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The quantum Monte Carlo method on asymptotic Lefschetz thimbles is a numerical algorithm devised
specifically for alleviation of the sign problem appearing in the simulations of quantum many-body
systems. In this method, the sign problem is alleviated by shifting the integration domain for the auxiliary
fields, appearing, for example, in the conventional determinant quantum Monte Carlo method, from real
space to an appropriate manifold in complex space. Here, we extend this method to quantum spin models
with generic two-spin interactions, by using the Hubbard-Stratonovich transformation to decouple the
exchange interactions and the Popov-Fedotov transformation to map the quantum spins to complex
fermions. As a demonstration, we apply the method to the Kitaev model in a magnetic field whose
ground state is predicted to deliver a topological quantum spin liquid with non-Abelian anyonic
excitations. To illustrate how the sign problem is alleviated in this method, we visualize the asymptotic
Lefschetz thimbles in complex space, together with the saddle points and the zeros of the fermion
determinant. We benchmark our method in the low-temperature region in a magnetic field and show that
the sign of the action is recovered considerably and unbiased numerical results are obtained with

sufficient precision.
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I. INTRODUCTION

The quantum Monte Carlo (QMC) simulation based on
the path integral formalism is one of the most widely used
methods to study quantum many-body problems. In this
method, the action of the system in d dimensions is
written by a functional integral in terms of the auxiliary
fields in (d+ 1) dimensions, and the integration is
performed by means of the importance sampling on
the configurations of the auxiliary fields with the use
of the action as the Monte Carlo (MC) weight for each
configuration. The QMC method is a versatile tool, as it
provides numerically exact results within the statistical
errors, in principle, but it often encounters a serious
obstacle called the sign problem. It originates from the
fact that, except in a few limited cases, the action is
complex, rather than positive definite real, which makes
hard to use it as the MC weight. In the conventional QMC
method, the complex action has been dealt with by using
the reweighting technique. In this technique, the
MC sampling is done by the real part of the action
ReS(@), where @ represents the auxiliary fields, and the
imaginary part ImS(@) is measured together with the
observable O(g); namely, the thermal average of O(g) is
computed as
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where (A)ges(,) denotes the thermal average of A

obtained with the weight of ¢ R¢@) This reweighting

is used in a broad range of the research fields; for
instance, it has been used in the so-called determinant
QMC (DQMC) method for many fermionic models in
solid state physics [1-8]. The problem is that the practical
evaluation of Eq. (1) is exponentially difficult as follows.
By definition, the evaluation is feasible when the ensem-
ble sampled according to ReS(¢@) has a sufficient overlap
with that by the full action S(@). Consequently, the
method is successful only when the average sign, which
is defined by

Spauc = (€7@ g s (2)
retains a sufficiently large value. In general, however,
Spomc becomes exponentially small with respect to the
inverse temperature and the system size. Thus, simula-
tions using the reweighting method become exponentially
harder at lower temperatures and for larger system sizes.
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This is the notorious sign problem, which has hampered
full understanding of many interesting quantum many-
body phenomena, such as exotic phases in quantum
chromodynamics [9,10], physics of Feshbach resonances
in cold atomic Fermi gases [I11-13], possible super-
conductivity in doped Mott insulators [14,15], and
quantum spin liquids in frustrated quantum spin systems
[16—20]. We note that the sign problem is shown to be an
NP-hard problem for Ising spin-glass systems [21],
which suggests that its fundamental solution is unlikely
to be available.

Under this circumstance, however, there have been a lot
of efforts to avoid or alleviate the sign problem. One such
effort is to extend the auxiliary fields from real to complex
and shift the integration domain form real space to an
appropriate manifold in complex space. An approach based
on this scheme is employing the idea of the Lefschetz
thimbles [22,23]. This method also demonstrated its power
in a variety of applications in the field of high-energy
physics [24-50] and solid state physics [51-58]. It is,
however, important to note that, in the case of fermionic
systems, straightforward application of the Lefschetz
thimble method faces difficulties in practice; while the
efficient calculations require prior knowledge of the struc-
ture of the Lefschetz thimbles in complex space, it is, in
general, unknown a priori [39]. To overcome the difficulty,
the possibility of integrating on an asymptotic form of the
Lefschetz thimbles was proposed, which, in principle,
enables one to take into account all the relevant thimbles
without prior knowledge of their structure [40]. One of the
most important improvements along this approach is a
technique similar to the parallel tempering which was
demonstrated to give unbiased results with great efficiency
[44,45,54,55]. Despite all these achievements, however,
to the best of our knowledge, the previous studies were
all limited to the models with interacting mobile fermions
like the Hubbard model, and there are no applications
to quantum spin models where the fermions are immobile
and only their spin degrees of freedom remain active.

In this paper, we develop the QMC method based on the
asymptotic Lefschetz thimbles, which we call the ALT
QMC method, into a form applicable to quantum spin
models with generic two-spin interactions. In our frame-
work, we obtain the functional integral of the action by two
steps. The first step is the Hubbard-Stratonovich trans-
formation [59,60] in which the exchange interactions are
decoupled into one-body terms by introducing the auxiliary
fields. The second step is the Popov-Fedotov transforma-
tion [61] by which the quantum spins are mapped to
complex fermions. These end up with the functional
integral for the generic quantum spin Hamiltonian to
which the ALT QMC method can be applied. We demon-
strate the efficiency of the method for the Kitaev model in a
magnetic field, which has recently attracted much attention,
since it delivers a topological quantum spin liquid with

non-Abelian anyonic excitations. We visualize the asymp-
totic Lefschetz thimbles in complex space, together with
the saddle points and the zeros of the fermion determinant.
We also show the detailed benchmark of the ALT QMC
method in comparison with the conventional DQMC
method. While our ALT QMC method is still computa-
tionally costly, we show that the ALT QMC technique
indeed alleviates the sign problem and potentially extends
the accessible parameter regions to lower temperatures and
larger system sizes.

