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We point out a novel role for the Standard Model neutrino in dark matter phenomenology where the
exchange of neutrinos generates a long-range potential between dark matter particles. The resulting dark
matter self interaction could be sufficiently strong to impact small-scale structure formation, without the need
of any light dark force carrier. This is a generic feature of theories where dark matter couples to the visible
sector through the neutrino portal. It is highly testable with improved decay rate measurements at future Z,

Higgs, and 7 factories, as well as precision cosmology.
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Dark matter (DM) is a key ingredient throughout the
evolution of our universe, yet its identity remains unknown.
The nature of DM is under careful scrutiny at various
experimental frontiers from laboratories to the cosmos, and
some hints already exist. Nongravitational self-interaction
of DM could compete with gravity and impact the
formation of structures. Such a new force can help
alleviating tensions between numerical simulations and
the observed small-scale structure of the universe, known
as the “core-cusp” and “too big to fail” problems [1-3]. It
could also yield important consequences such as seeding
supermassive black hole formation [4-8]. The dynamics of
self-interacting particle DM have been explored in a broad
range of theories [9-25], which typically host more degrees
of freedom than the DM itself. Light dark force carriers are
often introduced to mediate the DM self interaction whose
potential imprint on the visible universe is tightly con-
strained [26-30]. A separate small-scale challenge, known
as the “missing satellite” problem [31-34], favors warm
DM candidates that can erase heretofore-unobserved small
structures [35-41]. Although these puzzles might be
relaxed with known physics such as baryonic feedback
[42-47], they serve as good motivations for building and
testing novel DM models.

Because neutrinos are the lightest known particles other
than the photon and their properties remain to be fully
understood, it is natural to speculate on the possible role of
neutrinos to address the above puzzles. In this article, we
demonstrate that DM self-interactions can be mediated
exclusively by Standard Model (SM) neutrinos, without
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the introduction of light dark force carriers. This is a generic
possibility within the class of neutrino portal theories. There
are several attractive outcomes. First, DM self interaction
proceeds via the exchange of two neutrinos. At separations
shorter than the inverse neutrino mass, the potential gov-
erning DM self interaction is long range, of the form 1/7°.
For asymmetric DM, the interaction is repulsive, and the
low-energy scattering can be solved within quantum
mechanics, independent of short distance physics. Second,
the DM-neutrino interaction establishes a thermal history of
the dark states and allows robust constraints to be set on their
mass scale. It could also keep the two species in kinetic
equilibrium for an extended period, enabling the warm DM
scenario. Last, unlike many dark sector models that are
secluded from the visible sector, the DM candidate consid-
ered here must interact with known particles through
neutrinos. It is highly testable by precision SM decay rate
measurements. Laboratory and cosmological measurements
provide complementary future probes of such a novel target.

Our starting point is the effective interacting Lagrangian

gy = L) gy (1)

Aq
where L,(ax = e, pu,7) is a SM lepton doublet in the flavor
basis and H is the Higgs doublet. The dark fermion y and
scalar ¢ are SM gauge singlets but charged under a global
U(1) or Z, symmetry. The lighter is stable and serves as
the DM candidate, which we assume to be y hereafter. The
operator is dimension five, having a cutoff scale A,.
Interestingly, this neutrino portal operator has been intro-
duced and explored for a number of other motivations
[41,48-56]. Below the electroweak symmetry scale, a
Yukawa interaction is generated between the neutrino and
dark particles,

Eim = yaﬂa)(¢ +H.c, (2)
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where y, = v/V2A, and v =246 GeV is the vacuum
expectation value of the Higgs field.

I. DARK MATTER SELF-INTERACTION

We first explore DM self interaction of relevance to
structure formation. Because the DM particles are already
nonrelativistic when they self interact in galaxies and
clusters, the heavier ¢ field could be integrated out from
Eq. (2), leading to

BT S
£mt - 2 2 (}(J/ PR)() (l/ay/APLl/a)’ (3)
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where P, r = (1 F y5)/2 and m, 4 are the masses of the
dark states. This effective Lagrangian is valid when the mass
difference between ¢ and y is much larger than the energy/
momentum transfer carried by neutrinos. The mass square
difference factor downstairs captures an enhancement effect
when the dark state masses are near. The nonrelativistic
matrix element for yy — yy scattering via two-neutrino

exchange (Fig. 1) is

iIM(1) =

N 247[2(m§) - m§)2
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where t = ¢> < 0 with ¢* the four-momentum transfer and
u is the renormalization scale. The ultraviolet (UV) diver-
gence (¢ — 0) is regularized in the full theory (including ¢).

The long-range part of the potential after resumming the
multiple two-neutrino exchange can be derived using the
dispersion theory technique [57-59],

dq -1 _, o di ¢
V(r) = / q3’e_’q4'/ dﬂ%(z)
(27[) 2ri 0 t— q
|4

_ Va
N 12871’3(1115) -m3)?*r’

(5)

where disc M (¢') is the discontinuity of M across its branch
cut in the complex plane of #. A similar potential from
neutrino exchange within the SM has also been explored
[60—-65]. At very short distances where ¢ cannot be
integrated out, and at very large distances where neutrino
masses are non-negligible, the 1/7° form of the above
potential will break down [66]. Thanks to the repulsive
nature of the potential and the nonrelativistic nature of DM
scattering considered here, the probability for two DM

FIG. 1. Two-neutrino exchange diagram that can generate a
long-range potential between DM particles.

particles to find each other at distances r < mgl is highly

suppressed. More concretely, the probability density r*R(r)?
(where R is the radial wavefunction) scales as r* in this
region.' This motivates us to proceed by assuming only y is
present in the universe, which coincides with the asymmetric
DM idea [67].% In addition, the potential energy at r > m;!
(inverse of neutrino mass) is much lower than the typical DM
kinetic energy in galaxies and clusters. A direct comparison
shows V(r = m;")/K ~1077(10 MeV/m,,)3 for an order
one coupling y, where K = m,v*/2 ~ 107%m, is the typical
dark matter kinetic energy in galaxies. Based on these
observations, we conclude it is a good approximation to
simply consider the potential in Eq. (5) for the discus-
sions here.

