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CKM mixings from mass matrices with five texture zeros
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In this work we carry out an exhaustive study to find quark mass matrices in the Standard Model (SM),
with the maximum number of texture zeros consistent with the experimental data. We found four viable
configurations of five texture zeros that adjust the quark masses, the mixing angles and the CP violation
phase, with deviations below 1o level respect to the current SM best fit values. One of the most important
aspects of this work is an economic procedure to find the texture zeros: we resort to the weak basis
transformation method, which, as we will show, exhaustively search every possible configuration. We
report various leading order relations between the mixing angles and the quark masses for each case.
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I. INTRODUCTION

In the Standard Model (SM), the quark mass matrices
come from the interaction between the Higgs boson and the
SM fermions. After the spontaneous breaking of the SM
gauge symmetry we obtain

—Ly = ugMyu; +dgM,d; +H.c., (1.1)
where M, and M, are arbitrary, 3 x 3 quark mass matrices
containing thirty-six (36) real parameters, which cannot be
fully determined from the ten (10) physical observables that
they must account for: six (6) quark masses, three (3) flavor
mixing angles, and one (1) charge-parity (CP) violating
phase. However, in models like the SM (or its extensions)
where the right fields are singlets under the gauge group, it
is always possible to choose a suitable basis for the right
quarks, such that by using the polar decomposition theorem
of the matrix algebra, the mass matrices of type “up” and
“down” became Hermitian [1-6].

My, =M, and M,=M, (1.2)
Additionally, for Hermitian quark mass matrices, you can
make a unitary transformation acting simultaneously on the
up-type and down-type quark mass matrices, leaving the

gauge currents invariant, and the mass matrices transform
to new equivalent Hermitian matrices
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M,— M, =UM,U, My;—M,=UM;U, (1.3)
where U is an arbitrary unitary matrix that preserves the
hermiticity of the mass matrices and leaving the physical
quantities invariant, in particular, the Cabibbo-Kobayashi-
Maskawa (CKM) mixing matrix. This common unitary
transformation applied to M, and M, in Eq. (1.3), is
known as a “weak basis” (WB) transformation [1,7—10]. As
it was shown in [3,11], for a given set of quark masses,
mixing angles and the CP-violating phase, all the mass
matrices consistent with these experimental values are
unitarily equivalent. This result can be used to calculate
the maximum number of texture zeros, since it guarantees
that by using WB transformations it is possible to reach all
physical and nonphysical zeros consistent with the data
[3,7]. Through a WB transformation, it is possible to
rewrite the quark mass matrices as follows [3,7,11,12]:

A 0 0
M,=D,=| 0 4, 0 |,
0 0 A
My,=VD,VT, (1.4a)
or
M,=V'D,V,
e 0 0
Md - Dd - O /12[] 0 N (]4b)
0 0 Ay

where V = U} U, is the CKM mixing matrix, U, and U,
are the diagonalization matrices for the mass matrices M,
and M, respectively. The parameters 4;, (i = 1, 2, 3) are
the quark mass matrix eigenvalues for up-type (¢ = u) and
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down-type (¢ = d) quarks, which are related to the quark
masses
|/13u| = my,

Mlul =my, |’12u| = me,

Mld| = my, |/12d| = my, |/13d’ = M. (1-5)

So 4;, can be positive or negative and obey the hierarchy

|/11q| < |ﬂzq| < |ﬂ3q|. (16)
In the basis (1.4) can be easily verified that the mass
matrices are consistent with the CKM mixing matrix V and
the quark masses, and the 3 nonphysical texture zeros can
be effortlessly identified [7]. The hermiticity of the quark
mass matrices M, and M, reduces the number of free
parameters from 36 to 18, which, however, is still a large
value compared to the number of observables. In order to
reduce the number of free parameters, Weinberg and
Fritzsch [13-16] introduced texture-zeros into the mass
matrices with a dual purpose, first of all, to obtain self-
consistent relationships between the quark masses and the
flavor mixing parameters that can be experimentally
verified [1,17]. On the other hand, the discrete (or con-
tinuous) flavor symmetries hidden in such textures may
finally provide clues on the origin of the energy scales in
the quark sector of the SM as residual symmetries of a more
fundamental symmetry at high energies. Hermitian quark
mass matrices with six texture zeros were introduced in
what is currently known as the Fritzsch type [16,17], where
the mass matrices, M,,, and M ;, have the same texture (“up-
down” parallel) each with three zeros. This type of ansatz
was ruled out due to the large value of the mass of the top
quark, since that for this case the CKM element |V ;| is in
tension with the experimental data [4,17,18]. Furthermore,
for reasonable values of the current quark masses m, and
m,, the expected magnitude for |V, /V | = \/m,/m. =
0.05 [19] is too small in comparison with the experimental
value (|V,p/V cplexp = 0.09 [20-22]). In this sense, one of
the difficulties of working with texture zeros is keeping the
predictions for V,, and V., right, and simultaneously
reproducing the ratios V,;,/V ., and V,;/V,, ie.,

