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We present a direct calculation for the first derivative of the isovector nucleon form factors with respect
to the momentum transfer q2 using the lower moments of the nucleon 3-point function in the coordinate
space. Our numerical simulations are performed using the Nf ¼ 2þ 1 nonperturbativelyOðaÞ-improved
Wilson quark action and Iwasaki gauge action near the physical point, corresponding to the pion mass
Mπ ¼ 138 MeV, on a ð5.5 fmÞ4 lattice at a single lattice spacing of a ¼ 0.085 fm. In the momentum
derivative approach, we can directly evaluate the mean square radii for the electric, magnetic, and axial-
vector form factors, and also the magnetic moment without the q2 extrapolation to the zero momentum
point. These results are compared with the ones determined by the standard method, where the q2

extrapolations of the corresponding form factors are carried out by fitting models. We find that the new
results from the momentum derivative method are obtained with a larger statistical error than the standard
method, but with a smaller systematic error associated with the data analysis. Within the total error range
of the statistical and systematic errors combined, the two results are in good agreement. On the
other hand, two variations of the momentum derivative of the induced pseudoscalar form factor
at the zero momentum point show some discrepancy. It seems to be caused by a finite volume
effect, since a similar trend is not observed on a large volume, but seen on a small volume in
our pilot calculations at a heavier pion mass ofMπ ¼ 510 MeV. Furthermore, we discuss an equivalence
between the momentum derivative method and the similar approach with the point splitting vector
current.

DOI: 10.1103/PhysRevD.104.074514

I. INTRODUCTION

A discrepancy of experimental measurements of the
proton charge radius, called the proton radius puzzle, has
not been solved yet since the muonic hydrogen measure-
ment was reported in 2010 [1]. The values of the charge
radius measured from both elastic electron-proton scatter-
ing and hydrogen spectroscopy agree with each other [2],
while they differ from the one measured from the muonic
hydrogen. Several experiments are carried out and also
proposed to understand this discrepancy, see Ref. [3] for a

review of this puzzle.1 Lattice QCD calculation, which is a
unique computational experiment to investigate the com-
plicated strong interaction dynamics, based on the first
principles of QCD, can tackle the problem as an alternative
to actual experiments.
In lattice QCD calculation, the mean square (MS) charge

radius can be determined from the slope of the electric
nucleon form factor at q2 ¼ 0. Most calculations including
our previous works [5,6] and recent works [7–19] measure
the form factor with discrete lattice momenta, and fit the
data with appropriate functional forms, such as dipole form,
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1It should be mentioned that the consistent value of the charge
radius with the one from the muonic hydrogen measurement had
been obtained from the dispersion-theoretical analysis through the
electron-proton scattering data before the proton radius puzzle was
reported, see for example a review of the dispersion analysis [4].
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in order to determine the form-factor slope at the zero
momentum point. The choice of fit functions, however,
gives rise to relatively large systematic error. Even in a fit
using dataset including at tiny q2 data point, its systematic
error still remains as large as the statistical error of 2% as
presented in Ref. [6]. Such systematic uncertainty needs to
be reduced to draw any conclusion on a maximum
discrepancy of about 4% observed in the three experiments.
Apart from the systematic error from the choice of fit

functions we observed that there is a discrepancy of more
than 10% between the experimental value and our result of
the isovector root MS charge radius obtained from lattice
QCD calculation at the physical point (Mπ ¼ 135 MeV) on
a ð10.9 fmÞ3 volume [6]. In our lattice QCD simulation,
systematic uncertainties stemming from the finite volume
effect are considered to be negligible, and the chiral
extrapolation is not necessary due to the physical point
calculation. Furthermore, excited state contamination in the
electric form factor is well controlled and not significant in
our simulation, because strong dependence on the time
separation between the source and sink operators was not
observed. A possible source of this discrepancy could be
the effect of finite lattice spacing though it seems too large
for Oða2Þ effect in our nonperturbative improved Wilson
quark calculation. Our future calculations performed at the
finer lattice spacing will reveal the presence of the
systematic error due to the lattice discretization effect.
Nevertheless, we are still pursuing other reasons. We are
interested in recent development of another approach,
called the momentum derivative method, which can
directly calculate the slope of the form factor. In compari-
son to the standard approach, this method could be useful to
pin down the source of the current discrepancy between our
lattice result and the experimental value.
The momentum derivative method was proposed in

Ref. [20], where the slope is determined without assuming
fit functions of the form factor. This method employs the
moments of the 3-point function in the coordinate space,
which can access the derivatives of the form factor with
respect to the square of four-momentum transfer q2 at
vanishing q2. This method and its variation were applied to
the nucleon form factor with the vector current at the pion
mass ofMπ ¼ 0.4 GeV [21],Mπ ¼ 0.37 GeV [22,23], and
the physical Mπ [24], respectively. The method was also
employed in a calculation of the CP-odd electromagnetic
form factor F3ð0Þ [25]. Another method of the direct
derivative calculation using the point splitting vector
current was proposed in Ref. [26], and it was applied to
the electric, magnetic, and axial-vector form factors at the
physical Mπ in Ref. [27].
In this study we adopt the former method to calculate

physical quantities, including the form-factor slopes deter-
mined at q2 ¼ 0 for both the vector and axial-vector
channels, in (2þ 1)-flavor lattice QCD at very close to
the physical Mπ on the ð5.5 fmÞ3 spatial volume. The

physical quantities obtained from the momentum derivative
method are compared with those from the standard analysis
for the form factors. Using similar simulation setup as
described in our previous works [5,6], possible systematic
errors involved in the momentum derivative method are
discussed by examining the effect of excited state contam-
inations with three source-sink separations and also by the
finite volume study with two different volumes in our pilot
calculations at a heavier pion mass of Mπ ¼ 0.51 GeV. In
this paper we also elucidate the equivalence between the
above-mentioned two direct methods through the discussion
of an infinitesimal transformation on the correlation func-
tions. This study is regarded as a feasibility study toward
more realistic calculationwith the PACS10 configurations on
the ð10.9 fmÞ3 volume [6,28,29].
This paper is organized as follows. Section II explains

definitions for the nucleon correlation functions and their
derivative calculated by moments of the correlation func-
tions used in this study. We also discuss the equality
between two types of the direct methods, that were
proposed in Ref. [20] and Ref. [27], to calculate the
derivative of the form factors in this section. The simulation
parameters are described in Sec. III. The results from the
derivative of nucleon correlation functions are presented in
Sec. IV. Section V is devoted to summary of this study. In
two appendices, we first describe how the momentum
derivative method is associated with a partially quenched
approximation and second summarize the results obtained
from the standard analysis of the form factors.
All dimensionful quantities are expressed in units of the

lattice spacing throughout this paper, unless otherwise
explicitly specified. A bold-faced variable represents a
three-dimensional vector.

II. CALCULATION METHODS

A. Correlation function with momentum

The exponentially smeared quark operator qSðt;xÞ with
the Coulomb gauge fixing is employed in this study to
calculate the nucleon 2- and 3-point functions as

qSðt;xÞ ¼
X
y

ϕðjy − xjÞqðt; yÞ; ð1Þ

where qðt;xÞ presents a local quark operator, and the color
and Dirac indexes are omitted. A smearing function ϕðrÞ is
given in a spatial extent of L as

ϕðrÞ ¼

8>><
>>:

1 ðr ¼ 0Þ
Ae−Br ðr < L=2Þ
0 ðr ≥ L=2Þ

: ð2Þ

with two parameters A and B. The nucleon 2-point function
with the local sink operator is defined as
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CLSðt− tsrc;x−xsrcÞ¼
1

4
Tr½Pþh0jNLðt;xÞN̄Sðtsrc;xsrcÞj0i�;

ð3Þ

where Pþ ¼ ð1þ γ4Þ=2, and the nucleon operator is given
for the proton state by

NLðt;xÞ ¼ ϵabcuTaðt;xÞCγ5dbðt;xÞucðt;xÞ ð4Þ

with C ¼ γ4γ2, the up and down quark operators u, d, and
a, b, c being the color indexes. The smeared source
operator NSðt;xÞ is the same as the local one NLðt;xÞ,
but all the quark operators u, d are replaced by the smeared
ones defined in Eq. (1). We also calculate the smeared sink
2-point function CSSðt;xÞ, where NLðt;xÞ is replaced by
NSðt;xÞ. The momentum projected 2-point function is then
given by

CXSðt;pÞ ¼
X
r

e−ip·rCXSðt; rÞ; ð5Þ

with X ¼ L, S and a three-dimensional momentum p. In a
large t region, the 2-point function behaves as a single
exponential function,

CXSðt;pÞ ¼
ENðpÞ þMN

2ENðpÞ
ZXðpÞZSðpÞe−tENðpÞ; ð6Þ

where MN and ENðpÞ are the nucleon mass and energy
with the momentum p≡ jpj, respectively. The overlap of
the nucleon operator to the nucleon state is defined by
h0jNXð0; 0ÞjNðpÞi ¼ ZXðpÞuNðpÞ, where uNðpÞ is a
nucleon spinor.