The low energy scattering problem for a repulsive 1/7
potential is well defined in quantum mechanics. It is free
from UV dependence in spite of being singular [69,70]. In
Refs. [71,72], the analytic expression of the scattering
phase shift has been derived for all partial waves. In
particular, the S-wave phase shift takes the form

32131 (~1/3)

andy =73, S HOU):
_ 13/5 :u)(;(|ya|4 :| /5
f=k {64713(m42,5 -m2)?] (6)

where I is the Euler gamma function, u,, = m, /2 is the
reduced mass of the yy system, and k is the relative
momentum of scattering. For nonrelativistic DM and
perturbative values of y,, we find the expansion parameter
f < 1. Thus, the f°/3 term dominates. Higher partial wave
(¢ > 1) phase shifts begin from order f> or higher and are
not important. The scattering cross section is S-wave
dominated and well approximated by

An mylyal* 17
S aE] sin?8, ~ 0.027 {(m{— n (7)
7

The resulting cross section is insensitive to the relative
velocity as long as f < 1. This implies the same prediction
of the DM self-interaction cross section applies to various
astrophysical objects, from dwarf galaxies to clusters. It is
important to note that the Born approximation does not
work. Indeed, the resulting cross section goes as |ya|8/ 3
rather than |y,|®, indicating the importance of resumming
multiple neutrino bubble exchange contributions [71]. This
is the key for generating a sizable DM interaction in spite of

'To numerically solve the Schrodinger equation, the potential
energy term needs to be regularized near the origin (at r < m;l ).
We find the resulting probability and cross section are indepen-
dent of the regularization scheme.

Had we considered symmetric DM, the yy interaction
potential would be attractive and require detailed knowledge
of short distance physics [68].
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FIG. 2. The region of parameter space where the long-range force due to neutrino exchange can generate a sufficiently large DM self-
interaction cross section for addressing puzzles in small-scale structure formation. The dark red shaded band corresponds to

0.03 cm?/gram < I~

m, <1 cm?/gram. The dark blue band corresponds to y serving as a warm DM. The two regions intersect in

the darkest shaded region. The cyan curve sets an upper bound on neutrino-y interactions from Lyman-a. The lower bound on the DM
mass set by AN is shown by the vertical black line. Existing upper bounds on the Yukawa coupling |y,| are set from the invisible
decays of the Z boson (magenta curve) and Higgs boson (orange curve) and the leptonic decay of the 7 (green curve). Current (projected)

bounds are solid (dashed). All bounds are at 95% confidence level.

the loop-level origin of the potential, Eq. (5). Numerically,
we have verified the above results by solving the
Schrodinger equation using the shooting method (see,
e.g., [9,73]).

With the cross section in Eq. (7), we derive the parameter
space for self-interacting DM. In Fig. 2, the red shaded
band corresponds to 0.03 cm?/gram <o, /m, <
1 cm?/gram, potentially relevant for solving the various
small-scale puzzles [74]. The upper bound is set by the
Bullet Cluster observation [75-77]. Here we focus on the
coupling of the v, neutrino with the dark sector, which
receives the least constraints compared to other flavor
choices (see discussions below). In the left and right panels,
we choose the mass ratios m,/m, = 1.1 and 2, respec-
tively. When m, and m,, are closer, the effective coupling in
Eq. (3) is more enhanced, allowing for smaller values of y,.

II. OVERLAP WITH WARM DARK MATTER

The interaction of Eq. (2) has another significant
cosmological implication. A sufficiently large y, can keep
DM and neutrinos in kinetic equilibrium with each other for
an extended period of time, leading to a suppressed DM
density power spectrum at small length scales via colli-
sional damping. The cutoff mass scale of the smallest
gravitationally bound DM halo is [41]

3120 MeV1i[ 26 MeV
M, ~ 108 Mo{ly“q [ ¢ H °

0.3 I’®

My mg, —my
where My is the solar mass. With 107 Mg < M, <
10° Mg, y is a warm DM candidate and can shed light
on the “missing satellite” problem. The favored parameter

space is depicted by the blue shaded band in Fig. 2.
Remarkably, there is an overlap with the self-interacting
DM region, allowing all puzzles in small-scale structure
formation to be tied to this simple framework.

The neutrino-DM interaction can also be constrained by
larger scale probes, including the cosmic microwave back-
ground (CMB) [78-80] and large scale structure [81,82].
The constraint from Lyman-a [81] is the strongest among
these, setting an upper limit on the elastic scattering cross
section of o/m, < 107%® cm?/MeV for neutrino energies
of around 100 eV. This bound is shown by the cyan curve in
Fig. 2. Other constraints from higher energy neutrinos, e.g.,
those detected from SN1987A [83] or at IceCube [84—87],
do not set a bound on the plotted parameter space.

