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We perform the first one-loop electroweak corrections for 2 → 3 processes for dark matter annihilation.
These are the dominant processes that enter the computation of the relic density for the low mass region of
the inert doublet model (IDM) when annihilations to two on shell vector bosons are closed. The impact of
the one-loop corrections are important as they involve, through rescattering effects, not only a dependence
on the parameter controlling the dark sector, not present if a calculation at tree level is conducted, but
also on the renormalization scale. These combined effects should be taken into account in analyses based
on tree-level cross sections of the relic density calculations, as a theoretical uncertainty, which we find
to be much larger than the cursory �10% uncertainty that is routinely assumed, independently of the
model parameters.
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I. INTRODUCTION

The fermions of the standard model (SM) do not
directly couple to the scalars in the inert doublet model
(IDM) [1,2]. The annihilation of the dark matter (DM)
candidate in the IDM, the lightest neutral scalar, X, occurs
most naturally through annihilation into the SM vector
bosons. These processes are triggered by the gauge
coupling and also by the interactions stemming from
the scalar sector of the model. The latter can be para-
metrized by the coupling of the SM Higgs boson to the
pair of DM, λL, once the masses of all the scalars of the
IDM are derived [3]. For these annihilations into a pair of
WW and ZZ to be possible, the mass of the DM,MX, must
be larger than MW , the mass of the W boson. Even in this
case, these annihilations are so efficient, see [3], that the

obtained relic density is too small, unless one considers
very high DM masses [4]. For the low mass, MX < MW ,
the DM region of the IDM [3], the annihilations are into
WW⋆ and ZZ⋆, where one of the vector bosons is off shell
and is materialized by a fermion pair. The cross sections
are then smaller, bringing the relic density in accord with
present measurement of the relic density. For WW⋆ and
ZZ⋆, one is then faced with the calculation of a 2 → 3
process, which has never been attempted at one loop for
the calculation of the relic density. Unlike the newly
discovered coannihilation region and the Higgs resonance
region, this continuum region does not require much
adjustment of the parameters in order to achieve a good
value of the relic density within the freeze-out mechanism.
This explains why a scan on the parameters of the IDM
returns quite a few points with this topology for the relic
density. Following the in-depth preliminary study,
XX → WþW−, ZZ, of all the possible benchmarks in this
region that pass all the experimental (and theoretical)
constraints, we retain, in the present analysis of these
channels, only those benchmarks that satisfy the one-loop
perturbativity requirement [3]. This requirement was
enunciated in the preparatory study XX → WþW−,
ZZ [3]. In a nutshell, only models that return small
enough β̃λL (the β-function parameter that controls the
running of the coupling λL) are perturbative [3]. On that
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basis, we keep three benchmark points defined in [3]:
(points A, F, and G) to illustrate our computations of
the one-loop electroweak corrections to XX → Zff̄ and
XX → Wff̄0. Let us therefore recall the characteristics of
these three benchmark points in Table I.
The paper is organized as follows. In the next section, we

review the 2 → 3 cross sections and seek a factorization
where the flavor dependence is carried by the vector
bosons’ partial widths. Section III is a general presentation
of the one-loop calculation. Since the bulk of the correc-
tions are contained in the purely virtual correction in the
neutral channel Zνν̄, Sec. IV is dedicated to this channel
before studying in Sec. Vall the other channels where final
state radiation (tree-level 2 → 4 processes are needed) is
considered. Section VI summarizes all the one-loop results
on the cross sections leading the way to the impact of the
corrections and the scale uncertainty on the relic density,
which we present in Sec. VII. Our conclusions are
presented in Sec. VIII.

II. TREE-LEVEL CONSIDERATIONS

Like for the 2 → 2 processes, XX → WW and
XX → ZZ, beside the masses of the dark sector particles,
the cross sections depend not only on the gauge coupling
but also on λL (because of the SM Higgs exchange and the
quartic XXVV couplings, V ¼ W, Z). The massive fer-
mions’ Yukawa couplings may also play a role, but we will
see that they are negligible. As a subset, contributions to the
full Zff̄ are displayed in Fig. 1.
It is completely unwise to try to compute such cross

sections, even at tree level, by splitting them into a 2 → 2
process followed by the “decay” of one of the vector bosons
into fermions even if the Z=W current is conserved in
the limit mf → 0. For starters, XX → VV⋆ is ill-defined
since it does not correspond to an element of the S matrix.
Therefore, a complete 2→3, XX → Zff̄ and XX → Wff̄0,
calculation is in order. Nonetheless, because the mass of the
final fermions is very small compared to the energies
involved and the fact that the fermions do not couple to the

TABLE I. Characteristics of the benchmark points A, F, and G. All masses are in GeV. The tree-level [calculated
with (αð0Þ] relic density and the weight in percent of each channel contributing to the relic density are given. We also
list the values of the underlying parameters λ3;4;5 and β̃λL [3].