We evaluate the nucleon 3-point functions as

Ck
Oα
ðt − tsrc;x − xsrcÞ ¼

1

4

X
y

Tr½Pkh0jNSðtsink; yÞJOα ðt;xÞN̄Sðtsrc;xsrcÞj0i�; ð7Þ

where Pk is a projection operator for Pt ¼ Pþ and P5j ¼ Pþγ5γj for j ¼ x, y, z, and JOα is an isovector local current
operator as JOα ¼ ūOαu − d̄Oαd with Oα ¼ γα; γαγ5 for the vector (V) and axial-vector (A) currents, respectively.
The form factors in nonzero momentum transfers are calculated by the momentum projected 3-point function as

Ck
Oα
ðt;pÞ ¼

X
r

e−ip·rCk
Oα
ðt; rÞ: ð8Þ

We evaluate three types of 3-point function, Ct
Vt
ðt;pÞ, C5j

Vi
ðt;pÞ, and C5j

Ai
ðt;pÞ for i ¼ x, y, z to obtain the electric and

magnetic form factors, GEðq2Þ; GMðq2Þ, and the axial-vector and induced pseudoscalar form factors, FAðq2Þ; FPðq2Þ.
The asymptotic forms in t ≫ tsrc and tsink ≫ t, where tsrc and tsink are defined in Eq. (7), for each 3-point function are

given by

Ct
Vt
ðt;pÞ ¼ 1

ZV
C̃2ðt;pÞe−Mðtsink−tÞGEðq2Þ; ð9Þ

C5j
Vi
ðt;pÞ ¼ 1

ZV
C̃2ðt;pÞe−Mðtsink−tÞ iεijkqk

ENðpÞ þM
GMðq2Þ; ð10Þ

C5j
Ai
ðt;pÞ ¼ 1

ZA
C̃2ðt;pÞe−Mðtsink−tÞ

�
FAðq2Þδij −

qiqj
ENðpÞ þMN

FPðq2Þ
�
; ð11Þ

where the squared momentum transfer is given by q2 ¼ 2MNðENðpÞ −MNÞ with q ¼ p. The renormalization factors ZV
and ZA are defined through the renormalization of the local vector and axial-vector currents on the lattice, respectively. All
3-point functions share a common part of C̃2ðt;pÞ, which is similar to the asymptotic form of the 2-point function in Eq. (6),

C̃2ðt;pÞ ¼
ENðpÞ þMN

2ENðpÞ
ZSð0ÞZSðpÞe−tENðpÞ: ð12Þ

However, C̃2ðt;pÞ is simply eliminated by considering the following ratio [30,31]
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Rk
Oα
ðt; pÞ ¼ Ck

Oα
ðt; pÞ

CSSðtsink; 0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CLSðtsink − t; pÞCSSðt; 0ÞCLSðtsink; 0Þ
CLSðtsink − t; 0ÞCSSðt; pÞCLSðtsink; pÞ

s
; ð13Þ

which is constructed from a given 3-point function defined in Eqs. (9)–(11) with appropriate combination of 2-point
functions (6). The ratios for each 3-point function give the following asymptotic values in the asymptotic region:

Rt
Vt
ðt; pÞ ¼ 1

ZV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ENðpÞ þMN

2ENðpÞ

s
GEðq2Þ; ð14Þ

R5j
Vi
ðt; pÞ ¼ 1

ZV

iεijkqkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ENðpÞðENðpÞ þMNÞ

p GMðq2Þ; ð15Þ

R5j
Ai
ðt; pÞ ¼ 1

ZA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ENðpÞ þMN

2ENðpÞ

s �
FAðq2Þδij −

qiqj
ENðpÞ þMN

FPðq2Þ
�
; ð16Þ

which contain the respective form factors.

The MS radius of a form factor GOðq2Þ is defined by

hr2Oi ¼ −
6

GOð0Þ
dGOðq2Þ
dq2

����
q2¼0

ð17Þ

with GO ¼ GE;GM; FA. In the standard way to determine
the MS radius, GOðq2Þ is at first fitted by dipole, quadratic,
and z-expansion forms [32,33] given by

GOðq2Þ ¼
Gd
Oð0Þ

ð1þ cdq2Þ2 ðdipoleÞ; ð18Þ

¼ Gq
Oð0Þ þ cq1q

2 þ cq2q
4 ðquadraticÞ; ð19Þ

¼Gz
Oð0Þþcz1zðq2Þþcz2zðq2Þ2þcz3zðq2Þ3 ðz-expansionÞ;

ð20Þ

where the z-expansion makes use of a conformal mapping
from q2 to a new variable z defined as

zðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þ q2

p
−

ffiffiffiffiffiffi
tcut

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þ q2

p
þ ffiffiffiffiffiffi

tcut
p ð21Þ

with tcut ¼ 4M2
π for GE andGM, or with tcut ¼ 9M2

π for FA,
where Mπ corresponds to the simulated pion mass. Thanks
to the rapid convergence of its Taylor’s series expansion in
terms of z, we employ a cubic z-expansion form as a model
independent fit as described in our previous work [6].
Using the resulting fit parameter given in each fit, the MS
radius can be determined as

hr2Oi ¼
12

cd
¼ −

6

Gq
Oð0Þ

cq1 ¼ −
6

Gz
Oð0Þ

cz1
4tcut

: ð22Þ

B. Momentum derivatives of the 2- and 3-point
functions

As proposed in Ref. [20], the second-order momentum
derivative of the 2-point function with respective to pi at
the zero momentum point is calculated by

Cð2Þ
LSðtÞ ¼ −

X
r

r2i CLSðt; rÞ; ð23Þ

where the summation is calculated over −L=2þ 1 ≤
ri ≤ L=2. The superscript (2) in Cð2Þ

LS denotes the sec-
ond-order derivative. In a large t region, a ratio of the
derivative function at the zero momentum point to the zero
momentum 2-point function becomes

R2ðtÞ ¼ −
Cð2Þ
LSðtÞ

CLSðt; 0Þ
¼ Aþ t

MN
; ð24Þ

where the first term A represents a constant contribution
corresponding to the derivative of the amplitude in Eq. (6).
It should be noted that the constant A does not contain both
the overlap with the local operator, ZL, and its derivative.
This is simply because ZXðpÞ becomes independent of p
for the local operator (X ¼ L).
The derivative of the 3-point function with respective to

the momentum is calculated in the same way as the one
of the 2-point function in Eq. (23). We shall call the method
to calculate the momentum derivatives of the 3-point
functions as the derivative of form factor (DFF) method
in the following. For the vector current, we construct the
first, second and third-order derivatives of the 3-point
function with the appropriate type of 3-point functions,
Ct
Vt
ðt; rÞ or C5j

Vi
ðt; rÞ as
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C5j;ð1Þ
Vi;ðkÞðtÞ ¼ −i

X
r

rkC
5j
Vi
ðt; rÞ; ð25Þ

Ct;ð2Þ
Vt;ðlÞðtÞ ¼ −

X
r

r2l C
t
Vt
ðt; rÞ; ð26Þ

C5j;ð3Þ
Vi;ðklÞðtÞ ¼ i

X
r

rkr2l C
5j
Vi
ðt; rÞ; ð27Þ

with k ≠ i ≠ j and l ¼ x, y, z. Respective ratios associated
with the first to third-order derivatives are defined as

Rk;ðnÞ
Vα;ðlÞðtÞ ¼ −

Ck;ðnÞ
Vα;ðlÞðtÞ

Ct
Vt
ðt; 0Þ : ð28Þ

with the vector three-point function with zero momentum,
Ct
Vt
ðt; 0Þ. The superscript (n) denotes the nth order

derivative.
In this study, we will later determine the magnetic

moment, MS charge radius, and MS magnetic radius from
the ratios associated with the first-order derivative (25),
second-order derivative (26) and third-order derivative (27),
respectively, without the q2 extrapolations of the corre-
sponding form factors toward the zero momentum transfer.
For the axial-vector current, the following three types of

the second-order derivatives are considered in the DFF
method,

C5j;ð2Þ
Aj;ðiÞ ðtÞ ¼ −

X
r

r2i C
5j
Aj
ðt; rÞ; ð29Þ

C5j;ð2Þ
Aj;ðjÞðtÞ ¼ −

X
r

r2jC
5j
Aj
ðt; rÞ; ð30Þ

C5j;ð2Þ
Ai;ðijÞðtÞ ¼ −

X
r

rirjC
5j
Ai
ðt; rÞ; ð31Þ

which are defined with i ≠ j. Just as in the vector cases, the
ratios associated with three types of the second-order
derivatives are evaluated as below, to directly access the
MS axial-vector radius and the value of FPð0Þ=gA with the
axial-vector coupling gA,

Rk;ð2Þ
Aα;ðlÞðtÞ ¼ −

Ck;ð2Þ
Aα;ðlÞðtÞ

C5j
Aj
ðt; 0Þ ð32Þ

with l ¼ i; j; ij.
In the asymptotic region of t ≫ tsrc and tsink ≫ t, the

ratios, which are associated with the nth order derivatives
defined in Eqs. (28) and (32), for n ≥ 2, exhibit the
following asymptotic behavior

Rk;ðnÞ
Oα;ðlÞðtÞ ¼ Cþ Aþ t

MN
; ð33Þ

where the first termC represents a constant contribution that
contains the MS radius of the form factor. The second and
third terms can be identified with the contributions from the
second-order derivative of −C̃2ðt;pÞ=C̃2ðt; 0Þ in Eq. (12),
whose values coincide with the ones evaluated from R2ðtÞ
defined inEq. (24). Thus, the constantC canbe isolated using
R2ðtÞ to subtract the other two contributions from Eq. (33).

