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We update lattice QCD results for second order cumulants of conserved charge fluctuations and
correlations at nonzero temperature and vanishing values of the conserved charge chemical potentials. We
compare these results to hadron resonance gas calculations with and without excluded volume terms as well
as S-matrix results in the hadronic phase of QCD and comment on their current limitations. We,
furthermore, use these results to characterize thermal conditions in the vicinity of the pseudocritical line of
the chiral transition in QCD. We argue that the ratio of strange to baryon chemical potentials is a robust
observable that, on the one hand, deviates only little from hadron resonance gas results, but, on the other
hand, is very sensitive to the spectrum of strange baryon resonances.
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I. INTRODUCTION

The thermal state of strong-interaction matter described
by quantum chromodynamics (QCD) with two light up and
down quarks and a heavier strange quark is fixed by four
external control parameters, the temperature (T), and three
chemical potentials (μB, μQ, μS) that couple to the con-
served currents for net baryon number (B), electric-charge
(Q), and strangeness (S), respectively. In a grand canonical
description of equilibrium thermodynamics, these external
control parameters are Lagrange multipliers, appearing in
the statistical operator, that characterize the thermodynamic
conditions of, e.g., matter described by the strong force.
The set of external parameters (T, μB, μQ, μS) may be used
to calculate various bulk thermodynamic observables, e.g.,
energy and number densities as well as generalized
susceptibilities that are obtained from higher order deriv-
atives of the grand canonical partition function. Such
observables are, in principle, measurable in experiments,
while the set of Lagrange multipliers (T, μB, μQ, μS) is not.
They are specific to a given model to the extent that the
value of a certain bulk thermodynamic observable, e.g., the

net baryon-number density, which is related to a certain
temperature value T in QCD (or nature) will correspond to
another temperature value in a model calculation. The latter
will be close to the former only when the model approx-
imations provide a realistic description of QCD.
Lattice QCD calculations provide continuum extra-

polated results for bulk thermodynamic observables at
small values of the chemical potential with percent-level
accuracy. This provides, in particular, the pseudocritical
temperature for the chiral transition at vanishing values of
the baryon chemical potential with better than 1% accuracy
[1] for a specific set of observables. This result differs by
less than 2% from calculations using different observables
and discretization schemes to characterize the crossover
transition in QCD [1,2]. Similarly the temperature depend-
ence of the pseudocritical line, TpcðμBÞ, is known with
better than 2% accuracy at least for baryon chemical
potentials μB ≤ Tpc;0 ≡ Tpcð0Þ [1–3]. This also includes
a determination of constraints on the strangeness chemical
potential, μSðμBÞ, required to insure strangeness neutrality
in strongly interacting matter. At a fixed value of tempera-
ture, this constraint is known to be better than 5% for a
range of baryon chemical potentials μB ≤ TpcðμBÞ.
In heavy-ion experiments at the Large Hadron Collider

and the Relativistic Heavy Ion Collider the thermal proper-
ties of strongly interacting matter as it existed at the time of
hadronization (freeze-out of various hadrons) is probed.
The underlying thermal parameters (T, μB, μQ, μS) are
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extracted from particle yields or higher order cumulants
characterizing the distributions of these hadrons. These
parameters, however, generally are not obtained through a
direct comparison with QCD but with statistical models,
e.g., models that use the statistical operator of hadron
resonance gas (HRG) models [4] for pointlike noninteract-
ing hadrons, which are variants of the Hagedorn resonance
gas model [5–7]. This too leads to a determination of
thermal parameters with errors that are on the percent level.
The approach, however, may suffer from systematic
uncertainties, as the statistical operator used in model
calculations obviously will differ from that of QCD in
certain ranges of the temperature and baryon chemical
potential. Differences between the statistical operator of
QCD and that of HRG models based on a spectrum of
pointlike, noninteracting hadron resonances become ap-
parent in properties of higher order cumulants, e.g.,
deviations from (generalized) Skellam distributions that
are inherent to HRG models using pointlike, noninteracting
hadron resonances. A proper inclusion of interactions
in a hadronic medium, using a relativistic virial expansion
[8–12] or more phenomenology oriented excluded volume
[13–18] as well as repulsive mean approaches [19–21], thus
may be necessary. These approaches generally need to
adjust parameters which is done by comparing to lattice
QCD calculations of thermodynamic observables.
Second order cumulants can be used as important

benchmark observables that allow one to establish the
range of validity of hadronic models that are needed to
provide an interface between experimental observables,
e.g., hadron yields and fluctuations, and thermal observ-
ables obtained in field theoretic calculations, e.g., QCD. In
this paper, we provide high precision, continuum extra-
polated lattice QCD results for second order cumulants of
conserved charge fluctuations and their correlations at
vanishing values of the baryon chemical potential. We will
extend these calculations in a follow-up paper to non-
vanishing values of the chemical potential.
The calculations presented here at vanishing values of