A F G

MX 70 72 72
λL × 103 5.0 3.8 0.1
MA, MH� 170, 200 138, 138 158, 158
ðλ3; λ4; λ5Þ (1.127, −0.738, −0.384) (0.447, −0.222, −0.222) (0.632, −0.316, −0.316)
β̃λL 4.343þ 6.082λ2 1.402þ 2.704λ2 2.142þ 3.795λ2

Ωh2
αð0Þ 0.156 0.119 0.121
ΩWW⋆ð%Þ 90 88 88
ΩZZ⋆ð%Þ 10 12 12

FIG. 1. A selection of tree-level Feynman diagrams for XX → Zff̄ in the Feynman gauge. The displayed diagrams can be built up
from XX → ZZ⋆ → Zff̄ but note also the Z-“bremsstrahlung” contribution triggered from XX → ff⋆ → ff̄Z (last diagram in the
first row).
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dark sector, we expect that the complete calculation of the
cross sections are arranged such that

σðXX → Zff̄Þ
σðXX → Zνν̄Þ ≃

ΓZ→ff̄

ΓZ→νν̄
¼ BrZ→ff̄

BrZ→νν̄
; ð2:1Þ

σðXX → Wff̄0Þ
σðXX → WνeēÞ

≃
ΓW→ff̄0

ΓW→νeē
≃ Nf

c;

ðNf
c ¼ 1; 3 is the color factorÞ: ð2:2Þ

The ratios of the partial physical widths act as a
normalization of the cross sections with respect to the
neutrino channels. If we introduce

RXX
Zff̄

¼ σðXX → Zff̄Þ
σðXX → Zνν̄Þ

ΓZ→νν̄

ΓZ→ff̄

RXX
Wff̄0 ¼

σðXX → Wff̄0Þ
σðXX → WνeēÞ

ΓW→νeē

ΓW→ff̄0
;

RXX
W=Z ¼ σðXX → WνeēÞ

σðXX → Zνν̄Þ ; ð2:3Þ

it follows from the arguments that lead to Eqs. (2.1)–(2.2)
that RXX

Zff̄
∼ RXX

Wff̄0 ∼ 1. We verify these approximations and

behavior by carrying a full calculation with fermion mass
effect for the different channels. For point G, the results are
displayed in Fig. 2.
First of all, the velocity dependence of the tree-level

XX → Zff̄ and XX → Wff̄0 is strong. This is shown in
Fig. 2 for the Zνν̄ and consequently, for Wν̄ττ. The latter
grows faster past v ∼ 0.5. This is understandable since as v
increases one gets closer to the opening of the threshold for
on shell pair production of vector bosons, the WW thresh-
old occurring first. The important observation though is that
below v ∼ 0.5 (the most important range for the relic
density calculation), when the threshold effect is small,
the ratio between these two cross sections is almost
constant. This is due to the global SUð2Þ symmetry with
the important consequence that the λL dependence is the
same in the neutral and charged channels. This is the same
property that is explicitly confirmed in XX → WW and
XX → ZZ past the ZZ threshold in our study in Ref. [3].
The same λL dependence will mean that both channels will

FIG. 2. Benchmark point G. The tree-level cross section times the relative velocity for XX → Zνν̄ (upper-left panel), RXX
Zff̄

− 1

for f ¼ τ, b (upper-right panel). The lower panel displays RXX
Zττ̄ ≃ 1 and the ratio of the tree-level cross sections RXX

W=Z ¼ σðXX →
Wτν̄τÞ=σðXX → Zντν̄τÞ as a function of the relative velocity, v.
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exhibit the same scale uncertainty in the one-loop corrected
cross sections.
We confirm this feature at all v, and independently of the

flavor RXX
Wff̄0 ¼ 1, at better than per-mille level, to the point

where we can not display this difference in Fig. 2.
In the neutral channel, RXX

Zff̄
≃ 1 is also nicely confirmed.

Departure from unity are largest for the Zbb̄ final state
where the maximal value is below 3% across all values of v.
The effect is smaller still for the Zττ channel as seen in
Fig. 2. For all other channels, the mass effects are
unnoticeable and are therefore not shown in the figure.
The effect of the fermion masses/Yukawa couplings
through Higgs exchange, XX → hff⋆ → ff̄Z, is therefore
small.
Taken together, these observations lead us to conclude

that the cross section into the neutrinos can be taken as a
representative of the channels, neutral as well as charged.
We also look at RXX

W=Z. For the moment, we keep these
observations in mind before attempting the one-loop

analyses. This first exploration confirms that the neutrino
channels carry the bulk of the v dependence and are the
prime channels against which we will measure all other
channels. We also confirm that the same conclusions, with
the same level of accuracy, apply for the other benchmark
points (A and F).

