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We present a calculation of the up, down, strange, and charm quark masses performed within the lattice
QCD framework. We use the twisted-mass fermion action and carry out simulations that include in the sea
two light mass-degenerate quarks, as well as the strange and charm quarks. In the analysis, we use gauge
ensembles simulated at three values of the lattice spacing and with light quarks that correspond to pion
masses in the range from 350 MeV to the physical value, while the strange and charm quark masses are
tuned approximately to their physical values. We use several quantities to set the scale in order to check for
finite lattice spacing effects, and in the continuum limit, we get compatible results. The quark mass
renormalization is carried out nonperturbatively using the (modified) Regularization Independent
Momentum Subtraction (RI0-MOM) method converted into the MS scheme. For the determination of
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the quark masses, we use physical observables from both the meson and the baryon sectors, obtaining
mud ¼ 3.636ð66Þð þ60

−57 Þ MeV and ms ¼ 98.7ð2.4Þð þ4.0
−3.2 Þ MeV in the MSð2 GeVÞ scheme and mc ¼

1036ð17Þð þ15
−8 Þ MeV in the MSð3 GeVÞ scheme, where the first errors are statistical and the second

ones are combinations of systematic errors. For the quark mass ratios, we get ms=mud ¼ 27.17ð32Þð þ56
−38 Þ

and mc=ms ¼ 11.48ð12Þð þ25
−19 Þ.

DOI: 10.1103/PhysRevD.104.074515

I. INTRODUCTION

Quark masses are essential inputs of the Standard Model
(SM) and play a primary role for the description of a large
number of physical processes that can provide insights into
the dynamics of the SM as well as in the search of beyond
the Standard Model physics. The quark masses together
with the strong coupling constant can be regarded as the
fundamental parameters of QCD, the renormalizable theory
of the strong interactions. Therefore, their determination
plays a crucial role in the phenomenological description of
the plethora of complex phenomena governed by strong
nuclear forces taking place in the Universe as well as at
particle colliders. Lattice QCD provides a nonperturbative
approach based on first principles and systematically
improvable for determining the quark masses and the
strong coupling. In this approach, the QCD Lagrangian
is defined on a discrete Euclidean four-dimensional space-
time lattice of large but finite extent, which allows for
numerical simulation of the theory via Monte Carlo meth-
ods. The finite volume and the nonvanishing lattice spacing
introduce systematic artifacts, which can be theoretically
understood, kept under numerical control, and extrapolated
away in order to extract the physical quantities of interest.
Theoretical progress in lattice field theory and improve-

ment in numerical algorithms, accompanied with a contin-
uously increasing computational power, are allowing us to
perform simulations using physical values of the light-quark
masses. However, most of these simulations are still carried
out using a single lattice spacing and volume, although this is
rapidly changing as more lattice QCD collaborations gain
access to larger computational resources and can produce
multiple ensembles of gauge configurations generated with
physical values of the light quark masses. Such ensembles
will be referred to as physical point ensembles. In this work,
we include two physical point ensembles at two different
lattice spacings. In order to take the continuum limit, we also
employ additional ensembles at a coarser lattice resolution
with larger than physical pion masses. Globally, we thus use
ensembles with three values of the lattice spacing and
spanning pion masses in the range from about 350 to
135 MeV, which enable us to perform a combined chiral
and continuum extrapolation. In order to study systematic
effects in the determination of the quark masses, we use two
sets of observables to set the scale and to evaluate the quark
masses. One set of observables is based on quantities from
the meson sector of QCD, while the other set relies on

baryonic observables. In the former case, we use the pion
mass and decay constant to set the scale and to determine the
average up/down quark mass. The mass of the strange and
charm quarks are extracted using the kaon and D-meson
masses, respectively. In the latter case, instead, the masses of
the pion and nucleon are employed to set the scale and fix the
average up/down quark mass, while the Ω− and the Λc
masses determine the strange and charm quark masses,
respectively. In this way, we obtain a valuable consistency
check with respect to the results coming from the mesonic
sector.
For the renormalization of the quark mass, we employ

a dedicated set of gauge ensembles with four mass-
degenerate sea quarks (having mass around half of the
strange quark mass). Such a set ensures a good control of
the extrapolation to the massless limit. We perform the
computation in an intermediate mass-independent scheme,
which is finally converted to the standard MS scheme.
The paper is organized as follows. In Sec. II, we describe

the gauge ensembles used in this study and explain our
methodology. In Secs. III and IV, we present the methods
used to set the lattice spacing a and to carry out a
nonperturbative computation of the renormalization con-
stant ZP including a detailed discussion on the control of
hadronic contaminations and other systematic errors. In
Secs. V and VI, we describe the extraction of the quark
masses and their ratios using inputs from the mesonic and
baryonic sectors, respectively. In Sec. VII, we discuss our
final results and give our conclusions and outlook.

II. METHODOLOGY

In twisted-mass lattice QCD [1], the discretized Dirac
operator in the physical quark basis is written as

DðμfÞ ¼
1

2
γμð∇μ þ∇�

μÞ − iγ5

�
mcrðrfÞ − rf

a
2
∇μ∇�

μ

þ cSWðrfÞ
32

γμγνðQμν −QνμÞ
�
þ μf; ð1Þ

where rf ¼ �1, ∇μ and ∇�
μ are nearest-neighbor forward

and backward covariant derivatives, μf sets the mass of
the quark field qf of flavor f, cSW is the coefficient of the
clover-term Qμν [2], and mcr is the critical value of the
“untwisted” mass m0, obtained by requiring the vanishing
of the partially conserved axial current (PCAC) mass, as
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discussed in Ref. [3]. This condition, referred to as maximal
twist, guarantees automatic OðaÞ improvement of physical
observables [4,5]. In the twisted-mass fermion formulation
at maximal twist, the renormalized quark masses are thus
given by

mf ¼
μf
ZP

¼ ðaμfÞ
aZP

; ð2Þ

where a is the lattice spacing and ZP is the pseudoscalar
renormalization constant. Therefore, the determination of
both ZP and the lattice spacing, combined with inputs from
known physical quantities depending on the quark masses,
enables us to extract mf. Having gauge ensembles with at
least three different lattice spacings at several pion masses
allows us to take the continuum limit, and by performing a
chiral extrapolation, we can determine the quark masses at
the physical point.

A. Gauge ensembles

We use the twisted-mass fermion discretization scheme
[1,4] with the inclusion of a clover term [2]. As already
explained, twisted-mass fermions (TMFs) provide an
attractive formulation for lattice QCD simulations allowing
for automatic OðaÞ improvement of physical observables
as well as renormalization constants [4,6]. This is an
important property since quantities of interest have lattice
artifacts of Oða2Þ and are thus closer to the continuum
limit. A clover term is added to the TMF action to suppress

Oða2Þ breaking effects between the neutral and charged
pions, which eventually leads to the stabilization of
simulations with light quark masses close to the physical
pion mass. For more details on the TMF formulation, see
Refs. [7,8], and on the simulation and tuning strategies, see
Refs. [9,10].
In this study, we analyze ten gauge ensembles simulated

at three values of the lattice spacing and at several values of
the pion mass, spanning a range from the physical pion
mass up to 350 MeV. Some parameters of these ensembles
and the values of few key physical quantities are listed in
Table I. More details are given in Ref. [11]. With respect to
Ref. [11], the ensemble cC211.20.48 has been added in
order to investigate the light quark mass dependence at the
finest lattice spacing.
The ensembles are generated with two mass-degenerate

light quarks and the strange and charm quarks in the sea
(Nf ¼ 2þ 1þ 1 ensembles). The strange and charm sea
quark mass parameters, aμσ and aμδ (see, e.g., Eq. (8) of
Ref. [12]) have been adjusted so as to reproduce the
phenomenological conditionsmc=ms ≃ 11.8 andmDs

=fDs
≃

7.9 [13], which are easy to implement with few percent level
precision even using simulations with larger than physical
pion masses and on lattices of linear size L ≃ 2.5 fm, as
detailed in Ref. [10]. The condition onmDs

=fDs
is sensitive

to the charm quark mass, while the one on mc=ms fixes the
strange quark mass. In this way, the charm and strange sea
quark mass parameters have been tuned, separately for each
lattice resolution (or β), to bare values that a posteriori turn
out to yield values for the renormalized sea quarkmasses that

TABLE I. Parameters of the Nf ¼ 2þ 1þ 1 ensembles analyzed in this study. In the first column, we give the name of the ensemble;
in the second, we give the lattice volume; in the third, we give the number of molecular dynamics units simulated per ensemble; in the
fourth, we give the twisted-mass parameter, aμl, for the average up/down (light) quark; in the fifth and in the sixth, we give the pion
mass amπ and decay constant afπ in lattice units from Ref. [11]; in the seventh, we give the pion mass times the lattice spatial length,
mπL; in the eighth, we give the ratiomN=mπ as determined in Sec. VI; and, finally, in the last column, we give the pion mass in physical
units, using our determination of the gradient-flow scale w0 obtained in Ref. [11] [see later Eq. (32)]. We also include for each set of
ensembles with the same lattice spacing the coupling constant β, the clover-term parameter cSW, the parameters of the nondegenerate
operator aμσ and aμδ, related to the renormalized strange and charm sea quark masses [5], and the value of the gradient-flow scale w0=a
determined at the physical pion mass in Ref. [11].

Ensemble L3 × T MDUs aμl amπ afπ mπL mN=mπ mπ (MeV)

β ¼ 1.726, cSW ¼ 1.74, aμσ ¼ 0.1408, aμδ ¼ 0.1521, w0=a ¼ 1.8352ð35Þ
cA211.53.24 243 × 48 5026 0.00530 0.16626 (51) 0.07106 (36) 3.99 � � � 346.4 (1.6)
cA211.40.24 243 × 48 5298 0.00400 0.14477 (70) 0.06809 (30) 3.47 � � � 301.6 (2.1)
cA211.30.32 323 × 64 10234 0.00300 0.12530 (16) 0.06674 (15) 4.01 4.049 (14) 261.1 (1.1)
cA211.12.48 483 × 96 2936 0.00120 0.08022 (18) 0.06133 (33) 3.85 5.685 (28) 167.1 (0.8)

β ¼ 1.778, cSW ¼ 1.69, aμσ ¼ 0.1246864, aμδ ¼ 0.1315052, w0=a ¼ 2.1299ð16Þ
cB211.25.32 323 × 64 3959 0.00250 0.10475 (45) 0.05652 (38) 3.35 4.104 (36) 253.3 (1.4)
cB211.25.48 483 × 96 5246 0.00250 0.10465 (14) 0.05726 (12) 5.02 4.124 (17) 253.0 (1.0)
cB211.14.64 643 × 128 6187 0.00140 0.07848 (10) 0.05477 (12) 5.02 5.119 (36) 189.8 (0.7)
cB211.072.64 643 × 128 3161 0.00072 0.05659 (8) 0.05267 (14) 3.62 6.760 (30) 136.8 (0.6)

β ¼ 1.836, cSW ¼ 1.6452, aμσ ¼ 0.106586, aμδ ¼ 0.107146, w0=a ¼ 2.5045ð17Þ
cC211.20.48 483 × 96 2000 0.00200 0.08540 (17) 0.04892 (13) 4.13 4.244 (25) 245.73 (98)
cC211.06.80 803 × 160 3207 0.00060 0.04720 (7) 0.04504 (10) 3.78 6.916 (19) 134.3 (0.5)
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are consistent within statistical errors of few percents with
those we determine in this paper, as discussed in the
following, at the physical pion mass point, on large volumes
and in the continuum limit.

B. Osterwalder-Seiler fermions

A naive use of the twisted-mass action for nondegenerate
strange and charm quarks would lead to an undesired Oða2Þ
mixing of the strange and charm flavors in the correlation
functions of interest to determine physical quantities [14,15].
In order to avoid such a mixing in the correlation functions,
we adopt a nonunitary lattice setup [5] where the twisted-
mass action for nondegenerate strange and charm quarks is
employed only in the sea sector, while the valence strange
and charm quarks that enter the correlation functions are
regularized as exactly flavor-diagonal Osterwalder-Seiler
fermions [16]. Thus, the valence action in the strange and
charm sectors (f ¼ s, c) reads

SfOSðμfÞ ¼ a4
X
x

q̄fðxÞDðμfÞqfðxÞ; ð3Þ

where DðμfÞ is the twisted-mass Dirac operator in Eq. (1)
with the same values of m0 and cSW as in the sea sector
action used for ensemble generations. As the renormalized
strange and charm sea quark masses are matched with few
percent relative accuracy to their valence counterparts, no
significant unitarity violation is expected in our continuum
limit results.
When constructing meson correlation functions, the

Wilson parameters of the two valence quarks are always
chosen to have opposite values. This choice guarantees that
squared pseudoscalar meson masses, generically indicated
by m2

PS, differ from their continuum counterparts only by
terms of order Oða2μÞ [4,7]. As we said above, in our
lattice setup, the (valence) flavor conservation is guaranteed
in all correlation functions, and automatic OðaÞ improve-
ment is maintained. Of course, we need to fix the valence
strange and charm quark masses, μs and μc, by imposing
suitable renormalization conditions. For this purpose, in the
present work, we use two different sets of observables.
Namely, in one case, we use the mass of the physical
masses of kaon and D (or Ds) mesons, and in the other
case, we use the masses of the Ω and Λc baryons. These
two different choices will lead to two different determi-
nations of the strange and charm quark masses, which will
enable us to check the consistency of our results when
using physical inputs from the mesonic and baryonic
sectors.

III. SCALE SETTING

As already mentioned, we have ensembles at three
different lattice spacings. We will refer to the ensembles
in Table I that start with cA in their names as A ensembles,
those starting with cB as B ensembles, and those with cC as

C ensembles (the label c stands for clover). Each of these
groups has the same lattice spacing, with the A ensembles
having the largest lattice spacing and C ensembles having
the smallest one. In what follows, we will use different
quantities to determine the three lattice spacings. This
will allow us to check consistency while taking the
continuum limit when different inputs are used. In the
pion sector, the pion mass and decay constant are used as
input. Within this approach, one also determines the value
of the gradient-flow scale w0. We use the isosymmetric
values of the pion mass and decay constant, given,
respectively, by [17]

misoQCD
π ¼ 135.0ð2Þ MeV and fisoQCDπ ¼ 130.4ð2Þ MeV:

ð4Þ

We also compute the value of w0=a for each ensemble (see
Table I) and extrapolate to the physical pion mass and
continuum limit. We find w0 ¼ 0.17383ð63Þ fm [11], and
using this value, one determines the lattice spacings shown
in Table II. We refer to this determination of the lattice
spacings as coming from the “pion” sector. Details are
given in Ref. [11].
Another quantity used for the determination of the lattice

spacings is the mass of the nucleon [18,19]. Details on the
extraction of the nucleon mass are given in Sec. VI. In order
to fit the pion mass dependence of the nucleon mass, we use
the well established SU(2) chiral perturbation theory result
to one loop [20,21],

mNðmπÞ ¼ m0
N − 4c1m2

π −
3g2A

16πf2π
m3

π: ð5Þ

The three values of the lattice spacing, which will be
denoted by aA, aB, and aC, can be determined from the
lattice data for the nucleon and pion masses by rewriting
Eq. (5) as

ðaimNÞ ¼ aim0
N − 4c1

ðaimπÞ2
ai

−
3g2A

16πf2π

ðaimπÞ3
a2i

; ð6Þ

TABLE II. The values of the lattice spacing extracted from the
pion sector (second row) and using the nucleon mass (third row)
for the A, B, and C ensembles, denoted by aA, aB, and aC,
respectively. In the last row, we show the difference Δa between
the lattice spacings determined using the nucleon mass and from
the pion sector.