C. Equivalence on two definitions
of momentum derivatives

In this subsection we intend to discuss an equivalence
of the two direct derivative methods. In the following
discussion, variables x, y, z represent four-dimensional
coordinates.
The momentum derivative of the quark propagator at

zero momentum is given by

∂Gðx; yÞeip·ðx−yÞ
∂pj

����
p¼0

¼ −iðxj − yjÞGðx; yÞ; ð34Þ

where Gðx; yÞ represents the quark propagator. This
definition is employed in our calculation and
Refs. [20,24,34,35]. Another definition [26] of the momen-
tum derivative is given by means of the point splitting
vector current γ̃j as

∂Gpðx; yÞ
∂pj

����
p¼0

¼ −i
X
z

Gðx; zÞγ̃jðzÞGðz; yÞ; ð35Þ

where Gpðx; yÞ represents the quark propagator calculated
through the phase rotation of the gauge link as UjðxÞ →
eipjUjðxÞ with the phase associated with the momentum
pj. The definition of γ̃j appearing in Eq. (35) is given by

fðxÞγ̃μðxÞgðxÞ ¼
1

2
½fðxþ μ̂Þð1þ γμÞU†

μðxÞgðxÞ − fðxÞð1 − γμÞUμðxÞgðxþ μ̂Þ�: ð36Þ

We will discuss an equivalence of the above two definitions as below.
Let us consider an infinitesimal transformation of the quark field ψðxÞ → ð1þ iαðxÞÞψðxÞ with an arbitrary infinitesimal

parameter αðxÞ depending on x. Requiring the invariance of the expectation value of the quark propagator under this
transformation, one finds the following relation:
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δðhψðxÞψ̄ðyÞiÞ ¼ −i
X
z

ð∂f
μαðzÞÞhṼμðzÞψðxÞψ̄ðyÞi þ iðαðxÞ − αðyÞÞhψðxÞψ̄ðyÞi ¼ 0; ð37Þ

where ṼμðzÞ ¼ ψ̄ðzÞγ̃μðzÞψðzÞ corresponds to the con-

served vector current, and ∂f
μ represents a forward differ-

ence. When αðxÞ ¼ εxj with ε ≠ 0, we obtain

−i
X
z

hṼjðzÞψðxÞψ̄ðyÞi ¼ −iðxj − yjÞhψðxÞψ̄ðyÞi: ð38Þ

The right-hand side of Eq. (38) coincides with the defi-
nition of the momentum derivative of the propagator used
in our calculation, while the left-hand side of Eq. (38) can
be identified with the momentum derivative defined by
Eq. (35). This discussion can be easily applied to hadronic
correlators, and also extended to the higher-order deriva-
tives by using the transformation repeatedly. The similar
transformation can be applied to the temporal direction as
well. Note that the left-hand side of Eq. (38) receives
contribution from the quark disconnected diagram in
general, though it is absent if the isovector current is
considered, or it can be neglected if a partially quenched
approximation is applied. The former case will be
explained below with the nucleon 2-point function, and
the details of the latter case are described in Appendix A.
Here let us consider the proton 2-point function with the

local operators having exact isospin symmetry. Performing
the transformation of the u quark fields in the 2-point
function, one obtains the following relation

h0jNLðt;xÞ
X
z

Ṽu
νðzÞN̄Lð0; 0Þj0i

¼ 2xνh0jNLðt;xÞN̄Lð0; 0Þj0i; ð39Þ

where Ṽu
ν is the conserved vector current for the u quark.

The factor of 2 comes from the fact that the proton operator
has two u quark fields. A similar relation is obtained
through the same transformation of the d quark fields as

h0jNLðt;xÞ
X
z

Ṽd
νðzÞN̄Lð0; 0Þj0i

¼ xνh0jNLðt;xÞN̄Lð0; 0Þj0i; ð40Þ

where Ṽd
ν is the conserved vector current for the d quark.

As for the isovector current Ṽv
νðzÞ ¼ ūðzÞγ̃νðzÞuðzÞ−

d̄ðzÞγ̃νðzÞdðzÞ, the corresponding relation is given by a
difference of the above two relations as,

h0jNLðt;xÞ
X
z

Ṽv
νðzÞN̄Lð0; 0Þj0i

¼ xνh0jNLðt;xÞN̄Lð0; 0Þj0i; ð41Þ

where there is no contribution from quark disconnected
diagrams in the left-hand side, since they can be canceled due
to exact isospin symmetry.
In our pilot calculations at a heavier pion mass of

Mπ ¼ 0.51 GeV, we verify the left and right equality of
the above equation (41), i.e., the equivalence between the
two definitions of the momentum derivative. We numeri-
cally confirm that they are reasonably consistent with
each other through verification of the following two
equations as,

Tr

�
Pþ

X
x

h0jNSðt;xÞ
X
z

Ṽv
t ðzÞN̄Sð0; 0Þj0i

�
¼ tTr

�
Pþ

X
x

h0jNSðt;xÞN̄Sð0; 0Þj0i
�
; ð42Þ

Tr

�
Pþ

X
x

xih0jNLðt;xÞ
X
z

Ṽv
i ðzÞN̄Lð0; 0Þj0i

�
¼ Tr

�
Pþ

X
x

x2i h0jNLðt;xÞN̄Lð0; 0Þj0i
�
: ð43Þ

The numerical verification of Eq. (42) is essentially the
same as that of the renormalization factor of ZṼ ¼ 1. It
should be noted that the equality described in Eq. (43) is
valid only if both the 2-point and 3-point functions are
constructed by the local nucleon operators NL. If the
smeared nucleon operators NS are used, the corresponding
relation becomes more complicated due to explicit spatial
dependence of the smearing function, i.e., ϕðrÞ appearing
in Eq. (1). On the other hand, the equality described in

Eq. (42) can be applicable even for the smeared nucleon
operators NS, since the coordinate in the direction of the
derivative is not spatial but temporal. The smearing
function ϕðrÞ is clearly independent of the temporal
coordinate.
Finally, recall that the smeared nucleon source operator

is adopted in our whole calculation. Thus, the quantity,
which we actually calculated as defined in Eq. (23), may
exhibit a slight difference from the right hand side of
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Eq. (43) in the asymptotic region. This difference is absorbed
only into the difference of the constant A, which is attributed
to the difference in the overlaps to the nucleon, ZXðpÞ,
defined in Eq. (6), and also their derivatives, betweenX ¼ L
and S. Therefore, it should not matter for extraction of the
physical quantities using the DFF method.
Hereafter, we adopt the definition of Eq. (34) for the

momentum derivative in our whole calculation, since the
calculation of the left-hand side in Eqs. (42) and (43) requires
one extra calculation of a quark propagator compared to the
one in the right-hand side. The situation is the same in the
calculation of the derivative of the 3-point function.