= 0.0861 £ 0.0027,

exp

' Vub
cb

1%
—dl —0.2107 + 0.0044.

ts

(1.7)

exp

The original literature on five-zero textures has been widely
studied, but these initial ansatzes are not currently favored
by experimental data [4,7,23-28]. Recent studies show that
other five-zero textures are viable, some analytical and
numerical examples were reported in [3,5,29-31], these
textures reproduce the quark masses and the CKM mixing
matrix with deviations respect to the experimental values

below 1o level. There are several approaches to obtain the
texture zeros, in some cases, the analytic approximations
take advantage of the strong hierarchy in quark masses and
mixing angles to motivate a certain texture [17,32], alter-
natively, some techniques prefer to assume a texture for the
quark mass matrices to make physical predictions
[4,29,31,33]. A very elegant way is to apply WB trans-
formations in order to get texture zeros in the mass matrices
[3,7], our work points in this direction and it can be
considered as a continuation of the work presented by one
of us in [3]. This work is organized as follows: In Sec. Il we
classify all possible ways to put three texture-zeros in the
“up” or “down” quark mass matrices. This analysis is
important since from these textures we can obtain five
texture zeros for the mass matrices by using the WB
transformation method. We will carry out a first analytical
study for five-zero textures in Sec. III, and the conclusions
are summarized in Sec. IV.

II. FIVE-ZERO TEXTURES

In order to maintain the determinant different from zero
the mass matrix for up quarks (or down quarks) has at most
three texture-zeros.' Also, we only have two types of
realistic patterns depending on how the three texture zeros
are distributed in the inputs of the mass matrix. In the first
case we have a matrix with two texture zeros on the
diagonal, and in the other case the matrix only contains a
texture-zero on the diagonal, as it is pointed out in each
column of Table I; where it is shown that by doing WB
transformations with the permutation matrices p;, with
i=1,...,6, we obtain all possible viable cases for each
pattern. Table I summarizes all the viable three-zero
textures (via permutations) for the up and down quark
mass matrices. Without loss of generality, as we will see
later, we can write these patterns without including phases.
An equivalence transformation through a permutation is a
type of WB transformation, indeed, this fact allows us to
find equivalent textures through permutations, for example

0

M;: =p2-

= P2

X © OO © X O
X X <© X X X
S X X X X ©
S X © X O

X © X X X O
X X <© X X X

where “Xx” stands for the nonzero entries. It is important to
mention that the permutations do not change the number of
zeros on the diagonal.

'More than three texture zeros implies that at least one quark
mass is equal to zero or two of the quark masses must be equal
[3.29].
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TABLEI. Mass matrix patterns with three texture-zeros. We are
considering two cases, depending on the number of zeros in the
diagonal (one or two texture zeros). It is not necessary to include
phases.

Pattern with two zeros Pattern with one

Permutation on the diagonal zero on the diagonal
matrices (pi M, pl) (pi M, pl)
1 0 & 0 0 &l 0
p1= ( 1 ) (rfql 0 |ﬁq> (Iéq rg O )
1 0 1B a, 0 0 uq
! 0 0 g\ /0 0 I
p2—< 1> (0 a, |ﬁq> (O a, 0)
1 &l 18 0/ \lgl o 4,
1 a, Bl O a, 0 0
pP3 = ( 1 ) ( ﬁq| 0 |§q ) ( 0 7q |§q )
1 0 gl 0 0 gl 0
1 0 &l B\ /lrgl 1&gl O
p4=<1 ) (Ich 0 0) (|5q 0 0>
1 Bl 0 a 0 0 «q
1 a, 0 |, a, 0 0
1 Byl 1&g 0O 0 16 74
1 0 1Bl 14l rg 0 14
p6—< 1) (ﬂq| a O) (O ay, 0)
1 &, 0 0 &,/ 0 0

We will work with five-zero textures for the quark mass
matrices. Six-zero textures have already been ruled out
[3,25,26,34].