Sector aA (fm) aB (fm) aC (fm)

Pion 0.09471(39) 0.08161(30) 0.06942(26)
Nucleon 0.09295(47) 0.07975(32) 0.06860(20)
Δa 0.00176(61) 0.00186(44) 0.00082(32)
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where ðaimNÞ and ðaimπÞ are our lattice QCD results and
i ¼ A, B, C. The three quantities ai as well as the nucleon
mass in the chiral limit, m0

N , are treated as fitting param-
eters, while the value of c1 is fixed by requiring the
reproduction of the physical value of the nucleon mass,
misoQCD

N , at the physical pion point (4), namely,

c1 ¼
�
m0

N −
3g2A

16πf2π
ðmisoQCD

π Þ3 −misoQCD
N

��
½4ðmisoQCD

π Þ2�:

ð7Þ

We restrict ourselves to using ensembles for which the
pion mass is below 260 MeV since chiral perturbation
theory to higher orders has larger ambiguities. The simu-
lations of the gauge ensembles use mass-degenerate up and
down quarks and include no electromagnetic effects. Thus,
we use the average value of the proton and neutron mass as
our input for fixing the lattice spacings; namely, we assume
misoQCD

N ¼ 0.9389 GeV in Eq. (7). We also use the physical
value for the axial charge, gA ¼ 1.27641ð56Þ [22], and for
consistency the physical value of fπ from Eq. (4). The ratio
gA=fπ appears in the m3

π term, and any residual correction
due to strong isospin breaking and electromagnetism is
neglected.
The result of the fit to the mass of the nucleon mN is

depicted in Fig. 1 and describes very well the data,
yielding χ2=d:o:f: ¼ 0.19, where d.o.f. are the number of
degrees of freedom. We find m0

N ¼ 0.8737ð14Þ GeV,
c1 ¼ −1.090ð20Þ GeV−1, and the values of the lattice
spacings shown in the third row of Table II. In Fig. 1, we
also show the ratio mN=mπ and the resulting fit using the
parameters extracted from the fit to the nucleonmass. As can
be seen, the data for mN=mπ are well described.
The values of the lattice spacing extracted from the pion

sector and from the nucleon mass are shown in Table II, and
they differ by Oða2Þ effects. Fitting their difference as a
function of a2 is shown in Fig. 2. We observe that in the
continuum limit the difference vanishes, as expected for our
OðaÞ-improved formalism. In what follows, we will use
both determinations to extract the quark masses. This
provides a cross-check for our procedure and for the
magnitude of any residual lattice spacing effect.

IV. COMPUTATION OF ZP

In order to determine the renormalized quark masses, it is
crucial to perform an accurate evaluation of the mass

FIG. 1. Determination of the lattice spacing from the nucleon mass. In the left panel, we show the nucleon mass as a function of the
pion mass mπ squared. In the right panel, we show the dimensionless quantity mπ=mN as a function of mπ , using the lattice spacing
extracted from the nucleon mass. The values of mπ=mN are listed in Table I, while amN and amπ are determined in Sec. VI. The solid
line shows the fit to the lattice QCD data using Eq. (5). The value of χ2=d:o:f: is 0.19, where the number of degrees of freedom is 5.

FIG. 2. The difference Δa between the lattice spacings deter-
mined from the pion sector and the nucleon mass versus a2. Full
symbols are the lattice spacings determined using all the
ensembles for which mπ < 260 MeV. Open symbols, shifted
to the left for clarity, are obtained using ensembles for which the
pion mass is below 190 MeV. The solid line shows the linear fit in
a2 to the results extracted by using ensembles with mπ <
260 MeV (full symbols), which is largely consistent with zero
in the continuum limit.
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renormalization factor Zm, that in the maximally twisted-
mass formulation is given by Zm ¼ 1=ZP [see Eq. (2)]. For
this reason, the details of the procedure we have followed to
compute ZP will be given in this section.
For the calculation of ZP, we employ the nonperturbative

RI0-MOM renormalization scheme [23], which is a mass-
independent scheme since the renormalization constants
are defined in the massless limit. The choice of this
intermediate scheme is convenient in that the scale evolu-
tion for the renormalization constants of the operators with
nontrivial anomalous dimension is controlled by the
renormalized gauge coupling alone. This requires, how-
ever, simulations close enough to the chiral limit, which is
not the case of the Nf ¼ 2þ 1þ 1 ensembles of Table I,
mainly due to the presence of the heavy sea charm quark. In
order to safely take the chiral limit in the computation of the
renormalization constants, we have thus separately pro-
duced gauge field configurations with four mass-degener-
ate quarks (Nf ¼ 4) at the same value of the coupling β and
with the same clover term included in the fermionic action
as for our A, B, and C ensembles of Table I. This ensures
that in the chiral limit the same massless Nf ¼ 4 QCD
theory underlies both the ensembles used for computing
hadronic observables and setting the energy scale (see
Table I) and the ensembles dedicated to the evaluation of
the renormalization constants, about which details are given
in Table III. The four degenerate quarks are taken with
masses from approximately 8 to 16 times larger than the
average up-down quark mass, which simplifies both the
simulations and the tuning to maximal twist. The values of
the critical mass mcr have been chosen in order to satisfy
the maximal twist condition (which is convenient to reduce
lattice artifacts) to a very good accuracy level, as can be
deduced from the smallness of the PCAC masses in
Table III (actually, the tuning is even slightly better than
the one corresponding to the Nf ¼ 2þ 1þ 1 ensembles of
Table I).
In the RI0-MOM scheme, we obtain the renormalization

constant of the (flavor nonsinglet) pseudoscalar density

operator OP ¼ iq̄γ5q with r0q ¼ −rq ¼ −1 and μq0 ¼ μq
via the following condition,1

Z−1
q ZP

1

12
Tr½γ5VPðpÞ�jp2¼μ2

0
¼ 1; ð8Þ

where VP is the pseudoscalar vertex function between
quark and antiquark states with momentum p and Zq is the
renormalization constant of the quark field, defined as

Zq ¼ −
i
12

Tr

�
p
p2

S−1q ðpÞ
�����

p2¼μ2
0

: ð9Þ

Here, Sq is the quark propagator at momentum p, which is
identified with the renormalization scale μ0. In this work, we
adopt the alternative definitionofZq first proposed inRef. [6],

Zq ¼ −
i

12Np

X
μ
0Tr

�
γμ
p̃μ

S−1q ðpÞ
�����

p2¼μ2
0

; ð10Þ

where the sum
P0

is over the Np nonvanishing components
of the latticemomentumap̃μ ¼ sinðapμÞ. The prescriptionof
Eq. (10), unlike the naive RI0-MOM definition (9), has no
lattice artifacts at tree level, and beyond tree level, it exhibits
quite small Oða2Þ cutoff effects.
The subtraction of the Goldstone pole in the vertex

function VP requires good control of the vertex mass
dependence. Therefore, we find it more suitable to adopt
a partially quenched (PQ) setup, in which propagators and
vertices are computed for multiple values of valence quark
masses μval at fixed sea mass μsea; namely, we use

TABLE III. Parameters for the Nf ¼ 4 ensembles used for the calculation of ZP. By amPS, we denote the pseudoscalar (nonsinglet)
meson mass, and by amPCAC, we denote the PCAC untwisted mass (see Ref. [3]), both given in lattice units. Note that on all the Nf ¼ 4

ensembles, taking into account statistical errors, the values of amPCAC are typically 15 to 100 times smaller than the lowest twisted-mass
values.

β ¼ 1.726 243 × 48 β ¼ 1.778 243 × 48 β ¼ 1.836 323 × 64

aμsea amPS amPCAC aμsea amPS amPCAC aμsea amPS amPCAC

0.0060 0.1689(15) −4.1ð1.4Þ × 10−4 0.0075 0.1748(15) −2.3ð0.8Þ × 10−5 0.0050 0.1276(14) −4.3ð3.1Þ × 10−5

0.0080 0.1905(11) −4.3ð1.1Þ × 10−5 0.0088 0.1871(18) −8.6ð8.0Þ × 10−5 0.0065 0.1447(14) þ5.9ð2.1Þ × 10−5

0.0100 0.2155(12) þ1.5ð1.3Þ × 10−4 0.0100 0.2006(18) −1.6ð0.8Þ × 10−4 0.0080 0.1585(14) þ1.6ð0.3Þ × 10−4

0.0115 0.2289(12) þ1.7ð1.1Þ × 10−4 0.0115 0.2158(11) þ0.2ð9.5Þ × 10−5 0.0095 0.1744(12) þ2.0ð0.3Þ × 10−4

1The relevant fermionic action density is q̄DðμqÞqþ
q̄0Dðμq0 Þq0¼X̄½γνð∇þ∇�Þν=2þðmcrð1Þ−a=2∇�

ν∇νÞþiγ5τ3μqþ
ðcswð1Þ=32ÞγμγνðQμν−QνμÞ�X, where X ¼ ðχq; χq0 ÞT is a valence
quark field pair in the canonical quark basis for standard Wilson
fermions (after which, as usual, the renormalization constants
are named) and q ¼ expðiγ5π=4Þχq, q0 ¼ expð−iγ5π=4Þχq0 ,
q̄ ¼ χ̄q expðiγ5π=4Þ, and q̄0 ¼ χ̄q0 expð−iγ5π=4Þ. Note in particu-
lar that iq̄γ5q0 ¼ iχ̄qγ5χq0 .
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aμAval ¼ f0.0060; 0.0080; 0.0100; 0.0115; 0.0130; 0.0150; 0.0170; 0.0190; 0.0210g;
aμBval ¼ f0.0050; 0.0060; 0.0075; 0.0090; 0.0100; 0.0110; 0.0130; 0.0150; 0.0170g;
aμCval ¼ f0.0040; 0.0050; 0.0065; 0.0080; 0.0095; 0.0110; 0.0125; 0.0140; 0.0155g: ð11Þ

The chiral extrapolation of the pseudoscalar vertex is
discussed in details in Sec. IV B below.
For each ensemble, we employ a large number of

momenta ap ¼ 2πðntT ; nxL ; nyL ; nzLÞ, in the range ðapÞ2 ∈
½0.24; 6.69� for the 243 × 48 ensembles and ðapÞ2 ∈
½0.13; 5.23� for the 323 × 64 ensembles. Quark propagators
and vertices in momentum space are evaluated using
Ncfg ¼ 200 gauge configurations. In order to reduce the
effect of Lorentz noninvariant cutoff effects, we filter the
momenta selecting the ones that are isotropic (“demo-
cratic”) in the spatial directions, thus satisfyingP

μp̃
4
μ

ðPμp̃
2
μÞ2

< 0.28: ð12Þ

The above constraint ensures that unwanted hypercubic
lattice artifacts are suppressed [6]. We further improve the
ZP estimator by using results from lattice perturbation
theory (for more details see, e.g., Refs. [24,25]). In
summary, we calculate the lattice artifacts at one-loop level
and to all orders in the lattice spacing, Oðg2a∞Þ. The
perturbative corrections to the Green’s function of the
pseudoscalar operator, as well as to the quark propagator,
are evaluated for each momentum ap at which the
renormalization constants are computed. It should be noted
that each value of ap requires a separate calculation of the
Oðg2a∞Þ correction, as the perturbative contributions are
not analytical and require the numerical evaluation of one-
loop integrals. Such contributions also include the leading-
order terms, Oðg2a0Þ, that have to be separated from the
pureOðanÞ terms (n ≠ 0). The computation of perturbative
lattice artifacts to Oðg2a∞Þ done in Ref. [25] is adapted for
the case of the specific definition of Zq in Eq. (10). Thus,
the one-loop perturbative corrections that we use are
defined as

ΔZð1Þ
q ðapÞ ¼ Zð1Þ

q ðlogðapÞ; apÞ − Zð1Þ
q ðlogðapÞ; 0Þ; ð13Þ

ΔVð1Þ
P ðapÞ ¼ Vð1Þ

P ðlogðapÞ; apÞ − Vð1Þ
P ðlogðapÞ; 0Þ; ð14Þ

where Zð1Þ
q and Vð1Þ

P are the one-loop contributions to the
quark field renormalization constant and to the pseudosca-
lar vertex, respectively.
Using the above quantities, we extract improved non-

perturbative estimates for Zq and ZP by modifying the
renormalization conditions as

Zimpr
q ¼ Zq − g2ΔZð1Þ

q ðaμ0Þ; ð15Þ

ðZimpr
q Þ−1Zimpr

P
1

12
Tr½γ5ðVP − g2ΔVð1Þ

P ðapÞÞ�jp2¼μ2
0
¼ 1:

ð16Þ

A. Analysis method and safety checks
against hadronic contaminations

The improved ZP estimators, namely, Zimpr
P obtained from

Eq. (16), are evaluated at different values of p2 ¼ μ20 and
extrapolated to the chiral limit, a step which is discussed in
detail in the following Sec. IV B. Then, the chirally extrapo-
lated lattice estimators of ZP are evolved to a common
reference scale p2 ¼ μ2ref in the RI

0-MOM scheme using the
anomalous dimension known up to next-to-next-to-next
leading order (N3LO) according to Ref. [26] and adopting
ΛQCDðNf ¼ 4Þ ¼ 294ð12Þ MeV fromRef. [13]. The curves
obtained at the three β values are reported in Fig. 3 for two
different values of the reference scale, namely, μ2ref ¼
17 GeV2 and μ2ref ¼ 21 GeV2.