The paper is structured as follows. In Sec. II, we briefly
review the Lefschetz thimble method. We introduce the
general formalism of the Lefschetz thimbles in Sec. Il A
and the asymptotic Lefschetz thimbles in Sec. IIB. In
Sec. III, we construct the framework for the ALT QMC
method applicable to generic spin models. After introduc-
ing a class of the models to which the method can
be applied in Sec. III A, we introduce the Hubbard-
Stratonovich transformation in Sec. III B and the Popov-
Fedotov transformation in Sec. IIIC and derive the
functional integral of the action in Sec. III D. In Sec. IITE,
we make some remarks on the implementation of the
simulation and the definitions of the metrics to estimate
the severity of the sign problem. In Sec. IV, we present the
results by the ALT QMC method for the Kitaev model in a
magnetic field. After introducing the model in Sec. IVA,
we visualize the structure of the Lefschetz thimbles in
complex space and present the benchmark of the ALT
QMC technique for a four-site cluster of the model in
Secs. IV B and IV C, respectively. In Sec. IV D, we show
the results for the Kitaev model in a magnetic field for a
larger system size. Finally, Sec. V is devoted to the
summary and outlook.

II. LEFSCHETZ THIMBLE METHOD

In this section, we briefly review the Lefschetz thimble
method. In Sec. II A, we describe the fundamentals of the
Lefschetz thimbles, and, in Sec. IIB, we present the
framework of asymptotic Lefschetz thimbles.

A. Lefschetz thimbles

In general, one can estimate the action S(¢) by extend-
ing the functional integral to complex space by analytic
continuation from the real auxiliary fields @ to the complex
ones z. In fact, one can define an integration path in the
complex space along which the following two properties
are satisfied: (i) Along the integration path, the real part of
the action, ReS(z), decreases the fastest when moving
toward the saddle point, and (ii) the imaginary part of the
action, ImS(z), is constant on the integration path which
takes the same value at the saddle point. Such a path is
called the Lefschetz thimble [22,23]. In general, the
action S(z) may have multiple saddle points z, with
multiple Lefschetz thimbles 7, associated to them (here
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and hereafter, we use v for labeling the saddle points and
associated Lefschetz thimbles), and, therefore, the original
integral in the real space is equivalent to the sum of the
integrals over the Lefschetz thimbles in the complex space.
It is important to note that, in fermionic systems, different
Lefschetz thimbles are separated from each other by the
points where the fermion determinant vanishes and the
effective action diverges. See the schematic in Fig. 1.

One can identify the saddle points z, of the action S(z)
by solving the set of equations

9S(z)
8zl

=0, (3)

7=z,

and the Lefschetz thimble 7, attached to the saddle pointz,
by the flow equation

dz _ [0S(z)]*
dt 07 '

4)

where [ is the index of the auxiliary variable z and dz;/dt
means the “time” derivative of the auxiliary variable z;.
Indeed, the Lefschetz thimbles determined by Eq. (4)
satisfy the two properties described above.

Besides the thimbles 7, the so-called antithimbles £,
attached to the saddle point z, are also important in the
following calculations. The antithimble for the saddle point
z, is defined by

du_ [GS(z)] B (5)

dr 0z,

Once all the thimbles 7, and the antithimbles /C, are
identified, one can calculate the statistical average of an
observable O(z) by using the sum of the integrals over 7,
[22,23]:

Imz

FIG. 1. Schematic illustration of the Lefschetz thimbles and the
asymptotic ones for a single auxiliary field z. The solid red lines
represent the true Lefschetz thimbles 7, associated with the
saddle points z, (dark blue crosses) and the zeros of the fermion
determinant separating different thimbles (gray dots). The solid
blue lines represent the antithimbles /C,. The dotted red line
represents the asymptotic Lefschetz thimble C, obtained by the
time evolution from the real axis, which is represented by the
dashed blue arrows.

o) _ Zynye—ilms(z,,) fjp dzo(z)e—ReS(z)
< > - n e—imS(z,) dze~ReS@)
Zy v f] z

(6)

where n, is an integer given by the number of the
intersections between the corresponding antithimble /C,
and the original integration domain in the real space. Thus,
one can, in principle, compute the original integral in the
real space by the integrals on the Lefschetz thimbles in the
complex space. The important point here is that the sign
problem is alleviated, since the imaginary part of the action
is constant on each Lefschetz thimble and put outside the
integrals in Eq. (6).

B. Asymptotic Lefschetz thimbles

Although the framework of the Lefschetz thimbles is
exact and suppresses the sign problem, the practical
application is not straightforward, as it is difficult to
identify all the thimbles [, with all the corresponding
coefficients n,. For this reason, the Lefschetz thimble
technique has been applied only to some limited cases.
For instance, the method was applied when the models are
sufficiently simple and all the Lefschetz thimbles can be
identified, for the bosonic [30,31,35] and fermionic cases
[34,37]. Also, QMC simulations were performed on
dominant thimbles for both bosonic [25-29,32,38] and
fermionic systems [33,36,39]. However, especially in the
fermionic systems, the integration over the dominant
thimbles is often insufficient to obtain the precise estimate
of the observables; it is not obvious how to take into
account all the relevant contributions.

To overcome the difficulty, an alternative method was
proposed [40], in which the integral is taken on an
asymptotic form of the Lefschetz thimbles rather than
the true Lefschetz thimbles. This technique enables one to
take into account the contributions from all the relevant
thimbles without knowing all the true thimbles a priori
[40]. It is achieved by starting the process of finding the
thimbles not from the saddle points z, by solving Egs. (3)
and (4) but rather from the original integration domain
with time evolution by using Eq. (5). Such time evolution
gradually deforms the integration domain to a manifold in
the complex space, as schematically shown in Fig. 1. The
manifold approaches the true Lefschetz thimbles asymp-
totically, and, hence, the time-evolved manifold is called
the asymptotic Lefschetz thimbles, which we denote as C,
at time ¢. In this time evolution, some special points will
flow to the saddle points z,, and other points close to them
will flow closely to 7, attached to z,,. All the points except
the ones flowing to the saddle points will eventually flow to
the singularities of the action in the long time limit, which
are zeros of the fermion determinant in the fermionic
problems. As such, the flow from the real space can
collect the contributions from all the relevant thimbles
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once the sampling and the time evolution are performed
appropriately.

