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We propose a method to use lattice QCD to compute the Borel transform of the vacuum polarization
function appearing in the Shifman-Vainshtein-Zakharov QCD sum rule. We construct the spectral sum
corresponding to the Borel transform from two-point functions computed on the Euclidean lattice. As a
proof of principle, we compute the ss̄ correlators at three lattice spacings and take the continuum limit. We
confirm that the method yields results that are consistent with the operator product expansion in the large
Borel mass region. The method provides a ground on which the OPE analyses can be directly compared
with nonperturbative lattice computations.
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I. INTRODUCTION

The spectral sum of hadronic correlation functions, such
as the vacuum polarization function Πðq2Þ, of the form,

Z
dse−s=M

2

ImΠðsÞ; ð1Þ

has often been introduced since the seminal work of
Shifman et al. [1,2]. The integral over invariant mass
squared s smears out contributions of individual resonances
so that one can use perturbative treatment of quantum
chromodynamics (QCD) with quarks and gluons as fun-
damental degrees of freedom, as far as the Borel massM, a
parameter to control the typical energy scale, is sufficiently
large. The integral (1) is a quantity effectively defined in the
spacelike momentum region, and there would be no issue
of the violation of the quark-hadron duality [3].
The integral (1) suppresses the contributions from the

energy region above M and thus, is more sensitive to low-
lying hadronic states. If one can find a window whereM2 is
large enough to use perturbative expansion of QCD with
nonperturbative corrections included by operator product
expansion (OPE) and at the same time sufficiently small to
be sensitive to lowest-lying hadronic states, the spectral
sum (1) may be used to obtain constraints on the parameters
of low-lying hadrons, such as their masses and decay

constants. This method, called the QCD sum rule, has been
widely applied to estimate masses, decay constants, and
other properties of hadronic states in various channels [1,2].
However, an important question of how well the perturba-
tive QCD with some nonperturbative corrections included
through OPE can represent the spectral sum is yet to be
addressed, especially when the correlation function is not
always fully available from the experimental data, e.g., due
to a limitation of accessible kinematical region.
In principle, the test of perturbative expansion and OPE

can be performed using nonperturbatively calculated cor-
relation functions using lattice QCD. Comparison of the
lattice correlators at short distances with perturbative QCD
may be found, e.g., in Refs. [4–7] for light-hadron current-
current correlators and in Refs. [8,9] for charmonium
correlators. The energy scale where the comparison is
made has to be sufficiently low to avoid discretization
effects in the lattice calculations, while the OPE analysis is
more reliable at high energy scales. It has been pointed out
that the convergence of OPE is a crucial problem in the
energy region for which lattice QCD can provide reliable
calculations by now [7,10].
In this work, we perform another test of perturbative

QCD and OPE against nonperturbative lattice computation
using the spectral sum of the form (1). It has an advantage
that the OPE converges more rapidly compared to that
applied for the correlator itself either in the coordinate
space or in the momentum space. And this is exactly the
quantity that has been used in many QCD sum rule
analyses; hence, it serves as a test of those sum rule
calculations as well.
On the lattice, computation of the spectral sum (1) is

highly nontrivial because it requires the spectral function
ρðq2Þ ∝ ImΠðq2Þ for all values of timelike q2 above the
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threshold where a cut begins. Extraction of the spectral
function from the lattice correlators is a notoriously
difficult problem that requires solving an ill-posed inverse
problem. Namely, one has to extract ρðq2Þ by solving

CðtÞ≡X
x

h0jJðt; xÞJð0; 0Þj0i

¼
Z

∞

0

dωω2ρðω2Þe−ωt; ð2Þ

with a lattice correlator CðtÞ of a current operator J
calculated at a discrete set of time separations. There
have been several methods developed to perform this
inverse-Laplace transform, including the maximum entropy
method (MEM) [11–13], Bayesian approach [14], Backus-
Gilbert approach [15–18], the sparse modeling method
[19], but none of them succeeded to achieve sufficiently
precise extraction of ρðω2Þ that can be used for the purpose
of this work.
In this work, instead, we apply the method developed in

Ref. [20]. It is based on a representation of the weight
function e−ω

2=M2

in Eq. (1) as a polynomial of e−aω, which
is then related to the transfer matrix e−aĤ defined on the
lattice. (Here, a stands for the lattice spacing.) The method
relates the spectral sum directly to the lattice correlators
without explicitly solving the spectral function ρðω2Þ, so
that the inverse-Laplace transformation can be avoided.
The method has so far been applied to the B meson
inclusive semileptonic decays [21] as well as the inelastic
lepton-nucleon scatterings [22]. As we demonstrate in the
next sections, the method allows us to construct the spectral
sum with small and controlled systematic errors.
This paper is organized as follows. In Sec. II, we

introduce the spectral sum for the Borel transform in the
continuum theory. We also introduce our lattice QCD setup
for the evaluation in Sec. III. We discuss lattice calculations
and their errors in Sec. IV. We show comparison with OPE
and the ground state contribution in Sec. V. Section VI is
devoted to our conclusion and outlook.

II. CURRENT CORRELATORS IN QCD AND
THEIR SPECTRAL SUM

We briefly review the use of the spectral sum of QCD
current correlators. More detailed reviews and discussions
are found in the literature, e.g., [23,24].
We define the hadronic vacuum polarization (HVP)

function as a Fourier transform of the current-current
correlator,

ðqμqν − q2gμνÞΠðq2Þ ¼ i
Z

d4xeiqxhJμðxÞJνð0Þi; ð3Þ

where Jμ ¼ q̄γμq is the quark vector current. Taking
account of its analytical property, the HVP may be written
in terms of a spectral function ρðsÞ,

Πð−Q2Þ ¼
Z

∞

0

ds
ρðsÞ

sþQ2
; ð4Þ

ρðsÞ ¼ 1

π
ImΠðsþ iϵÞ; ð5Þ

where Q2 is the momentum squared, Q2 ¼ −q2. This
integral diverges since the spectral function does not vanish
in the limit s → ∞, and we can remove the divergence by
subtracting, for instance, Πðq20Þ at a certain point q2 ¼ q20,
and define a subtracted HVP.
In the QCD sum rule analyses, one introduces the

Borel transform of HVP to enhance the contributions from
low-lying hadronic states. The Borel transformation is
defined as

BM ¼ lim
n;Q2→∞
Q2=n¼M2

ðQ2Þn
ðn − 1Þ!