III. XX → Wf f̄ AND XX → Zf f̄ AT ONE LOOP:
GENERAL ISSUES

At one loop, a large number of topologies appears
for these 2 → 3 processes. For XX → Zff̄, a set of the
contributing one-loop diagrams is shown in Fig. 3.
A subset of diagrams at one loop for XX → Wff̄ is found
in our analysis of the coannihilation region, where this
cross section was a subdominant contribution to the relic
density [5]. Technically, it is not (only) the sheer number of
diagrams that adds to the complexity of the calculation but
also the fact that the calculation, especially the reduction
of the n–point integrals, is very much computer-time

FIG. 3. A small selection of Feynman diagrams for XX → Zff̄ at one loop. We only show a very small subset of pentagons, boxes,
and triangles but not self-energy corrections and counterterms. f0 stands for the SUð2Þ partner of f (νl for f ¼ l). F stands for the sum of
all SM fermions. Although some diagrams may not look like boxes, they fall under the box category because of the four-particle vertices
they involve. The same applies to triangles. We see rescattering effects within the dark sector, XX → AA, HþH−, XX that explicitly
involve the λ2 parameter that does not show up at tree level. Also note that because of the off shell Z, charged fermion ff pairs from γ⋆
must also be taken into account.
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consuming. This is particularly the case for the five-point
functions, the pentagons, that need to be evaluated, for
instance, in configurations of phase space where v ∼ 0,
dangerously close to the appearance of very small Gram
determinants; see [6]. For the charged final state, tree-level
XX → Zff̄γ and XX → Wff̄γ must be considered together
with the virtual one-loop corrections. We find that the phase
space slicing method, as applied in [4], converges relatively
quickly. Gauge parameter independence [3] is carried at
some random point in phase space. This is a check not only
on the model implementation (including counterterms) but
also the tensorial reduction of the loop integrals.
An on shell scheme for λL based on h → XX is not

possible for this mass range since this decay is closed.
The radiative correction will therefore be sensitive to the
renormalization scale, μ, associated with the MS scheme
associated with a definition of λL, see Ref. [3],

δMSλL ¼ 1

32π2
β̃λLCUV; CUV ¼ −

2

ε
− 1þ γE − lnð4πÞ;

ð3:1Þ

where ε ¼ 4 − d with d being the number of dimensions
in dimensional regularization and γE being the Euler-
Mascheroni constant. With μdim, the scale introduced
by dimensional regularization, the scale, Q2, dependence
of λL is

32π2
∂λL

∂ lnðQ2Þ ¼ −32π2
∂λL

∂ lnðμ2dimÞ ¼ β̃λL : ð3:2Þ

We will, for the three benchmark points in this mass
range, study the scale dependence. Beside the scale
dependence, we also investigate the interesting λ2 depend-
ence which, as we showed in XX → WW, ZZ above
threshold, is not totally contained in βλL ; see Ref. [3].
The scale dependence, for a fixed v, is easily extracted from
the λL dependence of the tree-level cross section combined
with the expression of βλL , which is known analytically.
Barring very small mass effects, we confirm that at tree
level, RXX

Zff̄
≃ 1, RXX

Wff̄0 ¼ 1, while RXX
W=Z has a slight v

dependence above v > 0.5. This is an indication that the λL
dependence of the cross section is essentially the same for
all fermion channels in XX → Zff̄ and XX → Wff̄0.
Before displaying the numerical results of the full one-

loop computation, we present the analytical scale variation
for a chosen relative velocity in order to weigh how strong
the scale dependence can be. From what we argued and will
confirm shortly through a full calculation, the bulk of the
scale variation is almost flavor independent. We therefore
first concentrate on the neutral channel XX → Zνν̄. The
most important features that are present in all other
channels, are revealed in this channel. From the compu-
tation point of view, the neutrino channel is somehow the

easiest since we do not need to deal with the infrared
singularities that require the inclusion of the radiative
2 → 4ð3þ γÞ tree-level contribution.

IV. XX → ZZ⋆ AT ONE LOOP: XX → Zνν̄

The large number of diagrams and the appearance of
five-point function loop integrals makes these computa-
tions challenging. The different steps and technicalities that
are involved in these computations have been detailed in
the parent paper [3]. Another sort of technicality is the
renormalization and in particular, the scheme dependence.
Let us remind the reader that all parameters of the model
but, in this case, λL are defined on shell. λL is here taken
MS, and at the end, the one-loop result carries a scale
dependence. As shown in details in the accompanying
paper [3], the scale dependence in this mixed scheme only
originates from the λL counterterm. One can even exactly
determine the scale dependence of the one-loop cross
section from the parametric λL dependence of the tree-
level cross section and the knowledge of the corresponding
β function for λL, β̃λL , which can be derived analytically.
That such an approach agrees with the result of a direct
calculation for an arduous computation such as this 2 → 3
process, is a further strong indication of the correctness of
the calculation beside the tests of ultraviolet (UV) finiteness
and gauge parameter independence. Moreover, such an
approach which allows an analytical parametrization of
the scale, is very useful. The first step is to seek the λL
parametric dependence of the tree-level cross section at a
given v. To extract this, we maintain all parameters of the
model, namely the masses and the SM parameters fixed
apart from λL. Since the dependence is a quadratic poly-
nomial, the λL dependence is reconstructed numerically by
generating the cross sections for λL ¼ 0, 1, 2. We check the
goodness of the parametrization by taking a random value
of λL and comparing the cross section obtained from the
reconstructed polynomial against a direct calculation using
the code. We always find excellent agreement for this
check. One can then derive the infinitesimal change of the
cross section due to an infinitesimal change of λL. The latter
will then be turned to a change due to the counterterm for
λL through β̃λL , which quantifies the scale dependence as
we will see next for our three benchmark points.