A. Texture-zero patterns

The patterns shown in Table I can be analytically diagon-
alized. To accomplish this, we consider the most general case
of a symmetric mass matrix with two texture zeros

0 & O
Mq = |§q| Yq |ﬂq| > (22)
0 |8l «

where the phases of the off-diagonal parameters can be
absorbed (or included) in only one of the mass matrices (the
|

eiGI M'Sq‘ 12q23q(aq_llq) eiﬂz |’12q|
Aag V) ag(Aog=2ig)(A34—=A1) Aog
i0, 12| Ag(hig—ay) i)
U = _6191 Magl [ Ag(hg=ag) eit>
q j'2q (/IZq_llq)(/hq_/{lq)
ei6'1 Mlq‘ ﬂlq<aq_j'2q)(aq_l3q) _ei92 Mfﬁq‘

Zon Aq (1211_11:1)(/134—/111,)

down-type or the up-type) through a WB transformation. y,,
and a, are real numbers due to the hermiticity of M.
According to the Table I, the pattern with two zeros on the
diagonal is achieved by making y, = 0, and to obtain the
pattern with a zero on the diagonal we set |3,| = 0. The mass
matrix M, can be diagonalized using the transformation

Mg
UiM,U, =D, = Aoy ,
A3y

(2.3)

where the 4;, (i = 1, 2, 3) are defined in (1.5). Note that y,,
|B,| and |,| can be expressed in terms of @, and the 4;,’s.
By using the invariants under a basis transformation, trM ,
trM?2 and det M, it follows that

]/q = ﬂ'lq —+ /12q —+ ﬂg,q - aq, (243)

5 = \/(aq ~ )@ =)y =)

g
_ /_/1111’121/1311
|§q| - aq .

According to [3,7,35] and the relation (2.4c) (which is real),
a, > 0; and from (2.4b), it must be found in one of the
following intervals:

(2.4¢)

Ifﬂlq <O, /12[1 >0 and 23[1 >0= |/12q| Saq < |/13q| (253)
If,,>0. Ay <0 and A3, >0=> |4y, | <, <|ds,|. (2.5b)
I62,,>0. Ayy>0 and 43, <0=5 |4, <a, || (2.5¢)

In the previous analysis, the (1.6) hierarchy was taken into
account, and we only considered a negative eigenvalue
according to the justification given in papers [3,35].

The exact analytical matrix U,, which diagonalizes the
mass matrix (2.2), is given by [3,9,36]

j']qj'Sq (AZq _aq) ﬂ]qJ'Zq(aq_Ah])
ay(og—=Ag)(hag—ag) ay(A3g=g) (Aag—2ag)
Jag(ag—Aay) 1434 Aaq(A34—ay) (2 6)
</12q _/llq)(ASq_AZq) }”341 (’13(/_/‘{]4]>(13q _/1251) ’ ’
j'2q (aq_ﬂqu}'}q_aq) \/’ﬁq(aq_/llq)(aq_/ﬁq)
g (Aag—hiq) (A3g—1ag) a,(A3=214) (A3g—ag)

The WB transformations allow us to use the basis (1.4a) (or the basis in (1.4b)) as the “starting point” matrices to generate any viable
representation of quark mass matrices [3,11]. If there are texture zeros in mass matrices these can be found by a WB transformation.
Texture zeros on the diagonal of the mass matrices imply that at least one of the proper values must be negative [3,7,9,36].
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where we have included additional phases (nonphysical) to
adjust the CKM mixing matrix to the usual convention
(A2), as shown in the Ref. [12]. It is not necessary to
include a phase in the third column, as it can be absorbed by
the remaining phases.

The diagonalization matrix (2.6) can be seen as the
unitary matrix of a WB transformation on the initial mass
representations (1.4). For the case (1.4a):

0 &l O

M; = Uu(l)u)UZ = |§u| Yu |:Bu| ) (2'73)
O ‘ﬂlll au

M, = U,(VD,VHUS, (2.7b)

where Eq. (2.3) was considered. As we have already
mentioned, if we want a pattern of three zeros in the mass
matrix M/,, with two zeros on the diagonal, that is, with
7. = 0, itisnecessary to make @, = 1, + 4»,, + 43, accord-
ing to (2.4a). From (2.5) this configuration is only possible
for A1, 43, > 0, and 4,,, < 0. To find two additional texture
zeros in the inputs of the mass matrix (2.7b), we adjust the
free parameters 6; and 0, of the diagonalization matrix (2.6).
On the other hand, if we want three zeros for the mass matrix

TABLE II.