the chemical potential allow one to constrain the basic
parameters that enter in model calculations, e.g., the
excluded volume parameters introduced in hadron reso-
nance gas models to mimic the effect of repulsive inter-
actions or the modeling of higher order corrections in
S-matrix calculations that are needed to go beyond the
calculation of second order coefficients in a virial expan-
sion. Preliminary results from this study have been
presented by us previously [22,23]. A similar comparison
of lattice QCD results on cumulants of conserved charge
fluctuations with excluded volume HRG models also
appeared recently [24].
This paper is organized as follows. In the next section,

we describe the computational setup for our calculations
and describe the scale setting used by us to define tempera-
ture scales. Section III gives a short description of the basic

observables that we analyze. Section IV describes our
determination of continuum extrapolated results for all
second order cumulants. Section V is devoted to a com-
parison of the QCD results for these cumulants with hadron
resonance gas model calculations. Finally, we give our
conclusions in Sec. VI. Three appendixes are devoted to the
presentation of further details on the scale setting, the fits to
second order cumulants, and a description of differences
between two lists of hadron resonances used in HRGmodel
calculations.

II. COMPUTATIONAL SETUP

The framework for our calculations with the highly
improved staggered quark (HISQ) [25] discretization
scheme for (2þ 1)-flavor QCD with a physical strange
quark mass and two degenerate, physical light quark
masses is well established and has been used by us for
several studies of higher order cumulants of conserved
charge fluctuations and correlations. The specific setup
used in our current study has been described in [26].
In addition to the datasets used for that study, we

increased the statistics on lattices with temporal extent
Nτ ¼ 12 and 16. This allows us to present continuum
extrapolated results for all second order cumulants, for
which the statistical error on the data themselves amounts
to less than 50%, the reminder coming from systematic
errors related to the fit Ansätze used for continuum
extrapolations and uncertainties on the zero temperature
observables used to set the scale for the temperature.

A. Datasets and statistics

We follow here the notation and conventions used in [27]
for the calculation of the equation of state in (2þ 1)-flavor
QCD with nonvanishing chemical potentials. In that work,
first continuum extrapolated results for second order
cumulants, obtained with the HISQ action, had been
presented. The statistics collected for our current analysis
is more than a factor of 10 larger than that used in [27]
for the calculation of the equation of state on lattices with
temporal extent Nτ ¼ 8 and 12. Moreover, compared to
the statistics used previously for a determination of
the pseudocritical temperature Tpc of the chiral transition
in (2þ 1)-flavor QCD [1], we increased the statistics
by a factor (3–4) for existing datasets on lattices with
temporal extent Nτ ¼ 16 in the temperature range
T ∈ ½135 MeV∶178 MeV�. We also make use of datasets
obtained in earlier calculations on lattices with temporal
extent Nτ ¼ 6 [1,27]. Details on the simulation parameters
and our current statistics are given in Table I. The gauge
field configurations stored in our datasets are separated by
10 time units in a simulation with the rational hybrid
Monte Carlo (RHMC) algorithm.
All our calculations have been performed on lattices with

spatial extent Nσ ¼ 4Nτ. Additional data on second order
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cumulants on lattices with temporal extent Nτ ¼ 6 are
taken from [27]. In order to stabilize the asymptotic
behavior of our fits to second order cumulants we also
use data at higher temperatures, which also are taken
from [27].
In this new analysis, we focus on a temperature range of

20 MeVabove and below the pseudocritical temperature for
the chiral transition at vanishing value of the chemical
potentials, Tpc;0 ¼ ð156.5� 1.5Þ MeV [1].

B. Scale setting

In order to set the scale for the temperature used in lattice
QCD calculations, we closely follow the strategy laid down
for the definition of a line of constant physics and the
calculation of the equation of state in [28]. There we
introduced temperature scales based on a calculation of r1,
which characterizes the short distance part of the heavy
quark potential, and the kaon decay constant fK . We use
parametrizations of both observables to set the scale for the
temperature,

TfK ¼ 1

NτafK
fK; ð1Þ

Tr1 ¼
�

1

Nτ

r1
a

�
1

r1
: ð2Þ

The two temperature scales are related through the value of
r1fK , which is solely determined through a lattice calcu-
lation, and the physical value of r1, which requires input
from experiment, e.g., the pion decay constant fπ . At
nonzero lattice spacing, the temperature scales derived
from different observables differ. At finite values of the
gauge coupling β they are related through

TfK

Tr1
¼

�
1

afK

a
r1

�
r1fK: ð3Þ

The parametrizations of a=r1 and afK used by us at
nonvanishing lattice spacing are given in Appendix A.
In all figures, that show lattice QCD results obtained at
nonvanishing lattice spacing, we use, for definiteness, the
temperature scale based on calculations of afK , as has been
done by us also in the past [29]. For these figures and the
continuum extrapolations at fixed temperature values, we
use as basic input the central value of the MILC results for
r1, i.e., r1 ¼ 0.3106 fm. The fits presented in Appendix A
then fix the central value of the kaon decay constant
to fK ¼ 155.7=

ffiffiffi
2

p
MeV.

As discussed in more detail in Sec. IVA, we treat the
error on r1 and fK as an overall systematic error on the
temperature scale that will enter the final error budget in our
analysis.