�
−

∂
∂Q2

�
n
; ð6Þ

where M is the Borel mass that specifies a typical
energy scale. The Borel transform of HVP may then be
written as

Π̃ðM2Þ≡ BM½Πð−Q2Þ� ¼ 1

M2

Z
∞

0

dsρðsÞe−s=M2

: ð7Þ

The exponential factor e−s=M
2

suppresses the contributions
from high-energy states above M.
One can use OPE to evaluate Π̃ðM2Þ including non-

perturbative power corrections. We start from an expression
of Πð−Q2Þ as an expansion in 1=Q2,

ΠOPEð−Q2Þ ¼ 1

4π2

�
1þ αsðμ2Þ

π

�
log

�
μ2

Q2

�
−

3

2π2
m2

Q2

þ 1

12

h0j αsπ G2j0i
Q4

þ 2mh0jq̄qj0i
Q4

−
224παsðμ2Þ

81

κ0h0jq̄qj0i2
Q6

þ � � � ; ð8Þ

where αsðμ2Þ is the strong coupling constant defined at a
renormalization scale μ, m is the quark mass, and
h0j αsπ G2j0i and h0jq̄qj0i are the gluon and chiral con-
densates, respectively. Here, the four-quark condensate
is represented by a vacuum saturation approximation
(VSA) with a parameter κ0, which describes the violation
of VSA when κ0 ≠ 1. By the Borel transformation, the
logarithmic function and negative powers of Q2 are
transformed as

BM½logðQ2Þ� ¼ −1; ð9Þ

BM

�
1

Q2n

�
¼ 1

ðn − 1Þ!
1

M2n ; ð10Þ

TSUTOMU ISHIKAWA and SHOJI HASHIMOTO PHYS. REV. D 104, 074521 (2021)

074521-2



where n is a positive integer. Therefore, the Borel trans-
form of HVP can be expressed as follows:

Π̃OPEðM2Þ ¼ 1

4π2

�
1þ αsðμ2Þ

π

�
−

3

2π2
m2

M2

þ 1

12

h0j αsπ G2j0i
M4

þ 2mh0jq̄qj0i
M4

−
112παsðμ2Þ

81

κ0h0jq̄qj0i2
M6

þ � � � ð11Þ

The perturbative coefficients of the leading order
term, Oð1=M0Þ, in the massless limit are known up to
Oðα4sÞ [25], where the disconnected diagrams
are neglected. The other corrections taken into account
in this paper are summarized in Sec. V. Because
of the factor 1=ðn − 1Þ! in Eq. (9), the Borel transform
is less affected by higher dimensional condensates, and
the OPE is made more convergent than that for HVP
itself (8).
Perturbative expansion of Π̃OPEðM2Þ in the massless

limit shows a good convergence. We set the renormal-
ization scale μ2 to M2e−γE since the Borel transformation
of the logarithmic function BM½lognðμ2=Q2Þ� appears
as a polynomial of logðμ2=M2e−γEÞ. (See the
Appendix.) We show Π̃pert

0 ðM2Þ, which is the leading
order of the 1=M2 expansion, as a function of

1=M2 in Fig. 1. We set Λðnf¼3Þ
MS

¼ 332 MeV for the

coupling constant αsðμ2Þ. The running of αsðμ2Þ is
incorporated at five-loop level using RunDec [26,27].
Figure 1 indicates that the truncation error of the
perturbative expansion Π̃pert

0 ðM2Þ is not substantial for
M > 1 GeV. Indeed, the Oðα4sÞ correction is at the level
of 0.3% or smaller.
For the next-to-leading order terms of OPE, i.e., the

terms of m2=Q2, the perturbative coefficients are known to
α3s [28],

Πpert
m2 ðQ2Þ ¼ −

3

2π2
m2ðQ2Þ
Q2

�
1þ 2.66667

αsðQ2Þ
π

þ 24.1415
α2sðQ2Þ
π2

þ 250.471
α3sðQ2Þ
π3

þ � � �
�
;

ð12Þ

where the renormalization scale μ is set at μ2 ¼ Q2 and
nf ¼ 3. The numerical expressions for different nf’s are

FIG. 1. Perturbative expansion of Π̃ðM2Þ at the leading order of
OPE. The renormalization scale is set at μ2 ¼ M2e−γE .

FIG. 2. Top: Perturbative expansion of Π̃pert
m2 ðM2Þ where the

scale is μ2 ¼ M2e−γE . Middle: Same as the top figure but at
μ2 ¼ 4M2e−γE . Bottom: The renormalization scale dependence
of Π̃pert

m2 ðM2Þ.
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found, e.g., in Ref. [29]. We define the Borel transform of
the correction Π̃pert

m2 ðM2Þ≡ BM½Πpert
m2 ðQ2Þ�. Applying the

formula in Eq. (A2) and setting μ2 ¼ M2e−γE , we found the
expression,

Π̃pert
m2 ðM2Þ ¼ −

3

2π2
m2ðμ2Þ
M2

�
1þ 2.66667

αsðμ2Þ
π

þ 17.1505
α2sðμ2Þ
π2

þ 152.426
α3sðμ2Þ
π3

þ � � �
�
:

ð13Þ

We plot Π̃pert
m2 ðM2Þ in Fig. 2 (top). Unlike Π̃pert

0 ðM2Þ, we
observe significant dependence on the order of the pertur-
bative expansion. To improve the convergence, we set the
renormalization scale at μ2 ¼ 4M2e−γE as shown in Fig. 2
(middle). The dependence on the scale μ is demonstrated in
Fig. 2 (bottom), where the perturbative expansion truncated
at Oðα3sÞ is shown for μ2 ¼ 2M2e−γE ; 4M2e−γE ; 8M2e−γE.
Since Π̃pert

m2 ðM2Þ should be independent of the renormali-
zation scale up to truncation errors, we treat the variation
due to the unphysical scale setting as the truncation error in
the later sections.
In phenomenological studies, an ansatz for the spectral

function of the form,

ρphðsÞ ¼ f2Vδðs −m2
VÞ þ θðs − sthÞρcontðsÞ; ð14Þ

is often used. Here, mV and fV are a mass and a decay
constant of the ground-state hadron, respectively. Excited
states of hadrons are modeled by the continuum (or
scattering) states calculated in perturbative QCD, and the
spectral function of the continuum states ρcontðsÞ is intro-
duced above the threshold sth. This replacement amounts
to assume the quark-hadron duality. The Borel transforma-
tion reduces the dependence on this assumption. The
integral in Eq. (7) with ρphðsÞ corresponds to the OPE
expression in Eq. (11). Namely,

Π̃OPEðM2Þ ¼ 1

M2

Z
∞

0

dsρphðsÞe−s=M2 ð15Þ

is used in the QCD sum rule analysis. Solving this equation
formV and fV , one can predict the mass and decay constant
of this particular channel from the fundamental parameters
of QCD, such as αsðμ2Þ, m as well as the condensates.
The QCD sum rule for the ϕ meson, which we mainly

study in this work, is discussed in the literature, e.g., [2,30].