III. CALCULATION PARAMETERS

The configurations used in this study were generated with
the Iwasaki gauge action [36] and the six stout-smeared
Clover quark action near the physical point. They were used
for the finitevolume studyof the light hadron spectroscopy in
Nf ¼ 2þ 1 lattice QCD at the physical point [28,29]. The
lattice size isL3 × T ¼ 643 × 64 corresponding to ð5.5 fmÞ4
with a lattice cutoff, a−1 ¼ 2.3162ð44Þ GeV [29]. Details of
the parameters for the gauge configuration generation are
summarized in Ref. [28].
For the measurements for the nucleon correlation func-

tions, the same quark action as in the gauge configuration
generation is employed with the hopping parameter κ ¼
0.126117 for the light quarks and the improved coefficient
cSW ¼ 1.11 [37]. The quark propagator is calculated using
the exponential smeared source in Eq. (1) with the
Coulomb gauge fixing. The smearing parameters for the
quark propagator are chosen as ðA;BÞ ¼ ð1.2; 0.14Þ to
obtain early plateau of the effective mass of CLSðt; 0Þ as
shown in Fig. 1. The periodic boundary condition in all the

temporal and spatial directions is adopted in the quark
propagator calculation. The sequential source method is
used to calculate the nucleon 3-point functions with
tsep ¼ tsink − tsrc ¼ 12, 14, and 16 corresponding to 1.02,
1.19, and 1.36 fm, respectively. Our main result is obtained
with tsep ¼ 14, and the results of tsep ¼ 12 and 16 are used
for comparison. These values of tsep are the same as the
ones used in our previous calculation [6], where significant
excited state contributions were not observed in the
particular form factors of GE, GM, and FA.
The nucleon 2- and 3-point functions are measured with

100 configurations separated by 20 molecular dynamics
trajectories. Their statistical errors are estimated by the
jackknife method with a bin size of 80 trajectories. We use
the all-mode-averaging (AMA) method [38–40] with the
deflated Schwartz alternative procedure (SAP) [41] and
generalized conjugate residual (GCR) [42] for the mea-
surements as in our previous work [6]. We compute the
combination of correlator with high-precision Oorg and
low-precision Oapprox as

OðAMAÞ ¼ 1

Norg

XNorg

f∈G
ðOðorgÞf −OðapproxÞfÞ

þ 1

NG

XNG

g∈G
OðapproxÞg; ð44Þ

where the superscript f, g denotes the transformation under
the lattice symmetry G. In our calculation, it is translational
symmetry, e.g., changing the position of the source operator,
and changing the temporal direction of the configuration
using its hypercube symmetry as in Refs. [5,28,29,43]. Norg

and NG are the numbers for Oorg and Oapprox, respectively.
The numbers and the stopping conditions of the quark
propagator for the high and low-precision measurements
are summarized in Table I. We also take the average of the
forward and backward 3-point functions, and also three
3-point functionswith the projectorP5j in all the three spatial
directions j ¼ x, y, z to increase statistics.
In our calculation we obtain Mπ ¼ 0.1382ð11Þ GeV and

MN ¼ 0.9499ð27Þ GeV, which agree with the previous

TABLE I. Parameters for the AMA technique used in each
choice of the source-sink separation (tsep): the stopping con-
ditions of the quark propagator in the high- and low-precision
measurements (ϵhigh and ϵlow), and the number of the measure-
ments for the high- and low-precision calculations (Norg and NG),
respectively.

tsep ϵhigh ϵlow Norg NG

12 10−8 0.005 4 256
14 10−8 0.005 4 1024
16 10−8 0.002 4 2048

0 4 8 12 16 20 24
t

0.35

0.4

0.45

0.5

smear-local
smear-smear

m
N

FIG. 1. Effective mass for the nucleon from the smear-local
(squared symbols) and smear-smear (circle symbols) cases of the
nucleon 2-point functions, CLSðt; 0Þ and CSSðt; 0Þ. Horizontal
solid line represents a value of the nucleon mass obtained from
CLSðt; 0Þ (smear-local) by a single exponential fit. Shaded band
indicates its statistical error and the fitting range.
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calculation done with the same configuration [28,29]. The
result of MN is shown by the solid lines in Fig. 1, which is
obtained from a single exponential fit of CLSðt; 0Þ in the
asymptotic region. Although a little finite volume effect of
3MeVwas observed in the pionmassMπ by comparingwith
results obtained on the L ¼ 64 and L ¼ 128 lattice volumes
[28], the finite volume effect was not seen in the nucleon
mass MN [29]. For the renormalization factors, we adopt
ZV ¼ 1=Rt

Vt
ðt; 0Þ with GEð0Þ ¼ 1, and ZA ¼ 0.9650ð68Þ

evaluated by the Schrödinger functional scheme [44]. The
physical quantities obtained from the DFF method are
compared with the standard analysis of the form factors
evaluated with the same configuration, and also the ones
from the larger volume calculation of ð10.9 fmÞ3 in Ref. [6].
The parameters for the larger volume data used in the
comparison are summarized in Table II.
For a study of finite volume effect for physical quantities

obtained from the DFF method, a small test calculation is
carried out at a heavier pion mass ofMπ ¼ 0.51 GeV using
the Nf ¼ 2þ 1 configurations with a−1 ¼ 2.194 GeV
generated in Ref. [45]. The parameters for this study are
tabulated in Table III.

IV. RESULTS

In this section the results for the momentum derivatives
of the nucleon 2- and 3-point functions are presented.
Physical quantities obtained from the DFF method are
compared with the ones from the standard analysis on the
form factors. The results for the form factors given by the
standard 3-point functions are summarized in Appendix B.

A. Derivative of the nucleon 2-point function

Figure 2 presents the t dependence of the ratio R2ðtÞ
defined in Eq. (24), where the second-order momentum
derivative of the 2-point function (23) is divided by the zero
momentum 2-point function. The dashed line represents a
linear fit result given with the following form

R2ðtÞ ¼ R0
2 þ

t
MN

ð45Þ

with a fit range of t ¼ 10–14, using the linear fixed slope
with the measured MN obtained from the standard nucleon
2-point function. This fit result describes the data well in
the large t region, though in the small t region we observe a
deviation from the linear behavior which indicates the
unwanted excited-state contributions appearing in the ratio.
In the following analyses, the fit result R0

2 is utilized to

eliminate the common contribution in Rk;ðnÞ
Oα;ðlÞðtÞ of Eq. (33)

for n ≥ 2, so as to extract the physical quantities of interest
as discussed in Sec. II B.

TABLE II. Summary of simulation parameters used in this
calculation together with those in the previous calculation
performed on the larger volume [6]: the spatial and temporal
extents (L and T), smearing parameters of the quark field (A and
B) defined in Eq. (1), separation of time slice between source and
sink operators (tsep), the total number of the measurement
(Nmeas ¼ Nconf × NG) given with the numbers for the configu-
rations (Nconf ) and measurements per configuration (NG), re-
spectively. Recall that the previous results (L ¼ 128) are useful to
be compared with the results obtained from the DFF method in
this study.

L T A B tsep Nmeas

64 64 1.2 0.16 12 25600
14 102400
16 204800

128 128 1.2 0.14 12 5120
14 6400
16 10218

TABLE III. Details of parameters for the finite volume study at
a heavier pion mass ofMπ ¼ 0.51 GeV: the spatial and temporal
extents (L and T), separation of time slice between source and
sink operators (tsep), smearing parameters of the quark field (A
and B) in Eq. (1), the numbers for the configurations (Nconf ) and
measurements per configuration (NG), respectively.

L T tsep A B Nconf NG

32 48 15 0.8 0.21 41 16
64 64 15 0.8 0.21 33 16

0 5 10 15
t

0

20

40

60

80

100

R2(t)

R2
0
+t/MN fit

FIG. 2. Ratio of the derivative of 2-point function to the
standard 2-point function as a function of t. The statistical errors
are comparable to the size of the symbols. The dashed line
represents the linear fit of the large t behavior on R2ðtÞ as R2ðtÞ ¼
R0
2 þ t=MN with the measured MN , where R0

2 is only a free
parameter.
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B. MS charge radius hr2Ei
In the DFF method, the MS charge radius is extracted

from Rt;ð2Þ
V4;ðlÞðtÞ with the second derivative of the 3-point

function Ct;ð2Þ
V4;ðlÞðtÞ, using its asymptotic form obtained with

Eq. (26). The t dependence of Rt;ð2Þ
V4;ðlÞðtÞ is presented in

Fig. 3 together with the data of R2ðtÞ. The slope of Rt;ð2Þ
V4;ðlÞðtÞ

reasonably agrees with the one of R2ðtÞ as expected. At a
glance, it is observed that Rt;ð2Þ

V4;ðlÞðtÞ has the smaller effect

from excited states than the one appearing in R2ðtÞ, since
the t dependence of Rt;ð2Þ

V4;ðlÞðtÞ exhibits almost linear

behavior even in a small t region.
Considering the second derivative of Ct

Vt
ðt;pÞ, one finds

the asymptotic form of Rt;ð2Þ
V4;ðlÞðtÞ as

Rt;ð2Þ
V4;ðlÞðtÞ ¼

hr2Ei
3

þ Aþ t
MN

; ð46Þ

based on the asymptotic form of Ct
Vt
ðt;pÞ given in Eq. (9),

where we use the following relation

∂2fðq2Þ
∂p2

l

����
p¼0

¼ 2
∂fð0Þ
∂q2 : ð47Þ

with q2 ¼ 2MNðENðp2Þ −MNÞ and the condition of q ¼ p.
As discussed in Sec. II B, the last two terms can be

removed with R2ðtÞ or a set of two quantities: R0
2 obtained

from R2ðtÞ [through Eq. (45)] and the measured MN
obtained from the standard spectroscopy.
Figure 4 shows the result of the effective MS charge

radius hr2Ei determined from

hr2Eieff ¼ 3

�
Rt;ð2Þ
V4;ðlÞðtÞ − R0

2 −
t

MN

�
ð48Þ

in each t using two measured quantities of R0
2 and MN

(denoted as diamond symbols). For comparison, we also
plot the result (denoted as circle symbols) given by a naive

determination of hr2Eieff as 3ðRt;ð2Þ
V4;ðlÞðtÞ − R2ðtÞÞ using the

raw data of R2ðtÞ.
A little t dependence is observed in the naive subtraction

due to thenon-negligible excited state contamination inR2ðtÞ
as explained earlier. Since the former value of hr2Eieff exhibits
a flat region, we reliably determine hr2Ei by a constant fit with
the former value in the region of t ¼ 5–9 as drawn by the
solid line togetherwith the statistical error band.A systematic
error is simply estimated by the maximum difference of the
data in the fit region from the constant fit result. The
combined error, where the statistical and systematic errors
are added in quadrature, is shown in the figure by the dashed
lines, although they are almost overlapped with the solid
lines. The value of hr2Ei obtained from the above analysis
(denoted as the DFF method) is tabulated in Table IV. In the
following analysis, the systematic error of quantities
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t,(2)
V ,(l)(t)