III. EARLY UNIVERSE CONSTRAINTS

To derive the above self-interaction results, we have
made the assumption that DM is asymmetric. This has the
advantage of making the DM self interaction repulsive, thus
the low energy observables are free from UV dependence.
A number of dark sector asymmetry generation options
exist which would extend the above minimal setup [88,89].
Here we show the strength of the DM-neutrino interaction
is compatible with such an assumption. When the temper-
ature of the universe is higher than the y and ¢ masses, the
Yukawa interaction of Eq. (2) thermalizes them with
neutrinos. The key cross section for annihilating away
the y particles through a f-channel ¢ exchange is

Yal*my ©)
32z (my +mj)*

(GUMI );()?—wl_/ -
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The annihilation of ¢¢* — vv is P-wave suppressed. For
my ~ m,, the condition for efficiently depleting the sym-

metric population (i.e., (6vy),;,5 > 3 X 1072¢ cm?/s)
corresponds to

m 1/2
> 0.004 Z . 10
5 > 0004 ) (10)

Clearly, this requirement is easily satisfied for the coupling
values of interest in Fig. 2. There is also a requirement from
particle asymmetry transfer considerations. Because y is
light, its asymmetry is much larger than the baryon
asymmetry. The neutrino portal operator in Eq. (1) can
convert the y asymmetry into a neutrino-antineutrino
asymmetry. To avoid overproducing the cosmic baryon
asymmetry, the y-asymmetry-generating mechanism must
occur after the electroweak phase transition with the
sphaleron process turned off.

There is an important constraint on the lightness of DM
from AN, the excess radiation degrees of freedom in the
universe, during the big bang nucleosynthesis and recom-
bination epochs [90-92]. To support a U(1) stabilizing
symmetry for the dark sector, we must assume y is a Dirac
fermion and ¢ a complex scalar. For the two mass ratios
considered in Fig. 2, lower limits on the y mass are 9.7 and
8.9 MeV, respectively, applying a conservative 2¢ limit
AN < 0.5[93,94]. The upcoming CMB Stage-1V experi-
ment [95] can probe the DM mass up to 18 and 17 MeV,
respectively.

IV. LABORATORY CONSTRAINTS

The interaction strength of the neutrino portal to the dark
sector can be probed by a number of precision measure-
ments of known particles. The effective operator of Eq. (1)
contributes to the invisible decay width of the Higgs boson,

|ya GFm?/
Uhotrs == =3 dxfy(x,2;.24)
XP 256\/57[3 (\/Z_)ﬂ’\/z?)z h 20 %
Sz 24) = x72(1 = x)*(x = 2 + ;)

X \/x2 —2x(z, +z4) + (2, —2)*,  (11)

where z, = my/mj, and z, = mgj/mj. The f, integral
evaluates to 1/3 in the limit z, = z, = 0. An upper bound
on y, is derived by requiring the branching ratio of this
decay (adding the charge-conjugation channel) to be less
than 24% at 95% confidence level (CL) [96,97], as shown
by the horizontal orange curve in Fig. 2. An optimistic
projected sensitivity for the Higgs invisible decay branch-
ing ratio at the HL-LHC of 3% [98] would strengthen this
limit to |y,| < 0.3.

The Yukawa interaction of Eq. (2) contributes to the
invisible decay width of the Z boson,

|ya|2GFm%/

F ST yd — o = A dx X, Z 7Z( )
R PTWo (VEt+v/2)? T2(x.329)
fz(x. 2y 24) = X7 (24 X) fu(x. 2 29). (12)

where here z, = mz/m% and z4 = mj/m7. The existing
constraint on the Z boson invisible width requires new
physics contribute I" < 2.8 MeV at 95% CL [99], setting an
upper bound on y, as shown by the magenta curve in Fig. 2.
Future lepton colliders could improve this sensitivity to
I' < 1 MeV [100]. Both the Higgs and Z decay constraints
apply universally to all neutrino flavors @ = e, u, 7.

For a = 7, the Yukawa interaction of Eq. (2) leads to a
new decay mode 7~ — " ,y¢ which mimics the normal
leptonic decay. A similar process was considered in [101].
We simulate this four-body decay with Feynrules [102] and
MadGraph [103] and obtain an upper bound on y, as a
function of the DM mass, as shown by the green curve in
Fig. 2. The projected bound assumes an improvement on
the sensitivity of this channel from 0.04% [99] to 0.014% at
Belle 1T [104]. For other flavor choices @ = u, e, much
stronger constraints arise from leptonic decays of charged
kaons and pions. In those cases, the parameter space of
interest to cosmology has already been excluded.

V. NEUTRINO SELF-INTERACTION

The neutrino portal coupling could also lead to non-
standard neutrino self interaction, which arises from a box
diagram with y and ¢ in the loop. The low-energy effective
operator takes the form

L, = Gege(0y" PrLv) (07, Prv),
n12
[Val* (m = my — 2mgm3 log %)

Gop = £ 13
eff 647[2(77’!5) _m§)3 ( )

In the limit my ~ m,, Geg = |y,|*/(1927°m?). A sizable
neutrino self interaction has been suggested as an ingre-
dient for solving the Hubble tension [105,106]. However,
the relevant parameter regions are already ruled out by
laboratory and AN constraints in this model.

VI. UV COMPLETION

Eq. (1) can be generated in a UV-complete model by
integrating out a gauge singlet vectorlike fermion that
couples to both the visible and dark sectors. The interacting
Lagrangian takes the form Lyy = Ay L, HNg + ApNyd +
MN;Ng + H.c. The first Yukawa term allows for a heavy-
light neutrino mixing below the electroweak scale,

Ny = /1 = |Uu*N, + Uaub,, where the hat fields are
physical states and U,y = Ayv/\/M?* + 230>, Together
with the second Yukawa term, we obtain the relationship,
Vo = ApUa, where y, is the Yukawa coupling introduced

075010-4



NEUTRINO AS THE DARK FORCE

PHYS. REV. D 104, 075010 (2021)

in Eq. (2). In this UV completion, there are additional
constraints on the mixing parameter U 4. For a = 7 flavor
and N mass around/above the electroweak scale, the
strongest constraints are from z lepton decays, |U.| <
0.2 [52,107]. If |U,] is close to this upper bound, the
favored range of y, in Fig. 2 can be obtained with an order
one fundamental Yukawa coupling Ap.