Using the above method, one can perform MC sampling
on the asymptotic Lefschetz thimbles C, obtained by time
evolution of the samples proposed in the real space. The
regions with large MC weights in the real space possess
even larger MC weights in the complex space, because the
time evolution according to Eq. (5) always increases the
real part of the action. On the other hand, the imaginary
part of the action on C, remains as the original one in the
real space, because the time evolution keeps the imaginary
part of the action unchanged. Thus, in the regions of C; with
large MC weights, the fluctuation of the phase e~™S@)
tends to be suppressed, and, hence, the sign problem is
alleviated for the samples on the complex manifold C,
compared to the original ones in the real space.

Mathematically, the deformation from the real space to
the complex manifold C, by Eq. (5) corresponds to a change
of variables from real ¢ to complex z as

Jo dz0(z)e=5@)
(0) =" 55—
Je, dze

_ [dpO(z(p))e=5E@)) detJ
B [ dpe=SE®) detJ

: (7)

where J is the Jacobian given by J,, = 0z,/0¢,,; the
integrals in the first line are taken on the asymptotic
Lefschetz thimbles C, in the complex space, while those
in the second line are taken on the original domain in the
real space. Equation (7) indicates that ¢ parametrize the
asymptotic Lefschetz thimbles C, in the complex space after
a flow time t. This allows one to estimate the statistical
average by proposing @ in the real space by Markov chain
MC sampling and evolving them to the asymptotic
Lefschetz thimbles C, by Eq. (5). During the time evolution,
the Jacobian along the flows of the samples can be
calculated by

[Z gzzi?zn ] ®)

with the initial condition J = I (identity matrix).

This technique allows one to perform MC sampling
without prior knowledge of relevant Lefschetz thimbles 7,
and the corresponding saddle points z,. In the simulation,
the MC sampling is performed for the configurations of the
real auxiliary variables @ by using e ReS(®) a5 the MC
weight, and the integral in Eq. (7) is computed after the

time evolution by measuring the phase e ~™5@(®)) and det J
together with the observable O(z(@)) as
O(z e~ mS(z(9)) det J

(0) = (O(z(p)) >Re8( (qo))' (9)

(e~ mSE(@)) detJ)resz(p))

Here, in order to save the computational time during the
calculation of Eq. (9), the determinant of the Jacobian,
detJ, is included into the observable O(z(@)) and is
calculated only once per MC sweep, following the previous
studies [53,56,57].

Let us remark on the dimension of the original integra-
tion domain, the true and asymptotic Lefschetz thimbles,
and the zeros of the fermion determinant. The dimension of
the original integration domain in the real space is defined
by the number of auxiliary fields @, N,,. The domain R"» is
evolved by Eq. (5) into a manifold R¥» embedded in the
complex domain CVe. Therefore, the asymptotic Lefschetz
thimbles are RMo-dimensional manifolds. The true
Lefschetz thimbles are also RYv-dimensional manifolds.
On the other hand, the zeros of the fermion determinant
constitute CV»~!-dimensional manifolds embedded in C"»
in the generic case [40].

III. QUANTUM MONTE CARLO METHOD FOR
GENERIC QUANTUM SPIN MODELS

In this section, we show a QMC method based on the
asymptotic Lefschetz thimbles, which we call the ALT
QMC method, applicable to a generic quantum spin model
with arbitrary two-spin interactions and the Zeeman cou-
pling. While this technique can be applied to generic spin
magnitudes S, for the sake of simplicity, we limit our
description to the S = 1/2 case. In Sec. Il A, we introduce
the generic model to which the ALT QMC method can
be applied. In Sec. III B, we introduce the Hubbard-
Stratonovich transformation to decouple the two-spin
interactions. In Sec. III C, we describe an exact mapping
from the quantum spins to complex fermions by means of
the Popov-Fedotov transformation. In Sec. III D, we dis-
cretize the partition function via the Suzuki-Trotter decom-
position and derive the functional integral of the action. In
Sec. IITE, we make a remark on the details of the
implementation and the estimate of the sign problem.

A. Model

We consider a generic S = 1/2 model with arbitrary
two-spin interactions, whose Hamiltonian is given by

H==Y Y Kyhosch— ZZh%p, (10)

Pq ap

where the spin degree of freedom at site p is described by
the Pauli matrices o9, and K f’,‘f, is the coupling constant for
the two-spin interaction (a, f = x, y, z); the second term
describes the Zeeman coupling to a magnetic field whose a
component at site p is denoted as h%. Both K?,Z and hf can
be spatially inhomogeneous. The following formulation is
applicable to the model in Eq. (10) on any lattice geometry
with any boundary conditions.
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B. Hubbard-Stratonovich transformation

For constructing the QMC method based on the path
integral formalism, we decompose the two-body inter-
actions by using the Hubbard-Stratonovich transformation
[59,60]. Among several choices, we use the transformation
with continuous auxiliary variables which is suitable for the
present purpose to develop the ALT QMC method.
Specifically, rewriting the interaction term in Eq. (10) as

+og)’ =2, (1)

(-
—=K3hl(o8

v i
_K(;vqagojq - 2

we decompose it by using the Hubbard-Stratonovich
transformation as

expﬁmg p+aﬁ] \f/dq)
xexp |5 (i - v Kih(o -] (2)

where A is a positive constant that will be introduced in the
Suzuki-Trotter decomposition in Sec. III D. Note that the

sign of K%%
a.p

of K’y <0,

Note that, in this formulation, we introduce one continuous

can be both positive and negative; in the case

K‘,”,’ﬁ in Eq. (12) becomes a pure imaginary.

real auxiliary variable of Gaussian type, q)ﬁ’fi, for each

interaction term —K' Z’,qapcrg, which will save computational
cost; see Sec. IIIE.