M., but with a single zero on the diagonal, it is necessary to
set|f,| = 0. To achieve this we have three possibilities [from
Eq. 2.4b)]: a, = A4,, O @, = Ay, OF @, = A3,.. In each of
these cases, one of the remaining 4;,’s must be negative,
which gives a total of six different possibilities. A similar
exercise can be carried out in the case (1.4b).

M., = U,(ViD,V)US, (2.8a)
0 [&l O

My = U D)UY = | el 7a 18| 28b)
0 [Bal a4

where we have used the relation (2.3) for the special case
q = d. Table II summarizes the numerical results of our
study, in the next section we will see these results in more
detail from an analytical point of view.

III. MASS MATRICES WITH FIVE
TEXTURE ZEROS

As it is well known in the literature, for a given texture it is
possible to establish relations between the quark masses, the
mixing angles and the CP violation phase of the CKM matrix,
so that, a study of these relations is important to shed light on

Patterns for quark mass matrices with five texture zeros. The Wolfenstein parameters for the CKM mixing matrix and the

quark masses are reproduced with deviations below 1o level. In the last column P, = %, where Awg and Appg are the values for A
from the WB transformation and the PDG best fit, respectively. AA is the uncertainty for A reported in the PDG.

Pulls:
Wolfenstein parameters: P, P, ) P,
Up-type quark masses: P, P, m,
Negative
Case Five-zero textures Best fit values (MeV) eigenvalues Down-type quark masses: P,,, P, P,,
&, = —85.47 + 157.0i,
B = 29580 + 54351, Au <0 —0.54 0.79 044 —0.81
0 0 ¢, a @ = 6054, y, = 167200 0.98 0.13 043
My,=10 a, p, |Eq] = 14.53, |fq] = 442.5, Ay <O 0.36 0.60 0.55
Su Pu Yu ag = 2904
I £, = 21.04-284.5i,
B = 18950 + 58904, Ao <0 —0.58-0.99 —-0.53 —0.73
0 &l 0\ p a,=1690,y, = 169000, —0.28 025 —0.69
My=11& 0 |B4 |Eq = 13.41, |B4] = 392.6, 4y <O 0.68 —0.26 0.000098
0 |Bal ag ay = 2857
|E,| = 431.5, |p,| = 7251,
0 0 & a, =9579, y, = 171200, 1;, <0 0.12 0.86 037 0.89
Moo= 0 «a V),“' A. £, =4.316 + 14.26i, 0.52 0.51 -—047
[u w o Wu Ya = 64.13, ay; = 2969 g <0 098 049 0.53
&l 1Bl 7u
T &, = 426.3, |B,| = 7336,
a, = 868.1, y, = 172500, 1;, <O 055 0.81 0.85 096
(1 Sa 0\ pog=-4152-1381i 0.62 —0.97 0.63
Mpyqa=1¢q va O Ya = —62.50, a; = 2916 Ay <0 0.72 038 0.052
0 0 a4
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the underlying symmetries of the flavor physics. The five-zero
textures for the quark mass matrices given in Table II are
viable models according to the latest data for the current quark
masses and the CKM mixing matrix parameters at the Z scale.
In what follows we will consider various cases to implement
quark mass matrices with five texture-zeros.

A. Case 1

In this configuration, the down-type quark mass matrix
contains three texture zeros, two of them on the diagonal,
corresponding to the case I in Table II, which has the
following analytical structure for quark mass matrices

0 0 &
My, =P [ 0 a, B | P,
&l 1Bul - 7u
0 [&l ©
M= 1&l 0 |fdl [ (3.1)
0 |Bd aq

where all the phases are reduced to those contained in the
diagonal matrix P = diag(e™a, e 1) [with ¢ =
arg(p,) and ¢ = arg(¢,)] which comes from doing a
WB transformation, in such a way that the phases of M,
are absorbed in P. So we have 7 real parameters and 2
phases, to reproduce 10 physical quantities: 6 quark
masses, 3 mixing angles and the CP violating phase of
the CKM mixing matrix, which implies that relations
between masses and mixing angles can be established in
the quark sector. The five-zero texture deduced in (3.1) is
not a Fritzsch texture of those studied in [1]. Even though
they are not identical, the mass matrices (3.1) can be
diagonalized with the help of the matrix (2.6). Let us use
the permutation matrix P, = [(1,0,0), (0,0, 1), (0, 1,0)],

to bring the up-type quark mass matrix to the form
|

0 &l O
M, = pr2<|§u| Yu |ﬂu|>P2P, in such a way that
O |ﬂu| alt

the internal matrix corresponds to that in (2.2). Therefore,
the diagonalization matrix is the unitary matrix P P, U,,,
where U, is defined in (2.6), for the case ¢ = u. According
to (2.4a) the other mass matrix in (3.1), M;;, can be
diagonalized if we make a; = A1y + Aoy + Asq-