R2(t)

R2
0
+t/MN fit

FIG. 3. Ratio of the derivative of 3-point function to the
standard zero-momentum 3-point function, Rt;ð2Þ

V4;ðlÞðtÞ, for
GEðq2Þ as a function of t together with the corresponding one
of 2-point function, R2ðtÞ, already shown in Fig. 2. A linear fit
result of R2ðtÞ is also plotted as the dashed line.
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FIG. 4. Effective MS charge radius hr2Eieff as a function of t,

determined from Rt;ð2Þ
V4;ðlÞðtÞ with the data of R2ðtÞ (circle symbols)

and the values of R0
2 and MN (diamond symbols), respectively.

The solid red line represents a constant fit result on the diamond
symbols, and its statistical error. The dashed lines appearing
slightly outside the solid lines represent the total error. The MS
radius determined from the standard analysis of GEðq2Þ in this
calculation on the L ¼ 64 lattice volume is plotted by the square
symbol, and the one obtained on the L ¼ 128 lattice volume [6] is
also included by the triangle symbol. The inner and outer errors
of these results represent the statistical and total errors, respec-
tively. Here, the total errors are evaluated by adding the statistical
and systematic errors in quadrature. The two horizontal bands
represent experimental results from ep scattering (upper) [2] and
μ-H atom spectroscopy (lower) [46].
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obtained from the DFF method will be quoted in the same
manner as described above.
The result of hr2Ei is compared with the one determined

from the fitting of the q2 dependence of GEðq2Þ in Fig. 4.
The result of hr2Ei obtained from the dipole fit defined in
Eq. (18) on the data of GEðq2Þ has the smaller statistical
error (inner error bar) than that of the above mentioned DFF
method, while the rather large systematic uncertainty (outer
error bar) on the fit result of GEðq2Þ is inevitable due to the
choice of the fit form. A systematic error is estimated by
maximum discrepancy of the results obtained with different
fit forms, namely the quadratic and z-expansion forms as
defined in Eqs. (19) and (20). Therefore, the results
obtained from both the standard and DFF methods, are
mutually consistent within the total errors whose sizes are
comparable. The two results obtained in this study also
reasonably agree with the previous result obtained from the
standard method in our calculation performed on the larger
volume (L ¼ 128) at the physical point [6].
It is worth mentioning that, compared to the values

obtained from the standard calculation with the form factor
GEðq2Þ, the result of hr2Ei in the DFFmethod is likely closer
to both experimental values from the electron-proton
scattering [2], 0.882ð11Þ fm2, and muonic hydrogen spec-
troscopy [46], 0.823ð2Þ fm2, while there remains a dis-
crepancy of more than 10%. It might not be attributed to
excited state contributions. The reason is that the data given
with tsep ¼ 12 completely agrees with those with tsep ¼ 14

as shown in Fig. 5 in the DFF method. The data given with
tsep ¼ 16 is also included in the figure, though it is too
difficult to determine that there is an obvious dependency
with respect to tsep because of its large statistical errors. In
Ref. [27], a large tsep dependence was reported for the
calculation of hr2Ei using another derivative method. We,
however, consider that it could be caused by their choice of
smearing parameters for the quark operators, since our
smearing parameters are highly optimized to eliminate the
excited state contributions in the nucleon 2-point and
3-point functions.
The finite volume effect is another possible source of the

systematic errors in the DFF method. The large effect on
the quantity of hr2Ei is not observed in our standard analyses
with the form factor GEðq2Þ obtained from the L ¼ 64 and
L ¼ 128 lattice data shown in Appendix B. A significant

effect, however, is reported in a previous study in momen-
tum derivative calculations of meson correlation functions
[34], and also found in our pilot study of hr2Eieff at a heavier
pion mass of Mπ ¼ 0.51 GeV. Figure 6 shows that there is
a large discrepancy of hr2Eieff on volumes of the spacial
extent of 2.9 and 5.8 fm at Mπ ¼ 0.51 GeV, while the two
results determined from the form factor in the standard way
are highly consistent with each other and also the larger
volume result from the DFF method. Furthermore, it should
be noted that even if hr2Eieff has a flat t region, the finite
volume effect might exist in the DFF method, as discussed
in Ref. [23]. Therefore, we would need to carefully
investigate the finite volume effect in the DFF method.
For a precise determination of hr2Ei, it is an important

future task to investigate the systematic uncertainty in the
DFF method due to the finite size effect near the physical
point, using our large volume configuration of L ¼ 128.
Finally, we remark on an attempt of the improved analysis
in the DFF method for the case of meson form factors
[34,35] in order to reduce the finite volume effect. This
improvement can be also extended to the nucleon form
factors.
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FIG. 5. Comparison of the effective MS charge radius hr2Eieff
obtained with tsep ¼ 12 (circle symbols), 14 (diamond symbols),
and 16 (square symbols), respectively. The data of tsep ¼ 12 are
slightly shifted to the positive x direction for clarity. The two
horizontal bands represent experimental results from ep scatter-
ing (upper) [2] and μ-H atom spectroscopy (lower) [46].

TABLE IV. Summary of physical quantities obtained from the DFF method and also the corresponding ones
evaluated in the standard analysis with the respective form factors. The raw data of the form factors are summarized
in Appendix B. For comparison, the larger volume (L ¼ 128) results, which are given by the average of results from
tsep ¼ 12, 14 and 16 within the standard analysis in our previous calculation [6], are also tabulated.

hr2Ei [fm2] μ hr2Mi [fm2] hr2Ai [fm2]

DFF method 0.722(47)(8) 4.337(73)(31) 0.397(46)(24) 0.341(35)(13)
form factorðL ¼ 64Þ 0.646(16)(91) 4.36(4)(82) 0.58(2)(2.67) 0.308(17)(52)
form factorðL ¼ 128Þ 0.616(27)(33) 4.41(14)(33) 0.500(51)(440) 0.283(30)(77)
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C. Magnetic moment μ

The magnetic moment μ ¼ GMð0Þ in the DFF method is

calculated from R5j;ð1Þ
Vi;ðkÞðtÞ with the first derivative of the 3-

point functionC5j;ð1Þ
Vi;ðkÞðtÞ, using its asymptotic form obtained

with Eq. (25). The effective magnetic moment is defined by

μeff ¼ 2MNR
5j;ð1Þ
Vi;ðkÞðtÞ ð49Þ

with k ≠ i ≠ j, whose form can be read off by considering
the derivative of the asymptotic form of C5j

Vi
ðt;pÞ in

Eq. (10). It is here worth pointing out that the ratio

R5j;ð1Þ
Vi;ðkÞðtÞ is supposed to show no dependence of t in the

asymptotic region.
Figure 7 presents that the data of μeff exhibits a long flat

region. The value of μ is again determined from a constant
fit of the data in the region of t ¼ 5–9. The fit result of μ
(denoted as the DFF method) is tabulated in Table IV. As a
result, the total error of the DFF result is dominated only by
the statistical error as in the hr2Eieff case. As shown in Fig. 7,
a reasonable consistency between μ obtained by the DFF
method and the dipole fit result of GMðq2Þ is observed.
However, the fit result of GMðq2Þ receives the large
systematic uncertainty due to the choice of the fit form.
Indeed, it is mainly caused by the z-expansion fit result of
GMðq2Þ, where unnatural vending down behavior toward
q2 ¼ 0 is observed in the data of the L ¼ 64 lattice volume.
It was less likely to happen in our previous study with the
larger volume (L ¼ 128), where the lowest q2 becomes
closer to q2 ¼ 0.