III. BOREL TRANSFORM OF THE
SPECTRAL FUNCTION

We compute the Borel transform Π̃ðM2Þ using lattice
QCD. The weighted integral of the spectral function of the
form (7) can be interpreted as a smeared spectral function.

To compute the smeared spectrum in lattice QCD, we use
the method proposed in Ref. [20], which is based on the
expansion of the smearing kernel in terms of the transfer
matrix on the lattice. The method relates the smeared
spectrum to the correlators computed on the lattice via the
spectral representation. Applications to the inclusive B̄s
decay [21] and the inelastic lN scattering [22] have been
discussed. We briefly review the key ideas of this method in
the following. In this section, all parameters are in the unit
of the lattice spacing a, unless otherwise stated.
We consider a current-current correlator with zero spatial

momentum,

CðtÞ≡X
x

h0jJzðt; xÞJzð0; 0Þj0i; ð16Þ

where Jz stands for the z component of the vector current.
Computation of such correlators as a function of the time
separation t is straightforward in lattice QCD. The relation
between the correlator and the spectral function is given by
Ref. [31]

CðtÞ ¼
Z

∞

0

dωω2ρðω2Þe−ωt: ð17Þ

We recall that ρðω2Þ is defined in Eq. (5). Here, we make a
change of variable ω ¼ ffiffiffi

s
p

. Estimation of the spectral
function ρðω2Þ from Eq. (17) is an ill-posed inverse
problem because the functions e−ωt with different ω’s
are hard to distinguish numerically when ω’s are close
to each other. To avoid this problem, the method of [20]
relates the correlator to the smeared spectral function such
as Eq. (7), instead of the spectral function ρðω2Þ itself.
We define the spectral density for a state jψi,

ρ̄ðωÞ ¼ hψ jδðĤ − ωÞjψi
hψ jψi ; ð18Þ

where Ĥ is the Hamiltonian. The spectral density ρ̄ðωÞ
evaluates the number of states having an energy ω. Setting
jψi ¼ e−Ĥt0

P
x Jzð0; xÞj0i, the Laplace transform of the

spectral density may be written in terms of the correlators,

C̄ðtÞ≡
Z

∞

0

dωρ̄ðωÞe−ωt ¼ hψ je−Ĥtjψi
hψ jψi

¼
P

x;yh0jJzð0; xÞe−Ĥðtþ2t0ÞJzð0; yÞj0iP
x;yh0jJzð0; xÞe−2Ĥt0Jzð0; yÞj0i

¼
P

x;yh0jJzðtþ 2t0; xÞJzð0; yÞj0iP
x;yh0jJzð2t0; xÞJzð0; yÞj0i

¼ Cðtþ 2t0Þ
Cð2t0Þ

:

ð19Þ

Here, we introduce a small-time separation t0 > 0 to avoid
the contact term that potentially diverges at t0 ¼ 0. In this
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paper, we set t0¼1 not to lose high energy state contributions
too much. The correlator C̄ðtÞ is normalized as C̄ð0Þ¼1.
Let us now consider a smeared spectral function,

ρs ¼
Z

∞

0

dωρ̄ðωÞSðωÞ; ð20Þ

with a smearing kernel SðωÞ, which will be specified later.
One may approximate the smearing kernel in terms of the
shifted Chebyshev polynomials T�

j of e−ω,

SðωÞ ¼ c�0
2
þ
XNt

j¼1

c�jT
�
jðe−ωÞ; ð21Þ

c�j ¼
2

π

Z
π

0

dθS

�
− log

�
1þ cos θ

2

��
cosðjθÞ; ð22Þ

where Nt stands for the truncation order of the
approximation. The explicit form of the polynomial is
T�
1ðxÞ ¼ 2x − 1; T�

2ðxÞ ¼ 8x2 − 8xþ 1;… and higher-
order terms are constructed recursively as T�

jþ1ðxÞ ¼
2ð2x − 1ÞT�

jðxÞ − T�
j−1ðxÞ. Note that the Chebyshev

approximation is an orthogonal expansion, and we do
not impose any condition such as the one that e−ω being
small for its convergence. We substitute this expression to
(20). Then the smeared spectral function is written in terms
of the transfer matrix e−Ĥ as

ρs ¼
c�0
2
þ
XNt

j¼1

c�jhT�
jðe−ĤÞi; ð23Þ

where

hT�
jðe−ĤÞi≡

hψ jT�
jðe−ĤÞjψi
hψ jψi : ð24Þ

Here we replaced ω by Ĥ when sandwiched by the states
hψ j and jψi, and performed the integral over ω in Eq. (20).
We can write the expectation value hT�

jðe−ĤÞi using the
correlators as

hT�
1ðe−ĤÞi ¼ 2C̄ð1Þ − 1;

hT�
2ðe−ĤÞi ¼ 8C̄ð2Þ − 8C̄ð1Þ þ 1;…; ð25Þ

where we use hψ je−Ĥtjψi ∝ P
xhJzðtþ 2t0; xÞJzð0; 0Þi in

Eq. (19) derived from Eqs. (16) and (18).
In practice, the lattice correlators contain statistical

errors. Since Eq. (25) involves cancellations of C̄ðtÞ with
different t’s, the resulting expectation values hT�

jðe−ĤÞi
may induce large statistical errors. In particular, since we
have to take an additional constraint jhT�

jðe−ĤÞij ≤ 1 into

account [20], the statistical error causes a significant
problem. We therefore determine hT�

jiðj ¼ 1;…; NtÞ
through a fit of correlators. Since T�

Nt
ðxÞ includes terms

up to xNt , the data of C̄ðtÞ at t ¼ 0 − Nt are used in the fit.
Now we turn to the discussion of the Borel transform.