VII. OTHER POSSIBILITIES

If the mass difference between ¢ and y is tuned to be
comparable to the typical kinetic energy of DM, the
effective Lagrangian Eq. (3) will break down. In galaxies,
¢ particles could be produced on shell via yy collisions. In
this case, ¢ could still decay quickly back to y and a
neutrino within the cosmological timescale, leading to
dissipative DM of the inelastic kind [108,109]. In the
limiting case where ¢ and y are degenerate, both will serve
as DM. The Born level momentum-transfer cross section
[11] of y — ¢ scattering via neutrino exchange is 6,4, ~
lol*/(32zm;v?) in the limit m,v > m,, where v is the
relative velocity. The Bullet Cluster constraint on this cross
section implies |y,| < 0.026(m,/10 MeV)*/4(v/1073)1/2.
This constraint could be affected by nonperturbative effects
due to multiple neutrino exchanges.

VIII. SUMMARY

The findings of this work demonstrate that the simple
neutrino portal offers a rich DM phenomenology. Self-
interacting DM can occur without introducing light dark
force carriers, but rather via the exchange of SM
neutrinos. We identify a parameter space where DM
has sufficiently strong self interactions to influence
small-scale structure formation. Meanwhile, the interac-
tion between DM and neutrinos could accommodate a
warm DM candidate. This interplay allows for a unified
solution to all the puzzles in small-scale structure for-
mation. The corresponding neutrino portal interaction is a
well-motivated target for precision measurements of
decay rates at future collider experiments [110-115] as
well as precision measurements by the upcoming CMB-
S4 project. Similar physics as discussed above can be
generalized to DM self interaction via the exchange of
other motivated light fermions, such as the sterile neutrino
[116-121].

ACKNOWLEDGMENTS

We thank James Cline, Walter Tangarife, Hai-Bo Yu, and
Yi-Ming Zhong for useful discussions and communica-
tions. This work is supported by the Arthur B. McDonald
Canadian Astroparticle Physics Research Institute.

[1] D.N. Spergel and P.J. Steinhardt, Phys. Rev. Lett. 84,
3760 (2000).
[2] S. Tulin and H.-B. Yu, Phys. Rep. 730, 1 (2018).
[3] J.S. Bullock and M. Boylan-Kolchin, Annu. Rev. Astron.
Astrophys. 55, 343 (2017).
[4] S. Balberg, S.L. Shapiro, and S. Inagaki, Astrophys. J.
568, 475 (2002).
[5] J. Choquette, J. M. Cline, and J. M. Cornell, J. Cosmol.
Astropart. Phys. 07 (2019) 036.
[6] R. Essig, S.D. Mcdermott, H.-B. Yu, and Y.-M. Zhong,
Phys. Rev. Lett. 123, 121102 (2019).
[7] W.-X. Feng, H.-B. Yu, and Y.-M. Zhong, Astrophys. J.
Lett. 914, 1.26 (2021).
[8] H. Xiao, X. Shen, P.F. Hopkins, and K.M. Zurek,
J. Cosmol. Astropart. Phys. 07 (2021) 039.
[9] M.R. Buckley and P.J. Fox, Phys. Rev. D 81, 083522
(2010).
[10] L. G. van den Aarssen, T. Bringmann, and C. Pfrommer,
Phys. Rev. Lett. 109, 231301 (2012).
[11] S. Tulin, H.-B. Yu, and K. M. Zurek, Phys. Rev. D 87,
115007 (2013).
[12] B. Bellazzini, M. Cliche, and P. Tanedo, Phys. Rev. D 88,
083506 (2013).
[13] K. K. Boddy, J. L. Feng, M. Kaplinghat, and T. M. P. Tait,
Phys. Rev. D 89, 115017 (2014).

[14] Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky, and
J. G. Wacker, Phys. Rev. Lett. 115, 021301 (2015).

[15] A. Soni and Y. Zhang, Phys. Rev. D 93, 115025 (2016).

[16] Y. Zhang, Phys. Dark Universe 15, 82 (2017).

[17] M. Blennow, S. Clementz, and J. Herrero-Garcia,
J. Cosmol. Astropart. Phys. 03 (2017) 048.

[18] S. D. McDermott, Phys. Rev. Lett. 120, 221806 (2018).

[19] X. Chu, C. Garcia-Cely, and H. Murayama, Phys. Rev.
Lett. 122, 071103 (2019).

[20] X. Chu, C. Garcia-Cely, and H. Murayama, Phys. Rev.
Lett. 124, 041101 (2020).

[21] X. Chu, C. Garcia-Cely, and H. Murayama, J. Cosmol.
Astropart. Phys. 06 (2020) 043.

[22] A. Costantino, S. Fichet, and P. Tanedo, J. High Energy
Phys. 03 (2020) 148.

[23] P. Agrawal, A. Parikh, and M. Reece, J. High Energy Phys.
10 (2020) 191.

[24] Y.-D. Tsai, R. McGehee,
arXiv:2008.08608.

[25] I. Chaffey, S. Fichet, and P. Tanedo, J. High Energy Phys.
06 (2021) 008.

[26] J.D. Bjorken, R. Essig, P. Schuster, and N. Toro, Phys.
Rev. D 80, 075018 (2009).