A. XX → Zνν̄ at point G

The λL dependence of the cross section, for v ¼ 0.4, is
found to be

σ0XX→Zνν̄;Gðv ¼ 0.4Þv ¼ 0.013þ 0.300λL þ 1.750λ2L

≃ 0.013ð1þ 23λL þ 135λ2LÞ: ð4:1Þ

Observe that the λL dependence is quite strong. The
(relative) coefficient of λL is about 23. Note also that the λ2L
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is even larger. The latter will not be so important since the constraints posed on λL give very small values of λL. One can then
relate the one-loop correction dσðμ2Þ at scale μ2 to the one at scale μ1 according to

dσG;v¼0.4
XX→Zνν̄ðμ2Þv ¼ dσG;v¼0.4

XX→Zνν̄ðμ1Þv − ð0.300þ 2 × 1.750λLÞ
βλL lnðμ2=μ1Þ

16π2
;

∼ dσI;v¼0.4
XX→Zνν̄ðμ1Þv − 0.300ð2.141þ 3.795λ2Þ

lnðμ2=μ1Þ
16π2

; leading to

dσXX→Zνν̄ð2μ1Þ
σ0XX→Zνν̄

�
�
�
�
G;v¼0.4

∼
�
dσXX→Zνν̄ðμ1Þ

σ0XX→Zνν̄

�
�
�
�
I;v¼0.4

− 21.7ð1þ 1.8λ2Þ
�

%: ð4:2Þ

The last line gives the difference when the scale is doubled from μ1 to 2μ1.

We verify these formulas against the results of a direct
computation of the full one-loop correction. We obtain a
five digit agreement for three values of λ2 (λ2 ¼ 0.01, 1, 2)
and different combinations of the scale μ. We note that
the scale dependence is quite large. This is due to the strong
λL dependence of the cross section and also to the fact that
β̃λL is not so small. For this benchmark point and for
v ¼ 0.4, we learn from Eq. (4.2) that, in the range
MX=2 < μ < 2MX, the uncertainty introduced by the scale
variation is about 44% for λ2 ¼ 0, it increases to about
200% for λ2 ¼ 2, which should be quoted as the overall
theoretical uncertainty if we allow both the scale μ to span
the range MX=2 − 2MX and a variation 0 < λ2 < 2.
The results of the full one-loop corrections for three

values of λ2 ¼ 0.01, 1, 2, and for different scales,
μ ¼ MX=2, MX, 2MX are displayed in Fig. 4 for the range
of relative velocities of interest for the relic density
calculation. The so-called improved tree level based on
the use of αðM2

ZÞ gives a constant correction of about 21%.
μ ¼ MX=2 gives not only the largest correction but shows

also a significant velocity dependence. μ ¼ MX=2 is not an
appropriate scale; this scale is quite removed from the
(largest) scales that enter the loop integrals: the invariant
mass of the XX system

ffiffiffiffiffiffiffi
sXX

p ≃ 2MXð1þ v2=8Þ ∼ 2MX or
MA that enter in the t-channel exchange. As discussed in
Ref. [3], the appropriate scale should be, maxð2MX;MAÞ ¼
158 GeV. For point G, there is a small difference of
14 GeV between 2MX and MA. We will come back to
the choice μ ¼ MA whose results will be close to what we
obtain for 2MX. Our results show that for μ ¼ 2MX and
λ2 ¼ 0.01, the correction is about 11%. It decreases slowly
as λ2 increases. With this choice of the scale, the corrections
range from 11% to −3% for λ2 ranging from 0.01 to 2.
Observe that while for λ2 ¼ 0.01 the corrections are closest
to the value obtained with the improved tree-level cross
section [αðM2

ZÞ], there is still as much as 10% difference
between the two corrections. An important lesson is that
the λ2 dependence of the full one-loop correction is
clearly important. This λ2 dependence is not all contained
in β̃λL .