FIG. 3. Dependence of ZP on the momentum p2 for two values of the reference scale, μ2ref ¼ 17 GeV2 (left panel) and μ2ref ¼ 21 GeV2

(right panel). The vertical offsets shown in the inset are applied to the data of the corresponding ensembles.
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A dependence on p2 of the ZPðμ2refÞ estimators in Fig. 3
is expected due to lattice artifacts, i.e., Oða2p2Þ terms, and
possibly also to residual Oða0Þ hadronic contaminations,2

which, however, must vanish as 1=p2 at large p2. The plots
of ZPðμ2refÞ in Fig. 3 show very good linearity in p2 within
the range p2 ∈ ½15; 24� GeV2, which is the one relevant for
our determination of ZP and hence of the renormalized
quark masses. This fact indicates that lattice artifacts other
than a2p2-terms and possible hadronic contamination
effects are negligible within our small statistical errors.
Such a property is explicitly checked at each β value by
performing a fit of ZPðμ2ref ¼ 17 GeV2Þ (left panel of
Fig. 3) with the two Ansätze given by

Ansatz 1∶ ZPðμ2refÞ ¼ z0 þ z1p2 þ z2ðp2Þ2;
Ansatz 2∶ ZPðμ2refÞ ¼ z0 þ z1p2 þ z−1

p2
: ð17Þ

The resulting best fit values for zi are given in Table IV. The
coefficients z2 and z−1 are compatible with zero within
statistical errors at all β values, while the coefficients z1
scale nicely with a2 (see Table II). From this check, we see
that the systematic uncertainties on ZP are negligible within
our small statistical errors. Wewill comment on the value of
z0 when we present our results in Sec. IV C.
Within the present study of renormalized quark masses,

we follow two different methods for determining ZP in the
RI’ scheme and use data in two different p2-ranges. The first
method (M1) consists in fitting the ZPðμ2refÞ data linearly in
p2 in a given p2-range with the aim of removing Oða2p2Þ
discretization effects, while in the second method (M2), the
same data are fitted to a constant [12]. Method M2 is by
construction much less sensitive than M1 to possible small
residual hadronic contaminations but at the expense of
leaving some Oða2Þ artifacts in the determination of ZP.
The ranges of p2 used in the present analysis are p2 ∈
½15; 19� GeV2 and p2 ∈ ½18; 24� GeV2 for determining
ZPð17 GeV2Þ and ZPð21 GeV2Þ, respectively.
As an additional check of our determination of

ZPðμ2Þ in the RI0-MOM scheme, we show in Fig. 4 the
results for the nonperturbative step scaling function

ΣPðμ2A; μ2BÞ ¼ ZPðμ2AÞ=ZPðμ2BÞ versus ða=w0Þ2 for
ðμ2A; μ2BÞ ¼ ð21.5; 14.3Þ GeV2. We see that the lattice
QCD data exhibit small discretization errors and agree in
the continuum limit with the perturbative counterpart
Σpt
P ðμ2A; μ2BÞ ¼ 1.058, which is computed to N3LO [26].
Moreover, as will be shown in Sec. V, using the four ZP

determinations corresponding to the methods M1 and M2
and at the two reference scales μ2ref ¼ 17 GeV2 and
μref ¼ 21 GeV2, we obtain in the continuum limit consis-
tent final results for the renormalized quark masses.

B. Chiral extrapolation and Goldstone
boson pole subtraction

A crucial step in determining the renormalization con-
stant ZP is the extrapolation of its lattice estimators to the
chiral limit, where the mass-independent RI0-MOM scheme
is defined.

1. Hadronic contaminations in the pseudoscalar vertex

It is well known that the pseudoscalar vertex VP receives
contributions at the nonperturbative level by hadronic
contaminations whose leading term scales as approxi-
mately ðp2m2

πÞ−1 [23]. Such a Goldstone boson pole has
to be identified and subtracted from the data. In a unitary

TABLE IV. Results of the two fits on ZPðμ2ref ¼ 17GeV2), according to the fit ansatz in Eq. (17).

β Ansatz z−1 z0 z1 z2 χ2=d:o:f:

1.726 1 0.4762(28) 0.00190(23) −0.00021ð59Þ 0.4
2 −0.011ð43Þ 0.4782(52) 0.00178(13) 0.4

1.778 1 0.4828(39) 0.00117(25) 0.00053(56) 0.3
2 0.033(42) 0.4772(40) 0.00147(10) 0.3

1.836 1 0.4888(29) 0.00101(19) −0.00032ð43Þ 0.03
2 −0.021ð30Þ 0.4922(34) 0.00083(08) 0.04

FIG. 4. The scaling function ΣPðμ2A; μ2BÞ ¼ ZPðμ2AÞ=ZPðμ2BÞ vs
ða=w0Þ2 for the three β-values studied (red square for β ¼ 1.726,
blue rhombus for β ¼ 1.778, and green triangle for β ¼ 1.836) as
well as the continuum extrapolation (black circle). The dashed
line shows the perturbative value, Σpt

P ðμ2A; μ2BÞ ¼ 1.058.2This point is discussed, e.g., in the Appendix of Ref. [23].
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lattice setup for QCD with Nf ¼ 4 degenerate flavors of
mass mq, the lattice estimator of the vertex, vPðp2; mqÞ, is
expected to have the form

vPðp2; mqÞ ¼ VPðp2Þ þ h
Λ4
QCD

p2m2
π
þ h0

Λ2
QCD

p2

þ h00mq
ΛQCD

p2
þ � � � ; ð18Þ

where the dimensionless quantities VP (our target vertex),
h, h0, and h00 depend in general on a2p2, a2Λ2

QCD,
a2mqΛQCD, and a2m2

q, while the ellipses stand for terms
suppressed by higher powers of 1=p2 as p2 → ∞. We note
that terms linear in mq are either hadronic contaminations
suppressed as approximately 1=p2 at large p2 or lattice
artifacts of the form approximately a2mqΛQCD, which are
numerically tiny for the amq values of interest here. Since
close to the chiral limit m2

π ∼mq, an equivalent Ansatz for
vPðp2; mqÞ can be written in the form3

vPðp2;mqÞ¼VPðp2Þþ 1

p2
ðκm−1

q þκ0 þκ00mqÞþ…; ð19Þ

where we separate the hadronic contaminations decreasing,
for large p2, like 1=p2 from the vertex of interest VPðp2Þ.

2. Choice of a partially quenched setup

In a PQ setup, such as the one adopted in the present
analysis (see Sec. IVA), the lattice action is power counting
renormalizable, and the operator vertices evaluated at
several values of valence (μval) and sea (μsea) quark masses
approach, as ðμval; μseaÞ → ð0; 0Þ, the corresponding uni-
tary vertices from which the RI0-MOM renormalization
constants can be computed. As detailed in Sec. IVA above,
at all β values, we use nine values of μval for each of the four
μsea values. This allows us to have a good control on the
mass dependence of the pseudoscalar vertex and to adopt,
at fixed β, p2, and μsea values, the following fit Ansatz for
the chiral fit in μval,

vPðp2;μval;μseaÞ¼VPðp2;μseaÞþH
Λ4
QCD

p2½m2
π�val

þH0Λ
2
QCD

p2
þH00μval

ΛQCD

p2
þ�� � ; ð20Þ

where the quantities VPðp2; μseaÞ, H, H0, and H00 depend,
besides on μsea (to a numerically negligible level, as we
shall see below), also on a2p2, a2Λ2

QCD, a
2mqΛQCD, and

a2m2
q, while the ellipses have the same meaning as in

Eq. (18). Noting that the hadronic contaminations in the

three-point correlation function of quark, pseudoscalar
bilinear, and antiquark fields at fixed 4-momenta (and in
the derived quantity vP) arise from the time orderings
where the quark and antiquark fields are located at time
distances both before or both after the pseudoscalar density
[23], it follows that the Goldstone boson pole contamina-
tion is controlled by the mass ½m2

π�val of the valence pion
that appears as an intermediate state in the aforementioned
time orderings. Recalling also that, to leading order in PQ
chiral perturbation theory, ½m2

π�val ∼ μval [27], we choose to
use the equivalent Ansatz

vPðp2; μval; μseaÞ

¼ VPðp2; μseaÞ þ
K
p2

1

μval
þ K0

p2
þ K00

p2
μval þ � � � ; ð21Þ

where again we separate the hadronic contaminations (sup-
pressed like 1=p2 asp2 → ∞) from the vertex of interest and
the dimensionful coefficients K, K0, and K00 in general
depend on μsea and may be affected by lattice artifacts.
From the fit of vP in μval at fixed p2 and μsea, one can
determine the coefficientsK and K00, but it is not possible to
disentangle the vertex VPðp2; μseaÞ from the hadronic con-
taminationK0=p2. At this point, one can safely take the limit
μsea → 0 and determine VPðp2; 0Þ þ K0jμsea¼0=p

2. After
taking the full chiral limit, one can check that the residual
hadronic contamination K0jμsea¼0=p

2 is completely negli-
gible in the range of p2 used for the extraction of ZP, as
already detailed in Sec. IVA (see the discussion around
Table IV).

3. Numerical data and intermediate analysis results

Within the p2 ranges used in the present analysis, our
data for vPðp2; μval; μseaÞ exhibit a tiny linear dependence
on μval, which is compatible with K00 ¼ Oða2Þ up to
statistical errors. This is checked by fitting the data to
the Ansatz of Eq. (21) for each fixed aμsea and p2, which

FIG. 5. Scaling of the coefficient d00 ≡ K00=ðw0p2Þ averaged
over μsea, hd00isea. The three curves correspond to different values
of p2, namely, 13, 20, and 26 GeV2.

3Due to next-to-leading-order terms in the chiral expansion of
m2

π , here κ0 does not coincide with h0Λ2
QCD=p

2.
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determines the quantities ½VPðp2; μseaÞ þ K0=p2�, K=p2,
and K00=p2, and then studying the dimensionless ratio d00 ≡
K00=ðw0p2Þ as a function of ða=w0Þ2. At fixed β value, we
observe that d00 changes with the sea quark mass of a given
gauge ensemble nonmonotonically in μsea by the same
amount as the statistical errors. Therefore, we average over
the values of d00 at each μsea for a fixed β value, obtaining
the quantity hd00isea, which is shown in Fig. 5 for three
representative p2 values, namely, 13, 20, and 26 GeV2. As
one can see, the continuum limit of d00 is consistent with
zero up to statistical errors and/or a small residual term,
which, even if present (given the numerical values of
aμval ≲ 0.02), would alter ZP only to Oð10−4Þ. In view
of the evidence that K00 is Oða2Þ or numerically negligible
in the p2 range of interest here, we can perform the fit in
μval on the data for vP excluding the term linear in μval;
namely, we use

vPðp2; μval; μseaÞ ¼
�
VPðp2; μseaÞ þ

K0

p2

�
þ K
p2

1

μval
: ð22Þ

This procedure has the advantage of yielding small stat-
istical errors at the price of including well-controlledOða2Þ
artifacts in the numerical estimate of ½VPðp2; μseaÞ þ
K0=p2� and hence of ZP.
The results of the fit on vP for few values of p2 and the

two extreme values of μsea are shown in Fig. 6 for the cases
β ¼ 1.726 and β ¼ 1.836. Besides the very good quality
of the fits, we remark that the resulting estimates of
½VPðp2; μseaÞ þ K0=p2� at μval ¼ 0 indeed show a very tiny
dependence on μsea as mentioned above. Such a depend-
ence on μsea turns out to be of the same size as the statistical
errors (about 0.5%), nonmonotonic in μsea at fixed β and
with different trends at different β’s.
This feature is illustrated in Fig. 7, where the resulting

estimates of ZPðμsea; p2Þ, obtained using the RI condition
of Eq. (8), are shown at β ¼ 1.726 and β ¼ 1.836.
Therefore, as the dependence on μsea of ZPðμsea; p2Þ is
not statistically significant, we average them in order to
estimate ZPðp2Þ in the unitary chiral limit.

FIG. 6. Fit of the pseudoscalar vertex lattice estimators vPðp2; μval; μsea; aÞ according to the Ansatz of Eq. (22) for β ¼ 1.726 (left
panel) and β ¼ 1.836 (right panel). Different colors correspond to different values of p2, while full and empty circles correspond to
different values of the sea quark mass aμsea. The extrapolated values at aμval ¼ 0 correspond to the quantities ½VPðp2; μseaÞ þ K0=p2� in
Eq. (22).

FIG. 7. Dependence of the renormalization constant
ZPðμsea; p2Þ on the quark sea mass μsea at β ¼ 1.726 (A) and
β ¼ 1.836 (C) for different values of the momentum
p2 ¼ ð12; 20; 28Þ GeV2.

TABLE V. Results for ZP in RI0-MOM for each β value for
methods M1 (second and fourth columns) and M2 (third and fifth
columns), computed at reference scales of μref ¼ 17 GeV2

(indicated by “a”) and μref ¼ 21 GeV2 (indicated by “b”).
For cases M1a and M2a, results are extracted in the
range p2 ∈ ð15; 19Þ GeV2, while for M1b and M2b,
p2 ∈ ð18; 24Þ GeV2.

RI0-MOM

β M1a M2a M1b M2b

1.726 0.4774(24) 0.5079(24) 0.4917(26) 0.5301(24)
1.778 0.4812(32) 0.5042(26) 0.4944(27) 0.5255(23)
1.836 0.4899(26) 0.5053(23) 0.5046(27) 0.5240(24)
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C. Results for ZP in the RI0-MOM and MS schemes

In Table V, we give the results of ZP determined in the
RI0-MOMschemeusingmethodsM1andM2 (seeSec. IVA)
for the two reference scales μ2ref ¼ 17 GeV2 (labeled by “a”)
and μ2ref ¼ 21 GeV2 (labeled by “b”). We find that at each β
value the parameter z0 appearing in Eq. (17) is found to be
compatible with the results for ZPðμ2ref ¼ 17 GeV2Þ
extracted using the method M1, as expected since this
method corresponds to a linear fit Ansatz in p2. The results
are obtained by fitting the data in themomentum rangesp2 ∈
ð15; 19Þ GeV2 and p2 ∈ ð18; 24Þ GeV2, respectively, for
the reference scales 17 and 21 GeV2. The values ofZP given
in Table V (in the RI0-MOM scheme) are then evolved to the
common reference scale μ2ref ¼ 19 GeV2 and are reported in
Table VI. The four determinations of ZPðμ2refÞ (M1a, M2a,
M1b, and M2b) are equally good estimates of the renorm-
alization constant that only differ by Oða2Þ cutoff effects.
This implies that usingwhichever of them leads to equivalent
results for the renormalized quark masses and renormalized
matrix elements of the pseudoscalar density in the continuum
limit. As a check of the good accuracy towhich this property

is expected to be satisfied, we show in Fig. 8 the scaling
behavior of the difference ΔZP ¼ ZP½M2b� − ZP½M1a� (in
the RI0-MOMscheme at 19 GeV2), for which all logarithmic
divergences cancel and the continuum limit vanishes. A
similar behavior, but with smaller Oða2Þ artifacts, is
observed for all the analogous differences of the four ZP
determinations inTableVI. Finally, inTableVII,we show the
values of ZPð19 GeV2Þ converted to the MS scheme.
Since quark masses are generally given in the MS

scheme at 2 or 3 GeV, we obtain the corresponding
renormalization constants at these scales by using the
following evolution factors:

ZMS
P ð4 GeV2Þ ¼ 0.83416ð86ÞZMS

P ð19 GeV2Þ; ð23Þ

ZMS
P ð9 GeV2Þ ¼ 0.92570ð34ÞZMS

P ð19 GeV2Þ; ð24Þ

ZMS
P ð16 GeV2Þ ¼ 0.98359ð19ÞZMS

P ð19 GeV2Þ: ð25Þ

Our evolution function is accurate at N3LO [26], i.e.,
Oðα3s Þ, and therefore we estimate the uncertainty due to
higher orders as the last known term raised to the power
4=3 (see the second error in the results of Table VI). When
computing conversion factors, which are ratios of evolution
functions, we add in quadrature the error coming from the
numerator and the denominator. We verified that this
procedure provides a good estimate of the uncertainty
due to higher orders when applied to the N2LO conversion
factors in order to estimate the (known) N3LO results.

TABLE VI. Results for ZP in the RI0-MOM scheme but evolved to the common reference scale μ2ref ¼ 19 GeV2.
The notation is the same as that in Table V, and we report separately the statistical error and the systematic
uncertainty related to the evolution factors.