C. Popov-Fedotov transformation

To utilize the framework based on the asymptotic
Lefschetz thimble technique for the fermionic systems,
we proceed with mapping from the quantum spins to
complex fermions via the Popov-Fedotov transformation
[61]. To begin with, let us express the spin degree of
freedom described in terms of the Pauli matrices by
complex fermions by using

o= T f o (13)
vy

where f}, and f py are the creation and annihilation
operators of a complex fermion, respectively, at site p
with spin y =1 or |. It is important to note that the relation
in Eq. (13) enlarges the size of the Hilbert space per site
from two for the original spin to four for the fermion as
Sh410), £5110), 10), and f7 . f7 10) (|0) is the vacuum).
The first two states with fermion occupation number unity
are physical, whereas the last two are unphysical. One can
eliminate the unphysical states by adding a term to the
fermion Hamiltonian, which gives zero when acting on the
physical Hilbert space and keeps the partition function
intact. The explicit form of such a term is given by [61]

_ %;(;ﬂ)ﬂ‘p.y - 1>, (14)

which corresponds to the introduction of an imaginary
chemical potential —iz/2f depending on the inverse
temperature ff = 1/T (we set the Boltzmann constant
kg = 1). It is straightforward to verify that the trace over
the unphysical states vanishes for the total Hamiltonian
including Eq. (14), because the contributions from |0) and
f;-T f;’ 1|0) eliminate each other. Hence, the following

relation for the partition function holds exactly:

Z = Trlexp (=fH)] = Tr{exp [-B(H; + 1))}, (15)
where H; is the fermion Hamiltonian obtained from
Eq. (10) via the transformation in Eq. (13).

This method provides an exact mapping from quantum
spins to complex fermions without introducing any unphys-
ical states. It is applicable to any S = 1/2 models with any
two-spin interactions. Furthermore, since the mapping is
defined by the local (on-site) transformation in Eq. (13), it
can be applied to any lattice geometry with any boundary
conditions. Further details and applications of this method
are found, for example, in Refs. [61-74].

D. Path integral of the action

By combining the two transformations above, we obtain
the expression of the action to which the ALT QMC method
is applicable. First, let us decompose the entire fermionized
Hamiltonian into two-body parts and a one-body part as

N—1 N,

Hf+HM = ZHH1+(Hh+Hﬂ) :ZHM’ (16)

where H,, for 1 < m < N; — 1 is the Hamiltonian obtained
by fermionizing -3, . K. qopog with a particular set of
and f and 'H,, stands for the Zeeman coupling term in
Eq. (10); Hy, denotes the one-body part H,, + H,. With
this form, we introduce the Suzuki-Trotter decomposition
for the operator exp[—f(H + H,)] in Eq. (15) as

|~ [IN‘[ exp(-a7,)| . (17)

where Ny is the number of the Suzuki-Trotter discretization
in the imaginary-time direction; A = /N . Note that the
approximation in Eq. (17) is valid up to O(A?). Then, the
partition function in Eq. (15) is expressed as

ZzTr{ Lf[l exp<—AHm)rﬂ}. (18)

exp [-p(H; +H,)
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The exact partition function will be obtained in the limit of
A — 0 and Ny — oco. Note that the systematic error in the
discretized partition function Z is again of O(A?) owing to
the property of the trace operation [75].

The partition function Z in Eq. (18), with the constant
contribution in Eq. (14) placed outside the integral, can be
expressed by using anticommuting Grassmann variables
w,, and W, as

Z = ’ﬂs/Hd,/,pydeexp (—Zu?p,ywp,y>
pr
1 N/f
% (=] [Hexm—mm)} w. (9
m=1
where [y} = exp(= X, vy fh)0)  and (7] =

(Olexp(=>_,, fpy¥p,) are the fermionic coherent states
and N is the number of sites; here, Hy, does not include
the complex constant —izNg/2f. Then, by inserting the
identity relation for the fermionic coherent states, we obtain

Ny N;

z— o [T [Tantmants

=1 m=1 py

exp< %iz_lwl >

=1 m=1 py
Ny N,

x H H (@' | exp(=AHy,) ™). (20)

where [ is the label for the Suzuki-Trotter slice, each
containing in total N; slices numbered by m, and, for all of

the slices, the anticommuting Grassmann variables 1//2”; and

z//p v are defined. Here, the Grassmann variables satisfy the
boundary conditions:

_NpN+1
~Wpy Wp r = Wply )
Ny.N LN 0410
pNr 1 _ s
pr = V¥py Ypy =Wpy . (21)

Next, with the help of the Hubbard-Stratonovich trans-
formation in Eq. (12), we obtain the following relation for
each matrix element in Eq. (20) with the two-body terms:

exp (—AH )

:exp[ ZK’" (Pr)? AZK'"}

— (23) exp< AZK’") / IZILW

exp [—gz AZ% \/ﬁpg] . (22)

where n denotes a pair of p and g for the two-body terms
(1<m<N;-1), N, stands for the total number of
interaction terms in a particular H, ,,,, and P} is the bilinear
fermionic operator obtained by replacing quantum spins in
Eq. (12) with the complex fermions as in Eq. (13):

P = (fhs0% oy + Fis0h Fa)- (23)

vy

By using the relation for the Grassmann variables for a
matrix M [76-78]

(@' exp <Zf;;Mk,k’fk’> ™)

k.k'

= exp [Zwk exp (M

e R
kK

where k= {p,y} and k' = {q,y’}, one can write each
interaction term in Eq. (20) as

(@™ exp(=AH, ) ly"™")

) en()

AZ (™) +ZW’< exp ( Ahl.m)k,k’wz’m]'

exp {
kK

(25)

Here, h,,, stands for the matrix element of the bilinear
fermionic operator Y, ¢p'/KyP?" (1 <m < N;—1). By
using Eq. (24), one can also transform the one-body part
(p"Nilexp (~AH, n,)lw"N1), which does not contain the
auxiliary fields introduced via the Hubbard-Stratonovich
transformation.

Finally, by integrating out the Grassmann variables, we
obtain

- () )
/ﬁl\ﬁ Hd(pn exp [__%Ni: Z(% ]

1 m= 1 n

N/f Ny
x det []1 - iH H exp (—Ahlgm)] .
=1 m=1

(26)

Therefore, the action of this system can be obtained as
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N/; N;-1
SR NI
Ny N,
— Indet {]I H H exp (—Ahy, } (27)
=1 m=

Note that, after integrating out the Grassmann variables
introduced for the imaginary chemical potential term in
Eq. (14), the factor of i appears inside the determinant.
For further details of the derivation, one can refer, for
example, to Ref. [79]. Given the action as a function of the
auxiliary variables @ in Eq. (27), we can perform the ALT
QMC simulations by plugging it in Eq. (9).