The relation between ρ̄ðωÞ and ρðω2Þ is found as [see
Eqs. (17) and (19)]

ρ̄ðωÞ ¼ 1

Cð2t0Þ
ω2ρðω2Þe−2ωt0 : ð26Þ

We therefore set SðωÞ to be SðM;ωÞ as a function of the
Borel mass M as

SðM;ωÞ≡ 2Cð2t0Þe2ωt0
M2ω

e−ω
2=M2

; ð27Þ

to obtain the Borel transform as a smeared spectral
function,

Z
∞

0

dωSðM;ωÞρ̄ðωÞ ¼ 1

M2

Z
∞

0

dsρðsÞe−s=M2 ¼ Π̃ðM2Þ;

ð28Þ

where we change the variable as s ¼ ω2. The smearing
kernel (27) has an apparent problem of divergence at
ω ¼ 0, which induces divergences of the coefficients c�j
(21). We therefore introduce a cutoff to regularize the
integral (21). Since the spectrum ρðsÞ vanishes below the
energy of the lowest-lying state, any modification of
the kernel below the lowest energy does not affect the
final result. We therefore modify the smearing kernel,

ScutðM;ωÞ≡ 2Cð2t0Þe2ωt0
M2ω

e−ω
2=M2

tanhðω=ω0Þ; ð29Þ

where ω0 is set smaller than the mass of the ground state.
The form of ScutðM;ωÞ is shown in Fig. 3. With ω0 not
much smaller than the lowest hadronic state, the modified
smearing underestimates the smeared spectrum. In this
work, we consider the ss̄ states, for which the lowest energy
state is the ϕ meson, whose mass is ∼1 GeV. We will
discuss how the error due to the modified smearing can be
corrected.
To summarize, we obtain the approximation between the

smeared spectral function and hT�
ji,

Π̃cutðM2Þ ¼
Z

∞

0

dωScutðM;ωÞρ̄ðωÞ ð30Þ

≃
c�0ðMÞ

2
þ
XNt

j¼1

c�jðMÞhT�
ji; ð31Þ
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where c�jðMÞ is evaluated as Eq. (22) with SðωÞ ¼
ScutðM;ωÞ.

IV. LATTICE CALCULATION

We compute two-point correlators of the vector current
Jμ ¼ s̄γμs using lattice QCD. In this work, we neglect
the disconnected diagrams. We use ensembles with Nf ¼
2þ 1 dynamical Möbius domain-wall fermions [32],
where the gauge action is tree-level Symanzik improved.
Parameters of the ensembles are listed in Table I. Three
lattice cutoffs a−1 are in the range 2.45–4.50 GeV. The
lattice size L3 × T is taken such that the physical volume
extent is L ≃ 2.5 fm and T ¼ 2L. The lattice size in the
extra dimension L5 to define the domain-wall fermion is
chosen to ensure that the residual quark mass is less than
1 MeV. In the fermion action, the gauge links are stout-
smeared 3 times. The number of gauge configurations is
Nconf . To reduce statistical errors, we use Z2 noise sources
distributed on a source time slice. We measure correlators
on each configuration 8 or 12 times with different time
slices taken for the Z2 noise source. The number of
measurements, No. measurements is Nconf times the num-
ber of the source time slices. The effective number of the
statistics would be slightly smaller than No. measurements,
because the measurements on the same configuration with
different source time slices are statistically correlated. In

our computation, u and d quark masses are degenerate,
which appear only as sea quarks. The strange quark mass
ms is set near the physical value. Small mistuning of the
strange quark mass will be corrected as discussed in
Sec. IV C. The ensembles have been used for the compu-
tation of Dirac eigenvalues [33], charmonium moments [9],
short distance current-current correlators [5], topological
susceptibility [34], and η0 meson mass [35]. Other details of
the ensembles are available in Refs. [36,37].
We compute the Borel transform of the HVP using the

technique outlined in the previous section. The estimate for
the Chebyshev matrix elements hT�

ji in Eq. (31) is obtained
by a fit of lattice correlators. The fit is implemented using
lsqfit [38], which is based on Bayesian statistics [39].
Following Ref. [20], we write the correlator at each
temporal separation by the Chebyshev matrix elements as

C̄ðtÞ ¼ 21−2t
�
1

2

�
2t

t

�
þ
Xt

j¼1

�
2t

t − j

�
hT�

ji
�
; ð32Þ

using the reverse formula of the shifted Chebyshev poly-
nomials,

xn ¼ 21−2n
�
1

2

�
2n

n

�
þ
Xn
j¼1

�
2n

n − j

�
T�
jðxÞ

�
: ð33Þ

The Chebyshev matrix elements hT�
ji are determined such

that they best reproduce C̄ðtÞ under the given statistical
error while satisfying the necessary condition jhT�

jij ≤ 1.
Combining them with the coefficients c�jðMÞ, we obtain

Π̃cutðM2Þ through Eq. (31).
In order to match the lattice results with the counterpart

in the MS scheme, the renormalization factor has to be
multiplied. We use the renormalization constants of the
vector current ZV ¼ 0.955ð9Þ, 0.964(6), 0.970(5) for
β ¼ 4.17, 4.35, 4.47, respectively [4]. They are determined
by matching short-distance current correlators with their
perturbative counterpart in the coordinate space. Our results
can be compared with Π̃OPEðM2Þ in the MS scheme after
the renormalization.
In the following subsections, we discuss potential

systematic effects due to the truncation of the
Chebyshev expansion, the effect of the low-energy cut
introduced in the smearing function, and the continuum
extrapolation.

TABLE I. Ensembles in our simulations.