From (2.4) the mass matrix parameters are

Y. = Fm, Tm,+m,—a,, (3.2a)

|ﬁu| _ \/(au + mu)(au + mc)(mt - au)’ (32b)

ay

m,m.m,

[Sul = /=

au

(3.2¢)

Qg = my —mg + my, (3.2d)

B = \/(mb - my)(my +my,)(mg — md)’ (3.2¢)

My — mg + my

‘5 | o mgmgiy
DN mg—my +my
where for the eigenvalues of M;, we have considered two
possible cases 4;, <O (upper sign) and 4,, <O (lower

sign). a, is a free parameter which, according to the
Egs. (2.5), takes values in the intervals:

(3.2f)

m, <a, <m, forl, <0, (3.3a)

m, <a, <m, fori,, <O0. (3.3b)

The diagonalization matrices for M, and M, in (3.1) are

l(¢5 +61,) mem,(a,tm,) l(¢5 +65,) (ayFm)m;m, l(¢5 +65,) me(m;,—a,)m,
e almerm Gnkmy)  TE amFm)(mtmy) € a(m Fm) (mEm,)
_ i ) - i (m,— +m,) ] 0 (a,Fm.)m,(a,£m,)
U, = :I:e’(¢ﬁ +6,,) [l Fm)(m—a,)m, _el(¢ﬁ +65,) [ me(m—a,)(a,£m, ez(([)ﬂ +03,) wFme)m (e, £m, 3.4
lu ! au (n1(?+mu)(mtimll) ! al( (mf:':m(,)(m(,+ml() ! all (mt$m<)(mtimu) ’ ( )
T i, [ Mul@dm) et [ Mme(aFme) et [ mulm—a)
(me+m,,)(m,£m,) (mFmc)(me+m,) (mFm,)(m,Em,)
eiﬁld my, (my—my)m, _ei92d my, (my+mg)myg mg(mg—mg)m,
(mp=mg)(mg+my)(my+mg—my) (ma+myg)(my+mg—my)(m,+m) (mp=mg)(my-+mg—my)(my+my)
Uld — eield mg(my—m,) ei92d (my+mg)mg my (mg—mg) (35)

(my=mg)(mg+my)

(md+ms ) (mh+ms)

(my=mg)(my~+my)

(mb_mx)mx(mx_md)

_ei9|d \/( my(my+mg) (mg—mg)

—pitha
mg)(mg+ms)(my+mg—m) ¢ \/(md+ms)(mermd—m:)(merm:)

\/( my (my+mg) (my—my)

mg)(my+mg—mg)(my+my)
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where the nonphysical phases 6, 6,,,, 05,, 0,4 and 0,, are
necessary in order to adjust our theoretical prediction for
the CKM to the established convention. To obtain the
leading order (LO) terms that contribute to the CKM
mixing matrix V = Uqu 14 We use the hierarchy of the
quark masses (1.6). The analytical results for the LO CKM
entries are summarized in Table V. There are several aspects
to highlight about the case I:

(i) In the SM the inputs |V | ~ |V,,| ~ 1 then the free
parameter must satisfy a,, < m,, hence a,/m, < 1.
Also, due to the condition (3.3a), we have a, > m,,.
The free parameter a,/m, is only relevant for the
real parts of the matrix elements V,, (although
a,/m; < 1 this matrix element is very precisely
determined) and V ;. For the matrix elements V,,
Veb» Vup and V,y, a,,/m, is relevang for adjusting the
CP violating phase. For the remaining matrix
elements, by neglecting linear terms in «,/m, and
m,/m;, the dominant contributions only depend on
ratios between down-type quark masses.

Relations can be established between the elements of
the mixing matrix whose LO terms only involve
quark masses as shown in Table IV. Some of these
relations are well known, for example the Gatto-
Sartori-Tonin (GST) (Eq. (2), in Table 1V) [37]:
tanf, = |V,/ Vil = \/m, which is approx-
imately fulfilled. Another important relation that we
can find and that is successfully verified, according
to the experimental result (1.7), is given by the

expression: |V,,/ V| & \/my/m [38]. On the other
hand, our analysis also allows us to establish that the
relation |V ,;,/V ;| does not coincide with the result

(ii)

(iif)

\/m,/m., in accordance with the experimental
data (1.7).

The best fits for the mass matrix parameters (3.1) are
shown in Table III.