Recall that for the case of GMðq2Þ, GMð0Þ cannot be
directly measured in the standard method for kinematical
reasons. Therefore, the determination by the fitting of the
q2 dependence of GMðq2Þ sometimes suffers from the large
model dependence of the fit form because of the absence of
the GMð0Þ data. For this reason, the systematic error on the
DFF result in the smaller volume calculation is in general
much better controlled than that of the fit result obtained
even from the larger volume calculation.
The result in the DFF method is in good agreement with

the two fit results of GMðq2Þ obtained in this study
(L ¼ 64) and also from the larger volume calculation
(L ¼ 128) [6]. However, the significant reduction of the
systematic error in the DFF method may expose an
underestimation of μ in comparison with the experimental
value, μ ¼ 4.70589, in PDG20 [47]. In order to investigate
possible other systematic errors in the DFF method, the
direct comparison of the data with tsep ¼ 12, 14, and 16 is
first presented in Fig. 8. The three data statistically agree
with each other in the middle t region. We thus consider
that the present dataset shows no significant uncertainty
associated with the excited state contamination in the data
of tsep ¼ 14, though the statistical error of tsep ¼ 16 is
larger than those for the other two data.
We rather consider that the discrepancy from the experi-

ment might be caused again by a finite volume effect. As
shown in Fig. 9, in our pilot study of the DFF method at
Mπ ¼ 0.51 GeV, we observe a large finite volume effect of
more than 10% in comparisonwith the data on the ð2.9 fmÞ3
and ð5.8 fmÞ3 volumes even far away from the physical
point. Note that the two dipole-fit results obtained with two
spatial extents of L ¼ 64 and L ¼ 128 at the physical point
agree with each other within the standard method, and thus
such a large effect is not detected in the standard form factor
calculation. More detailed investigations are required for full
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FIG. 7. Same as Fig. 4 for the effective magnetic moment μeff

defined in Eq. (49). The cyan band represents the experimental
result [47].
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FIG. 6. Finite volume study of hr2Eieff at a heavier pion mass of
Mπ ¼ 0.51 GeV. Filled and open circle symbols represent the
data of the spatial extent of 5.8 fm and 2.9 fm, respectively. The
square symbols correspond to the dipole fit results of the form
factor GEðq2Þ on the larger (filled symbols) and smaller (open
symbols) spatial volume.
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control of possible systematic errors in the DFF method in
order to resolve the discrepancy mentioned above.

D. MS magnetic radius hr2Mi
Considering the third derivative of C5j

Vi
ðt;pÞ and its

asymptotic form obtained with Eq. (10), R5j;ð3Þ
Vi;ðklÞðtÞ yields

the following asymptotic form:

R5j;ð3Þ
Vi;ðklÞðtÞ ¼

μ

2MN

�hr2Mi
3

þ 1

2M2
N
þ Aþ t

MN

�
; ð50Þ

with l ≠ k where l and k are the directions of the derivative
defined in Eq. (27). When l ¼ k is set in Eq. (27), the right-
hand side of the above equation is multiplied by a factor of
three. In our analysis all the l data are averaged.
Using the asymptotic form of Eq. (50), the effective MS

magnetic radius in the DFF method is determined by

hr2Mieff ¼ 3

0
B@R5j;ð3Þ

Vi;ðklÞðtÞ
R5j;ð1Þ
Vi;ðkÞðtÞ

−
1

2M2
N
− R0

2 −
t

MN

1
CA ð51Þ

with the first derivative R5j;ð1Þ
Vi;ðkÞðtÞ described in the previous

subsection. The data of hr2Mieff plotted in Fig. 10 exhibits
the milder t dependence in small t region compared to the
data from a naive subtraction with the raw data of R2ðtÞ,
3ðR5j;ð3Þ

Vi;ðklÞðtÞ=R
5j;ð1Þ
Vi;ðkÞðtÞ − 1=ð2M2

NÞ − R2ðtÞÞ for the same

reason as in the case of hr2Eieff . In the middle t region
the two results are mutually consistent, so that we deter-
mine the value of hr2Mi by a constant fit of hr2Mieff in the
region of t ¼ 5–9, which is plotted by the solid lines in
Fig. 10, and tabulated in Table IV. Although the statistical
error of hr2Mi obtained from the fit ofGMðq2Þ on the L ¼ 64
lattice volume is smaller than that of the DFFmethod, much
larger systematic error regarding the choice of fit function
makes their total accuracy worse than the DFF result.
While the result of hr2Mi given in the DFF method has

smaller systematic error, its central value is much smaller
than the experimental value, hr2Mi ¼ 0.733ð32Þ fm2 [47]. It
might be caused by a finite volume effect in the DFF
calculation, since this quantity is indeed considered to be
more sensitive to finite volume effects compared to other
quantities discussed earlier. In the DFF method, the
quantity of hr2Mi requires the third derivative of the 3-point
function i.e., the third moment of the 3-point function in
coordinate space. Therefore, the larger spatial extent is
naturally required for its higher moment compared to the
other quantities considered in the previous subsections.
Figure 11 shows that in our pilot calculation of hr2Mieff at
Mπ ¼ 0.51 GeV, more significant finite volume effect is
observed than the case of hr2Eieff in Fig. 6: the data of
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hr2Mieff on the smaller volume becomes negative in a large t
region in contrast to that of hr2Eieff .
Another possible source of systematic errors comes from

the excited state contamination. Comparing the three
datasets using tsep ¼ 12, 14, and 16 in Fig. 12, the tsep
dependence is not clearly seen due to their large statistical
fluctuations. In a future work, it is important to investigate
the above two systematic errors by calculations with the
larger volume (L ¼ 128) and the large variation of tsep.

E. MS axial radius hr2Ai
For the MS axial radius hr2Ai, the same analysis as in the

case of hr2Ei with Rt;ð2Þ
V4;ðlÞðtÞ is performed for R5j;ð2Þ

Aj;ðiÞ ðtÞ,
where i ≠ j in the subscript expresses the direction of the
derivative defined in Eq. (29). The asymptotic form of

R5j;ð2Þ
Aj;ðiÞ ðtÞ is given by

R5j;ð2Þ
Aj;ðiÞ ðtÞ ¼

hr2Ai
3

þ Aþ t
MN

: ð52Þ

The effective MS axial-vector radius is defined by

hr2Aieff ¼ 3

�
R5j;ð2Þ
Aj;ðiÞ ðtÞ − R0

2 −
t

MN

�
; ð53Þ

and its value is plotted as a function of t in Fig. 13. The data
is compared with the one determined from a naive sub-

traction with the raw data of R2ðtÞ as 3ðR5j;ð2Þ
Aj;ðiÞ ðtÞ − R2ðtÞÞ.

Both estimations for hr2Aieff exhibit a reasonably flat
behavior in the middle t region, respectively. We determine
the value of hr2Ai by a constant fit of the data of hr2Aieff in the
region of t ¼ 5–9 The result obtained by the DFF method is
tabulated in Table IV. As shown in Fig. 13, the DFF result is
fairly consistent with the two dipole-fit results of FAðq2Þ
obtained in this study (L ¼ 64) and also from the larger
volume calculation (L ¼ 128) [6]. Again, the total accuracy
of the dipole fit results is slightly worse than the DFF result
that can avoid any model dependence.
As in the case of the dipole fit results, the result of the

DFF method is little smaller than the experiment [48,49],
0.449ð13Þ fm2. It can be attributed to excited state con-
tamination. It is simply because a visible difference
between the data from tsep ¼ 12 and 14 is seen in the flat
region of hr2Aieff as a function of t as shown in Fig. 14.
Furthermore, the data of tsep ¼ 16 statistically agrees with
the experiment, though the statistical uncertainties are not
small enough to make a firm conclusion. In addition,
recently, it was reported that a large effect due to the excited
state contamination exists in determination of hr2Ai even
from the fitting of the q2 dependence of FAðq2Þ [14,18].
Since we have only a few variations of tsep, we will need to
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verify whether or not the discrepancy from the experiment
can be explained by the systematic uncertainties from the
excited state contamination using the data with the larger
variation of tsep. It is worth pointing out that the systematic
error associated with the finite volume effect in hr2Aieff
might be smaller than the other quantities obtained from the
DFF method discussed earlier. This is expected from our
pilot calculation at Mπ ¼ 0.51 GeV as shown in Fig. 15.
The difference between the data on the larger and smaller
volumes is about 10% in the middle t region, which it is
much smaller than those of other quantities as shown in
Figs. 6, 9, and 11.
The size of the finite volume effect is supposed to depend

on the MS radius of the target form factor. If the MS radius
is small, in other words, the form factor has a broad shape
in the q2 space, its moment in the coordinate space is less
sensitive to the finite volume. This is because the narrow

spatial distribution in the coordinate space is given by the
inverse Fourier transform of the broad form factor in a
classical argument.2

Indeed, the three values of hr2Ai at Mπ ¼ 0.51 GeV,
which are obtained from the DFF method on the larger
volume (L ¼ 64) and the dipole fit results obtained from
both two volumes (L ¼ 32 and L ¼ 64) as shown in
Fig. 15, are certainly smaller than those for hr2Ei and
hr2Mi. This observation leads to the expectation that hr2Aieff
has the smaller finite volume effect. This expectation
should remain valid at the physical Mπ , since the exper-
imental value of hr2Ai is smaller than those of hr2Ei and hr2Mi.