E. Remarks

It is important to note that, if one tries to apply the
Hubbard-Stratonovich transformation after the fermioni-
zation of the Hamiltonian into 7, one needs to introduce
four auxiliary variables for each interaction term. In
our approach, we need only a single auxiliary variable
for each interaction term, as mentioned in Sec. IIIB.
This is why we apply the Hubbard-Stratonovich trans-
formation to the original spin Hamiltonian H before the
fermionization. The computational cost of the present
method is O(NjN;), since the bottleneck is in the
calculation of detJ in Eq. (9). This means that our
approach with N, = Ng is 64 times faster than the
alternative one with N, = 4Nj.

In the simulations below, we solve Egs. (5) and (8) by
the Runge-Kutta-Fehlberg algorithm [80,81]. In the actual
computation of dS(z)/dz; and 9*S(z)/0z,0z,,, we use the
analytical expressions of the derivatives obtained from
Eq. (27). It is important to note that, although the
complex logarithm in Eq. (27) is ambiguous up to integer
multiplies of 2zi, Eq. (5) is well defined, because the
ambiguity disappears in the case of analytical expres-
sions [34].

In order to measure the sign problem in the ALT QMC
method, we introduce three estimates [53,56,57]: the
average sign of the action

Saction = |(e~mEE() )>Re5(z(q))) ; (28)
the average sign of the Jacobian
Stacobian = (€™ ) Res(e(o | (29)
and the total average sign
S = | (e~MMmSE(@))+ilmIn detJ>ReS(z(¢)) . (30)

IV. APPLICATION TO THE KITAEV MODEL IN A
MAGNETIC FIELD

In this section, we apply the ALT QMC method
developed above to a model for which the DQMC method
encounters a serious sign problem. We here adopt the
Kitaev honeycomb model in a magnetic field, for which a
topological quantum spin liquid with non-Abelian anyonic
excitations is predicted by the perturbation theory in the
weak field limit [82]. We introduce the Hamiltonian and
briefly review the fundamental properties in Sec. IV A.
Then, applying the ALT QMC method to this model, in
Sec. IV B, we visualize the time evolution of the asymptotic
Lefschetz thimbles as well as the saddle points and the
zeros of the fermion determinant for a simple case with four
spins and a single Suzuki-Trotter slice. In Sec. IV C,
analyzing the time ¢ dependence in detail, we show that
the ALT QMC method needs an optimization of ¢ to
balance the gain in the sign of the MC weight and the
numerical efficiency. Finally, in Sec. IV D, we present
the benchmark with the detailed comparison between the
DQMC and ALT QMC methods.

A. Kitaev model

While the scheme presented in this paper can be applied
to generic quantum spin models, we here focus on the
Kitaev model on a honeycomb lattice in a uniform
magnetic field [82]. The Hamiltonian is given by

Z KYZGI,O'(] Z hYZO'p, (31)

r=XY.2 r=X5.2

where the sum (p,q), is taken over all the y bonds
corresponding to three different types of bond on the
honeycomb lattice and K7 is the exchange constant for
the y bonds.

In the absence of the magnetic field 4" = 0, the ground
state of the model in Eq. (31) can be exactly obtained by
introducing Majorana fermion operators for the spin oper-
ators [82]. While the ground state has gapless or gapped
Majorana excitations depending on the anisotropy in the
coupling constants K7, it is always a quantum spin liquid
with extremely short-range spin correlations: The spin
correlations (¢7,6%) are nonzero only for the nearest-neigh-
bor y bond, in addition to the on-site ones with p = ¢ [83].

When h7 # 0, the exact solution is no longer available.
The perturbation theory in terms of h?, however, predicts
that the ground state becomes a topological gapped
quantum spin liquid with non-Abelian anyonic excitations
and a chiral Majorana edge mode in the vicinity of the
isotropic case K* = K” = K* [82]. Recently, this predic-
tion has attracted great attention, as the experiments for a
candidate material of the Kitaev model, «a-RuCls,
reported unconventional behaviors in the field-induced
paramagnetic region [84-93]. Although it is still under
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debate whether this field-induced paramagnetic state is the
topological quantum spin liquid, the recent discovery of the
half-quantized thermal Hall conductivity provides strong
evidence of the chiral Majorana edge mode [94].
Nevertheless, there are few reliable theoretical results
beyond the perturbation theory, since the controlled
unbiased calculations are hardly available in an applied
magnetic field. In particular, the sign-free QMC calcula-
tions are limited to zero field [95—-102] and the effective
model derived by the perturbation [103]. In the following,
we apply the ALT QMC method to the Kitaev model in the
magnetic field in Eq. (31) and try to extend the accessible
parameter region beyond the existing methods.

B. Visualization of the asymptotic Lefschetz thimbles

To get some insight on how the sign problem is alleviated
by the ALT QMC method, we visualize the asymptotic
Lefschetz thimbles by following the time evolution explic-
itly. For this purpose, we adopt a simple model consisting
of four sites of the Kitaev model, as shown in the inset in
Fig. 2, whose Hamiltonian is given by

Hour-site = _KXO-XOU)IC - KV"?)”% - sz(’(Z)Gg
- Z W (oh+ o + o5 +0%).  (32)

Y=X).2

We take a single Suzuki-Trotter slice, namely, Ny =1,
where we have only three auxiliary variables denoted as ¢,,
@y, and @, on the x, y, and z bonds connecting 0-1, 0-2, and

K*=K"=03, K*=04, h*=05, W =h*=0, and
p = 3.125. For this setup, we plot the projections of the
asymptotic Lefschetz thimbles onto the complex planes
of z, zy, and z,, which are obtained via the analytic
continuation of the real variables ¢,, ¢,, and ¢, respec-
tively. Since in the present case the original integration
domain is R?, the Lefschetz thimbles will be R? embedded
in C3, and the zeros of the fermion determinant will be C2
(see Sec. IIB). For the explicit form of the action S(z)
derived for the model in Eq. (32), we refer to the Appendix.