FIG. 4. Point G. Comparing the relative correction in % as a function of the relative velocity for Zντν̄τ for λ2 ¼ 0.01, 1, 2, and for 3
scales μ ¼ MX=;MX; 2MX . We also display the improved tree level based on the use of αðM2

ZÞ. The panel on the right is a zoom on the
choice μ ¼ 2MX for better readability.
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B. XX → Zνν̄ at points F and A

Benchmark points A and F show similar trends to what
we just saw for point G despite the fact that both bench-
marks points A and F have a much larger value of λL. This
is understandable since the crucial property that explains
the scale dependence is on the one hand the relative λL
dependence on the cross section and on the other, the value
of β̃λL and its λ2 dependence. The λL dependence of the
tree-level cross section is not very different from that of
point G. What is quite different is the magnitude of βL and
its λ2 dependence. Point F (A) has a smaller (larger) βL
(about a factor of 2 for the same value of λ2) than point G.
When selecting the most appropriate scale we observe that
for point A, MA is the most appropriate scale while for
point F, 2MX is quite close to MA.
From the λL dependence of the tree-level cross section of

point F, at v ¼ 0.4, we have

σ0XX→Zνν̄;Fðv ¼ 0.4Þv ≃ 0.012ð1þ 24λL þ 143λ2LÞ; ð4:3Þ

so that the percentage correction is

dσXX→Zνν̄ðμ2Þ
σ0XX→Zνν̄

�
�
�
�
F;v¼0.4

≃
�
dσXX→Zνν̄ðμ1Þ

σ0XX→Zνν̄

�
�
�
�
F;v¼0.4

− 20.1ð1þ 1.9λ2Þ lnðμ2=μ1Þ
�

%;

ð4:4Þ

while for point A, we have

σ0XX→Zνν̄;Aðv ¼ 0.4Þv ≃ 0.009ð1þ 28λL þ 201λ2LÞ; ð4:5Þ

giving

dσXX→Zνν̄ðμ2Þ
σ0XX→Zνν̄

�
�
�
�
A;v¼0.4

≃
�
dσXX→Zνν̄ðμ1Þ

σ0XX→Zνν̄

�
�
�
�
A;v¼0.4

− 72.1ð1þ 1.4λ2Þ lnðμ2=μ1Þ
�

%:

ð4:6Þ

Our results for points F and A are shown in Fig. 5. They
confirm the general trend observed for point G. The full
one-loop results displaying the scale dependence and λ2
dependence are also in excellent agreement with the
analytical formulas of Eqs. (4.4)–(4.6). For μ ¼ MX=2,
the corrections are very large with strong velocity depend-
ence. Of the three scales, μ ¼ MX=2;MX; 2MX, the largest
scale, μ ¼ 2MX, is where the corrections are the smallest.
Yet, for point A, even μ ¼ 2MX gives large correction. For
point A, MA is the largest scale for the process. It is quite
different from the choice μ ¼ 2MX, considering the large
value of β̃λL . We therefore show the results of taking

μ ¼ MA as the optimised scale in Fig. 6. For point F, the
difference with μ ¼ 2MX is very small and mainly changes
(slightly) the results for λ2 ¼ 2 (there is an upward shift of
−5% when moving from μ ¼ 2MX to μ ¼ MA). This is due
to the fact that for point F, 2MX, and MA are very close
(MA ¼ 138 GeV and 2MX ¼ 144 GeV) and β̃λL is not
large. The effect of the change of μ for point A when
moving between the scale 2MX and MA is substantial. In
particular, for λ2 ¼ 0.01, the correction of 10% is in line
with the correction found for the two other benchmarks
points, while the corrections for λ2 ¼ 1, 2 are sensibly
smaller. Nonetheless, we warn the reader again that a
large value of βλL is sensitive to large scale variations.
Independently of the scale choice, a common feature is that
λ2 ¼ 0.01 gives the smallest correction often approaching
the tree-level improved αðM2

ZÞ approximation.

V. XX → Zf f̄ AND XX → Wf f̄ 0:
ONE-LOOP RESULTS

We already saw in our study of the tree-level cross
sections in Sec. II that the flavor dependence of σðXX →
Wff̄0Þ is, to an excellent accuracy, contained in and
represented by the flavor dependence of ΓðW → ff̄0Þ.
We also learnt that the velocity dependence of the neutral
and charged channels cancels out in the ratio of the cross
sections σðXX → Wff̄0Þ=σðXX → Zνν̄Þ for velocities up
to v ¼ 0.5. Above these velocities, the WW channel starts
experiencing the onset of the WW threshold, while the
ZZ is still not experiencing the ZZ threshold. The under-
lying global SUð2Þ symmetry would also suggest that,
particularly below v < 0.5, the λL dependence of σðXX →
Wff̄0Þ=σðXX → Zνν̄Þ cancels out. To wit, we find that the
λL dependence for XX → Wνττ̄ for point G and velocity
v ¼ 0.4 writes as