RI0-MOM, μ2ref ¼ 19 GeV2

β M1a M2a M1b M2b

1.726 0.4849(24)(35) 0.5159(24)(37) 0.4851(26)(32) 0.5229(24)(34)
1.778 0.4888(33)(35) 0.5121(26)(37) 0.4877(27)(32) 0.5184(23)(34)
1.836 0.4976(26)(36) 0.5133(23)(37) 0.4978(27)(33) 0.5169(24)(34)

FIG. 8. ΔZP ¼ ZP½M2b� − ZP½M1a� vs ða=w0Þ2 and its (linear)
continuum extrapolation. At each finite value of a, the smaller
error bars correspond to the first (statistical) error in Table VI,
while the larger ones also include the second error in the same
Table, which is due to the N3LO evolution to 19 GeV2 and is
independent from the lattice spacing. Therefore, the continuum
limit value and its uncertainty are obtained by taking into account
only the statistical errors at finite a.

TABLE VII. Results for ZP at the scale μ2ref ¼ 19 GeV2

converted from RI0-MOM (results of Table VI) to the MS scheme.

MS, μ2ref ¼ 19 GeV2

β M1a M2a M1b M2b

1.726 0.569(3)(5) 0.605(3)(5) 0.569(3)(5) 0.614(3)(5)
1.778 0.574(4)(5) 0.601(3)(5) 0.572(3)(5) 0.608(3)(5)
1.836 0.584(3)(5) 0.602(3)(5) 0.584(3)(5) 0.607(3)(5)
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V. MESON SECTOR ANALYSIS

In this section, we describe the determination of the
quark masses taking as input the isosymmetric values of the
pion, kaon, and DðsÞ-meson masses.

A. Methodology

For each ensemble, we compute the two-point function

CðtÞ ¼ 1

L3

X
x⃗;z⃗

h0jJff0 ðx⃗; tÞJ†ff0 ðz⃗; 0Þj0i; ð26Þ

where Jff0 ðxÞ ¼ q̄fðxÞiγ5qf0 ðxÞ is the meson interpolating
field with qf being the valence quark field of flavor
f ∈ fl; s; cg. By l, we denote the average up/down (light)
quark. The correlators for the pion and kaon are the same as
those used in Ref. [11]. For all mesons, the two valence
quarks qf and qf0 are always taken with opposite Wilson
parameters, i.e., rf ¼ −rf0 ¼ 1, as this choice is known to
suppress O(a2) lattice artifacts [4,7]). For the valence mass
parameters, we evaluate correlators at μl values equal to its
sea counterpart, as well as at three values of the quark mass
parameter μs in the range of the strange quark masses and
four values of the quark mass parameter μc in the range of
the charm quark masses. The chosen values of valence
quark masses are collected in Table VIII and allow for a
precise interpolation to the physical strange and charm
quark masses as determined by the kaon and D-meson
masses in the isosymmetric QCD. The latter ones, follow-
ing the FLAG report [17], are given by

misoQCD
K ¼ 494.2ð3Þ MeV; ð27Þ

misoQCD
D ¼ 1867.0ð4Þ MeV; ð28Þ

misoQCD
Ds

¼ 1969.0ð4Þ MeV: ð29Þ
From the correlator given in Eq. (26), the overlap S ¼

jhPSjJff0 j0ij2 can be extracted using an exponential fit at
large time distances

CPSðtÞ
t≫ a;ðT− tÞ≫ a
�����������! S

2mPS
½e−mPStþe−mPSðT−tÞ�; ð30Þ

where mPS is the ground-state mass of a pseudoscalar (PS)
meson made of the two valence quarks with flavor f and f0.
For maximally twisted quarks, the value of the matrix
element S determines the PS-meson decay constant with no
need of any renormalization constant [1], from the formula

afPS ¼ aðμf þ μf0 Þ
ffiffiffiffiffiffiffiffi
a4S

p

amPS sinhðamPSÞ
: ð31Þ

The slight deviation from maximal twist of the ensemble
cA211.12.48 is corrected according to Appendix C
of Ref. [11].
The global energy scale is set using the isosymmetric

QCD inputs (4), and data at different lattice spacings are
connected by exploiting the gradient-flow (GF) quantities
w0 [28],

ffiffiffiffi
t0

p
[29], and t0=w0 measured in lattice units.

Their values have been already determined quite precisely
in Ref. [11], namely,4

w0 ¼ 0.17383ð63Þ fm; ð32Þ
ffiffiffiffi
t0

p ¼ 0.14436ð61Þ fm; ð33Þ

t0=w0 ¼ 0.11969ð62Þ fm: ð34Þ

Nevertheless, in order to take properly into account all the
correlations with the meson data, the GF scales are deter-
mined again in the present analysis (see the next subsection),
obtaining results very compatible with Eqs. (32)–(34).

TABLE VIII. Values of the bare valence quark mass parameters and the corresponding values of mπ and fπ for
each of the ensembles used in the analysis in the pion sector. In the last column the number of gauge configurations
analyzed for each ensemble is presented.

Ensemble aμl aμl amπ afπ Confs

cA211.53.24 0.0053 0.0053 0.16626(51) 0.07106(36) 628
cA211.40.24 0.0040 0.0040 0.14477(70) 0.06809(30) 662
cA211.30.32 0.0030 0.0030 0.12530(16) 0.06674(15) 1237
cA211.12.48 0.0012 0.0012 0.08022(18) 0.06133(33) 322

cB211.25.32 0.0025 0.0025 0.10475(45) 0.05652(38) 400
cB211.25.48 0.0025 0.0025 0.10465(14) 0.05726(12) 314
cB211.14.64 0.0014 0.0014 0.07848(10) 0.05477(12) 437
cB211.072.64 0.00072 0.00072 0.05659(8) 0.05267(14) 374

cC211.20.48 0.0020 0.0020 0.08540(17) 0.04892(13) 890
cC211.06.80 0.0006 0.0006 0.04720(7) 0.04504(10) 401

4The result (32) improves drastically our preliminary value of
w0 obtained in Ref. [30]. The improvement is mainly related to a
better description of discretization effects on the decay constant
fπ [see Eq. (36)] and to the replacement of fπ with the quantity
ðfπm4

πÞ1=5, which has been found to be less affected by lattice
artifacts [11].
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B. Light quark mass

The lattice QCD data on the pion mass and decay
constant are computed in a unitary setup, i.e., with
μsea ¼ μvalence ¼ μl; the values used in this section are
reported in Table VIII.
The lattice QCD data on the pion mass and decay

constant are analyzed relying on SU(2) chiral perturbation
theory (ChPT) using the formulas

ðmπw0Þ2¼2ðBw0Þðmlw0Þ
× ½1þξl logξlþP1ξlþP2a2=w2

0�KFSE
M2 ; ð35Þ

ðfπw0Þ ¼ ðfw0Þ½1 − 2ξl log ξl þ P3ξl þ P4a2=w2
0

þ a2mlP5�KFSE
f ; ð36Þ

where the variable ξl ¼ 2Bml=ð16π2f2Þ is related to
the quark renormalized mass ml ¼ μl=ZP. The parameters
P1 and P3 are related to the low-energy constants l̄3

and l̄4 by

P1 ¼ −l̄3 − 2 log ðmisoQCD
π =ð4πfÞÞ;

P3 ¼ 2l̄4 þ 4 log ðmisoQCD
π =ð4πfÞÞ: ð37Þ

The quantities KFSE
M2 and KFSE

f represent the finite size
effects (FSEs) on the squared pion mass and the pion decay
constant, respectively. In Ref. [11], it was shown that SU(2)
ChPT at next-to-leading order (NLO) [31] adequately
describes our lattice data, once discretization effects pro-
portional both to a2 and to a2ml are included in fπ [see
Eq. (36)], while in mπ , the leading lattice artifact is already
directly proportional to a2ml [see Eq. (35)]. The fit
parameters are Bw0, l̄3, P2, fw0, l̄4, P4, and P5. We
repeat the fit procedure adopting the values of the renorm-
alization constant ZP determined using the methods M1a,
M1b, M2a, and M2b given in Table VII.
To estimate possible systematics due to the scale setting

and the chiral extrapolation, we repeat the analysis using:
(i) the ratio t0=w0 to set the scale;
(ii) the GF scale

ffiffiffiffi
t0

p
to set the scale;

(iii) only a combination of two lattice spacing,5 namely,
β ¼ 1.726 and β ¼ 1.778,
β ¼ 1.726 and β ¼ 1.836,
β ¼ 1.778 and β ¼ 1.836;
(iv) only ensembles with pion mass less than 190 MeV

and excluding the term P5 in Eq. (36) from the fit.
The results for the light quark mass mud are reported in

Table IX, where we also include the values of the leading
low-energy constants B, f, and Σ1=3 ¼ ðBf2=2Þ1=3 as well
as the values of χ2=d:o:f: The chiral and continuum
extrapolations are illustrated in Fig. 9.
We need now to average the results coming from the

different analyses collected in Table IX. To this end,

we adopt a simple generalization of Eq. (28) of
Ref. [12]. For a given observable x, we assume that its
probability distribution fðxÞ is given by

fðxÞ ¼
XN
i¼1

wifiðxÞ; ð38Þ

TABLE IX. The values of the light quark mass, mud, B, f, and
Σ in the MS scheme at 2 GeV obtained using the different
determinations of ZP, labeled M1a, M1b, M2a, and M2b. Results
using the GF scale w0 and all the ensembles of Table VIII are
given in the top most panel, using t0=w0 in the second panel,
using

ffiffiffiffi
t0

p
in the third panel, using w0 and limiting mπ <

190 MeV in the fourth panel, using w0 and only the two coarser
lattice spacings in the fifth panel, using w0 and only the coarser
and finest lattice spacings in the sixth panel, and using w0 and
only the two finest lattice spacings in the last panel.

ZP mud (MeV) B (MeV) f (MeV) Σ1=3 χ2=d:o:f:

M1a 3.677(65) 2523(42) 124.02(48) 268.7(1.4) 1.97
M2a 3.694(64) 2512(40) 124.04(50) 268.3(1.4) 1.56
M1b 3.677(66) 2522(43) 124.05(48) 268.7(1.5) 2.53
M2b 3.694(65) 2512(41) 124.02(51) 268.3(1.4) 1.15

t0=w0

M1a 3.722(74) 2493(47) 124.40(49) 268.2(1.6) 2.91
M2a 3.766(73) 2465(45) 124.48(52) 267.3(1.5) 2.54
M1b 3.724(75) 2492(48) 124.42(49) 268.2(1.6) 3.72
M2b 3.771(74) 2462(45) 124.48(52) 267.2(1.6) 1.95ffiffiffiffi

t0
p

M1a 3.696(69) 2510(45) 124.19(48) 268.5(1.5) 2.48
M2a 3.726(68) 2491(43) 124.24(51) 267.9(1.5) 2.06
M1b 3.697(70) 2509(45) 124.22(48) 268.5(1.5) 3.18
M2b 3.729(69) 2490(43) 124.23(51) 267.8(1.5) 1.55

w0, mπ < 190 MeV, P5 ¼ 0
M1a 3.629(81) 2572(55) 122.71(45) 268.5(2.3) 4.72
M2a 3.656(81) 2554(53) 122.56(48) 267.7(2.2) 3.4
M1b 3.623(82) 2577(56) 122.72(45) 268.7(2.3) 6.32
M2b 3.663(82) 2547(54) 122.51(49) 267.4(2.3) 2.2

w0, β ¼ 1.726 and β ¼ 1.778
M1a 3.83(15) 2420(93) 124.54(83) 265.8(3.2) 0.0953
M2a 3.83(14) 2425(84) 124.57(88) 266.0(2.7) 0.0892
M1b 3.86(14) 2402(86) 124.54(84) 265.1(2.8) 0.0936
M2b 3.80(13) 2446(81) 124.57(88) 266.7(2.6) 0.0895

w0, β ¼ 1.726 and β ¼ 1.836
M1a 3.660(69) 2539(44) 122.30(49) 266.8(1.5) 0.104
M2a 3.682(67) 2525(43) 122.22(51) 266.2(1.5) 0.0861
M1b 3.657(70) 2541(46) 122.30(49) 266.9(1.6) 0.105
M2b 3.685(68) 2523(43) 122.21(52) 266.1(1.5) 0.0851

w0, β ¼ 1.778 and β ¼ 1.836, P5 ¼ 0
M1a 3.55(11) 2614(77) 122.64(16) 269.9(2.8) 0.356
M2a 3.587(97) 2588(68) 122.49(17) 268.8(2.5) 0.323
M1b 3.53(10) 2631(73) 122.66(16) 270.5(2.6) 0.362
M2b 3.612(98) 2571(67) 122.44(17) 268.1(2.5) 0.315

5When considering the two finest lattice spacings β ¼ 1.778
and β ¼ 1.836, we exclude the term P5 from the fit of Eq. (36)
because all the ensembles have mπ < 260 MeV.
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where wi are weights to be specified and fiðxÞ are the
probability distributions corresponding to the individual
analyses (labeled with i ¼ 1; 2;…; N). It is not necessary to
specify the form of the individual distributions. It suffices
to know that x̄i and σi are the mean value and standard
deviation of the distribution fiðxÞ.
Thus, using Eq. (38), we can represent the combination

of the N results of the various analyses in the form

x̄� σstat � σsyst; ð39Þ
where

x̄ ¼
XN
i¼1

wix̄i; ð40Þ

σ2stat ¼
XN
i¼1

wiσ
2
i ; ð41Þ

σ2syst ¼
XN
i¼1

wiðx̄i − x̄Þ2: ð42Þ

Equation (41) represents the square of a “statistical” error
given by the weighted average of the individual variances,
while Eq. (42) corresponds to the square of a “systematic”
error related to the spread among the results of the different
analyses. The total error σ is given by the sum in quadrature
of σstat and σsyst.
Given the limited number of data points, we refrain in

using the values of χ2, shown in Table IX, as a quantitative
estimate of the quality of the various fits. Instead, since the
results of Table IX suggest the dominance of the statistical
uncertainties over the systematic ones, a reasonable choice
for the weights wi is wi ∝ 1=σ2i , namely,

wi ¼
1

σ2i
·

1P
N
j¼1 1=σ

2
j
: ð43Þ

Thus, to obtain the value of mud, we combine the values
of Table IX using Eq. (40) for the mean and Eqs. (41)–(42)
for the error excluding the analyses with χ2=d:o:f: > 2.5
(which leads to a total of 21 analyses). We get in this way

mud¼3.689ð80Þstatð63Þsyst MeV¼3.689ð102ÞMeV; ð44Þ

FIG. 9. Chiral and continuum extrapolation of w0m2
π=ml (left) and w0fπ (right) as function of w0ml using Eqs. (35) and (36) and ZP

for the M2b method. Different colored bands correspond to different lattice spacings (red for the A ensembles, blue for the B, and green
for the C). The gray band is the extrapolation to the continuum limit. Note that for w0fπ discretization effects proportional both to a2 and
to a2ml are visible (see the text).

TABLE X. Values of the bare valence quark mass parameters and the corresponding values of amK for each of the ensembles used in
the analysis in the kaon. The number of configuration analysed for each ensemble is the reported in Table VIII.