[27] M. Kaplinghat, S. Tulin, and H.-B. Yu, Phys. Rev. D 89,
035009 (2014).

and H. Murayama,

075010-5


https://doi.org/10.1103/PhysRevLett.84.3760
https://doi.org/10.1103/PhysRevLett.84.3760
https://doi.org/10.1016/j.physrep.2017.11.004
https://doi.org/10.1146/annurev-astro-091916-055313
https://doi.org/10.1146/annurev-astro-091916-055313
https://doi.org/10.1086/339038
https://doi.org/10.1086/339038
https://doi.org/10.1088/1475-7516/2019/07/036
https://doi.org/10.1088/1475-7516/2019/07/036
https://doi.org/10.1103/PhysRevLett.123.121102
https://doi.org/10.3847/2041-8213/ac04b0
https://doi.org/10.3847/2041-8213/ac04b0
https://doi.org/10.1088/1475-7516/2021/07/039
https://doi.org/10.1103/PhysRevD.81.083522
https://doi.org/10.1103/PhysRevD.81.083522
https://doi.org/10.1103/PhysRevLett.109.231301
https://doi.org/10.1103/PhysRevD.87.115007
https://doi.org/10.1103/PhysRevD.87.115007
https://doi.org/10.1103/PhysRevD.88.083506
https://doi.org/10.1103/PhysRevD.88.083506
https://doi.org/10.1103/PhysRevD.89.115017
https://doi.org/10.1103/PhysRevLett.115.021301
https://doi.org/10.1103/PhysRevD.93.115025
https://doi.org/10.1016/j.dark.2016.12.003
https://doi.org/10.1088/1475-7516/2017/03/048
https://doi.org/10.1103/PhysRevLett.120.221806
https://doi.org/10.1103/PhysRevLett.122.071103
https://doi.org/10.1103/PhysRevLett.122.071103
https://doi.org/10.1103/PhysRevLett.124.041101
https://doi.org/10.1103/PhysRevLett.124.041101
https://doi.org/10.1088/1475-7516/2020/06/043
https://doi.org/10.1088/1475-7516/2020/06/043
https://doi.org/10.1007/JHEP03(2020)148
https://doi.org/10.1007/JHEP03(2020)148
https://doi.org/10.1007/JHEP10(2020)191
https://doi.org/10.1007/JHEP10(2020)191
https://arXiv.org/abs/2008.08608
https://doi.org/10.1007/JHEP06(2021)008
https://doi.org/10.1007/JHEP06(2021)008
https://doi.org/10.1103/PhysRevD.80.075018
https://doi.org/10.1103/PhysRevD.80.075018
https://doi.org/10.1103/PhysRevD.89.035009
https://doi.org/10.1103/PhysRevD.89.035009

NICHOLAS ORLOFSKY and YUE ZHANG

PHYS. REV. D 104, 075010 (2021)

[28] J. Yang et al. (PandaX-II), Sci. China Phys. Mech. Astron.
64, 111062 (2021).

[29] T. Bringmann, F. Kahlhoefer, K. Schmidt-Hoberg, and
P. Walia, Phys. Rev. Lett. 118, 141802 (2017).

[30] Y. Zhang, J. Cosmol. Astropart. Phys. 05 (2015) 008.

[31] B. Moore, S. Ghigna, F. Governato, G. Lake, T. R. Quinn,
J. Stadel, and P. Tozzi, Astrophys. J. Lett. 524, .19 (1999).

[32] J.S. Bullock, arXiv:1009.4505.

[33] D. H. Weinberg, J. S. Bullock, F. Governato, R. Kuzio de
Naray, and A. H. G. Peter, Proc. Natl. Acad. Sci. U.S.A.
112, 12249 (2015).

[34] D. Gilman, S. Birrer, A. Nierenberg, T. Treu, X. Du, and
A. Benson, Mon. Not. R. Astron. Soc. 491, 6077 (2020).

[35] K. Abazajian, G. M. Fuller, and M. Patel, Phys. Rev. D 64,
023501 (2001).

[36] T. Asaka, S. Blanchet, and M. Shaposhnikov, Phys. Lett. B
631, 151 (2005).

[37] T. Asaka, M. Shaposhnikov, and A. Kusenko, Phys. Lett. B
638, 401 (2000).

[38] A.Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, Annu.
Rev. Nucl. Part. Sci. 59, 191 (2009).

[39] M. Nemevsek, G. Senjanovic, and Y. Zhang, J. Cosmol.
Astropart. Phys. 07 (2012) 006.

[40] J. A. Dror, D. Dunsky, L. J. Hall, and K. Harigaya, J. High
Energy Phys. 07 (2020) 168.

[41] B. Bertoni, S. Ipek, D. McKeen, and A. E. Nelson, J. High
Energy Phys. 04 (2015) 170.

[42] J.1. Read and G. Gilmore, Mon. Not. R. Astron. Soc. 356,
107 (2005).

[43] S. Mashchenko, J. Wadsley, and H.M.P. Couchman,
Science 319, 174 (2008).

[44] E. Governato, A. Zolotov, A. Pontzen, C. Christensen,
S. H. Oh, A. M. Brooks, T. Quinn, S. Shen, and J. Wadsley,
Mon. Not. R. Astron. Soc. 422, 1231 (2012).

[45] T. Sawala et al., Mon. Not. R. Astron. Soc. 457, 1931
(2016).

[46] A.R. Wetzel, P.F. Hopkins, J.-H. Kim, C.-A. Faucher-
Giguere, D. Keres, and E. Quataert, Astrophys. J. Lett.
827, L23 (2016).

[47] A. Fattahi, J.F. Navarro, T. Sawala, C.S. Frenk, L. V.
Sales, K. Oman, M. Schaller, and J. Wang, arXiv:
1607.06479.

[48] A. Falkowski, J. Juknevich, and J. Shelton, arXiv:
0908.1790.

[49] P. Ko and Y. Tang, Phys. Lett. B 739, 62 (2014).

[50] B. Batell, T. Han, and B. S. E. Haghi, Phys. Rev. D 97,
095020 (2018).