σ0XX→Wντν̄τ;G
ðv ¼ 0.4Þ ¼ 0.086þ 1.960λL þ 11.343λ2L

≃ 0.086ð1þ 23λL þ 133λ2LÞ
≃ 6.585σ0XX→Zνν̄;Gðv ¼ 0.4Þ: ð5:1Þ

The latter very good approximation means, especially
for the very small values of λL we are permitted, that
the μ dependence, Eq. (4.2), is within machine precision
and fitting procedure, identical for ZZ⋆ and WW⋆. Since
these two channels carry almost the same relative λL
dependence and that λL ≪ 1, the scale dependence for
the normalized cross sections is confirmed to be almost
the same. A small expected departure above v > 0.5 is
confirmed numerically. The flavor independence of
σðXX → Wff̄0Þ=ΓðW → ff̄0Þ continues to hold true at
one loop. The latter stems from the fact that the electroweak
radiative corrections (relative to the tree level) of
ΓðW → ff̄0Þ are known to be the same for all flavors
[7]; therefore, RXX

Wff̄0 ¼ 1 at one loop as well. We also verify
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FIG. 6. The relative corrections for σvðXX → Zντν̄τÞ with μ ¼ MA for the benchmark point A (left panel) and point F (right panel).

FIG. 5. As in 4 but for point F (upper panels) and point A (lower panels).
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all these properties by a direct full one-loop computation to
the different channels. First of all, we confirm that the
relative electroweak correction to the annihilation intoWlν̄l
is, within the per-mille level, the same as that of the
annihilation intoWqq̄0, we therefore only show the leptonic
(charged) final state, Wτν̄τ.
As Fig. 7 for μ ¼ 2MX in the benchmark point G shows,

the behavior of all the annihilation channels follow
XX → Zντν̄τ. The λ2 dependence is indeed represented
by the channel we discussed in detail in the previous
section. The −0.5% difference between the ðZÞττ̄ and
ðZÞντν̄τ is indeed due mostly to the one-loop relative
correction between the Z decay width into ττ̄ and ντν̄τ
(−0.9%) with a smaller contribution from the τ Yukawa
mass (h exchange for example) as identified in Fig. 2. The
deviation observed in Wτν̄τ increases for larger v (as
expected from the tree-level comparison of these two
channels). Nonetheless, the difference between the relative
corrections remains below 1.5% (below 0.5% for v < 0.5).
To an excellent approximation, the relative one-loop
corrections, dσ, between the different channels, represent
the difference between the one-loop electroweak correc-
tions to the corresponding partial widths, dΓ,

dσðXX → Zff̄Þv
σðXX → Zff̄Þv −

dσðXX → Zνν̄Þv
σðXX → Zνν̄Þv

≃
dΓðZ → ff̄Þ
ΓðZ → ff̄Þ −

dΓðZ → νν̄Þ
ΓðZ → νν̄Þ : ð5:2Þ

The mass effect is obviously more important for the
b-quark final state channel, as we already saw at tree level
(Fig. 2). In the radiative corrections to σvðXX → Zbb̄Þ,
there is about a −6% difference with the Zνν̄ channel; see
Fig. 8. Almost half of this correction is due to the difference
in the relative electroweak correction between the partial
width Z → bb̄ and Z → νν̄.

VI. INTERMEDIATE SUMMARY

Let us take stock.
(i) An important feature common to all three bench-

marks is that whatever the values of the renormaliza-
tion scale μ and of the parameter λ2 are, XX → Zνν̄
encapsulates practically all of the radiative corrections
contained not only in the neutral channels
XX → Zff̄ but also in the charged channels

FIG. 7. Point G. The relative correction, dσðVff̄0Þ=σ0ðVff̄0Þ, V ¼ W, Z, in % as a function of the relative velocity for XX → Zτþτ−,
Zντν̄τ, Wτν̄τ for μ ¼ 2MX and λ2 ¼ 0.01, 1, 2. The right panel shows the difference dσðVff̄0Þ=σðVff̄0Þ − dσðZνν̄Þ=σðZνν̄Þ.

FIG. 8. Point G. Percentage corrections for μ ¼ MA for the Zντν̄τ and Zbb̄ final states. The latter are about 6% lower than the neutrino
case for all values of v and λ2.
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XX → Wff̄0, in the sense that the normalized one-
loop corrections are, to a high degree of accuracy,
equal for all channels for the same choice of λ2 and
the renormalization scale μ.

δσðXX → Zνν̄Þ
σðXX → Zνν̄Þ

�
�
�
�
μ;λ2

∼
δσðXX → Vff̄0Þ
σðXX → Vff̄0Þ

�
�
�
�
μ;λ2

V ¼ W;Z ð6:1Þ

– Equation (6.1) is valid at all v (in the range of interest
for the relic density) for σðXX → Zff̄Þ. There is a
slight v dependence for σðXX → Wff̄0Þ when com-
pared to σðXX → Vff̄Þ. This difference is small and
does not exceed more than 1.5%.

– There is no flavor dependence for the charged chan-
nels. The flavor dependence in the neutral channel is
largest forZbb̄where the largest difference amounts to
6%, more than half of this difference is accounted
for by a correction given by ΓðZ → ff̄Þ1−loopEW=
ΓðZ → ff̄Þtree. We expect these small flavor effects to
be diluted when we consider the correction to the relic
density, considering that the ZZ channel accounts for
about 10% to the relic density and that the bb̄ channel
is 15% of the whole ZZ.