Ensemble aμl aμs amK

cA211.53.24 0.00530 0.0176 0.022 0.0264 0.24134(47) 0.26316(47) 0.28340(47)
cA211.40.24 0.00400 0.0176 0.022 0.0264 0.23419(51) 0.25650(52) 0.27709(52)
cA211.30.32 0.00300 0.0176 0.022 0.0264 0.22810(21) 0.25089(22) 0.27185(22)
cA211.12.48 0.00120 0.0176 0.022 0.0264 0.21789(26) 0.24153(29) 0.26319(34)

cB211.25.32 0.00250 0.0148 0.0185 0.0222 0.19212(45) 0.21143(46) 0.22920(47)
cB211.25.48 0.00250 0.0148 0.0185 0.0222 0.19141(19) 0.21067(20) 0.22838(23)
cB211.14.64 0.00140 0.0148 0.0185 0.0222 0.18484(13) 0.20460(15) 0.22268(17)
cB211.072.64 0.00072 0.0148 0.0185 0.0222 0.18038(14) 0.20044(16) 0.21875(18)

cC211.20.48 0.00200 0.0128 0.0161 0.0193 0.16179(16) 0.17878(17) 0.19390(18)
cC211.06.80 0.00060 0.0128 0.0161 0.0193 0.153321(99) 0.17098(11) 0.18656(13)
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B ¼ 2516ð51Þstatð42Þsyst MeV ¼ 2516ð67Þ MeV; ð45Þ

f ¼ 122.82ð32Þstatð65Þsyst MeV ¼ 122.82ð73Þ MeV; ð46Þ

Σ1=3 ¼ 267.6ð1.8Þstatð1.1Þsyst MeV ¼ 267.6ð2.1Þ MeV:

ð47Þ

C. Strange quark mass

In this section, we present our determination of the strange
quarkmassms. For thevalencemass parameters, we evaluate
correlators for μl values equal to its sea counterpart, as well
as at three values of the quark mass parameter μs in the range
of the strange quark masses shown in Table X.
For each ensemble, we perform a linear interpolation of

the kaon mass to three reference values of ðmsw0Þref ¼
0.064, 0.080, 0.095 using the Ansatz

m2
K ¼ aþ bmsw0: ð48Þ

A similar interpolation is also performed for the other GF
scales t0=w0 and

ffiffiffiffi
t0

p
. Then, for each value of ðmsw0Þref , we

extrapolate to the continuum limit and to the isosymmentric
QCD point using the value of ml ¼ mud determined in the
previous section and our best fit to the data for mK
according to the Ansatz

ðmKw0Þ2 ¼ P0ðmlw0 þmsw0Þ
× ½1þ P1mlw0 þ P2m2

lw
2
0 þ P3a2=w2

0�: ð49Þ
At NLO order of SU(2) ChPT, there are no finite volume
effects on the kaon mass, and in Ref. [11], it has been
shown that the lattice QCD data on the kaon masses agree
with this prediction. The fit parameters in Eqs. (49) are P0,
P1, P2, and P3, while the LO low-energy constants f and B
are taken from our pion sector fit. The quality of the
resulting fit to Eq. (49) is shown in Fig. 10 as an example

for the specific determination of ZP. Other determinations
yield similar results.
The last step of the analysis is an interpolation using

Eq. (48) to find the value of ms that reproduces m
isoQCD
K ¼

494.2ð3Þ MeVgiven inEq. (27).As in the case of the pion, to
estimate the systematic errors related to the scale setting, in
the chiral extrapolation and the continuum limit, we repeat
the analyses using two different GF scales, excluding the

FIG. 10. The red, blue, and green solid lines show the resulting
fits using Eq. (49) for ensembles A, B, and C respectively. The
gray line shows the continuum extrapolation. We use ðmsw0Þref ¼
0.080 and the ZP computed with method M2b.

TABLE XI. The values of the strange quark mass, ms, in the
MS scheme at 2 GeV and the ratio ms=mud obtained using the
different determinations of ZP, labeled M1a, M1b, M2a, and
M2b. Results using the GF scale w0 and all the ensembles of
Table X are given in the top most panel, using t0=w0 in the second
panel, using

ffiffiffiffi
t0

p
in the third panel, using w0 and limiting mπ <

190 MeV in the fourth panel, using w0 and only the two coarser
lattice spacings in the fifth panel, using w0 and only the coarser
and finest lattice spacings in the sixth panel, and using w0 and
only the two finest lattice spacings in the last panel. To determine
the ratio ms=mud, we use the values of mud from Table IX.

ZP ms (MeV) ms=mud χ2=d:o:f:

M1a 100.4(1.6) 27.32(21) 1
M2a 100.9(1.5) 27.32(22) 1
M1b 100.6(1.6) 27.37(22) 1.7
M2b 101.0(1.5) 27.34(22) 0.76

t0=w0

M1a 101.6(1.8) 27.28(23) 1.1
M2a 102.8(1.7) 27.30(24) 1.3
M1b 101.8(1.8) 27.34(23) 1.9
M2b 103.1(1.7) 27.34(24) 1ffiffiffiffi

t0
p

M1a 101.0(1.7) 27.31(22) 1.1
M2a 101.8(1.6) 27.32(23) 1.2
M1b 101.2(1.7) 27.37(22) 1.8
M2b 102.0(1.6) 27.35(23) 0.9

w0, mπ < 190 MeV, P2 ¼ 0
M1a 100.9(1.8) 27.82(40) 3.6
M2a 101.4(1.7) 27.73(37) 4
M1b 101.1(1.8) 27.90(38) 6.1
M2b 101.4(1.7) 27.68(37) 2.9

w0, β ¼ 1.726 and β ¼ 1.778 only, P2 ¼ 0
M1a 103.4(3.7) 26.96(29) 0.34
M2a 103.1(3.2) 26.94(31) 0.46
M1b 104.1(3.4) 26.95(29) 0.42
M2b 102.3(3.0) 26.94(31) 0.52

w0, β ¼ 1.726 and β¼ 1.836 only, P2 ¼ 0
M1a 99.8(1.6) 27.26(22) 0.18
M2a 100.4(1.5) 27.26(22) 0.18
M1b 99.7(1.7) 27.26(22) 0.16
M2b 100.5(1.6) 27.26(22) 0.17

w0, β ¼ 1.778 and β ¼ 1.836 only, P2 ¼ 0
M1a 97.7(2.8) 27.54(29) 0.21
M2a 98.8(2.4) 27.55(30) 0.32
M1b 97.1(2.6) 27.53(29) 0.28
M2b 99.5(2.5) 27.55(30) 0.37
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ensembles with pion mass larger than 190 MeVand the term
proportional toP2 inEq. (49), andwith only pairs of values of
the lattice spacing. The results are shown in Table XI.
We use the same procedure as for mud to obtain the mean

value, statistical, and systematic errors for ms using
Eqs. (40)–(42) excluding the analyses with χ2=d:o:f: >
2.5. We find in the MS scheme at 2 GeV

ms ¼ 101.0ð1.9Þstatð1.3Þsyst MeV¼ 101.0ð2.3ÞMeV; ð50Þ
ms

mud
¼ 27.30ð24Þstatð14Þsyst ¼ 27.30ð28Þ: ð51Þ

D. Charm quark mass

In this section, we present our determination of the mass
of the charm quark obtained by analyzing D- and Ds-
meson masses, following a strategy similar to the one
presented for the determination ofms. For the valence mass
parameters, we evaluate correlators for μl values equal to
its sea counterpart, as well as at four values of the quark
mass parameter μc in the range of the charm mass. In the
case of the Ds meson, we also use three values of the quark
mass parameter μs equal to the values used in the kaon
analysis (see Table X). The values for the D-meson masses
are given in Table XII, while the ones for the Ds-meson are
given in Table XIII. The D- and Ds-meson correlators are
computed using both smeared and local interpolating fields.
Using the four combinations of smeared-smeared, smeared-
local, and local-local correlators, we construct a 2 × 2
matrix and perform a generalized eigenvalue problem
(GEVP) analysis [32] to extract the mass of the D- and
Ds-mesons.6 We employ Jacobi smearing for the quark

fields [33], combined with array processor experiment
(APE) smearing of the gauge links [34] used in the
Jacobi smearing function. The values of mD and mDs

used
in this analysis are reported in Tables XII and XIII.
Analogously to the case of the analysis for the strange

quark mass determination, we interpolate the D and Ds
masses to three reference values given by ðmcw0Þref ¼ 0.94,
1.04, 1.08 using the Ansatz

mDs
¼ aþ bmcw0: ð52Þ

For the Ds meson, we also perform an interpolation to
the mass ms given in Table XI. At each of the reference
charm quark masses, we extrapolate to the continuum and
to the isospin-symmetric QCD (isoQCD) light quark mass
ml ¼ mud using the following polynomials in ml,

mD ¼ P0 þ P1mlw0 þ P2a2=w2
0; ð53Þ

mDs
¼ Ps

0 þ Ps
1mlw0 þ Ps

2a
2=w2

0; ð54Þ

where Pj and Ps
j; j ¼ 0, 1, 2, are fit parameters. For each

reference mass ðmcw0Þref , we compute the masses mD and
mDs

in the continuum limit at the isoQCD value of ml ¼
mud given in Table IX. We then perform an interpolation in
mc with the Ansatz given in Eq. (52) to compute the value
of mc that reproduces the isoQCD masses of the D of Ds
mesons, given in Eqs. (28) and (29). We note that the
analysis is done separately using either the D or the
Ds meson.
The resulting fits to Eqs. (53) and (54) for the D and Ds

mesons are shown in Fig. 11 for the case where ZP is
determined from the M2b method.
The values in physical units that we obtain for the mc

mass are shown in Table XIV.
We combine all the values given in Table XIVexcluding

the analyses with χ2=d:o:f: > 2.5 as in the case of the pion
and kaon with Eqs. (40)–(42). We find

TABLE XII. Values of the bare valence quark mass parameters and the corresponding values of amD from the GEVP analysis [32] for
each of the ensembles used in the analysis in the D meson. The number of configuration analyzed for each ensemble is the reported in
Table VIII.

Ensemble aμl aμc amD

cA211.53.24 0.00530 0.2077 0.2336 0.2596 0.2856 0.7694(12) 0.8207(12) 0.8703(13) 0.9179(14)
cA211.40.24 0.00400 0.2077 0.2336 0.2596 0.2856 0.7676(13) 0.8190(15) 0.8686(16) 0.9164(18)
cA211.30.32 0.00300 0.2077 0.2336 0.2596 0.2856 0.76284(67) 0.81428(73) 0.86387(80) 0.91167(86)
cA211.12.48 0.00120 0.2077 0.2336 0.2596 0.2856 0.7567(17) 0.8078(20) 0.8570(23) 0.9044(26)

cB211.25.48 0.00250 0.1745 0.1962 0.2181 0.2399 0.6477(11) 0.6919(12) 0.7349(12) 0.7762(13)
cB211.14.64 0.00140 0.1745 0.1962 0.2181 0.2399 0.64373(70) 0.68816(79) 0.73133(87) 0.77284(96)
cB211.072.64 0.00072 0.1745 0.1962 0.2181 0.2399 0.6415(13) 0.6860(15) 0.7292(16) 0.7709(18)

cC211.20.48 0.00200 0.1526 0.1716 0.1907 0.2098 0.55934(60) 0.59821(64) 0.63589(68) 0.67237(73)
cC211.06.80 0.00060 0.1526 0.1716 0.1907 0.2098 0.5533(11) 0.5921(12) 0.6297(13) 0.6660(15)

6As discussed in Ref. [32], the mass of the ground state
is estimated through an average over the values in the plateau
region using the principal correlator corresponding to the
smallest eigenvalue λ0ðt; t0Þ obtained from the GEVP for a
suitable choice of the reference time t0. In other words, we fit
λ0ðt; t0Þ ¼ Cðe−mD;Ds ðt−t0Þ þ e−mD;Ds ððT−tÞ−t0ÞÞ.
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FIG. 11. Results obtained by fitting to Eq. (53) for theDmeson (left panel) and Eq. (54) for theDs meson (right panel) using the value
of ZP extracted from the M2b method and using w0 to set the scale. The notation is the same as that of Fig. 10.

TABLE XIII. Values of the bare valence quark mass parameters and the corresponding values of amDs
from the GEVP analysis [32]

for each of the ensembles used in the analysis in the Ds meson. The strange quark masses ms are the same used in the kaon sector
Table X. The number of configurations analyzed for each ensemble is the reported in Table VIII.

Ensemble aμl aμc amDs

cA211.53.24 0.0176 0.2077 0.2336 0.2596 0.2856 0.79724(78) 0.84790(81) 0.89693(85) 0.94414(88)
0.0220 0.2077 0.2336 0.2596 0.2856 0.80696(72) 0.85738(75) 0.90619(78) 0.95323(81)
0.0264 0.2077 0.2336 0.2596 0.2856 0.81656(67) 0.86673(69) 0.91534(72) 0.96220(75)

cA211.40.24 0.0176 0.2077 0.2336 0.2596 0.2856 0.79838(58) 0.84918(63) 0.89825(69) 0.94561(75)
0.0220 0.2077 0.2336 0.2596 0.2856 0.80789(50) 0.85844(54) 0.90729(59) 0.95447(64)
0.0264 0.2077 0.2336 0.2596 0.2856 0.81733(44) 0.86763(48) 0.91626(52) 0.96326(56)

cA211.30.32 0.0176 0.2077 0.2336 0.2596 0.2856 0.79610(28) 0.84675(30) 0.89567(32) 0.94289(34)
0.0220 0.2077 0.2336 0.2596 0.2856 0.80573(26) 0.85613(27) 0.90484(28) 0.95189(30)
0.0264 0.2077 0.2336 0.2596 0.2856 0.81527(24) 0.86544(25) 0.91395(26) 0.96082(27)

cA211.12.48 0.0176 0.2077 0.2336 0.2596 0.2856 0.79416(39) 0.84469(42) 0.89347(45) 0.94055(48)
0.0220 0.2077 0.2336 0.2596 0.2856 0.80385(35) 0.85417(37) 0.90278(39) 0.94973(42)
0.0264 0.2077 0.2336 0.2596 0.2856 0.81345(32) 0.86355(33) 0.91199(35) 0.95878(37)

cB211.25.48 0.0148 0.1745 0.1962 0.2181 0.2399 0.67488(25) 0.71849(26) 0.76093(27) 0.80181(29)
0.0185 0.1745 0.1962 0.2181 0.2399 0.68310(20) 0.72652(21) 0.76881(22) 0.80956(23)
0.0222 0.1745 0.1962 0.2181 0.2399 0.69127(17) 0.73451(17) 0.77664(18) 0.81726(19)

cB211.14.64 0.0148 0.1745 0.1962 0.2181 0.2399 0.67415(20) 0.71771(21) 0.76010(22) 0.80094(24)
0.0185 0.1745 0.1962 0.2181 0.2399 0.68243(18) 0.72579(19) 0.76803(20) 0.80873(21)
0.0222 0.1745 0.1962 0.2181 0.2399 0.69064(16) 0.73381(17) 0.77589(18) 0.81646(18)

cB211.072.64 0.0148 0.1745 0.1962 0.2181 0.2399 0.67351(22) 0.71707(24) 0.75948(27) 0.80035(31)
0.0185 0.1745 0.1962 0.2181 0.2399 0.68188(19) 0.72526(21) 0.76752(23) 0.80826(26)
0.0222 0.1745 0.1962 0.2181 0.2399 0.69016(17) 0.73336(18) 0.77547(21) 0.81608(23)

cC211.20.48 0.0128 0.1526 0.1716 0.1907 0.2098 0.58322(25) 0.62162(26) 0.65893(27) 0.69511(28)
0.0161 0.1526 0.1716 0.1907 0.2098 0.59050(22) 0.62874(23) 0.66592(24) 0.70199(25)
0.0193 0.1526 0.1716 0.1907 0.2098 0.59752(20) 0.63561(21) 0.67266(21) 0.70863(22)

cC211.06.80 0.0128 0.1526 0.1716 0.1907 0.2098 0.58181(21) 0.62019(23) 0.65748(25) 0.69365(28)
0.0161 0.1526 0.1716 0.1907 0.2098 0.58919(19) 0.62741(20) 0.66457(22) 0.70063(24)
0.0193 0.1526 0.1716 0.1907 0.2098 0.59629(17) 0.63436(18) 0.67139(20) 0.70734(21)
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mc ¼ 1039ð15Þstatð6Þsyst MeV ¼ 1039ð16Þ MeV; ð55Þ
mc

ms
¼ 11.43ð9Þstatð10Þsyst ¼ 11.43ð13Þ; ð56Þ

where the charm quark mass is given in the MS at 3 GeV.