[51] J. M. Berryman, A. de Gouvéa, K. J. Kelly, and Y. Zhang,
Phys. Rev. D 96, 075010 (2017).

[52] B. Batell, T. Han, D. McKeen, and B. S. E. Haghi, Phys.
Rev. D 97, 075016 (2018).

[53] M. Becker, Eur. Phys. J. C 79, 611 (2019).

[54] M. G. Folgado, G. A. Gémez-Vargas, N. Rius, and R. Ruiz
De Austri, J. Cosmol. Astropart. Phys. 08 (2018) 002.

[55] J. M. Lamprea, E. Peinado, S. Smolenski, and J. Wudka,
Phys. Rev. D 103, 015017 (2021).

[56] Y. Zhang, arXiv:2001.00948.

[57] G. Feinberg and J. Sucher, Phys. Rev. 166, 1638 (1968).

[58] G. Feinberg, J. Sucher, and C. K. Au, Phys. Rep. 180, 83
(1989).

[59] S.D.H. Hsu and P. Sikivie, Phys. Rev. D 49, 4951
(1994).

[60] Y. V. Stadnik, Phys. Rev. Lett. 120, 223202 (2018).

[61] Q. Le Thien and D. E. Krause, Phys. Rev. D 99, 116006
(2019).

[62] M. Ghosh, Y. Grossman, and W. Tangarife, Phys. Rev. D
101, 116006 (2020).

[63] A. Segarra and J. Bernabéu, Phys. Rev. D 101, 093004
(2020).

[64] A. Costantino and S. Fichet, J. High Energy Phys. 09
(2020) 122.

[65] P.D. Bolton, F. F. Deppisch, and C. Hati, J. High Energy
Phys. 07 (2020) 013.

[66] J. A. Grifols, E. Masso, and R. Toldra, Phys. Lett. B 389,
563 (1996).

[67] S. Nussinov, Phys. Lett. 165B, 55 (1985).

[68] G.P. Lepage, in 8th Jorge Andre Swieca Summer School
on Nuclear Physics (World Scientific, Singapore, 1997).

[69] A. Pais and T. T. Wu, Phys. Rev. 134, B1303 (1964).

[70] W.M. FranKk, D.J. Land, and R. M. Spector, Rev. Mod.
Phys. 43, 36 (1971).

[71] E. Del Giudice and E. Galzenati, Nuovo Cimento Serie 38,
443 (1965).

[72] E. D. Giudice and E. Galzenati, Nuovo Cimento A Serie
40, 739 (1965).

[73] H. An, M. B. Wise, and Y. Zhang, Phys. Rev. D 93, 115020
(2016).

[74] M. Kaplinghat, S. Tulin, and H.-B. Yu, Phys. Rev. Lett.
116, 041302 (2016).

[75] S. W. Randall, M. Markevitch, D. Clowe, A. H. Gonzalez,
and M. Bradac, Astrophys. J. 679, 1173 (2008).

[76] D. Harvey, R. Massey, T. Kitching, A. Taylor, and
E. Tittley, Science 347, 1462 (2015).

[77] A. Robertson, R. Massey, and V. Eke, Mon. Not. R.
Astron. Soc. 465, 569 (2017).

[78] M. Escudero, O. Mena, A. C. Vincent, R. J. Wilkinson, and
C. Beehm, J. Cosmol. Astropart. Phys. 09 (2015) 034.

[79] E. Di Valentino, C. Bgehm, E. Hivon, and F. R. Bouchet,
Phys. Rev. D 97, 043513 (2018).

[80] J. A. D. Diacoumis and Y. Y.Y. Wong, J. Cosmol. Astro-
part. Phys. 05 (2019) 025.

[81] R.J. Wilkinson, C. Boehm, and J. Lesgourgues, J. Cosmol.
Astropart. Phys. 05 (2014) O11.

[82] A. Olivares-Del Campo, C. Beehm, S. Palomares-Ruiz, and
S. Pascoli, Phys. Rev. D 97, 075039 (2018).

[83] G. Mangano, A. Melchiorri, P. Serra, A. Cooray, and
M. Kamionkowski, Phys. Rev. D 74, 043517 (2006).

[84] C. A. Argiielles, A. Kheirandish, and A. C. Vincent, Phys.
Rev. Lett. 119, 201801 (2017).

[85] K.J. Kelly and P. A. N. Machado, J. Cosmol. Astropart.
Phys. 10 (2018) 048.

[86] W. Yin, EPJ Web Conf. 208, 04003 (2019).

[87] K.-Y. Choi, J. Kim, and C. Rott, Phys. Rev. D 99, 083018
(2019).

[88] K. Petraki and R.R. Volkas, Int. J. Mod. Phys. A 28,
1330028 (2013).

[89] K. M. Zurek, Phys. Rep. 537, 91 (2014).

[90] K. M. Nollett and G. Steigman, Phys. Rev. D 91, 083505
(2015).

[91] M. Escudero, J. Cosmol. Astropart. Phys. 02 (2019) 007.