First, we demonstrate the time flows of the asymptotic
Lefschetz thimbles, which are schematically drawn by the
dashed blue arrows in Fig. 1. For this purpose, we prepare a
set of discrete points by hand in the original integration
domain R3? in the parameter range where the weight
e ReS@) has a significant value (we confirm that the
numerical integration over the discrete points reproduces
the value of the action with sufficient precision) and follow
their time evolution calculated by Eq. (5). The results up to
t = 0.16 are shown by the light blue points in Fig. 2. The
flows evolve while increasing time and appear to form
envelopes in a different way between the three variables z,,
zy, and z,. The envelopes are expected to give the
asymptotic Lefschetz thimbles C,, as schematically shown
in Fig. 1, although the time flows may become numerically
unstable at some point in practice (see below).

At the same time, we plot both the saddle points and the
zeros of the fermion determinant in Fig. 2. The saddle
points are obtained by solving Eq. (3) directly. They are

0-3 sites, respectively. We take the parameters as  located near the real axis in all three projections, forming
(a) 0‘6 T T T T T T T (b) 0'6 T T T T T T T (c) 0'6 T T T T T T T
flows = 1
saddles *
04 | zeros « 1 04 | E 04 | E
DQMC [So =0.7933()] = &
ALT QMC [0y = 0.8155(8)] i
02 | ALTQMC S,y = 0.83044)] = i 02 F - 02 | 1
o) 00 | : : N>\00- . NN00- .
Eoop ———= £ £
02t 1 {1 -2} {1 -02f .
—K*\ —KY i
2 ¢
-04 | 0 f . -04 | . -04 | .
_K*%
3
_0.6 1 1 1 1 1 1 1 _0.6 1 1 1 1 1 1 1 _0.6 1 1 1 1 1 1 1
4 3 2 -1 0 1 2 3 4 4 3 2 -1 0 1 2 3 4 4 3 2 -1 0 1 2 3 4
Re z, Re z, Rez,

FIG. 2. Visualization of the asymptotic Lefschetz thimbles for the four-site model in Eq. (32) with K* = K¥ = 0.3, K* =04,
h* = 0.5, and h” = h* = 0 [see the inset in (a)]. Projections onto the auxiliary variables on (a) the x bond, z,, (b) the y bond, z,, and
(c) the z bond, z,, are shown. The light blue points show the time evolution of the discrete points on the real space up to # = 0.16, which
represent the flows of the asymptotic Lefschetz thimbles (corresponding to the dashed blue arrows in Fig. 1). The dark blue crosses and
gray dots represent the saddle points and “zeros” (see the text for details), respectively, similar to those in Fig. 1. The green dots on the
real axes represent the distribution of samples generated by the DQMC method in real space. The light and dark red points represent the
samples prepared by the ALT QMC method for t = 0.04 and t = 0.08, respectively. The average sign S, is alleviated from S, =
0.7933(2) in the DQMC result (t = 0) to Sy = 0.8155(8) and S,y = 0.8304(4) on the asymptotic Lefschetz thimbles at 7 = 0.04 and
t = 0.08, respectively. All the data are obtained for Ny = 1 with g = 3.125.
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the complex conjugate pairs, as shown by the crosses in
Fig. 2. The envelopes of the asymptotic Lefschetz thimbles
(light blue points) appear to approach the saddle points by
the time evolution. Meanwhile, the zeros are obtained from
the time evolution by Eq. (5) as follows. In the vicinity of
zeros of the fermion determinant, the solution of Eq. (5)
blows up, and, hence, the numerical integration becomes
unstable. We assume that the flow in Eq. (5) hits a zero
when the numerical value of ReS(z) starts to decrease or
when the value of ImS(z) starts to deviate significantly
during the time evolution (we set the threshold as one
percent of the previous values in the flows with each
Runge-Kutta-Fehlberg adaptive step size). We show the
points obtained by this procedure by the gray dots in Fig. 2.
Note that not all of them are true zeros of the fermion
determinant, as they may include some points where the
numerical integration of Eq. (5) simply fails for technical
reasons (the points at which the Runge-Kutta-Fehlberg
adaptive step size becomes too small or the number of
adaptive steps becomes too large are also included). In any
case, the results in Fig. 2 indicate that the asymptotic
Lefschetz thimbles appear to be terminated in the regions
where the “zeros” are densely distributed.

C. Alleviation of sign problem

With the above visualization in mind, we demonstrate
how the actual ALT QMC simulations work. First, we
present the distribution of the MC samples obtained by the
DQMC technique. They are distributed in the original
integration domain R3 and, hence, on the real axes in each
projection, as shown by the green dots in Fig. 2. The total
average sign in Eq. (30) is Sy = 0.7933(2) for the DQMC
results. Here and hereafter, the number in the parentheses
represents the statistical error in the last digit, which is
estimated by the standard error calculated from independent
MC samples. In the present case, we take four independent
MC samples, each having 9 x 10> MC sweeps for meas-
urement after 10° MC sweeps for thermalization. Note that
not all the samples are plotted in Fig. 2; only the values
obtained every 2.5 x 103 sweeps in one of four MC samples
are shown for better visibility. The internal energy is
estimated as Epgvc = —2.7505(9), which values obtained
with the ALT QMC technique reproduces well the exact
value of E.,,; = —2.75032 within the statistical error.

Next, we show the distributions of the MC samples
obtained by the ALT QMC simulations, which correspond
to the asymptotic Lefschetz thimbles C,. Figure 2 displays
the results with the time evolution after r = 0.04 and ¢ =
0.08 by the light and dark red dots, respectively. For these
calculations, we take four independent MC samples, each
having 9 x 10* MC sweeps for measurement after 10* MC
sweeps for thermalization, and only the values obtained
every ten sweeps in one of four MC samples are shown in
Fig. 2 for better visibility. The results indicate that the
asymptotic Lefschetz thimbles evolve from the real axis in

each projection along the flows shown by the light blue
points. As expected, the total average sign increases with ¢
as S = 0.8155(8) and S, = 0.8304(4) for 1 = 0.04
and ¢ = 0.08, respectively. The internal energy obtained by
the ALT QMC simulations reproduce the exact result as
Exttomc = —2.754(3) for t=0.04 and Exrromc =
—2.749(2) for t = 0.08.