β a−1 [GeV] L3 × Tð×L5Þ Nconf No. measurements amud ams

4.17 2.453(4) 323 × 64ð×12Þ 100 800 0.007 0.040
4.35 3.610(9) 483 × 96ð×8Þ 50 600 0.0042 0.0250
4.47 4.496(9) 643 × 128ð×8Þ 50 400 0.0030 0.015

FIG. 3. Smearing kernels ScutðM;ωÞwith different values of the
cutoff parameter ω0. We setM¼1GeV and t0 ¼ ð2.453 GeVÞ−1.
The solid line shows the original kernel SðM;ωÞ, which is
equivalent to the limit ω0 → 0 for ScutðM;ωÞ. Here, the all
parameters are dimensionful.
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A. Convergence of Chebyshev expansion

We first examine the convergence of the Chebyshev
expansion. In Figs. 4–6, we plot the smearing function
ScutðM;ωÞ at ω ¼ 1.0 and 2.0 GeV and their Chebyshev
expansions as a function of 1=M2. They are understood as
the Borel transform for the case that the spectrum is given
by ρðωÞ ∼ δðω − 1.0 GeVÞ or δðω − 2.0 GeVÞ. The cutoff
parameter ω0 is set toω0 ¼ 0.6 GeV. Figures 4–6 represent
those at three lattices, respectively. They differ due to the
factor e2ωt0, since t0 is fixed to 1 in the lattice unit. The
solid line shows the exact form ScutðM;ωÞ, while dotted,

dash-dotted, and dashed lines are the expansions truncated
at Nt ¼ 12, 15, and 18, respectively. One can see that the
expansion reproduces the exact function to quite a good
precision already at Nt ¼ 12. At the fine and finest lattice
spacing where a−1 ¼ 3.610 and 4.496 GeV (Figs. 5 and 6),
we find a small deviation around 1=M2 ≃ 2 GeV−2 for
Nt ¼ 12. Such a low energy regime is dominated by the
ground state and we are able to correct the error explicitly
using the mass and amplitude of the ground state. In the
intermediate regime 1=M2 ≲ 1 GeV−2, the maximum
deviation is found to be 0.4% for Nt > 15. In the low

FIG. 4. Expansion of the smearing kernel at ω ¼ 1.0 GeV (left) and ω ¼ 2.0 GeV (right) for the coarse lattice where a−1 ¼
2.453 GeV with a cutoff ω0 ¼ 0.6 GeV.

FIG. 5. Same as Fig. 4 but at a−1 ¼ 3.610 GeV.

FIG. 6. Same as Fig. 4 but at a−1 ¼ 4.496 GeV.
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energy regime, Π̃ðM2Þ becomes more sensitive to the long-
distance correlator. We expect that higher-order polyno-
mials are needed when the lattice spacing is small.
The truncation error can also be estimated through the

coefficients c�jðMÞ in Eq. (21) because hT�
ji is bounded as

jhT�
jij ≤ 1. In Fig. 7, we show the absolute values of the

coefficients at variousM2s at each lattice spacing. The plots
demonstrate that the coefficients decrease exponentially for
large j. When the scale M is large, the coefficient c�jðMÞ
drops more rapidly for high orders (larger j’s). It implies
that

P
j c

�
jðMÞhT�

ji is dominated by the lower-order terms,
which corresponds to shorter-distance correlators. At
1=M2 ∼ 2 GeV−2 which corresponds to the lowest scale
treated in this work, the coefficient c�jðM2Þ is sufficiently
small [∼Oð10−4Þ] already at j ¼ 18. We therefore set Nt ¼
18 in the following.
In order to have another insight into the possible error

due to the Chebyshev approximation, let us consider a
simple model that has a single pole,

ρpoleðsÞ ¼ f̃2δðs − m̃2Þ; ð34Þ

with mass m̃ and decay constant f̃. The corresponding
Euclidean correlator is

CpoleðtÞ ¼
Z

∞

0

dωe−ωtω2ρpoleðω2Þ ¼ f̃2m̃
2

e−m̃t; ð35Þ

and the normalized correlator (19) is given by

C̄poleðtÞ ¼ Cpoleðtþ 2t0Þ
Cpoleð2t0Þ

¼ e−m̃t: ð36Þ

In this test, we ignore statistical errors and replace the
expectation values hT�

ji by the shifted Chebyshev poly-
nomials T�

jðe−am̃Þ without introducing the fit. Combining
the polynomials and the coefficients c�jðMÞ determined by
Eq. (22) with the smearing kernel ScutðM;ωÞ, we obtain the
Borel transform Π̃poleðM2Þ. We can also analytically
calculate the Borel transform of the single-pole spectrum
with the modification of the low-energy spectrum (29),

Π̃poleðM2Þ ¼ 1

M2

Z
∞

0

dse−s=M
2

ρpoleðsÞ tanhð ffiffiffi
s

p
=ω0Þ

¼ f̃2

M2
e−m̃

2=M2

tanhðm̃=ω0Þ: ð37Þ

The results are compared in Fig. 8 at three lattice spacings.
The thick solid lines denote the analytic results (37) with
ω0 ¼ 0.6 GeV, while the thin solid lines denote those in the

FIG. 7. The coefficients c�jðMÞ at three lattice spacing. We set 1=M2 ¼ 0.45 GeV−2 (left) and 1=M2 ¼ 1.85 GeV−2 (right).

FIG. 8. Π̃poleðM2Þ for three lattice spacings with Nt ¼ 18, ω0 ¼ 0.6 GeV. We set f̃ ¼ 1 GeV, and m̃ ¼ 1 GeV (left) and m̃ ¼ 2 GeV
(right).
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limit ω0 → 0, that is, tanhðm̃=ω0Þ → 1. The dotted, dash-
dotted, and dashed line are Π̃poleðM2Þ computed by our
method for three lattice spacings, respectively. The expan-
sion is nearly perfect, and the expansions at three lattice
spacings are consistent with each other. The difference
between the original function and that with the cutoff
remains when the pole mass is small, m̃ ¼ 1 GeV. We
correct them as discussed in the following.

B. Correction for the low-energy
cut of smearing function

The low-energy cut tanhðω=ω0Þ introduced to avoid the
artificial divergence of the Chebyshev coefficients modifies
the shape of the smearing kernel below ω≲ ω0. If we set ω0

sufficiently small, only the contribution from the ground
state, i.e., the ϕ meson in our example, is significantly
affected. We therefore correct for the error by using the
information available for the ground state.
The contribution of the ground state ρϕðsÞ for the

spectral function is

ρϕðsÞ ¼ f2ϕδðs −m2
ϕÞ; ð38Þ

where fϕ andmϕ are the decay constant and the mass of the
ϕ meson, respectively. The ϕ meson’s contribution to the
Borel transform is then

Π̃cut
ϕ ðM2Þ≡ f2ϕ

M2
e−m

2
ϕ=M

2

tanhðmϕ=ω0Þ: ð39Þ

Taking the limit ω0 → 0, it recovers the physical result,

Π̃ϕðM2Þ≡ f2ϕ
M2

e−m
2
ϕ=M

2

: ð40Þ

The difference between the Borel transform with and
without the modification is then