075010-6


https://doi.org/10.1007/s11433-021-1740-2
https://doi.org/10.1007/s11433-021-1740-2
https://doi.org/10.1103/PhysRevLett.118.141802
https://doi.org/10.1088/1475-7516/2015/05/008
https://doi.org/10.1086/312287
https://arXiv.org/abs/1009.4505
https://doi.org/10.1073/pnas.1308716112
https://doi.org/10.1073/pnas.1308716112
https://doi.org/10.1093/mnras/stz3480
https://doi.org/10.1103/PhysRevD.64.023501
https://doi.org/10.1103/PhysRevD.64.023501
https://doi.org/10.1016/j.physletb.2005.09.070
https://doi.org/10.1016/j.physletb.2005.09.070
https://doi.org/10.1016/j.physletb.2006.05.067
https://doi.org/10.1016/j.physletb.2006.05.067
https://doi.org/10.1146/annurev.nucl.010909.083654
https://doi.org/10.1146/annurev.nucl.010909.083654
https://doi.org/10.1088/1475-7516/2012/07/006
https://doi.org/10.1088/1475-7516/2012/07/006
https://doi.org/10.1007/JHEP07(2020)168
https://doi.org/10.1007/JHEP07(2020)168
https://doi.org/10.1007/JHEP04(2015)170
https://doi.org/10.1007/JHEP04(2015)170
https://doi.org/10.1111/j.1365-2966.2004.08424.x
https://doi.org/10.1111/j.1365-2966.2004.08424.x
https://doi.org/10.1126/science.1148666
https://doi.org/10.1111/j.1365-2966.2012.20696.x
https://doi.org/10.1093/mnras/stw145
https://doi.org/10.1093/mnras/stw145
https://doi.org/10.3847/2041-8205/827/2/L23
https://doi.org/10.3847/2041-8205/827/2/L23
https://arXiv.org/abs/1607.06479
https://arXiv.org/abs/1607.06479
https://arXiv.org/abs/0908.1790
https://arXiv.org/abs/0908.1790
https://doi.org/10.1016/j.physletb.2014.10.035
https://doi.org/10.1103/PhysRevD.97.095020
https://doi.org/10.1103/PhysRevD.97.095020
https://doi.org/10.1103/PhysRevD.96.075010
https://doi.org/10.1103/PhysRevD.97.075016
https://doi.org/10.1103/PhysRevD.97.075016
https://doi.org/10.1140/epjc/s10052-019-7095-7
https://doi.org/10.1088/1475-7516/2018/08/002
https://doi.org/10.1103/PhysRevD.103.015017
https://arXiv.org/abs/2001.00948
https://doi.org/10.1103/PhysRev.166.1638
https://doi.org/10.1016/0370-1573(89)90111-7
https://doi.org/10.1016/0370-1573(89)90111-7
https://doi.org/10.1103/PhysRevD.49.4951
https://doi.org/10.1103/PhysRevD.49.4951
https://doi.org/10.1103/PhysRevLett.120.223202
https://doi.org/10.1103/PhysRevD.99.116006
https://doi.org/10.1103/PhysRevD.99.116006
https://doi.org/10.1103/PhysRevD.101.116006
https://doi.org/10.1103/PhysRevD.101.116006
https://doi.org/10.1103/PhysRevD.101.093004
https://doi.org/10.1103/PhysRevD.101.093004
https://doi.org/10.1007/JHEP09(2020)122
https://doi.org/10.1007/JHEP09(2020)122
https://doi.org/10.1007/JHEP07(2020)013
https://doi.org/10.1007/JHEP07(2020)013
https://doi.org/10.1016/S0370-2693(96)01304-4
https://doi.org/10.1016/S0370-2693(96)01304-4
https://doi.org/10.1016/0370-2693(85)90689-6
https://doi.org/10.1103/PhysRev.134.B1303
https://doi.org/10.1103/RevModPhys.43.36
https://doi.org/10.1103/RevModPhys.43.36
https://doi.org/10.1007/BF02750473
https://doi.org/10.1007/BF02750473
https://doi.org/10.1007/BF02855980
https://doi.org/10.1007/BF02855980
https://doi.org/10.1103/PhysRevD.93.115020
https://doi.org/10.1103/PhysRevD.93.115020
https://doi.org/10.1103/PhysRevLett.116.041302
https://doi.org/10.1103/PhysRevLett.116.041302
https://doi.org/10.1086/587859
https://doi.org/10.1126/science.1261381
https://doi.org/10.1093/mnras/stw2670
https://doi.org/10.1093/mnras/stw2670
https://doi.org/10.1088/1475-7516/2015/09/034
https://doi.org/10.1103/PhysRevD.97.043513
https://doi.org/10.1088/1475-7516/2019/05/025
https://doi.org/10.1088/1475-7516/2019/05/025
https://doi.org/10.1088/1475-7516/2014/05/011
https://doi.org/10.1088/1475-7516/2014/05/011
https://doi.org/10.1103/PhysRevD.97.075039
https://doi.org/10.1103/PhysRevD.74.043517
https://doi.org/10.1103/PhysRevLett.119.201801
https://doi.org/10.1103/PhysRevLett.119.201801
https://doi.org/10.1088/1475-7516/2018/10/048
https://doi.org/10.1088/1475-7516/2018/10/048
https://doi.org/10.1051/epjconf/201920804003
https://doi.org/10.1103/PhysRevD.99.083018
https://doi.org/10.1103/PhysRevD.99.083018
https://doi.org/10.1142/S0217751X13300287
https://doi.org/10.1142/S0217751X13300287
https://doi.org/10.1016/j.physrep.2013.12.001
https://doi.org/10.1103/PhysRevD.91.083505
https://doi.org/10.1103/PhysRevD.91.083505
https://doi.org/10.1088/1475-7516/2019/02/007

NEUTRINO AS THE DARK FORCE

PHYS. REV. D 104, 075010 (2021)

[92] C. Pitrou, A. Coc, J.-P. Uzan, and E. Vangioni, Phys. Rep.
754, 1 (2018).

[93] N. Aghanim er al. (Planck Collaboration), Astron.
Astrophys. 641, A6 (2020).

[94] A.G. Riess, S. Casertano, W. Yuan, L. Macri, J. Anderson,
J.W. MacKenty, J.B. Bowers, K.I. Clubb, A.V.
Filippenko, D. O. Jones et al., Astrophys. J. 855, 136
(2018).

[95] K.N. Abazajian et al
arXiv:1610.02743.