@iv)

B. Case I1I

Another viable analytical texture in Table I is the case II,
with quark mass matrices given by

0 0 &
M, = 0 a, B |
&l 1Bul 7
0 |Eale® 0
Mg = | | |e Ya 0 |- (3.6)
0 0 ay

In this case we have only one phase, ¢;,, responsible for the
CP violation. And there are 7 real parameters. This texture
is a Fritzsch-type [1].

TABLE III.  Fit parameters.
Case | Case 1L
Mu <0 A <0 M <0 Mu <0
12d<0 /’,'Zd<0 /11d<0 }'2a’<0
01 —1.423 —2.844 —1.975 —1.991
0, 0.6701 1.856 0 0
03, —0.004737  —0.004617 0 0
014 0.6360 1.930 3.025 —0.1351
04 —2.285 —0.9766 3.148 3.148
P, 2.069 —1.497
Pp, 0.1817 0.3015
P, 1.277 —1.863
a, (MeV) 6054 1690 957.9 868.1
m, (MeV) 1.792 1.268 1.599 1.642
m,. (MeV) 625.5 633.2 650.2 555.7
m; (MeV) 172600 171300 171500 172900
myg MeV) 2.993 3.148 3.292 3.166
mg; (MeV) 68.93 56.12 67.42 65.66
my, (MeV) 2970 2910 2969 2916
TABLE IV. Leading order relations between the CKM matrix
elements.
Relations Case | Case 11
1 |V,‘d‘l>,b| 14 14
2 |V Mgy Mgy
4 |V“4Vb| 1+--- 1+4---
R o
6 | V’/’ mx’ivmd \/ mgtmg +
7 nnl TR ,/:,%
8 =] g j,’j;+~~-
Vf.x‘ b ..
9 vivﬂ 1+- 1+
10 Vzlvlb my
VesVen m,
11 |V | ms’idmd_i_... / +...
v, e
12 T";’b | 1+
B Iy e ,fm—
Vi e
e 7V | t
15 ViV m [my
VeaVeh ﬁ; md
1d V’ DR
o | vJvi T
17 | Vuh msn—ij(I m_‘.n—:;v}?l,,
18 % Mgy
19 Va i
Ve mg+my
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As in the previous case we can obtain relations between
the elements of the CKM and the quark masses. The
structure of the matrix M/, is similar to the one given in
Eq. (3.1), without including phases, so it can be inferred
that the diagonalization matrix for this case is: P, U,
with P, =[(1,0,0),(0,0,1),(0,1,0)] and U, defined in
(2.6) for g = u.

The matrix M;;,, in (3.6) has a zero structure like
the one given in (2.2) with |/3q| =0, so that, there are
several possibilities to be considered: a; = 4, > 0,

18dl = V/=Aaatsq and y, = Aag + Azg; O ay = Ay > 0,

1&al = V=A1adsq and yq = g+ A3z or ag=l3; >0,
|4l = V/=Aahog and yy = A1g + Aog [3]. From the last

option we obtain the two cases with the best agreement
with the data, as reported in Table II. Here the diagonal-
ization matrix for M,;, is PZU 4 with U, as given in (2.6)
for ¢ = d and P, = diag(e™'%%,1,1). The parameters of
the mass matrices (3.6), according to the relations (2.4) are
given by:

Yu = —my +m.+m; —a, (3721)
|
eiﬂ]u m(,.m,((l,,eru) l‘L)Zu
all('n6'+mll)<m1+mll>
U e eialu (al4_mr>(ml_au>mu _ezéou
IIM a’l(ml‘ +ml¢)(’nl+mu>
— i my (o, +m,) 20
(me+my,)(m+m,)
ei(¢5d+91d) my iei(¢§d+92d) my 0
mg-+myg mg+mg
UIId = 0,4 mq 105 my
+e mg+myg € mg-+myg 0
0 0 1
(3.10)

The best fit parameters are shown in Table III.

Taking into account the hierarchy of the quark masses,
Eq. (1.6), and the interval for the parameter a,,, Eq. (3.8), to
LO the entries of the CKM, V = U U 4> are summarized in
Table V, case II; from these results we conclude that:

(i) As in the case I, |V.|=~|V,|~1, such that

a, < m,. Also, due to (3.8), a, > m,. Again we

verify that the relation |V,;,/V .| # \/m,/m, is not
satisfied. Although the relationship |V,;/V, |~

\/my/my is not verified in principle for this case;
we can see from Table V, for the case II, that if we
omit the second term of the approximation for V,,, it
is enough to reproduce this relationship. As it is
shown numerically, for this case high order contri-
butions are negligible.

a, +m,)a,—m.)(m,—a,
Iﬂul—\/( i " om, ), (3.7b)
mumcml

=,/— 3.7
& = 7 (3.7¢)
Qg = my, (37(1)
Eal = /mgmy, (3.7¢)
Yq = Fmy Lt mg, (3.7f)

where 4;,, < 0;theupper sign, for 4;, < 0 and the lower sign,
for 4,4, < 0; and @, > 0 is a free parameter in the range:

m. < a, <m,.