(ii) As expected, the scale dependence is largest for
point A which has the largest β̃λL . Our conjecture

(based nonetheless on the study of the scales
involved in the loop functions) seems to be a very
good one. The appropriate scale is maxð2MX;MAÞ.
In particular, we find that for λ2 ¼ 0.01, all three
benchmark points give very similar corrections of
about 10%–12%. For this choice of scale, points F
and G (which have small β̃λL) give very similar
corrections for λ2 ¼ 1ð−5%Þ; 2ð−20%Þ, while for
point A, the corresponding corrections are v depen-
dent with values for v ∼ 0 similar for all λ2. We
observe that in our study of XX → Wff̄0 (P60) in
the coannihilation region [5], where an on shell
renormalization for λL was possible, the electroweak
correction for λ2 ¼ 0.01, 1, 2 were quantitatively
very similar to the results we obtain here, especially
for the benchmark points F and G. This validates
further our conjecture about the choice of scale. For
the calculation of the relic density, we consider that
the appropriate scale is maxðμ ¼ 2MX;MAÞ and that
theoretical uncertainty can be estimated by the
difference within the range ð2MX;MAÞ.

VII. EFFECT ON THE RELIC DENSITY

The 2 → 3 processes XX → Wff̄0 and XX → Zff̄
represent gauge invariant processes to correctly calculate
XX → WW⋆ below threshold. The importance of such
below threshold processes for the relic density has
been stressed in Ref. [8] (annihilation into “forbidden”

TABLE II. The relic density for points G, A, and F at tree level and after including the one-loop corrections. The percentage changes
are given in parenthesis. The percentage correction corresponding to the use of αðM2

ZÞ at tree level is also indicated. The full corrections
for point G differ from the simplified one loop in that the full one-loop Zbb̄ final state is fully taken into account, while in the simplified
version all fermion final states are rescaled from the full one loop in the Zνν̄ cross section through the added one-loop flavor correction,
ΓZ→ff̄=ΓZ→νν̄, where the partial widths are computed at one loop; see text for details.

Tree αðM2
ZÞ λ2 ¼ 0.01 λ2 ¼ 1 λ2 ¼ 2

Point G (I) 0.121 0.101
(−16.53%)

Full, μ ¼ MX 0.093 (−23.43%) 0.076 (−36.73%) 0.065 (−46.11%)
Full, μ ¼ 2MX 0.109 (−9.53%) 0.117 (−3.47%) 0.125 (3.57%)
Full, μ ¼ MA 0.112 (−7.27%) 0.126 (3.94%) 0.143 (18.51%)

Simplified, μ ¼ MX 0.093 (−23.48%) 0.076 (−36.76%) 0.065 (−46.12%)
Simplified, μ ¼ 2MX 0.109 (−9.60%) 0.117 (−3.55%) 0.125 (3.47%)
Simplified, μ ¼ MA 0.112 (−7.35%) 0.126 (3.84%) 0.143 (18.37%)

Point A (B) 0.156 0.130
(−16.67%)

Simplified, μ ¼ MX 0.092 (−41.35%) 0.063 (−59.57%) 0.048 (−69.12%)
Simplified, μ ¼ 2MX 0.125 (−19.59%) 0.112 (−28.28%) 0.101 (−35.31%)
Simplified, μ ¼ MA 0.140 (−10.16%) 0.144 (−7.91%) 0.147 (−5.52%)

Point F (H) 0.119 0.099
(−16.81%)

Simplified, μ ¼ MX 0.098 (−17.92%) 0.089 (−25.23%) 0.082 (−31.38%)
Simplified, μ ¼ 2MX 0.109 (−8.15%) 0.123 (3.62%) 0.142 (19.17%)
Simplified, μ ¼ MA 0.108 (−8.82%) 0.120 (1.21%) 0.136 (13.94%)
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channels at zero relative velocity) with examples studied in
Refs. [9–11]. This type of processes is now taken care of by
micrOMEGAs [12] as generalized 2 → 2 processes for the
implementation of the Boltzmann equations. As we have
shown in the previous sections, both at tree level, and at
one loop, the flavor dependence of the XX → Wff̄0 and
XX → Zff̄ is very well described by the (properly cor-
rected) branching fraction BrðW → ff̄0Þ and BrðZ → ff̄Þ;
therefore, the one-loop implementation is like that of the
tree-level implementation of these cross sections as con-
cerns the Boltzmann equations in micrOMEGAs.
We just learnt that the v dependence of the cross sections,