VI. BARYON SECTOR ANALYSIS

In the baryon sector, we use the nucleon and pion masses
to set the scale and determine the light quark mass. We use

the Ω−ðsssÞ and the ΛcðudcÞ masses to determine, respec-
tively, the strange and charm quark masses. The range of
validity of ChPT in the baryon sector is more limited as
compared to that in the pion sector, and thus we restrict
ourselves to using pion masses up to 260 MeV.

A. Methodology

In order to compute the baryon masses, we construct the
following two-point correlation functions at zero momen-
tum, defined as

TABLE XIV. Values of the charm quark mass mc in the MS scheme at 3 GeVand the ratio mc=ms from the analysis of the D and Ds
meson, for different determinations of ZP and GF scales. Results using the GF scale w0 and all the ensembles of Table XII are given in
the top most panel, using t0=w0 in the second panel, using

ffiffiffiffi
t0

p
in the third panel, using w0 and limiting mπ < 190 MeV in the fourth

panel, using w0 and only the two coarser lattice spacings in the fifth panel, using w0 and only the coarser and finest lattice spacings in the
sixth panel, and using w0 and only the two finest lattice spacings in the last panel. To determine the ratiomc=ms we use the values ofms
from Table XI.

D Ds

ZP mc (MeV) mc=ms χ2=d:o:f: mc (MeV) mc=ms χ2=d:o:f:

M1a 1041(14) 11.504(76) 0.25 1039(13) 11.476(70) 0.62
M2a 1041(13) 11.443(76) 0.16 1038(12) 11.414(69) 0.45
M1b 1043(14) 11.496(77) 0.45 1040(13) 11.463(71) 1.2
M2b 1039(13) 11.418(78) 0.14 1037(12) 11.397(71) 0.21

t0=w0

M1a 1042(15) 11.385(84) 0.12 1038(13) 11.342(79) 0.36
M2a 1045(14) 11.283(85) 0.15 1041(12) 11.235(78) 0.25
M1b 1043(15) 11.375(86) 0.2 1039(14) 11.322(81) 0.76
M2b 1045(14) 11.248(86) 0.25 1041(13) 11.206(80) 0.1ffiffiffiffi

t0
p

M1a 1041(14) 11.448(79) 0.16 1038(13) 11.412(74) 0.48
M2a 1043(13) 11.368(80) 0.13 1039(12) 11.329(73) 0.35
M1b 1043(14) 11.439(81) 0.29 1039(14) 11.396(75) 0.96
M2b 1042(13) 11.338(81) 0.18 1039(12) 11.306(75) 0.15

w0, mπ < 190 MeV, P2 ¼ 0
M1a 1042(16) 11.46(14) 0.099 1037(13) 11.396(96) 1.3
M2a 1041(15) 11.39(14) 0.028 1035(12) 11.333(97) 0.8
M1b 1043(16) 11.45(14) 0.38 1037(14) 11.380(96) 2.6
M2b 1039(15) 11.37(14) 0.25 1034(12) 11.316(98) 0.26

w0, β ¼ 1.726 and β ¼ 1.778 only, P2 ¼ 0
M1a 1057(31) 11.34(16) 0.12 1062(29) 11.41(15) 0.043
M2a 1046(26) 11.26(16) 0.13 1052(24) 11.32(15) 0.045
M1b 1063(28) 11.34(16) 0.11 1069(26) 11.40(15) 0.04
M2b 1037(24) 11.25(16) 0.13 1042(22) 11.31(15) 0.046

w0, β ¼ 1.726 and β ¼ 1.836 only, P2 ¼ 0
M1a 1038(14) 11.545(76) 0.23 1036(13) 11.522(66) 0.097
M2a 1039(13) 11.487(77) 0.24 1036(12) 11.456(67) 0.096
M1b 1037(14) 11.546(76) 0.21 1035(14) 11.523(66) 0.086
M2b 1039(13) 11.474(77) 0.23 1036(12) 11.441(68) 0.095

w0, β ¼ 1.778 and β ¼ 1.836 only, P2 ¼ 0
M1a 1029(28) 11.68(12) 0.082 1019(25) 11.576(87) 0.0033
M2a 1037(24) 11.65(12) 0.12 1027(22) 11.534(88) 0.0045
M1b 1022(26) 11.68(12) 0.097 1014(23) 11.585(86) 0.0045
M2b 1044(24) 11.64(12) 0.13 1033(21) 11.520(89) 0.005
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C�
B ðtÞ¼

X
x⃗

h0j1
4
Tr½ð1� γ0ÞJBðqq0q00Þðx⃗; tÞJ̄Bðqq0q00Þð0⃗;0Þ�j0i;

ð57Þ

where JBðqq0q00Þ is the interpolating operator for the baryon
Bðq; q0; q00Þ with q, q0, and q00 ∈ fl; s; cg. In this work, we
increase statistics by considering both 1

2
ð1� γ0Þ projectors.

For the interpolating fields of the nucleon, theΩ, and theΛc
we take, respectively,

JN¼ϵabcðuTaCγ5dbÞuc;
JΩ¼ϵabcðsaCγμsbÞsc;

JΛc
¼ 1ffiffiffi

6
p ϵabc½2ðuTaCγ5dbÞccþðuTaCγ5caÞdc

−ðdTaCγ5cbÞuc�; ð58Þ

where latin indices refer to color, ϵabc is the antisymmetric
tensor, and C is the charge conjugation matrix.
In order to suppress contributions from excited states, we

apply Gaussian smearing to each quark field qðx⃗; tÞ. The
smeared quark field is given by qsmearðx⃗; tÞ ¼

P
y⃗ Fðx⃗; y⃗;

UðtÞÞqðy⃗; tÞ, where F is the gauge-invariant smearing
function

Fðx⃗; y⃗;UðtÞÞ ¼ ð1þ αHÞnðx⃗; y⃗;UðtÞÞ; ð59Þ

constructed from the hopping matrix understood as a matrix
in coordinate, color, and spin space,

Hðx⃗; y⃗;UðtÞÞ¼
X3
i¼1

ðUiðx⃗; tÞδx⃗;y⃗−aîþU†ðx⃗−aî; tÞδx⃗;y⃗þaîÞ:

ð60Þ

In addition, we apply APE smearing to the spatial links that
enter the hopping matrix H. Different Gaussian smearing is
applied to the light and strange quarks. The parameters of the
Gaussian and APE smearing for each ensemble for the light
and strange quarks are given in Table XV. The charm quark
interpolating fields are not smeared.
Two-point correlators for the Ω and Λc are computed for

each ensemble at three different values of the valence
strange and charm quark masses aμs and aμc. For each
value, an analysis of the two-point correlator is carried out
in order to determine the masses mΩ and mΛc

as a function
of μs and μc, respectively. The effective mass

ameff
B ¼ log



CBðtÞ

CBðtþ aÞ
�

ð61Þ

can be written using the spectral decomposition of the two-
point correlators as

ameff
B ≈ amB þ log



1þP

K
j¼1 cje

−Δjt

1þP
K
j¼1 cje

−ΔjðtþaÞ

�
; ð62Þ

where Δj is the mass difference of the jth excited state with
respect to the ground state mass mB. We consider one-,
two-, and three-state fits by taking K ¼ 0, 1, 2 in Eq. (62).
This allows us to check the consistency in our determi-
nation of the ground state mass mB. Since statistical errors
are larger for baryons as compared to those of mesons and
grow rapidly with increasing time separation t, it is
important to identify the ground state for as small a time
separation as possible, so that we can be confident that
excited are sufficiently suppressed. Our procedure for
identifying mB is as follows:
(1) We keep the upper time used in the fit constant. The

upper time is chosen so that statistical errors are
reliably evaluated.

(2) We fit the effective mass keeping two excited states;
i.e., we take K ¼ 2 in Eq. (62) and vary the lower
time used in the fit t3stlow=a from 1 to 3. We choose the
parameters of the fit that has the smallest t3stlow for
which χ2=d:o:f: ≲ 1. This determines m3st

B .
(3) We then fit the effective mass including one excited

state; i.e., we set K ¼ 1 in Eq. (62) and vary t2stlow for
t2stlow > t3stlow until the extracted mass m2st

B satisfies
the criterion jm2st

B −m3st
B j < δm2st

B , where δm2st
B is

the statistical error on m2st
B (i.e., the difference in the

central values of the baryon masses extracted using
one and two excited states are compatible within the
statistical error of m2st

B ).
(4) Having determined m2st

B , we make a single state fit;
i.e., we set K ¼ 0 in Eq. (62) and vary the lower
value of t. We choose t1stlow > t2stlow and take the
smallest value that satisfies jm1st

B −m2st
B j < δm1st

B ,
where δm1st

B is the statistical error on m1st
B , provided

χ2=d:o:f: ∼ 1. We used m1st
B as our final value

for mB.

TABLE XV. Parameters n and α entering the Gaussian smear-
ing in Eq. (59) per ensemble for the light and strange quark
interpolating fields. The parameters for the APE smearing are
kept the same for all ensembles. They are nAPE ¼ 50 and
αAPE ¼ 0.5.

Light Strange

Ensemble n α n α

cA211.30.32 40 1.0 25 4.0
cA211.12.48 50 1.0 25 4.0

cB211.25.32 40 1.0 25 4.0
cB211.25.48 40 1.0 25 4.0
cB211.14.64 70 1.0 25 4.0
cB211.072.64 125 0.4 25 4.0

cC211.20.48 40 1.0 25 1.0
cC211.06.80 140 1.0 25 1.0
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We illustrate our analysis for the extraction of the masses by
giving representative examples for the nucleon, Ω− and Λc.
In all cases, we use correlation functions with smeared
sources and for the ensembles listed in Table XVI. In
Fig. 12, we show an example of the results obtained using
the nucleon correlators for the cC211.06.80 ensemble, and
in Table XVI, we give the number of configurations
and source positions used, the fit ranges for the one-,
two-, and three-state fits, as well as the extracted nucleon
mass and the χ2=d:o:f: As can be seen, the mass of the
first excited state converges to a value compatible with
the mass of the Roper for the physical point ensembles.

The nucleon-pion state, although it has lower energy, it is
volume suppressed. In our two-state fits to extract the
energy of the first excited state, we find that the coefficient
of the second exponential compared to that of the ground
state is of order 1. This is to be contrasted with the chiral
perturbation theory analysis of Ref. [35], which predicts a
few percent for two-particle states. This indicates that the
contribution of two particles is suppressed.
We analyze in a similar way the effective mass defined

by the Ω correlator given in Eq. (57). In Fig. 13, we show
an example of the effective mass meff

Ω for the cB211.072.64
ensemble at μs ¼ 0.017, 0.0195, and 0.022. As can be seen,

TABLE XVI. We give for each ensemble the resulting values of amN , when using one-state (fourth main column), two-state (fifth
main column), and three-state (sixth main column) fits, χ̄2 ≡ χ2=d:o:f: is the reduced χ2, nconf is the number of configurations analyzed,
nsrcs is the number of two-point functions generated per configuration at different source positions, and ½tlow; tmax� is the fitting range. We
also show the values for the pion mass computed on the same statistics, amπ , noticing that they are compatible with those given
in Table I.

One-state fit Two-state fit Three-state fit

Ensemble amπ nconf nsrcs tmax=a tlow=a χ̄2 amN tlow=a χ̄2 amN tlow=a χ̄2 amN

cA211.30.32 0.12525(13) 287 121 25 12 0.9 0.5075(18) 4 0.8 0.5077(16) 2 0.8 0.5068(22)
cA211.12.48 0.080281(75) 325 160 27 15 1.1 0.4566(22) 7 1.4 0.4561(33) 2 1.4 0.4589(23)

cB211.25.32 0.10521(21) 395 121 27 16 0.5 0.4325(38) 7 0.5 0.4288(39) 2 0.8 0.4301(47)
cB211.25.48 0.104408(59) 281 128 33 17 0.7 0.4307(18) 5 1.5 0.43097(94) 2 1.7 0.4305(11)
cB211.14.64 0.078429(38) 194 128 33 18 2.4 0.4015(28) 7 1.7 0.3977(33) 2 1.8 0.3990(42)
cB211.072.64 0.056578(20) 751 264 34 18 1.4 0.3822(17) 7 1.1 0.3813(15) 2 1.3 0.3823(16)

cC211.20.48 0.086098(86) 205 121 33 17 1.2 0.3664(17) 8 1.4 0.3669(20) 2 1.2 0.3658(18)
cC211.06.80 0.047248(19) 401 650 38 19 0.9 0.32679(88) 8 1.0 0.3261(11) 3 1.2 0.3253(16)

FIG. 12. Upper panel: we show the nucleon effective mass meff
N ðtÞ as a function of t for the cC211.06.80 ensemble. Lower left panel:

we show the convergence of the extracted value ofmN as a function of the lowest time tlow used in the fit when we include one state in the
fit (green open circles), when we include two states (open red squares) and when we include three states (open blue rhombus). Lower
right panel: the same as the lower left panel but for the values extracted for the mass of the first excited state. The filled symbols and
green and red bands show the values we pick formN and for the mass of the excited statemRoper, respectively. For each point, we give the
χ2=d:o:f: of the fit.
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we obtain accurate results that allow us to perform a fit
including up to the second excited state. We fix the
maximum time for these fits to be tmax=a ¼ 34. The
convergence of the effective mass for Ω− as we vary tlow
is demonstrated when using one-, two-, and three-state fits.
In a similar manner, the convergence of the first excited
energy E1

Ω is demonstrated by varying tlow. We employ the
criterion described above to choose the value of mΩ from
the one-state fit at each μs. We note that for all the three
values of μs we find the same tlow. The masses extracted are
given in Table XVII, where we also quote the reduced-χ2,
χ̄2 ≡ χ2=d:o:f:, of the various fits.
The analysis of the two-point correlator for the Λc

proceeds in an analogous manner. We illustrate the results
for the cB211.072.64 ensemble in Fig. 14 for two different
values of the charm mass parameter μc. From the study of
the Ω− mass, we find that there is strong correlation among
the data for the three values of μs as demonstrated in
Fig. 16, and, thus, for Λc, we opt to use two different values

of μc in the interpolation. Since Λc is heavier and decays
faster, a three-state fit is not possible, and we limit
ourselves to comparing one- and two-state fits. The masses
extracted, the statistics used, and the value of χ̄2 are given in
Table XVIII.
Inwhat follows,wewill use thevalues ofmN ,mΩ, andmΛc

extracted from the one-state fit given in Tables XVI–XVIII,
respectively, to determine the light, strange, and charm quark
masses. In order to estimate the systematic error due to the fit
range, we will also use the values for the masses extracted
from the one-state fit at tlow=aþ 1.