(3.8)

In this case, the diagonalization matrices of the mass
operators (3.6), are

(a —m, ) ,()zu m.(m;—a,)m,
au m,—m( +'nu (l“(m, me )(mr+mu)
me mr au au+mu 193,‘ au me m,(a,,-i—m,() (3 9)
s .
a,(m—m.)(m.+m,) a, (m—mg)(m,+m,)
eiegu m,(m—a,)
(nll_mL’><mL’+mll) (mt_mc)(mteru)

(i) The CKM matrix elements, V., V., V. Vi
depend heavily on the a, parameter, the remaining
elements depend on ratios between down quark
masses. Only the V,; matrix element has information
about the phase, which in turn depends on the ratio
a,/m,, which is a noticeable difference with respect
to case I.

As in the case I, the LO relations between the CKM
elements involving only quark masses are shown in
Table IV.

Although, the results are similar to the expressions
given in Table IV for the case I, for the case II the
relations 5, 10, 14, 16, 18 and 19 are absent (the
corresponding expressions are cumbersome).

(iif)

(iv)

IV. CONCLUSIONS

Using the WB transformation method [3,11], we found
configurations for the quark mass matrices with the
maximum number of possible texture zeros. To accomplish
this, we start from the general basis (1.4a) and (1.4b), from
which the expressions (2.7) and (2.8) can be obtained,
respectively. Modulo permutations, only the configurations
shown in Table I, for mass matrices with one or two zeros in
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the diagonal, are possible. From these patterns we obtained
the cases I and II in Table II, corresponding to the five-zero
textures in Eq. (3.1) and Eq. (3.6), respectively, which
reproduce the quark masses, mixing angles and the CP
violation phase, with deviations from the experimental
values below 1o level.

The first case has nine free parameters: 7 real and 2
phases, while the second case has eight free parameters: 7
real and 1 phase. In both cases, it is necessary to reproduce
ten physical quantities: 6 quark masses, 3 mixing angles
and the CP violation phase, the lack of balance between the
number of free parameters and the physical quantities
implies physical relations between the quark masses and
the CKM mixing angles, which are reported in Table V.
Additionally, the relation GST [37] is maintained and we
can adjust the CP violation phase of the SM. Additionally,
our five-zero texture models reproduce the experimental
quantities (1.7) deviating from the experimental central
value by at most 1o level. First, for both cases I and II, we

can verify that the relation |V,;/V | &~ \/my/my is satis-

fied, while the relation |V,,/V | # \/m,/m. is not, as
already indicated in previous works [20-22]. In some cases,
even with the LO approximations given in Table V we can
reproduce the results (1.7). We have several free parameters
to adjust the physical quantities: the CP-violating phases,
the calibration phases 6,; with ¢ = u, d, in the diagonal-
ization matrices, and the real parameter «,. In our analysis
the analytical LO expressions for the case I, with 4;, <0
and for the case I, with 4;; < 0, are enough to keep all the
observables inside of the error bars. For the other cases,
A2, < 0 and 4, < 0, satisfactory results were not achieved
with the LO approximations provided in Table V. In these
cases, the complete expressions must be taken into account
in order to get a good fit.

The case I is an original proposal which was not
considered in the Fritzsch original work [1] nor in later
studies. Case II has been widely considered in the literature
[1,5,23,25,30,31], but in our approach, we take a negative
eigenvalue (which has not been considered previously) for
the mass of the lightest down quark, that is, 1;;, < 0. Here,
it should be mentioned that, without losing generality, only

|

one negative eigenvalue is necessary for each mass matrix
[3,11]. Also, it is important to say that the relations in
Table V are comparable to the results reported in
[30,31,34,36,39].