F. FPð0Þ from the DFF method

As in the case of GMð0Þ, FPð0Þ cannot be directly
measured in the standard method for kinematical reasons.
In the DFF method, the value of FPð0Þ is accessible in two

ways. One uses R5j;ð2Þ
Ai;ðijÞðtÞ with i ≠ j as defined in Eq. (30),

while the other uses R5j;ð2Þ
Aj;ðjÞðtÞ defined in Eq. (31). Their

asymptotic forms are given by

R5j;ð2Þ
Ai;ðijÞðtÞ ¼

FPð0Þ
2MNgA

; ð54Þ

R5j;ð2Þ
Aj;ðjÞðtÞ ¼

hr2Ai
3

þ Aþ t
MN

þ FPð0Þ
MNgA

; ð55Þ

where i ≠ j. Using them, the effective value of
2MNFPð0Þ=gA can be defined in two ways as

2MNFeff
P ð0Þ

gA
¼ 4M2

NR
5j;ð2Þ
Ai;ðijÞðtÞ ð56Þ

¼ 2M2
NðR5j;ð2Þ

Aj;ðjÞðtÞ − R5j;ð2Þ
Aj;ðiÞ ðtÞÞ; ð57Þ

where the second term of R5j;ð2Þ
Aj;ðiÞ appearing in Eq. (57) is the

one used for the determination of hr2Aieff as discussed in the
last subsection.
Figure 16 shows that the two different estimations of

2MNFeff
P ð0Þ=gA with tsep ¼ 14 (denoted with filled sym-

bols) provide inconsistent results: the result obtained from
Eq. (56) is much smaller than that of Eq. (57). The same
behavior is also seen in the data from the smaller and larger
source-sink separations for tsep ¼ 12 and 16. Note that the
expected value of 2MNFPð0Þ=gA is much larger than these
two observed values according to the following reasons:
(1) 2MNFPðq21Þ=gA ∼ 40 is observed even at the lowest
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2For more details, see, an intuitive argument for the required
spatial size in extraction of the MS radius for the spatial
distribution that falls exponentially at large distances as described
in Refs. [5,50].
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nonzero q2 ¼ q21 in the standard method with tsep ¼ 14.
(2) The q2 dependence of FPðq2Þ is expected to rapidly
increase in the limit of q2 → 0 as shown in Appendix B.
This difference between the two estimations of

2MNFeff
P ð0Þ=gA can be attributed to a finite volume effect.

This is simply because a similar trend is observed in our
pilot calculation atMπ ¼ 0.51 GeV, where the discrepancy
between the two results becomes resolved in a larger
volume calculation as shown in Fig. 17. Furthermore,

those data in the middle t region are compatible with the
value expected from a fit of FPðq2Þ on the larger volume,
which is plotted by the blue diamond symbol in the figure.
A large systematic effect stemming from the finite volume
is easily understood in this case, since the induced
pseudoscalar form factor in the coordinate space, which
corresponds to the one given by the inverse Fourier trans-
form of FPðq2Þ, has a very broad structure. This is naively
expected from the fact thatFPðq2Þ has a sharp peak near the
origin at the physical Mπ corresponding to the large
contribution of the pion pole in the pion pole dominance
model. The moment of such a broad function in the
coordinate space could not avoid the strong dependence
of the finite volume.
In addition to the finite volume effect, in our previous

studies, we observed other problem that the lattice data
of FPðq2Þ differs from the pion pole dominance model
[5,51], which can be explained by large excited state
contamination [6]. Similar discussions were reported in
Refs. [14–16,18,52]. In order to fully resolve the problems,
more comprehensive investigations are necessary in this
particular quantity.

V. SUMMARY

Wehave calculated theMS radii andmagneticmoment for
the isovector nucleon form factors using the DFF method,
which is a direct calculation method of the derivative of the
form factor proposed in Ref. [20], in the Nf ¼ 2þ 1 QCD
near the physical point on the ð5.5 fmÞ3 volume. We have
also discussed an equivalence of the method used in this
study to another derivative method [26].
The results from the DFF method near the physical point

are compared with the ones from the standard form factor
calculation on the same volume (L ¼ 64) and also on the
larger volume (L ¼ 128) in our previous work [6]. For
hr2Ei, μ, hr2Mi, and hr2Ai, the statistical uncertainties of the
results in the DFF method are relatively larger than those
obtained from the fitting of the q2 dependence of the
corresponding form factors. However, the DFF method can
avoid the systematic error associated with the model
dependence of the fit form. Such a systematic error is
dominant over the statistical error in the standard method,
and then it makes the total accuracy worse than the DFF
results. We have also confirmed that the results from the
DFF method are in good agreement with the ones from the
standard analysis with the form factors within the combined
errors of the statistical and systematic uncertainties in both
methods, except for the quantity of FPð0Þ.
Two ways to determine FPð0Þ in the DFF method

provide inconsistent results. A similar discrepancy is
observed in our pilot calculation at a heavier pion mass
of Mπ ¼ 0.51 GeV on the smaller volume of ð2.9 fmÞ3,
while it becomes resolved on a larger volume of ð5.8 fmÞ3.
We thus have considered that the discrepancy comes from a
finite volume effect, and the significant finite volume effect
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can be related to a steep behavior of FPðq2Þ near the origin,
in other words, its broad shape in the coordinate space.
In our pilot calculation at a heavier pion mass of

Mπ ¼ 0.51 GeV, we have also found that the DFF method
is more sensitive to finite volume effect than the standard
method as reported in the previous works [34,35].
Therefore, an undetermined systematic error stemming
from the finite volume effect might exist in the DFF results
from our numerical simulations on the ð5.5 fmÞ3 volume
near the physical point, although they agree with the results
obtained by the standard method. One of the important
future works is a comprehensive study of systematic errors
in the DFF method, including the one from excited state
contamination, at the physical point using the ð10.9 fmÞ3
volume as is done in our previous study of the form factors
in the standard method [6]. In this future direction, some
improvements in the DFF method are needed to reduce the
finite volume effect in the analysis level. Such an improved
analysis in the DFF method was proposed for the case of
meson form factors [34,35], so that it can be extended and
applied to the nucleon form factors.
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APPENDIX A: MOMENTUM DERIVATIVE
UNDER A PARTIALLY QUENCHED

APPROXIMATION

In this Appendix, variables x, y, z represent four-
dimensional coordinates. Let us consider the quark propa-
gator Gpj

, which satisfiesX
z

Dpj
ðx; zÞGpj

ðz; yÞ ¼ δx;y: ðA1Þ

where Dpj
represents the Dirac operator constructed with

the gauge link that is applied by the phase rotation

associated with the momentum pj as UjðxÞ → eipjUjðxÞ
[26]. This phase rotation is nothing but a uniform external
magnetic field. The expectation value of an observableO in
the theory with a single quark field subjected to uniform
phase rotation is defined by

hOipj
¼

R
DUO detDpj

e−SeffðUÞ

ZðpjÞ
ðA2Þ

with

ZðpjÞ ¼
Z

DU det Dpj
e−SeffðUÞ; ðA3Þ

whereSeffðUÞ contains the gauge action and alsomay contain
the termassociatedwith thedeterminants of theDiracoperator
for other quarks, which are independent of pj. Using the
above definition, a derivative of hGpj

ðx; yÞipj
with respect to

pj at zero momentum is expressed by three terms3 as,

∂
∂pj

hGpj
ðx; yÞipj

�����
p¼0

¼ −i
X
z

hGðx; zÞγ̃jðzÞGðz; yÞi

þ i
X
z

hTr½Gðz; zÞγ̃jðzÞ�Gðx; yÞi

− i
X
z

hTr½Gðz; zÞγ̃jðzÞ�ihGðx; yÞi; ðA4Þ

where we use the following relation

∂
∂pj

det Dpj

�����
p¼0

¼ i det D
X
z

Tr½Gðz; zÞγ̃jðzÞ�; ðA5Þ

with

∂
∂pj

Dpj
ðx; yÞ

�����
p¼0

¼ iγ̃jðxÞδx;y: ðA6Þ

The right-hand side of Eq. (A4) is nothing but the left-hand
side of Eq. (38) after the Wick contraction.
Under a partially quenched approximation of the quark

field subjected to uniform phase rotation, the condition of
detDpj

¼ 1 is imposed in Eqs. (A2) and (A3). It thus ends
up that the second and third terms in Eq. (A4) disappear,
since both terms arise from the derivative of detDpj

.
Therefore, the momentum derivative of the quark propa-
gator is expressed only by the first term in Eq. (A4) under
the partially quenched approximation.