B. Light quark mass

We use the ChPT expression of Eq. (5) to extrapolate to
the physical point. To one-loop order in ChPT [up to which
the nucleon mass is expanded in Eq. (5)], we can substitute
the pion mass by m2

π ¼ 2Bmudð1þ c2a2Þ to obtain the
expansion

FIG. 13. The same as in Fig. 12 but for the case of Ω− using the cB211.072.64 ensemble for the three values of μs given the in the
figure legend.
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TABLE XVII. We give the mass of Ω− in lattice units using one- (fourth main column that includes tlow=a and the reduced χ̄2), two-
(fifth main column), and three- (sixth main column) state fits to the effective mass. In the second main column, we give the number of
configurations nconf , the number of two-point function per configuration nsrcs, and tmax=a. In the last main column, we give the fit
parameters AΩ in lattice units and BΩ defined in Eq. (65) using the Ω− mass from the one-state fit.

One-state fit Two-state fit Three-state fit

Ensemble nconf nsrcs tmax=a aμs tlow=a χ̄2 amΩ tlow=a χ̄2 amΩ tlow=a χ̄2 amΩ aAΩ BΩ=ZP

cA211.30.32 1260 16 28 0.0182 14 1.0 0.7890(22) 4 1.1 0.7874(19) 2 1.1 0.7859(30) 0.645(4) 7.89(11)
0.0227 14 1.3 0.8252(18) 4 1.2 0.8237(17) 2 0.8 0.8230(22)
0.0273 14 1.2 0.8610(15) 4 1.1 0.8595(15) 2 0.9 0.8590(19)

cA211.12.48 341 64 29 0.0182 16 0.4 0.7797(27) 4 0.6 0.7796(15) 2 0.5 0.7783(25) 0.634(5) 8.00(13)
0.0227 16 0.5 0.8164(21) 4 0.6 0.8164(13) 2 0.6 0.8155(21)
0.0273 16 0.6 0.8527(17) 4 0.6 0.8527(11) 2 0.6 0.8521(17)

cB211.25.32 492 16 28 0.0148 16 0.9 0.6684(36) 8 1.2 0.6652(66) 2 1.0 0.6630(86) 0.551(7) 7.94(23)
0.0185 16 0.9 0.6986(28) 8 1.1 0.6959(46) 2 0.9 0.6942(55)
0.0222 16 0.8 0.7274(23) 8 1.0 0.7250(37) 2 0.9 0.7236(42)

cB211.25.48 651 32 34 0.0148 18 1.6 0.6666(21) 6 1.0 0.6656(17) 2 1.1 0.6649(24) 0.551(4) 7.79(13)
0.0185 18 1.4 0.6959(16) 6 0.9 0.6947(14) 2 0.9 0.6939(22)
0.0222 18 1.2 0.7244(13) 6 0.8 0.7232(13) 2 0.9 0.7224(20)

cB211.14.64 446 16 32 0.0148 18 0.4 0.6603(35) 6 0.8 0.6583(31) 2 0.7 0.6528(63) 0.542(6) 8.00(21)
0.0185 18 0.5 0.6905(28) 6 0.8 0.6883(27) 2 0.7 0.6838(53)
0.0222 18 0.5 0.7197(23) 6 0.8 0.7174(25) 2 0.7 0.7136(46)

cB211.072.64 770 32 34 0.0170 18 0.5 0.6799(20) 7 0.5 0.6783(16) 2 0.6 0.6774(17) 0.545(4) 7.90(12)
0.0195 18 0.5 0.6998(17) 7 0.5 0.6983(15) 2 0.6 0.6974(16)
0.0220 18 0.5 0.7194(16) 7 0.5 0.7179(14) 2 0.6 0.7171(15)

cC211.20.48 205 13 34 0.0150 17 0.7 0.5906(30) 6 0.9 0.5888(30) 2 0.7 0.5863(32) 0.474(5) 7.76(19)
0.0170 17 0.8 0.6062(28) 6 0.9 0.6043(28) 2 0.7 0.6021(29)

cC211.06.80 401 16 39 0.0150 20 0.6 0.5766(14) 5 0.6 0.5759(10) 2 0.7 0.5756(12) 0.457(3) 7.93(1)
0.0170 20 0.6 0.5926(12) 5 0.6 0.5919(9) 2 0.7 0.5917(11)
0.0190 20 0.7 0.6083(11) 5 0.6 0.6077(9) 2 0.7 0.6075(10)

FIG. 14. The same as in Fig. 12 but for the case ofΛc using the cB211.072.64 ensemble for the twovalues of μc given in the figure legend.
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mNðmudÞ ¼ m0
N − 4c1ð2Bmudð1þ c2a2ÞÞ

−
3g2A

16πf2π
ð2Bmudð1þ c2a2ÞÞ3=2; ð63Þ

consistent to the order we are working and includingOða2Þ
effects both in the pion expansion in Eq. (63) with the
coefficient c2 and in the nucleon expansion in Eq. (5). We

thus have two fit parameters, B and c2, while the lattice
spacings,m0

N and c1, are determined from Eqs. (5)–(7). The
fit procedure is performed for the four values of the
renormalization constant from Table VII, checking for
consistency and estimating systematic effects in the deter-
mination of ZP. Since the values we obtain using the
different methods of extracting ZP are in very good
agreement, we average over them. The statistical error in

TABLE XVIII. The values of mΛc
ðμcÞ mass, statistics used and fit parameters defined in Eq. (65) using a similar notation as that in

Table XVII.

One-state fit Two-state fit

Ensemble nconf nsrcs tmax=a aμc tlow=a χ̄2 amΛc
tlow=a χ̄2 amΛc

aAΛc
BΛc

=ZP

cA211.30.32 287 16 22 0.21476 8 1.0 1.0200(26) 3 1.2 1.0180(32) 0.632(2) 1.807(11)
0.26786 8 1.0 1.1177(29) 3 1.1 1.1153(39)
0.32214 8 0.9 1.2137(34) 3 1.0 1.2108(48)

cA211.12.48 119 16 22 0.21476 8 1.0 1.0038(35) 1 0.2 1.0011(36) 0.619(4) 1.792(23)
0.26786 8 0.8 1.1009(43) 1 0.3 1.0980(43)
0.32214 8 0.7 1.1957(52) 1 0.3 1.1925(52)

cB211.25.32 360 16 26 0.17464 8 1.6 0.8554(18) 1 1.3 0.8542(17) 0.533(2) 1.8454(80)
0.21830 8 1.5 0.9375(20) 1 1.2 0.9362(18)
0.26196 8 1.4 1.0163(22) 1 1.2 1.0148(20)

cB211.25.48 649 16 31 0.17464 9 1.3 0.8506(12) 1 1.2 0.8504(10) 0.527(1) 1.8520(58)
0.21830 9 1.2 0.9331(13) 1 1.1 0.9327(12)
0.26196 9 1.2 1.0121(15) 1 1.1 1.0115(13)

cB211.14.64 232 8 27 0.20000 9 1.0 0.8932(25) 2 1.2 0.8912(24) 0.519(2) 1.870(12)
0.22000 9 1.1 0.9306(26) 2 1.4 0.9284(25)

cB211.072.64 400 4 24 0.20000 11 1.2 0.8713(47) 4 1.1 0.8687(57) 0.501(4) 1.850(23)
0.22000 11 1.2 0.9083(50) 4 1.1 0.9057(60)

cC211.20.48 205 4 29 0.18000 13 0.8 0.7869(45) 4 0.6 0.7835(52) 0.455(4) 1.840(24)
0.22000 13 0.8 0.8605(50) 4 0.6 0.8571(59)

cC211.06.80 260 4 28 0.18000 12 0.9 0.7633(48) 3 0.7 0.7614(49) 0.434(4) 1.825(24)
0.24000 12 1.0 0.8729(57) 3 0.8 0.8708(57)

FIG. 15. Left panel: we show the nucleon mass mN for the A (red), B (blue), and C (green) ensembles. The blue band shows the
continuum extrapolation according to Eq. (63). Right panel: the values of the parameter B (top) and light quark mass (bottom) for
different determinations of ZP. Circles show the results using the mass of the nucleon from one-state fit in Table XVI. Right-pointing
triangles show results when tlow is increased by one unit, namely, tlow=aþ 1. Up-pointing triangles show results when the chiral
extrapolation is done using ensembles with pion mass lower than 190MeV. The dashed blue line is our final value obtained by the results
listed in Table XIX.
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the lattice spacing is taken into account in the jackknife
analysis. The fit results are reported in Table XIX and
depicted in Fig. 15. The final value of the light quark mass
using the nucleon and pion mass, given in the MS scheme
at 2 GeV, is

mud ¼ 3.608ð58Þðþ32
−19Þ MeV; ð64Þ

obtained by averaging the values in Table XIX. The
systematic error is computed as in Eq. (42), but in the
sum, we only take into account the mean values not
included in the computation of the average. Namely, the
systematic error reflects the choice of the fitting range
estimated by increasing tlow by one unit and the sensitivity
due to the chiral extrapolation estimated by using ensem-
bles with pion mass smaller than 190 MeV. We will follow
this procedure also for the computation of the systematic
errors also for the strange and charm quark masses.

C. Strange and charm quark masses

We determine the strange and charm quark masses using
the experimental value of the ΩðsssÞ and ΛcðudcÞ masses
and the lattice spacings determined from the nucleon

mass. Namely, we use mðphys:Þ
Ω ¼ 1672.5ð3Þ and mðphysÞ

Λc
¼

2286.5ð1Þ from the particle data group (PDG) [36]. We use
the renormalization constants ZP given in Table VII.
We parametrize the Ω− and Λc mass dependence on the

strange and charm quark mass by expanding around m̃s and
m̃c, that we chose to be in the same ballpark of the physical
quark masses. In particular, we use m̃s ¼ 95 MeV and
m̃c ¼ 1.2 GeV, and we interpolate around these reference
points using

mΩ ¼ AΩ þ BΩðms − m̃sÞ; ð65Þ

mΛc
¼ AΛc

þ BΛc
ðmc − m̃cÞ: ð66Þ

We first discuss our procedure for the determination of the
strange quark mass from the Ω mass. We then apply the
same procedure for determining mc using the Λc mass.

1. Strange quark mass

The knowledge of the Ω− mass at three values of the
valence strange quark mass parameter μs allows us to
determine the Ω mass as a function of μs using the linear
Ansatz of Eq. (65). We show a representative example of
the resulting fit in Fig. 16 for the ensemble cB211.072.64.
The same analysis is carried out for all the ensembles listed
in Table XVII, where we give the values of AΩ and BΩ,
defined in Eq. (65).
We employ two methods to determine ms: In method I,

we perform a chiral and continuum extrapolation of the AΩ
and BΩ parameters separately. Namely, we expand to
leading order in ChPT and include Oða2Þ cutoff effects
as follows,

AΩða;m2
πÞ ¼ c1 þ c2m2

π þ c3a2; ð67Þ

BΩða;m2
πÞ ¼ c01 þ c02m

2
π þ c03a

2; ð68Þ

and we limit ourselves to ensembles with mπ < 260 MeV
so that these leading-order expression are reliable.
In Fig. 17, we illustrate the chiral and continuum

extrapolation for the parameters AΩ and BΩ using the
value of ZP from method M1a (see Table VII). We note that
the values of AΩ and BΩ using the cB211.025.32 and
cB211.025.48 ensembles are compatible, demonstrating
that finite size effects are small. Using the values of the
parameters AΩ and BΩ at the physical pion mass and
continuum limit, we can extract the strange quark mass in
the continuum limit and at the physical pion mass from

ms ¼ m̃s þ
mðphys:Þ

Ω − AΩð0; mðphys:Þ
π Þ

BΩð0; mðphys:Þ
π Þ

: ð69Þ

In method II, we adopt an iterative strategy: namely, we
start by fixing a value of the renormalized strange quark

TABLE XIX. Fit results for the extraction of the light quark
mass with the nucleon mass using the four different estimation of
the renormalization constants. The fit parameters are B and c2.
The light quark mass mud is obtained as misoQCD

π =ð2BÞ. The
values are given in the MS scheme at 2 GeV.

ZP χ̄2 B (GeV) c2 (GeV2) mud (MeV)

M1a 0.7 2.537(39) 0.155(98) 3.591(56)
M2a 0.7 2.516(41) 0.49(11) 3.621(60)
M1b 0.8 2.534(39) 0.154(98) 3.596(56)
M2b 0.7 2.516(42) 0.57(11) 3.622(60)

FIG. 16. Dependence of mΩ on the μs bare quark mass for the
cB211.072.64 ensemble. Data from the 1-state are reported,
together with the linear extrapolation.
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mass ms in physical units for all the ensembles. We use
Eq. (65) to interpolate to the given ms. We then extrapolate
to the continuum limit and physical point using the ChPT
result

mΩ ¼ mð0Þ
Ω − 4cð1ÞΩ m2

π þ dð2ÞΩ a2: ð70Þ

We iterate this procedure changing the value ofms until the
resulting value ofmΩ given in Eq. (70) at the physical point

and continuum limit matches the physical value mðphysÞ
Ω . In

Fig. 18, we illustrate the analysis.
The results for the renormalized strange quark mass in

the MS scheme at 2 GeV are provided in Table XX using
the values of ZP given in Table VII. We compare the
different values by plotting them in Fig. 19. As can be seen,

despite the different values of ZP at finite lattice spacing, in
the continuum limit, we obtain very good agreement among
different estimates of ms. A similar agreement is also
obtained between methods I and II discussed in this section
for the determination of ms. Since the error on the lattice
spacing cannot be taken into account in a jackknife analysis
because we used different statistics, we estimate the change
in the value of ms by varying the lattice spacing by a
standard deviation. As can be seen in Fig. 19, this gives a

FIG. 18. We show the mass of the Ω−, mΩ at different pion
mass squared for ms ¼ 94.6ð20Þ MeV, set by reproducing the
physical mass of the Ω at the continuum limit as described in
method II. The dotted lines show the chiral extrapolation for the
A (red), B (blue), and C (green) ensembles. The solid black line
shows the continuum extrapolation using Eq. (70) with the
associated error (gray band). The horizontal and vertical dashed
light blue lines represent, respectively, the physical pion and Ω
masses.

FIG. 19. The renormalized strange quark mass for different
values of ZP in the MS at 2 GeV. Symbols in green are obtained
using method M1a, in orange are obtained using method M2a, in
blue are obtained using method M1b, and in red are obtained
using method M2b. For each value of ZP, we give with open
symbols the determination using method I to extract ms and with
filled symbols using method II. Circles show the results using the
mass of the Ω from the one-state fit given in Table XVII.
Triangles quantify systematic errors due to the selection of tlow
(right-pointing triangles when tlow=aþ 1), errors on the lattice
spacing (down-pointing triangles increasing by a standards
deviation the lattice spacings set by the nucleon mass), and
errors due to chiral extrapolation (up-pointing triangles obtained
using only ensembles with mπ < 190 MeV). The dashed line is
the average over the values from method I and II and at different
ZP given in Tables XX and XXI.