[96] V. Khachatryan et al. (CMS Collaboration), J. High Energy
Phys. 02 (2017) 135.

[97] M. Aaboud et al. (ATLAS Collaboration), Phys. Rev. Lett.
122, 231801 (2019).

[98] Report No. CMS-PAS-FTR-16-002 (2017).

[99] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp.
Phys. 2020, 083C01 (2020).

[100] M. Carena, A. de Gouvea, A. Freitas, and M. Schmitt,
Phys. Rev. D 68, 113007 (2003).

[101] V. Brdar, M. Lindner, S. Vogl, and X.-J. Xu, Phys. Rev. D
101, 115001 (2020).

[102] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and
B. Fuks, Comput. Phys. Commun. 185, 2250 (2014).

[103] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni,
O. Mattelaer, H.S. Shao, T. Stelzer, P. Torrielli, and
M. Zaro, J. High Energy Phys. 07 (2014) 079.

[104] The Belle II Collaboration, Belle II experiment sensitivity
to the LFV decay tau -> e + alpha (2020), https://docs
.belle2.org/record/2043.

[105] C.D. Kreisch, E.-Y. Cyr-Racine, and O. Doré, Phys. Rev. D
101, 123505 (2020).

(CMB-S4 Collaboration),

[106] 1. M. Oldengott, T. Tram, C. Rampf, and Y. Y. Y. Wong,
J. Cosmol. Astropart. Phys. 11 (2017) 027.

[107] A. de Gouvéa and A. Kobach, Phys. Rev. D 93, 033005
(2016).

[108] A. Das and B. Dasgupta, Phys. Rev. D 97, 023002 (2018).

[109] M. Vogelsberger, J. Zavala, K. Schutz, and T.R. Slatyer,
Mon. Not. R. Astron. Soc. 484, 5437 (2019).

[110] H. Baer et al., arXiv:1306.6352.

[111] A.E. Bondar et al. (Charm-Tau Factory), Phys. At. Nucl.
76, 1072 (2013).

[112] W. Altmannshofer et al. (Belle-II Collaboration), Prog.
Theor. Exp. Phys. 2019, 123C01 (2019); 2020, 029201(E)
(2020).

[113] A. Blondel et al., in Mini Workshop on Precision EW and
QCD Calculations for the FCC Studies: Methods and
Techniques, CERN Yellow Reports: Monographs Vol. 3/
2019 (CERN, Geneva, 2018).

[114] M. Dong et al. (CEPC Study Group), arXiv:1811.10545.

[115] M. Cepeda et al., CERN Yellow Rep. Monogr. 7, 221
(2019).

[116] R. Foot and R. R. Volkas, Phys. Rev. D 52, 6595 (1995).

[117] Z. G. Berezhiani and R. N. Mohapatra, Phys. Rev. D 52,
6607 (1995).

[118] E.J. Chun, A. S. Joshipura, and A. Y. Smirnov, Phys. Rev.
D 54, 4654 (1996).

[119] G.R. Dvali and Y. Nir, J. High Energy Phys. 10 (1998)
014.

[120] D. K. Ghosh, G. Senjanovic, and Y. Zhang, Phys. Lett. B
698, 420 (2011).

[121] J. Kopp, P. A. N. Machado, M. Maltoni, and T. Schwetz,
J. High Energy Phys. 05 (2013) 050.

075010-7


https://doi.org/10.1016/j.physrep.2018.04.005
https://doi.org/10.1016/j.physrep.2018.04.005
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.3847/1538-4357/aaadb7
https://doi.org/10.3847/1538-4357/aaadb7
https://arXiv.org/abs/1610.02743
https://doi.org/10.1007/JHEP02(2017)135
https://doi.org/10.1007/JHEP02(2017)135
https://doi.org/10.1103/PhysRevLett.122.231801
https://doi.org/10.1103/PhysRevLett.122.231801
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1103/PhysRevD.68.113007
https://doi.org/10.1103/PhysRevD.101.115001
https://doi.org/10.1103/PhysRevD.101.115001
https://doi.org/10.1016/j.cpc.2014.04.012
https://doi.org/10.1007/JHEP07(2014)079
https://docs.belle2.org/record/2043
https://docs.belle2.org/record/2043
https://docs.belle2.org/record/2043
https://doi.org/10.1103/PhysRevD.101.123505
https://doi.org/10.1103/PhysRevD.101.123505
https://doi.org/10.1088/1475-7516/2017/11/027
https://doi.org/10.1103/PhysRevD.93.033005
https://doi.org/10.1103/PhysRevD.93.033005
https://doi.org/10.1103/PhysRevD.97.023002
https://doi.org/10.1093/mnras/stz340
https://arXiv.org/abs/1306.6352
https://doi.org/10.1134/S1063778813090032
https://doi.org/10.1134/S1063778813090032
https://doi.org/10.1093/ptep/ptz106
https://doi.org/10.1093/ptep/ptz106
https://doi.org/10.1093/ptep/ptaa008
https://doi.org/10.1093/ptep/ptaa008
https://arXiv.org/abs/1811.10545
https://doi.org/10.23731/CYRM-2019-007.221
https://doi.org/10.23731/CYRM-2019-007.221
https://doi.org/10.1103/PhysRevD.52.6595
https://doi.org/10.1103/PhysRevD.52.6607
https://doi.org/10.1103/PhysRevD.52.6607
https://doi.org/10.1103/PhysRevD.54.4654
https://doi.org/10.1103/PhysRevD.54.4654
https://doi.org/10.1088/1126-6708/1998/10/014
https://doi.org/10.1088/1126-6708/1998/10/014
https://doi.org/10.1016/j.physletb.2011.03.039
https://doi.org/10.1016/j.physletb.2011.03.039
https://doi.org/10.1007/JHEP05(2013)050