δΠ̃cut
ϕ ≡ Π̃ϕðM2Þ − Π̃cut

ϕ ðM2Þ

¼ f2ϕ
M2

e−m
2
ϕ=M

2ð1 − tanhðmϕ=ω0ÞÞ; ð41Þ

which we add back to the result of Π̃cutðM2Þ as

Π̃latðM2Þ≡ Π̃cutðM2Þ þ δΠ̃cut
ϕ ðM2Þ: ð42Þ

The deficit δΠ̃cut
ϕ ðM2Þ can be computed using the values of

fϕ and mϕ obtained for each lattice ensemble.
We show a typical threshold ω0 dependence of Π̃latðM2Þ

at certain values ofM2 in Fig. 9. Squares and circles denote
the Π̃cutðM2Þ and Π̃latðM2Þ, respectively. As ω0 increases,
Π̃cutðM2Þ decreases, as we expected. After the correction,
Π̃latðM2Þ is insensitive to ω0. On the fine lattice, the small
value of ω0 enhances the statistical errors. To avoid large
errors, we set ω0 ¼ 0.6 GeV for all lattice spacings in the
following results. The error due to the low-energy modi-
fication is negligible after correcting for the ground state
contribution.

FIG. 9. The cutoff dependence of Π̃cutðM2Þ and Π̃latðM2Þ on the coarse (left panel) and fine (right panel) lattice, where Nt ¼ 18.

FIG. 10. Π̃latðM2Þ at all lattice spacings.
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C. Continuum limit

We take 50 points of 1=M2 in the range 1=M2 ¼
0.05–2.05 GeV−2 and compute Π̃latðM2Þ for each lattice
spacing. The results are shown in Fig. 10. We find that the
results obtained at two coarser lattice spacing agree well
except in the region 1=M2 ≲ 0.2 GeV−2, where discretiza-
tion effects are visible. The data at finest lattice spacing show
a slight deviation from those at two coarser lattices, but we
note that the strange quark mass is slightly mistuned on this
ensemble and we have to correct that effect (see below).
We take the continuum limit of Π̃latðM2Þ using the data at

three lattice spacings. Since both the statistical and sys-
tematic errors correlate highly among different values of
1=M2, we introduce an ansatz,

Π̃latðM2Þ þ δΠ̃m ¼ Π̃ðM2Þð1þ b0M2a2Þð1þ b1a2Þ;
ð43Þ

with coefficients b0 and b1 to parametrize the discretiza-
tion effect independent of 1=M2. We introduce a correc-
tion δΠ̃m to incorporate the mistuning of the valence
quark mass ms. At tree level, the correction δΠ̃m is
expressed as

δΠ̃m ¼ þ 3

2π2
m2

simlðμ2Þ −m2
physðμ2Þ

M2

−
2ðmsimlðμ2Þ −mphysðμ2ÞÞh0jq̄qj0i

M4
; ð44Þ

wheremphysðμ2Þ andmsimlðμ2Þ are the strange quark masses
at the scale μ. We take Z−1

S ðμ; aÞmbare formsiml andmsðμ2 ¼
ð2 GeVÞ2Þ ¼ 0.0920ð11Þ GeV for mphys as an initial value
of the running. The renormalization constants for the scalar
density operator ZSð2 GeV; aÞ are 1.0372(146), 0.9342
(87), and 0.8926(67) for β ¼ 4.17, 4.35, and 4.47, respec-
tively [4]. The mass mbare is from ams listed in Table I. The
corrections δΠ̃mðM2Þ calculated at the leading order of
perturbation theory are less than 4% of Π̃latðM2Þ on the two

coarse lattices, while that on the finest lattice decrease
Π̃latðM2Þ by at most 10% in the range 1=M2 ¼
0.25–1.01 GeV−2. Higher order perturbative corrections
are insignificant compared to the statistical precision of
the lattice data. In each case, the correction may introduce
systematic uncertainty at large 1=M2, since the correction
relies on OPE. Therefore, we consider ΠlatðM2Þ at 1=M2 ¼
1.01 GeV−2 and lower.
The M2 dependence of the discretization error is

incorporated in the fit by the factor ð1þ b0M2a2Þ.
The other factor ð1þ b1a2Þ represents the discretization
error independent of M2. We take the continuum limit
for Π̃latðM2Þ þ δΠ̃mðM2Þ by a global fit in the range
0.25 GeV−2 ≤ 1=M2 ≤ 1.01 GeV−2. The correlation of
Π̃latðM2Þ þ δΠ̃mðM2Þ among different M2 is taken into
account. The continuum extrapolation at some values of
1=M2 is shown in Fig. 11. The circle, square, and triangle
symbols show Π̃latðM2Þ þ δΠ̃mðM2Þ at a−1 ¼ 2.453,
3.610, and 4.496 GeV, respectively, while the star symbol
represents the continuum limit. The discretization errors are
not substantial. Although the Π̃latðM2Þ on the finest lattice
has a relatively large error, the error of Π̃ðM2Þ in the
continuum limit is under good control.

V. RESULT

A. Comparison with OPE

We compare the Borel transform Π̃ðM2Þ at largeM2 with
perturbative expansion as well as with OPE in Fig. 12. The
dash-dotted line denotes the perturbative expansion
Π̃pertðM2Þ up to Oðα4sÞ. It includes the mass-dependent
perturbative correction up to Oðα3sm2

s=M2Þ. The solid line
shows the OPE result Π̃OPEðM2Þ. The bands represent the
size of errors due to the input parameters and the truncation
of perturbative expansion.
Here, input parameters are the QCD scale parameter

