¼ δm2
Z − g

mZ

cw

δT̄
m2

H
: ðD11Þ

As we already anticipated in Section IV F 1 and
Appendix C, only these fδm2

H, fδm2
W and fδm2

Z combinations
of mass and tadpole counterterms are ξ-independent in
the SM [41]. Whereas in the EChL, each contribution
is ξ-independent separately. This is one of the implications

of the Higgs boson being a singlet in the EChL where the
role of the tadpole is different than in the SM, and ends up
in the ξ-independence of some quantities in the EChL
respect to the SM.
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