Let us discuss the flow time ¢ dependence in more detail,
by taking # = 5 and Ny = 4, for the four-site Kitaev model
in Eq. (32) with K* = KY=K*=1/3, * = h" =0, and
h* = 0.2. Figure 3(a) shows the # dependence of the internal
energy E, indicating that the internal energy values obtained
with the ALT QMC technique reproduce well the exact
value, shown by the horizontal dashed line, for all ¢ up to
t = 0.80 calculated here. Figure 3(b) shows the ¢ depend-
ences of the total average sign Sy, in Eq. (30), the average

(a) -1.18

-1.20 |

ALT QMC —eo—
Exact - - - - +

K -1.22
-1.24

-1.26
(b) 100

(c) 03 —7/—1m——————————

Reaip
=)
5
[ ]

0.05 ° 1
[ ]
0.00 L& ) ) ) ) ) ) ) ) ) )
0.00 0.08 0.16 024 032 040 048 056 0.64 0.72 0.80
t

FIG. 3. Flow time ¢ dependences of (a) the internal energy E,
(b) the average sign of the action, S,.;, in Eq. (28), the average
sign of the Jacobian, Sj,.opian 1N Eq. (29), and the total average sign
Siorar 1N Eq. (30), and (c) the ratio of the failed samples, Ry,;. The
model is the four-site Kitaev model in Eq. (32) with
K*'=K'=K*=1/3, “*=h"=0, and h*=0.2. We take
Ny =4 and = 5. The statistical error bars are calculated from
eight independent samples, each consisting of 5 x 10° MC sweeps
for thermalization and 9.5 x 10> MC sweeps for measurement.
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sign of the Jacobian, Sj,copian I Eq. (29), and the average
sign of the action, S, on 10 Eq. (28). We find that S,on
increases with 7 up to r~0.64 and then saturates to
Saction >~ 0.81. We note that, when there is only one
Lefschetz thimble, S,.;,, can be arbitrarily close to 1 while
increasing t; however, this does not hold for the case with
multiple thimbles, since ImS(z) can vary from one thimble
to another. Hence, the above result suggests that there are
more than one relevant thimble in the present case. On the
other hand, Sy,cgpian Steadily decreases from 1 with 7. As a
consequence, Sy, Which includes these two contributions,
steadily increases up to ¢~ 0.64, while it turns to decrease
for larger 7. These results show that the total sign S, does
not approach 1 and shows a maximum at some point of the
time 1.

We also measure the ratio of the failed samples, Ry, in
the MC simulations. The failed samples are the MC
samples which collapse onto the zeros of the fermion
determinant (or simply become unstable in the time
evolution). In our simulations, we discard them and do
not take them into account in the MC measurement. The
ratio of the failed samples denoted by Ry, is defined as the
number of failed samples divided by the total number of
initial MC samples. Figure 3(c) shows the ¢ dependence of
Rii- We find that Ry, increases almost linearly with ¢,
indicating that the ALT QMC simulation loses its efficiency
while increasing ?.

Thus, in the practical ALT QMC simulations, S,y
becomes maximum at some ¢ and turns to decrease for
large ¢, while Ry,;; monotonically increases with ¢. Hence, ¢
should be optimized to retain reasonable values of S, and
Ry, in practical simulations. The optimal value of 7 could
be determined by running test runs with small numbers of
MC samples.

Next, we examine the convergence with respect to Np.
Table I summarizes the results for the same model as in
Fig. 3 while varying N from 4 to 8. The ALT QMC results
are obtained at r = 0.22, where Ry,; falls in the range of
0.06 < Ry, < 0.07. We note that Ry,; becomes smaller for
larger N . At this relatively short flow time, Sy,copian = 1 for
all the cases. The results indicate that the exact values of the

TABLE 1. Comparison of the results obtained by the exact
computation of the partition function in Eq. (18), the DQMC
method, and the ALT QMC method. The model, parameters, and
notations are common to those in Fig. 3, except for Njy. The ALT
QMC results are obtained at t = 0.22. Sy,eopian = 1 for all the
cases.

Exact
N p E E N action

4 —1.2179 —1.226(7) 0.711(3) —1.229(9) 0.769(3) 0.837(2)
6 —1.1760 —1.181(9) 0.726(3) —1.178(5) 0.799(2) 0.828(2)
8 —1.1612 —1.16(1) 0.736(4) —1.170(9) 0.803(2) 0.818(3)

DQMC ALT QMC

Sbomc E Siotal

internal energy are well reproduced in all cases within the
statistical errors. In addition, we find that the ALT QMC
method indeed improves the average sign for all Ny,
compared to the DQMC results. As a result, S, in the
ALT QMC simulation is considerably larger compared to
Spomc in the DQMC simulation, while Sy, is reduced
gradually while increasing Njg. The results prove the
efficiency of the ALT QMC method.

D. Benchmark

Finally, we present the benchmark of the ALT QMC
method by performing larger-scale simulations. We here
consider the Kitaev model in a magnetic field on an 18-site
cluster (Ng = 2 x 3%) with the periodic boundary condi-
tions. In the following, we take the parameters to retain the
threefold rotational symmetry, namely, K* = K¥ = K* =
1/3 and h*=h" = h* =h because of the following
reason. As discussed in Sec. IV C, the sign problem in
the ALT QMC simulations depends on the number of
relevant thimbles and the values of ImS(z) on each thimble;
in the extreme case, when the system has only a single
thimble associated with a single saddle point, one would
expect a significant alleviation of the sign problem. For this
reason, we first analyzed the structure of the saddle points
by varying the model parameters K” and A’. In order to
identify the saddle points, we performed DQMC simula-
tions and solve Eq. (3) for each DQMC sample in the real
space. From this analysis, we found that the system appears
to have a single saddle point for the symmetric case with
K* =K"= K*=1/3and h* = ¥ = h* = h. We note that
the values of the auxiliary fields for the saddle point are the
same for all the Suzuki-Trotter slices, while they vary with
h as well as temperature 7. Hence, we take this symmetric
parameter set for the following simulations.