The purpose of the texture zeros for quark mass matrices
is to find relations between quark masses and the flavor
mixing parameters in consistency with the experimental
data [1]. For the textures deduced in this work, the quark
mass ratios contribute significantly to the flavor mixing
parameters as shown in Table IV; In Table V, it is possible
to observe additional contributions (not exclusively depen-
dent on the quark masses) which also depend on the free
parameter a, and on the phases responsible for the CP
violation. It is important to highlight that the LO contri-
butions to the relations involving the CKM matrix elements
mainly depend on ratios of down-type quark masses. The
relations reported in this manuscript, could be useful to
disentangle the underlying symmetries under the mass
scales in the SM.
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APPENDIX: QUARK MASS MATRICES
AND THE CKM MIXING MATRIX
The parameters of the CKM are reported at the Z pole

scale 4 = M, hence the same scale is used to evaluate the
current quark masses (in MeV) [19]., i.e.,
m, =1.3870%,

my=2.8240.48,

m. =638,

_57+I18
my=57",7,

m, = 172100+ 1200,
m;, =28607,50. (A1)

The CKM unitary matrix [22,40,41] can be parameterized
by three mixing angles and the CP violation phase [41].
The form of this matrix in the standard parametrization is
given by [42].

Ve Vs Vb C12€13 S12€13 sp3e7"
V=V Ve Ve | =] —s1203 — 012S235136’i(S C12€23 — 51252351361-(3 $23C13 | (A2)
Via Vis Va S12823 — 0126’235"1361'(s —C12823 — S12023513€i‘s €23C13
[
where s;; = sin6;;, ¢;; = cos 0;;, the angles 8;; are said to lie 1= sing A sin @3 _ sinf,3 cos
in the first quadrant, such that sin 6;;, cos 0;; > 0. The phase § 12 sin%6,,’ P = Sn 01,sin 03"

is responsible for all the CP violation phenomena in the
flavor changing processes in SM. For various applications it
is useful to use the Wolfenstein parametrization [22]

sinf,3 sind
=2 - A3
1 sin 612 sin 923 ( )
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TABLE V. Cases I and II for the quark mass matrices with five texture-zeros. And their corresponding LO predictions for the CKM
elements.

Case Five-zero textures LO predictions for the CKM mixing matrix elements Vcgu:
I 0 0 & _
M= PT< 0 ay, |ﬂu| ) ’ |Vud| m; +md +-
|§M| “ﬂu| Yu |V€S| = m:i\md (1 — Z_ul) 4+
0 & 0 —
M, = (|§d| 0 |A4l ) [Vl = -
0 |ﬁd‘ %d ‘Vus| = ) m:idmd + - ",

where P = diag(e "%, e7n  1).

Be.sides me < oy, <L my. |Veal = ’ /#dmd(l_zl_ur)+... ,

With the upper sign (“-”) for the case (la), )
. mg—ny 1 ﬂ) — e~y [ ne L.
Table II: 1, < 0 and A,; < O. Vil ’ T [\/ e m, m T m} g
With the lower sign (“+4”) for the case (Ib), m\—m,, iv, |2
Table II: 1y, < 0 and Ay < 0. Veol = ‘ T (=) — ey [ F et
|Vub ‘1 /Z 2’: "f’/l \/m ”rlnh mzl)( q:ai)( ):Fe_l¢f mgmg(my —md)+_“"
Vil = | oo (1= ) = et [ ] .
II 0 0 |§u| \74 = + -
MM:< 0 a, |ﬂu|), Vidl = s
|§u| ‘ﬁu| Yu ” |V€s| = m,:l‘r\md (1 Z,I) +--
0 |Eqle'Pea 0 _ -
M, = (|§d|e_"/"fd Ya 0), Vipl = \f1=fe 4
0 0 A ‘Vus| | m, +m ! |v
where m, < a, < m,, and "
Upper sign (=): for ;, <0 and A;, < 0. Veal = Iy /b (T =35 + -+,

Lower sign (4): for 4;, <0 and 4,; < 0.

Visl = 1\/m: +m4( ) ;
Vepl = Iy /=5 + -1,
Vus| = | 7;,4' s
Vial = 1\t G =) F e [ G — o

The CKMfitter and UTfit Collaborations [20,21] provide updated fits for the Wolfenstein parameters,
A =022500709010 A =082670012  p=0.152"001F 5 =0.3579900. (A4)

The best fit values for CKM matrix elements are

(0.9743140.00012) (0.2251440.00055) (0.00365 £0.00010) ¢i(~66:8+2.0)
V= (=0.22500+0.00054)¢!(0-0351+0.0010)" (() 97344 4-(0.000]2)¢"(~0-001880+0.000052)" (0.042414-0.00065)
(0.00869 £0.00014)¢/(-2223£0.63)" (004124 4 0.00056) i (1-056+0.032) (0.9991124-0.000024)
(AS)
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