FIG. 17. Continuum and chiral extrapolation for the Ω− in order to determine the coefficients of Eqs. (67) and (68). We show the pion
mass squared as a function of AΩ (left) and BΩ (right) for the A (red), B (blue), and C (green) ensembles. The gray bands show the
continuum extrapolation.
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very small change compared to the statistical error. By
increasing tlow of the one-state fit by one lattice unit gives
an estimate of the systematic error in the extraction of the
mass of the Ω. The change in the value of ms is well within
the statistical error, as can be seen in Fig. 19. We, thus,
average over all the values obtained using the four different
determinations of ZP and analysis methods I and II (values
are given in Tables XX an Table XXI). The systematic error
is computed according to Eq. (42) but excluding the values
over which we average. As for the case of μud, the
systematic error reflects systematics due to the choice of
the fitting range by letting tlow=a → tlow=aþ 1 and sys-
tematics due to the chiral extrapolation by using ensembles
with mπ < 190 MeV. Since the error in the lattice spacing
cannot be included in the jackknife analysis due to using
different statistics for the Ω, we include an additional term
in Eq. (42) computed as the difference in the mean when we

change the lattice spacing within its error. Using as input
the Ω− mass, we obtain for ms in the MS scheme at 2 GeV
and the ratio ms=mud the values

ms¼ 94.9ð2.4Þðþ4.1
−1.0ÞMeV; ms=mud ¼ 26.30ð61Þðþ1.17

−33 Þ;
ð71Þ

where for the ratio we use mud from Eq. (64). The error on
the ratio is computed by combining in quadrature the errors
on mud and ms.

2. Charm quark mass

We employ the same procedure for the determination of
mc as described in the previous section for ms using
methods I and II. The mass of Λc is interpolated linearly
in μc using Eq. (66) within the range spanned by the two μc

TABLE XX. Results using method I and different values of ZP as denoted in the first column. The second, third, fourth, and fifth
columns give the reduced χ2 of the fit to Eq. (67) and the values of the fit parameters c1, c2, and c3, respectively, that determine AΩ in the
continuum and chiral limit. The sixth, seventh, eight, and ninth columns give the corresponding values for BΩ of Eq. (68). In the last
column, we give the extracted values for ms in the MS scheme at 2 GeV.

AΩ BΩ MS (2 GeV)

ZP χ̄ c1 (GeV) c2 (GeV−2) c3 (GeV fm−2) χ̄0 c01 c02 (GeV−2) c03 (fm−2) ms (MeV)

M1a 3.7 1.739(7) 0.45(7) 3.3(1.1) 0.2 4.69(11) −1.5ð1.3Þ −12ð19Þ 94.6(2.5)
M2a 4.4 1.739(6) 0.44(6) 5.45(97) 0.2 4.67(12) −1.6ð1.4Þ 23(20) 94.6(2.3)
M1b 3.2 1.739(6) 0.44(7) 2.3(1.0) 0.3 4.68(11) −1.6ð1.3Þ −10ð19Þ 94.6(2.4)
M2b 4.6 1.739(6) 0.44(6) 6.19(96) 0.2 4.67(12) −1.6ð1.4Þ 31(20) 94.5(2.3)

TABLE XXI. Results using method II and different values of ZP as denoted in the first column. In the second
column, we give the reduced χ2 of the fit, and in columns three, four, and five, we give the fit parameters of Eq. (70).
In the last column, we give the extracted values for ms in the MS scheme at 2 GeV.

MS (2 GeV)

ZP χ̄ mð0Þ
Ω (GeV) cð1ÞΩ (GeV−1) dð2ÞΩ (GeV fm−2) ms (MeV)

M1a 2.4 1.6636(16) −0.121ð21Þ 3.7(1.3) 95.1(2.5)
M2a 2.7 1.6637(15) −0.120ð20Þ 5.3(1.2) 95.2(2.3)
M1b 2.2 1.6638(15) −0.118ð21Þ 2.6(1.2) 95.0(2.4)
M2b 2.7 1.6637(15) −0.120ð20Þ 6.0(1.2) 95.1(2.3)

TABLE XXII. The same as in Table XX but for the AΛc
and BΛc

parameters. In the last two columns, the values for mc in the MS
scheme at 3 GeV are reported.

AΛc
BΛc MS (3 GeV)

ZP χ̄ c1 (GeV) c2 (GeV−1) c3 (GeV fm−2) χ̄0 c01 c02 (GeV−2) c03 (fm−2) mc (MeV)

M1a 2.1 2.55(2) 0.9(2) −4.9ð2.6Þ 1.3 1.14(2) 0.00(15) −13.7ð2.5Þ 1030(21)
M2a 2.1 2.55(2) 0.9(2) 3.6(2.7) 1.6 1.15(2) 0.01(16) −6.4ð2.6Þ 1027(20)
M1b 2.2 2.54(2) 0.9(2) −3.8ð2.6Þ 1.0 1.14(2) −0.03ð15Þ −12.8ð2.5Þ 1037(21)
M2b 2.1 2.55(2) 1.0(2) 5.5(2.8) 1.7 1.15(2) 0.01(16) −4.8ð2.6Þ 1025(20)
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values. For the chiral extrapolation, we consider a similar
expression to that used for Ω− as given in Eq. (70), namely,

mΛc
¼ mð0Þ

Λc
þ cð1ÞΛc

m2
π þ dð2ÞΛc

a2: ð72Þ

We note that to leading one loop in ChPTam3
π-term with an

unknown coefficient is present. Including such a term in the
fit results in a coefficient consistent with zero and a
χ2=d:o:f: ¼ 7.2. That such a term is not supported by
lattice QCD data was also found in our previous analysis
using a larger set of pion masses [19] where this coefficient
was found to be consistent with zero. We check that
including it does not change the extracted value for mc.
Thus, given the larger χ2, we drop it from our analysis.
Results from method I are reported in Table XXII for all

the values of ZP listed in Table VII. We also illustrate in
Fig. 20 the chiral and continuum extrapolations of AΛc

and
BΛc

according to Eqs. (67) and (68), respectively, with ZP

determined using method M1a. The determination of the
values of the parameters of Eq. (72) for method II is carried
out as for the case of ms, and the results are reported in
Table XXIII and, for the M1a case, also in Figs. 21 and 22.
The values for mc from methods I and II as well as how

they change by varying the lattice spacings by a standard
deviation and by the change in mΛc

by increasing tlow by
one lattice spacing in the one-state fit are presented
in Fig. 21.

Again, we observe a very good agreement between the
results obtained via method I and method II and among
different determinations of the ZP renormalization con-
stants. We thus average over these values and compute the
systematic error in the same way as for μs. We obtain for
the charm quark mass mc in the MS scheme at 3 GeV and
the ratio mc=ms the following values,

mc ¼ 1030ð21Þðþ22
−5 ÞMeV; mc=ms ¼ 12.05ð31Þðþ58

−15Þ;
ð73Þ

where the errors on the ratio are combined in quadrature.

TABLE XXIII. The same as in Table XXI but for the mΛc
extrapolation, according to Eq. (72). In the last column,

we give the values for mc in the MS scheme at 3 GeV.

MS (3 GeV)

ZP χ̄ mð0Þ
Λc

(GeV) cð1ÞΛc
(GeV−1) dð2ÞΛc

(GeV fm−2) mc (MeV)

M1a 2.7 2.2692(25) 0.95(14) −1.4ð2.0Þ 1030(21)
M2a 2.7 2.2689(26) 0.96(14) 5.3(2.2) 1026(20)
M1b 2.8 2.2695(25) 0.93(14) −0.6ð2.0Þ 1038(21)
M2b 2.7 2.2688(26) 0.97(15) 6.7(2.2) 1024(20)

FIG. 20. The same as for Fig. 17 but for the case of Λc.

FIG. 21. The same as for Fig. 18 but for the case of Λc.
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VII. CONCLUSIONS

The focus of this work is the determination of the light,
strange, and charm quark masses. We perform an analysis
of ten Nf ¼ 2þ 1þ 1 ensembles simulated at three lattice
spacings smaller than 0.1 fm and pion masses in the range
from about 350 to 135 MeV. Having two ensembles
simulated with the physical value of the pion mass at
the two smallest lattice spacings enables us to extrapolate
reliably to the physical and continuum limit.
The extraction of the quark masses is done using

observables from both the meson sector and the baryon
sector. The isosymmetric values of the pion, kaon, and D-
meson masses as well as of the pion decay constant are used
for the determination of the lattice spacings and the quark
masses in the meson analysis. In the baryon sector, we use
as inputs the nucleon and pion masses to obtain the lattice
spacing and the average light-quark mass, while the masses
of the Ω− and Λc baryons determine the strange and charm
quark masses.
In Table XXIV, we collect the values of the quark masses

obtained in Secs. V and VI for the light and strange quark
masses in the MS scheme at 2 GeVand for the charm quark
mass at 3 GeV. Since the isospin and electromagnetic
corrections to the nucleon mass are only known for the
mass difference between the neutron and proton [37], in our
analysis, we average over the mass of the proton and
neutron. This defines a QCD prescription different from
that used in the meson sector. Using the values of the lattice
spacing extracted in the meson sector, we obtain a nucleon
mass in the continuum limit a few MeV smaller than the
input value mN;phys ¼ 0.9389 GeV adopted in the baryon
sector (see Sec. III). This results in less than a percent
change in the values given in the Table XXIV, which is
much smaller than our statistical errors. It is thus justifiable
to average over the values obtained in the meson and
baryon sectors to produce our final values.

In order to perform the above average, we adopt the
weighted approach given in Eqs. (40)–(42). We assume the
following weights,

wM ∝ 1=ðσstatM Þ2; wB ∝ 1=ðσstatB Þ2; ð74Þ

for the quantities coming from the mesonic and the
baryonic sectors, where σstatMðBÞ is the first error given in

the corresponding rows of Table XXIV. In this way, we
obtain

x̄� σstatðþσsyst;þ
−σsyst;− Þ; ð75Þ

where

x̄ ¼ wMxM þ wBxB; ð76Þ

ðσstatÞ2 ¼ wMðσstatM Þ2 þ wBðσstatB Þ2; ð77Þ

TABLE XXIV. The renormalized quark masses determined in the meson sector (first row) and baryon sector
(second row) in the MS scheme. In the third row, we give the average over the values obtained in the meson and
baryon sectors, while in the last row, we give the latest FLAG averages [13] for Nf ¼ 2þ 1þ 1. The light quark
mass, mud (second column), and the strange quark mass, ms (third column), are given at 2 GeV, while the charm
quark mass, mc (fourth column), is given at 3 GeV. The second error of the quark masses includes a 0.5%
uncertainty (added in quadrature) due to the uncertainty of the conversion of the renormalization constants (RCs) ZP

to the MS scheme. In the fifth and sixth columns, we give the ratios ms=mud and mc=ms, respectively. In the meson
sector, the error on the ratio is determined in a jackknife analysis. In the baryon sector, since different ensembles are
involved in the determination of the quark masses, the error on the ratio is propagated quadratically using the errors
on each of the quark masses.

mud (MeV) ms (MeV) mc (MeV) ms=mud mc=ms

Meson sector 3.689(80)(66) 101.0(1.9)(1.4) 1039(15)(8) 27.30(24)(14) 11.43(9)(10)
Baryon sector 3.608ð58Þðþ32

−19 Þ 94.9ð2.4Þðþ4.1
−1.0Þ 1030ð21Þðþ22

−5 Þ 26.30ð61Þðþ1.17
−0.33 Þ 12.04ð31Þðþ58

−15 Þ
Average 3.636ð66Þðþ60

−57 Þ 98.7ð2.4Þðþ4.0
−3.2Þ 1036ð17Þðþ15

−8 Þ 27.17ð32Þðþ56
−38 Þ 11.48ð12Þðþ25

−19 Þ
FLAG 2019 3.410(43) 93.44(68) 988(7) 27.23(10) 11.82(16)

FIG. 22. We show the values of mc for different determinations
of ZP and for methods I and II. The notation is the same as that of
Fig. 19.
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ðσsyst;�Þ2 ¼ wM½ðxM − x̄Þ2 þ ðσsystM Þ2�
þ wB½ðxB − x̄Þ2 þ ðσsyst;�B Þ2�: ð78Þ

The results are given in the last row of Table XXIV and are
compared in Fig. 23 with those of the ETM analysis of
Ref. [12] and the ones entering theNf ¼ 2þ 1þ 1 averages
in the latest FLAG report [13]. The latter ones are based on
the results of Refs. [12,38] for the light-quark mass,
Refs. [12,38–40] for the strange mass, Refs. [12,19,38–
40] for the charm mass, Refs. [12,41,42] for the ms=mud
ratio, and Refs. [12,38,40] for the mc=ms ratio.
It can be seen that our results are larger by approximately

2.5 standard deviations in the case of mud and by approx-
imately 2 standard deviations in the case ofmc with respect
to the corresponding FLAG values. Although for the
strange quark mass our result coming from the meson
sector is larger by approximately 3 standard deviations, our
averaged result is consistent with the FLAG one within our
final uncertainty. Good agreement is observed for the mass
ratios ms=mud and mc=ms. We do not believe that these
differences can be ascribed to possible uncontrolled effects
on the mass renormalization constant 1=ZP. Indeed, the
detailed analysis carried out in this work concerning the
pion pole subtraction and the residual hadronic contami-
nations in the RI-MOM determination of the renormaliza-
tion constant ZP leaves little room for any significant
leftover contribution from these terms. Our findings point
to the fact that hadronic contaminations are controlled at the
level of few per mille. Therefore, we do not consider it
plausible that the observed tension with the FLAG values
may be related to uncontrolled hadronic contaminations on
the mass renormalization constant. In this respect, we are
considering the possibility of repeating the determination of
the quark masses using the same extended twisted mass
(ETM) gauge ensembles adopted in this work, but evalu-
ating the mass renormalization in a different scheme, like

RI-SMOM, while keeping the same level of control of the
hadronic contaminations achieved in this work.
Our final results for the light, strange, and charm quark

masses as well for the mass ratios ms=mud and mc=ms are
consistent with our previous analysis of Ref. [12] (see also
Fig. 23), which was based on Wilson twisted-mass fer-
mions far from the physical pion point. The overall
uncertainties for the light and charm quark masses are
reduced by a factor of approximately 1.7–2.0, while in the
case of the strange quark mass, the uncertainty is almost
unchanged, partly due to the difference between the mean
values obtained in the meson and baryon sector, which is
added to the systematic error. This is also reflected in the
two ratios. With respect to the quark mass analysis of
Ref. [12], the main improvements are (i) a better control of
the chiral extrapolation thanks to gauge ensembles pro-
duced close to the physical pion point; (ii) a better control
of hadronic contaminations in the calculations of the mass
renormalization constant; and (iii) the use of both mesonic
and baryonic quantities, which requires simulations of
different correlation functions. For all the three masses,
the contribution from lattice systematics is important, in
particular in the case of ms. Our plan is to add at least one
further gauge ensemble at a fourth finer value of the lattice
spacing at the physical point. This will allow a tightly
controlled chiral and continuum extrapolations in both the
meson and baryon sectors.
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