Λnf¼3

MS
¼ 0.332ð17Þ GeV [40], the strange quark mass in

the MS scheme m
nf¼2þ1
s ðμ ¼ 2 GeVÞ ¼ 0.0920ð11Þ GeV

FIG. 11. Continuum extrapolation of Π̃latðM2Þ þ δΠ̃m at 1=M2 ¼ 0.25 GeV−2 (left panel) and at 1=M2 ¼ 0.85 GeV−2 (right panel).
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(FLAG average) [41–46] the chiral condensate1 h0jq̄qj0i ¼
−½0.272ð5Þ GeV�3 (FLAG average) [34,41,49–53], and the
gluon condensate h0j αsπ G2j0i ¼ 0.0120ð36Þ GeV4 [1,2]
(adding �30% error).
In the calculation of the perturbative expansion and OPE,

we set the renormalization scale μ2 ¼ 4M2e−γE . The run-
ning of αs, ms, and h0jq̄qj0i are taken into account using
RunDec [26,27] at five-loop level.
In OPE, we include corrections up to mass-dimension six

operators,

Π̃ðM2Þ ¼ c0 þ
c2
M2

þ c4
M4

þ c6
M6

; ð45Þ

where c0 and c2 stand for the perturbative expansion in the
massless limit and the leading mass correction, respec-
tively. The coefficient c4 includes the gluon and quark
condensates. The coefficients c0 and c2 are already dis-
cussed in Sec. II. The coefficients c4 and c6 can be
computed by applying Eq. (A2) to the Wilson coefficients
(see also Ref. [54]). Letting LM ≡ logðμ2eγE=M2Þ, we can
express the coefficients as

c4 ¼
1

12

�
1þ7

6

αs
π

�
h0jαs

π
G2j0iþ2ms

�
1þ1

3

αs
π

�
h0jq̄qj0i

þ3m4
s

4π2
ð1−2LMÞ−

m4
s

6π2
αs
π
ð35−3π2−24ζð3Þ

−3LMþ18L2
MÞ; ð46Þ

c6 ¼ −
112

81
παsκ0h0jq̄qj0i2 þ

1

18
m2

sh0j
αs
π
G2j0i

−
4

3
m3

sh0jq̄qj0i; ð47Þ

where the gluon condensate h0j αsπ G2j0i is defined in the
MS scheme. The coefficient κ0 in Eq. (47) parametrizes
corrections to the VSA for the four-quark condensate.
When the condensate is assumed to be fully factorized in
the vacuum, κ0 is equal to 1. There are studies that suggest
the violation of VSA as large as κ0 ∼ 6 [55]. We set κ0 ¼ 1
for the solid curve and incorporate the variation of κ0 from 0
to 6 to estimate the error in Fig. 12. The higher dimensional
condensates are neglected in this paper. We also include
the renormalization scale dependence to estimate the
truncation error as discussed in Sec. II, where Π̃pert

0 and
Π̃pert

m2 correspond to c0 and c2. We introduce the renorm-
alization scales μ0 and μ2 for c0 and c2, respectively, vary
them in the range 2M2e−γE ≤ μ20; μ

2
2 ≤ 8M2e−γE separately,

and take the maximal (minimum) value of c0 þ c2=M2 as
the upper (lower) limit of the band.
Figure 13 shows the convergence of OPE. The dotted

line corresponds to the massless perturbation theory. The
dash-dotted, dashed, solid lines include the terms up to
Oð1=M2Þ, Oð1=M4Þ, and Oð1=M6Þ corrections, respec-
tively. The error band is estimated as in Fig. 12. The Borel
transform Π̃OPEðM2Þ converges well in the range 1=M2 ≤
1 GeV−2 as one can see from the tiny effect of Oð1=M6Þ,
albeit the large uncertainty due to the unknown conden-
sates. The lattice data agree well with OPE including the
terms of 1=M4 and 1=M6 within the uncertainty, as found
in Fig. 12.

B. Extraction of the gluon condensate

As an application of the lattice calculation of Π̃ðM2Þ, we
try to determine the coefficient c4 from the lattice data.
Since the perturbative expansion and OPE converges

FIG. 13. The convergence of OPE for Π̃ðM2Þ.FIG. 12. Comparison of Π̃ðM2Þ in the continuum limit with the
perturbative expansion and OPE.

1We use the chiral condensate evaluated in the massless quark
limit, rather than the “strange quark condensate,” which has also
be evaluated using lattice QCD [47] as hs̄sið2 GeVÞ ¼
−ð296ð11Þ MeVÞ3. The reason is that the difference from the
massless limit involves a quadratic divergence and a renormalon
ambiguity of order of msΛ2

QCD, which is the same order of the
correction itself, is induced when the divergence is subtracted. In
Ref. [47], the subtraction scheme is not explicitly shown, and in
Ref. [48] it is performed by fitting the lattice data at various lattice
cutoffs. Thus, the precise definition of the strange quark con-
densate might not correspond to what we employed.
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reasonably well for Π̃ðM2Þ (although some uncertainty
remains if κ0 ∼ 5–6), the determination is less affected by
the truncation error than that for the HVP function Πðq2Þ,
and the systematic error of c4 may be reduced. We consider
corrections up to mass dimension six, since the higher
mass-dimension operators are suppressed by the factorial as
(9). By fixing c0 and c2 in Eq. (45) by the perturbative
calculation, we determine c4 and c6 through a fit to the
lattice data. The fitting range is 1=M2 ¼ 0.25–0.69 GeV−2.
The M2 dependence of c4 and c6 from corrections
of order αsð4M2e−γEÞ is negligible in this range. Hence
we treat c4 and c6 as constant parameters. We rescale
c4 ¼ c̃4Λ4 and c6 ¼ c̃6Λ6 with Λ ¼ 300 MeV, and
set the priors of c̃4 and c̃6 to 0.0� 1.0. To evaluate
the systematic uncertainties, we use three sets of the
renormalization scales ðμ20; μ22Þ ¼ ð4M2e−γE ; 4M2e−γEÞ,
ðμ20;μ22Þ¼ð2M2e−γE ;8M2e−γEÞ, and ðμ20; μ22Þ ¼ ð8M2e−γE ;
2M2e−γEÞ, and take the maximum variants of the results
as their systematic errors. We obtain c̃4 ¼ −0.34ð7Þþ26

−19 .
The first parenthesis gives the statistical error. The super-
script (subscript) represents the upper (lower) systematic
error. c̃6 is not well constrained.
We subtract the contributions of the chiral

condensate and the finite mass correction from c4, which
are relatively well determined, and obtain h0j αsπ G2j0i ¼
0.011ð7Þþ22

−16 GeV4 in the MS scheme at the scale
μ ¼ 2 GeV, which corresponds to h0j αsπ G2j0i ¼
0.013ð8Þþ27

−20 GeV4 in the renormalization group invariant
(RGI) scheme. They are related by (see also Ref. [56])

h0j αs
π
G2j0iRGI ¼

�
1þ 16

9

αs
π
þ � � �

�
h0j αs

π
G2j0iMS: ð48Þ

The first error includes the statistical errors of lattice

calculations and inputs Λnf¼3

MS
, ms, and h0jq̄qj0i. The

second one corresponds to the systematic uncertainty
associated with the perturbative expansion. It is known
that the gluon condensate suffers from the renormalon
ambiguity. (See, for instance, [57].) More precise determi-
nation of the gluon condensate will require more statistics
and an improvement of the perturbative calculation.
The value of h0j αsπ G2j0i was estimated by Shifman-

Vainshtein-Zakharov (SVZ) from the charmonium
moments as h0j αsπ G2j0i ≃ 0.012 GeV4 [1,2]. In Fig. 12,
we used this value for the OPE estimate. From τ decay, the
estimates are consistent with zero: h0j αsπ G2j0i ¼ 0.006�
0.012 GeV4 in the MS scheme [58]. Our method provides
another estimate with a comparable error.