that contributes to the relic density calculation, is rather
smooth. Moreover, the μ (scale) dependence is sensibly the
same in all channels (neutral and charged). We therefore
expect the μ dependence of the relic density to follow that
of the cross section σðXX → Zνν̄Þ, since Ωh2 ∼ 1=hσvi
(hσvi is the total thermodynamically averaged cross sec-
tion). The difference between the values of the relic density
for μ ¼ MX and μ ¼ 2MX follows this trend as shown
in Table II of the relic densities obtained after passing all
our tree and one-loop v dependent cross sections to
micrOMEGAs. The table shows (as expected) large correc-
tions for the inappropriate choice μ ¼ MX, particularly for
point A. We derive the relic density by taking into account
the Yukawa couplings of the b quarks (full calculation)
beyond the effect of the flavor dependence contained in the
partial decay ΓZ→bb̄, see (5.2), that allows a nice factori-
zation of the total cross section in terms of σðXX → Zνν̄Þ,
which we call simplified. The difference between the full
and simplified implementations is very small since the
overall contribution of the Zbb̄ final state to the total
annihilation cross section is small. An important feature
seen for all scales and benchmark points is that the impact
of λ2 is large; this parameter is not taken into account when
tree-level analyses are conducted.
The appropriate scale is maxðμ ¼ 2MX;MAÞ. For

λ2 ¼ 0.01, the three benchmark points give very similar
results with small corrections contained in the range −7%
to −10%. These corrections are smaller than those found
through the naive use of a running α at scale M2

Z. Even for
these scales, the λ2 dependence is not negligible at all. To
give a quantitative estimate of the theory uncertainty that a
tree-level evaluation of the relic density should incorporate,
one needs to look at the one-loop results by varying both μ
and λ2. For instance, take the benchmark point F (very
similar results are obtained for point G) which has a
small β̃λL . While at tree-level, Ωh2 ¼ 0.119 [obtained with
αð0Þ], the theory uncertainty now is 0.108 < Ωh2 < 0.142
(Ωh2 ¼ 0.11919.2%−8.8%); this is more than the uncertainty of
�10% applied routinely in some analyses. Note that the
uncertainty/error is much larger if based on the usage
of αðM2

ZÞ, which is the default value of micrOMEGAs.
For point A, where β̃λL is larger, the tree-level result is

turned into the range Ωh2 ¼ 0.156−5.5%−35.3% with the conclu-
sion that a value of 0.156 that could be dismissed on the
basis of the present experimental constraint on the relic
density can in fact be easily brought in line with the
measured value if loop corrections were taken into account.

VIII. CONCLUSIONS

This is the first time a calculation of 2 → 3 processes for
the annihilation of DM has been performed at the one-loop
level, and the results of the corrected cross sections turned
into a prediction of the relic density. While this calculation
is within the IDM, the tools at our disposal are now
powerful enough to tackle such calculations for any model
of DM, provided a coherent renormalization program has
been devised and implemented. In the particular case of the
IDM, the reconstruction of the model parameters in order to
fully define the model, leaves two underlying parameters
not fully determined in terms of physical parameters. One
parameter, λ2, describes, at tree level, the interaction solely
within the dark sector of the IDM. It is therefore difficult to
extract it directly from observables involving SM particles.
Yet, this parameter contributes significantly to dark matter
annihilation processes such as those we studied here. This
indirect one-loop effect could in principle be extracted from
the precise measurement of the relic density; a situation
akin to the extraction of the top mass from LEP observables
provided all other parameters of the model, masses of the
additional scalars and their coupling to the SM, λL, are
known. λL, in fact, measures the strength of the coupling of
the SM Higgs boson to the pair of DM; there is in fact a
one-to-one mapping between a Higgs decay to XX and λL,
which suggests an extraction of λL from the partial width of
the Higgs boson into XX. While difficult in general, it is
impossible when this Higgs decay is closed. The allowed
parameter space for the 2 → 3 processes we studied is
when this Higgs decay is closed. In this case, we suggested
an MS scheme for λL. The MS introduces a scale depend-
ence on the one-loop cross sections. We showed that the
scale dependence can be determined from the λL parametric
dependence of the tree-level cross section and the knowl-
edge of the one-loop β constant for λL, β̃λL . Despite the fact
that the experimentally allowed values of λL are small, the
parametric dependence of the cross sections on λL are large
for all the benchmarks that we studied. Combined with not
so small β̃λL , the scale dependence can be very large if an
inappropriate scale is chosen. Based on a few other
analyses in the framework of the IDM [5] and also in
supersymmetric scenarios [13,14] regarding the issue of the
choice of the optimal scale, we suggest to restrict the choice
of the scale to values around the maximal scale involved in
the process. The present one-loop analysis is yet another
warning to practitioners of the IDM and other BSM models
in respect of the relic density of DM in these models.
The one-loop analyses give an important quantitative
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estimate of the (often) large theoretical uncertainty that
should be taken into account before allowing or dismissing
scenarios based on a tree-level derivation of relic density.
The latter, for instance, is not sensitive to the value of λ2. λ2
should be taken into account alongside the uncertainty from
the scale variation. We find that the combined theoretical
uncertainty is model dependent and in many cases is much
larger than the cursory (�) symmetric 10% theoretical
uncertainty that is included in many analyses.
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