3Even though the third term should be vanished because
hTr½Gðz; zÞγ̃jðzÞ�i ¼ 0, we nevertheless write it down explicitly.
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APPENDIX B: RESULT OF FORM
FACTORS ON A 644 LATTICE

In this Appendix, the results for the form factors
calculated near the physical point on the L ¼ 64 lattice
volume are summarized. The momentum transfer squared
q2 is calculated by q2 ¼ 2MNðENðpÞ −MNÞ with
ENðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N þ p2
p

. The energy ENðpÞ is determined
using the measured MN and lattice momentum p ¼
2π=64 × n with integer vectors n. The values of q2 in
each momentum used in this study are listed in Table V. The
form factors are evaluated from the ratios of Eqs. (14)–(16)
in the asymptotic region, whose values are determined from
a constant fit with the fitting range of t ¼ 4–8 for tsep ¼ 12,
t ¼ 5–9 for tsep ¼ 14, and t ¼ 5–11 for tsep ¼ 16.
The results for the renormalized isovector GEðq2Þ,

GMðq2Þ, FAðq2Þ, and FPðq2Þ with tsep ¼ 12, 14, and 16
are shown in Figs. 18–21 together with those obtained in
the previous calculation on a 1284 lattice [6] for compari-
son. For FAðq2Þ and FPðq2Þ, the error of ZA ¼ 0.9650ð68Þ
[44] is included in their errors. The values of each form
factor obtained with tsep ¼ 12, 14, and 16 are tabulated in

Table VI–VIII, respectively. Our results with tsep ¼ 12, 14,
and 16 on the L ¼ 64 lattice volume are consistent with
each other, and also statistically agree with the data on the
L ¼ 128 lattice volume [6] in all the form factors, except
for FPðq2Þ. There is a clear discrepancy between the data of
FPðq2Þ obtained with tsep ¼ 12 and 14 on the L ¼ 64

TABLE V. List of integer vectors ni for the momentum pi ¼ 2πni=L (with L ¼ 64) projected on the nucleon 2-
point and 3-point functions. The degeneracy in each ni (Ndeg), and the corresponding values of the momentum
transfer squared q2i ¼ 2MNðENðpiÞ −MNÞ are also tabulated.

i 0 1 2 3 4 5 6 7 8 9

ni (0,0,0) (1,0,0) (1,1,0) (1,1,1) (2,0,0) (2,1,0) (2,1,1) (2,2,0) (2,2,1) (3,0,0)
Ndeg 1 6 12 8 6 24 24 12 24 6
q2i ½GeV2� 0 0.051 0.101 0.149 0.196 0.242 0.288 0.375 0.418 0.418
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FIG. 18. Result of GEðq2Þ with tsep ¼ 12, 14, and 16 on the
L ¼ 64 lattice volume as a function of q2. The data of tsep ¼ 16

are slightly shifted to the positive x direction for clarity. Our
previous result on the L ¼ 128 volume [6] given after taking
average of three datasets calculated with tsep ¼ 12, 14, and 16 is
also plotted by the asterisk symbol. The red curve represents
Kelly’s parametrization of the experiment data [54].
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FIG. 19. Same as Fig. 18 for GMðq2Þ. The red curve represents
Kelly’s parametrization of the experiment data [54].
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FIG. 20. Same as Fig. 18 for FAðq2Þ. The red curve is given by
a dipole form with the dipole mass [48,49] and gA [47].
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lattice volume. It is considered to be caused by significant
effect from excited state contamination as reported in
Refs. [6,14–16,18,52].

It is worth remarking that the value of gA obtained with
tsep ¼ 12 is slightly smaller than the one obtained with
tsep ¼ 14. Since the data with tsep ¼ 16 has a much larger
statistical error than the two data, the tsep dependence is
unclear as shown in Fig. 22. The figure also shows that any
appreciable tsep dependence was not observed in the range
of tsep ¼ 10–16 in the larger volume calculation [6],
and they are statistically consistent with all the data on
the L ¼ 64 lattice. Therefore, it is not clear whether this
slight difference between two results from tsep ¼ 12 and 14
is just a statistical fluctuation or related to the systematic
errors, e.g., the finite volume effect and the excited state
contamination. To clarify this point, a further systematic
study using a large set of different tsep with the statistical
error as small as the two data is needed.
The fit results with dipole, quadratic, and z-expansion

functions in Eqs. (18)–(20) for GEðq2Þ, GMðq2Þ, and
FAðq2Þ=gA are summarized in Tables IX–XI. The value
of χ2=dof is obtained from a correlated fit. The maximum
q2 in each fit denoted by q2cut in the tables is chosen to
obtain an acceptable χ2=dof. In all the fits for GEðq2Þ and
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NFAðq2Þ=ðM2
π þ q2Þ with a dipole form of FAðq2Þ using the

dipole mass [48,49] and gA [47]. The experimental result of the
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TABLE VI. Results of the form factors with tsep ¼ 12.

i q2i ½GeV2� GEðq2Þ GMðq2Þ FAðq2Þ 2MNFPðq2Þ
0 0.000 1.0000 — 1.236(14) —
1 0.051 0.8620(68) 3.899(63) 1.171(13) 34.29(64)
2 0.101 0.7569(70) 3.495(48) 1.100(13) 21.90(48)
3 0.149 0.6664(96) 3.175(53) 1.053(13) 16.00(34)
4 0.196 0.612(15) 2.900(52) 0.994(14) 12.42(36)
5 0.242 0.5570(80) 2.647(34) 0.952(13) 9.86(19)
6 0.288 0.4976(73) 2.442(38) 0.912(14) 8.35(22)
7 0.375 0.446(11) 2.125(60) 0.810(23) 6.15(21)
8 0.418 0.410(11) 2.018(56) 0.791(18) 5.22(21)
9 0.418 0.394(26) 1.928(64) 0.815(22) 5.14(26)

TABLE VII. Results of the form factors with tsep ¼ 14.

i q2i ½GeV2� GEðq2Þ GMðq2Þ FAðq2Þ 2MNFPðq2Þ
0 0.000 1.0000 — 1.279(16) —
1 0.051 0.8616(74) 3.955(62) 1.194(15) 38.09(78)
2 0.101 0.763(10) 3.616(59) 1.125(15) 23.63(45)
3 0.149 0.6752(98) 3.277(60) 1.059(17) 17.09(42)
4 0.196 0.627(13) 2.920(52) 1.025(19) 13.27(35)
5 0.242 0.570(11) 2.689(52) 0.970(18) 10.93(40)
6 0.288 0.5082(86) 2.552(70) 0.937(21) 9.03(34)
7 0.375 0.452(24) 2.240(87) 0.834(25) 6.33(31)
8 0.418 0.406(17) 2.109(92) 0.801(22) 5.79(27)
9 0.418 0.419(27) 1.857(83) 0.845(24) 5.49(25)

TABLE VIII. Results of the form factors with tsep ¼ 16.

i q2i ½GeV2� GEðq2Þ GMðq2Þ FAðq2Þ 2MNFPðq2Þ
0 0.000 1.0000 — 1.244(53) —
1 0.051 0.880(18) 4.00(15) 1.155(44) 39.8(1.9)
2 0.101 0.774(18) 3.61(12) 1.083(36) 25.2(1.3)
3 0.149 0.685(19) 3.22(16) 1.033(40) 17.41(85)
4 0.196 0.623(27) 2.96(13) 0.997(40) 13.40(57)
5 0.242 0.552(20) 2.69(11) 0.931(34) 10.94(63)
6 0.288 0.510(17) 2.46(11) 0.890(33) 9.01(49)
7 0.375 0.429(19) 2.131(88) 0.827(36) 6.62(37)
8 0.418 0.405(18) 2.061(95) 0.778(33) 5.92(29)
9 0.418 0.399(72) 2.11(17) 0.842(74) 5.74(80)

8 10 12 14 16 18
tsep

1.1

1.2

1.3

1.4

g A

Experiment
L=64
L=128

FIG. 22. The renormalized gA from the L¼64 and L ¼ 128 [6]
lattices as a function of tsep. The data of L ¼ 128 are slightly
shifted to the negative x direction for clarity. The cyan band
represents the experimental value [47].
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FAðq2Þ=gA, we use the condition of GEð0Þ¼FAð0Þ=gA¼1
imposed in the respective fit functions.
The central values and their statistical errors presented

in Table IV are determined by the dipole fits of the
respective form factors. Their systematic errors are
estimated from the maximum discrepancy from the dipole
fit result with the two other fits. Note that a cubic z-
expansion fit of GMðq2Þ gives a negative value of the MS

magnetic radius in contrast to the results from other
two fits. In our data of GMðq2Þ, the z-expansion fit indeed
becomes unstable once higher powers of z are included,
while a quadratic z-expansion fit for GMðq2Þ gives a
positive radius. Nevertheless, in estimate of the systematic
error of GMðq2Þ, we use the result obtain from the cubic
z-expansion fit of GMðq2Þ to hold the same evaluation used
in the other form factors.
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