C. Saturation by the ground state

In the low M2 region, the ground state contribution
dominates the Borel transform Π̃ðM2Þ, and the OPE would

break down. Here, we investigate how much the ground-
state contribution Π̃ϕðM2Þ saturates the Borel transform.
The contribution from the ground state ϕ meson

to the Borel transform Π̃ϕðM2Þ is shown in Fig. 14 together
with the lattice data. In this plot, the ϕ meson contribution
(40) is drawn with the experimental inputs fexpϕ ¼
0.2285ð36Þ GeV and mexp

ϕ ¼ 1.019461ð16Þ GeV [59]
(dash-dotted line). The solid line denotes the OPE result,
which is the same as in Fig. 12. The error band for the OPE
in Fig. 14 may be underestimated beyond 1=M2≳1GeV−2,
since the perturbative expansion and OPE poorly converge.
The star symbols represent the lattice results in the
continuum limit. Since the perturbative expression for
the correction δΠ̃m (43) would break down at low M2,
we show the data at finite lattice spacings, which do not
have a significant error due to the mismatch of ms. The
ΠlatðM2Þ on the coarse and fine lattices (circles and squares,
respectively) indicates that the discretization effect is not
significant.
In the low M2 region, the lattice results approach the ϕ

contribution as it should be. On the other hand, even at
intermediate M, say 1=M2 ¼ 0.75 GeV−2, where the OPE
converges well, the ϕmeson contribution is as large as 70%
of Π̃ðM2Þ. It suggests that the quark-hadron duality works
reasonably well even when the contribution from a single
state dominates.

VI. CONCLUSION AND OUTLOOK

The Borel transform has often been used in the QCD
sum rule analyses in order to improve the convergence of
OPE and to enhance the contribution of the ground state,
which is of the main interest. A crucial question is then
whether the theoretical uncertainty in the perturbative
expansion and OPE is well under control. The uncertainty
due to the modeling of the excited state and continuum
contributions is another important issue in the QCD sum

FIG. 14. Comparison of Π̃ðM2Þ in the continuum limit with the
experimental values of the ϕ meson contribution.
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rule. In this work, we provide a method to compute the
Borel transform utilizing the lattice QCD data for current
correlators. Since the computation is fully nonperturbative
in the entire range of the Borel mass M, one can use the
result to verify the theoretical methods so far used in the
QCD sum rule.
We find a good agreement between the lattice data and

OPE in the region of M > 1.0 GeV. The OPE is truncated
at the order 1=M6. Since the OPE involves unknown
condensates, this comparison can be used to determine
these parameters, provided that the lattice data are suffi-
ciently precise. As the first example, we attempt to extract
the gluon condensate, which appears in OPE at the order
1=M4. The size of the error is comparable to those of
previous phenomenological estimates. With more precise
lattice data in various channels, one would be able to
determine the condensates of higher dimensions, which
have not been determined well solely from phenomeno-
logical inputs.
Using baryonic current correlators, one may also study

another side of the QCD phenomenology. Since there are
no experimental inputs, the lattice data may play a unique
role in the QCD sum rule analysis. For instance, the Ioffe
formula for the nucleon mass mN ≃ ½−2ð2πÞ2h0jq̄qj0i�1=3
[60] indicates a relation between the nucleon mass and
chiral symmetry breaking, and it is interesting to study the
baryonic correlator on the lattice to see if this relation
comes out.
Another interesting application of the lattice calculation

of the Borel transform is the determination of αs. A similar
analysis has been performed directly on the current
correlators [7], but it turned out that OPE does not
converge sufficiently quickly to allow precise determi-
nation of αs from the perturbative expansion at the leading
order of OPE. With the Borel transform, one expects that
OPE converges more rapidly, and it may provide another
way to extract αs, especially because the perturbative
expansion is known to Oðα4sÞ, i.e., among the best
quantities for which high order perturbative expansion
is available.
Our work provides a technique to relate two major tools

to study nonperturbative aspects of QCD, i.e., the QCD
sum rule and the lattice QCD. As outlined above, there are a
number of applications, for which new insights into the
QCD phenomenology are expected.
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APPENDIX: SOME FORMULAS OF BOREL
TRANSFORMATION

We show some formulas of the Borel transformation.
Perturbative corrections at higher loops have the power of
logarithm, lognðμ2=Q2Þ. We can obtain its Borel trans-
formation by taking derivatives of the formula,

BM

��
μ2

Q2

�
α
�
¼ 1

ΓðαÞ
�
μ2

M2

�
α

; ðA1Þ

BM

��
μ2

Q2

�
α

logn
�
μ2

Q2

��
¼ ∂n

∂αn
�

1

ΓðαÞ
�
μ2

M2

�
α
�
; ðA2Þ

BM

�
logn

�
μ2

Q2

��
¼ lim

α→0

∂n

∂αn
�

1

ΓðαÞ
�
μ2

M2

�
α
�
: ðA3Þ

The perturbative coefficients of HVP is known at Oðα4sÞ
[25]. Those have quartic logarithmic terms at most. We
show corresponding formulas for n ¼ 1 to 4,

BM

�
log

�
μ2

Q2

��
¼ 1; ðA4Þ

BM

�
log2

�
μ2

Q2

��
¼ 2 log

�
μ2

M2e−γE

�
; ðA5Þ

BM

�
log3

�
μ2

Q2

��
¼ 3log2

�
μ2

M2e−γE

�
−
π2

2
; ðA6Þ

BM

�
log4

�
μ2

Q2

��

¼ 4

�
log2

�
μ2

M2e−γE

�
−
π2

2

�
log

�
μ2

M2e−γE

�
þ 8ζð3Þ:

ðA7Þ

If we set μ2 ∝ M2e−γE , the expressions get simplified.
Hence, we choose it as the renormalization scale. Other
useful formulas can be found in Ref. [61].
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