First of all, we show the behavior of the sign while
varying T and h obtained by the DQMC simulations. We
find that the average sign of the action, Spgwmc, decreases
rapidly as T decreases, as plotted in Fig. 4. The decrease is
more severe in the smaller field region for 4 < 0.09. The
results suggest that the DQMC simulations become ineffi-
cient in the region below 7 ~0.3 and & < 0.09, where
Spomc becomes smaller than 1073, even for this relatively
small cluster with 18 sites.

Given the DQMC results, we perform the ALT QMC
simulations at 7' = 0.35 (f = 2.8125) and i = 0.04, where
Spomc is small but still retains a reasonable value of
0.013(2). We show the results for Ny = 2, 4, 6, and 8 in
Fig. 5, in comparison with the DQMC results which
include the Ny = 36 data. Figure 5(a) shows the internal
energy E, as a function of 1/ Nf,. We find that the results by

the DQMC and ALT QMC methods agree with each other
within the error bars for all N 5 The data follow well a

linear function of 1/ N%; as expected from the discussion in
Sec. [II D. The fittings are shown for both results with the
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FIG. 4. The average sign of the action, Spomc in Eq. (2),
obtained by the DQMC simulations while changing the magnetic
field & and temperature 7. The results are obtained for the 18-site
Kitaev model with K* = K¥ = K* = 1/3 and h* = h¥ = h* = h.
The average values of the sign are calculated from five indepen-
dent samples, each consisting of 10° MC sweeps for thermal-
ization and 9 x 10° MC sweeps for sampling. All the data are
obtained for Ny = 8.

confidence interval of the errors (hatched areas) estimated
by a modified least-square method taking into account the
errors of the data [104]. We find that the extrapolated values
agree well with the result obtained by the DQMC with
sufficiently large Ny = 36.

Figure 5(b) shows the total average sign S, and the
ratio of the failed samples, Ry, obtained by the ALT QMC
technique. We also plot the average sign of the action
obtained by the DQMC technique, Spqwmc, for comparison.
In the ALT QMC simulations, we tune the flow time ¢ so
that Sy =~ 0.05 for Ny =4, 6, and 8. The value of ¢
becomes larger and Ry, becomes higher for larger Ny, as
shown in Fig. 5(b). Comparing S, in the ALT QMC
simulations with Spgumc in the DQMC simulations, we find
an improvement of nearly 4 times for all Ny, except for
nearly 6 times for the Ny =2 case. Since the number of
measurements required to obtain a constant error is propor-
tional to (S )2, our results suggest that the performance
in terms of the number of MC samples becomes nearly 16
times higher in the ALT QMC simulations. We note,
however, that the improvement is still not enough to
replace the DQMC method at this stage, when taking into
account the computational cost; the calculation complexity
of the DQMC method is O(NzN), which is substantially

better than that of the ALT QMC, O(N;N3).

V. SUMMARY

In summary, we have developed a QMC method based
on the asymptotic Lefschetz thimbles that is applicable to
quantum spin models with generic two-spin interactions
and the Zeeman coupling to a magnetic field. The method is
constructed by introducing the Hubbard-Stratonovich
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FIG. 5. Benchmark results of the ALT QMC simulations for the
Kitaev model in the magnetic field. (a) The ALT QMC results for
the internal energy E, in comparison with the DQMC results. The
extrapolation to Ny — oo is shown by the fitting with a linear
function of 1/N?, plotted with the confidence interval of the
errors denoted by the hatched area, for both the DQMC and ALT
QMC data. Note that the DQMC data at N = 36 plotted by the
filled orange pentagon are not incorporated in the fitting. (b) The
total sign Sy, in the ALT QMC simulations, in comparison with
the sign of the action in the DQMC simulations, Spomc. The
values of the flow time ¢ are shown in the figure. The ratio of the
failed samples, Ry, is also shown. The results are obtained
for the 18-site Kitaev model with K* = K¥ = K* =1/3 and
h* = hY = h* = 0.04 at § = 2.8125. The statistical error bars for
the ALT QMC results are calculated from ten independent
samples, each consisting of 5 x 10> MC sweeps for thermal-
ization and 4.5 x 10* MC sweeps for sampling. The statistical
error bars for the DQMC [DQMC (Ngy = 36)] results are
calculated from ten independent samples, each consisting of
10° (10°) MC sweeps for thermalization and 9 x 10° (4 x 10°)
MC sweeps for sampling.

transformation and the Popov-Fedotov transformation.
As a demonstration, we applied the method, dubbed the
ALT QMC method, to the Kitaev model in a magnetic field.
For the four-site cluster, we visualized explicitly the time
evolution of the asymptotic Lefschetz thimbles in the
complex space of the auxiliary variables in the Hubbard-
Stratonovich transformation and presented how the ALT
QMC method alleviates the sign problem compared to the
conventional determinant QMC method. We also showed

074517-11



MISHCHENKO, KATO, and MOTOME

PHYS. REV. D 104, 074517 (2021)

the benchmark of the 18-site cluster and demonstrated the
potential of studying lower-temperature regions in a mag-
netic field compared to the conventional method. Although
the ALT QMC method developed in the present study is
still too costly, we emphasize that the average sign can be
considerably improved from that in the DQMC method.
Our results may pave the way for constructing further
efficient numerical techniques.
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APPENDIX: EXPLICIT FORM OF THE ACTION
DERIVED FOR THE FOUR-SITE KITAEV
MODEL

The explicit form of the action S(¢) in Eq. (27)
derived for the model in Eq. (32) with /7 = h* =0 is
expressed as

—log (1 4 e~22VE0s) — 2]og cosh (Ah*) — log cosh [A(h* — VK™, )] — log cosh (AVK  ¢»)
—log{(1 — ie?VE03) cosh [A(h* — VK ¢, = VK’ ¢,)]
+ (=i + 2VE0s) cosh [A(h* = VK ¢, + VK 9,)]}.
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