III. FIRST AND SECOND ORDER MOMENTS OF
CONSERVED NET CHARGE FLUCTUATIONS

We focus here on a discussion of second order cumulants
of conserved charge fluctuations at vanishing chemical
potentials for the conserved charges of (2þ 1)-flavor QCD,
i.e., net baryon number (B), electric charge (Q), and
strangeness (S). They are obtained from the QCD partition
function, ZðT; V; μ⃗Þ, as derivatives with respect to the
associated chemical potentials μ⃗ ¼ ðμB; μQ; μSÞ,

χBQS
ijk ¼ 1

VT3

∂ lnZðT; V; μ⃗Þ
∂μ̂iB∂μ̂jQ∂μ̂kS

����
μ̂¼0

; iþ jþ k ¼ 2: ð4Þ

This set of six second order cumulants are leading order
terms in Taylor expansion of various thermodynamic
quantities derived from Taylor expansions of the pressure
of (2þ 1)-flavor QCD,

P
T4

¼ 1

VT3
lnZðT; V; μ⃗Þ ¼

X∞
i;j;k¼0

χBQS
ijk

i!j!k!
μ̂iBμ̂

j
Qμ̂

k
S; ð5Þ

TABLE I. Simulation parameters and statistics collected on lattices of size N3
σ × Nτ with Nσ ¼ 4Nτ in calculations with light to

strange quark mass ratio ml=ms ¼ 1=27. The temperature values are obtained from fK scale (see text).

Nτ ¼ 8 Nτ ¼ 12 Nτ ¼ 16

β ml T (MeV) Configurations β ml T (MeV) Configurations β ml T (MeV) Configurations

6.175 0.003307 125.28 1 471 861
6.245 0.00307 134.84 1 275 380 6.640 0.00196 135.24 330 447 6.935 0.00145 135.80 17671
6.285 0.00293 140.62 1 598 555 6.680 0.00187 140.80 441 115 6.973 0.00139 140.86 23855
6.315 0.00281 145.11 1 559 003 6.712 0.00181 145.40 416 703 7.010 0.00132 145.95 26122
6.354 0.00270 151.14 1 286 603 6.754 0.00173 151.62 323 738 7.054 0.00129 152.19 26965
6.390 0.00257 156.92 1,602,684 6.794 0.00167 157.75 299 029 7.095 0.00124 158.21 21656
6.423 0.00248 162.39 1 437 436 6.825 0.00161 162.65 214,671 7.130 0.00119 163.50 18173
6.445 0.00241 166.14 1 186 523 6.850 0.00157 166.69 156 111 7.156 0.00116 167.53 19926
6.474 0.00234 171.19 373 644 6.880 0.00153 171.65 144 633 7.188 0.00113 172.60 17163
6.500 0.00228 175.84 294 311 6.910 0.00148 176.73 131 248 7.220 0.00110 177.80 3282

SECOND ORDER CUMULANTS OF CONSERVED CHARGE … PHYS. REV. D 104, 074512 (2021)

074512-3



with μ̂X ≡ μX=T and arbitrary natural numbers i, j, k. In
particular, they provide the leading order expansion coef-
ficients of mean (nX=T3 ≡ χX1 ) and variance (σ2X=T

2 ≡ χX2 )
of conserved charge distributions. At leading order in the
chemical potentials, the former are given by

nB=T3 ¼ χB2 μ̂B þ χBS11 μ̂S þ χBQ11 μ̂Q; ð6Þ

nQ=T3 ¼ χBQ11 μ̂B þ χQS
11 μ̂S þ χQ2 μ̂Q; ð7Þ

nS=T3 ¼ χBS11 μ̂B þ χS2μ̂S þ χQS
11 μ̂Q: ð8Þ

Of particular interest, for a discussion of properties of
strongly interacting matter, created in heavy ion collisions,
is the case of strangeness neutral matter (nS ≡ 0). The
second order cumulants provide important information on
the relation between strangeness and baryon chemical
potentials in strongly interacting matter [30]. To leading
order, this is given by

μS
μB

≡ s1ðTÞ ¼ −
χBS11
χS2

−
χQS
11

χS2
q1 þOðμ̂2BÞ; ð9Þ

with

q1 ¼
rðχB2 χS2 − χBS11 χ

BS
11 Þ − ðχBQ11 χS2 − χBS11 χ

QS
11 Þ

ðχQ2 χS2 − χQS
11 χ

QS
11 Þ − rðχBQ11 χS2 − χBS11 χ

QS
11 Þ

: ð10Þ

Here, r ¼ nQ=nS. Note that in the isospin symmetric case,
r ¼ 1=2, one has q1 ¼ 0. We discuss in Sec. VA 4 the
sensitivity of this ratio of chemical potentials to the hadron
resonance spectrum contributing to the thermodynamics of
strongly interacting matter.

IV. SECOND ORDER CUMULANTS AT
VANISHING CHEMICAL POTENTIAL

A. Continuum extrapolation of second order cumulants

Second order cumulants of conserved charge fluctua-
tions and cross-correlations among them have been calcu-
lated in lattice QCD using various discretization schemes.
This led to continuum extrapolated results in (2þ 1)-flavor
QCD with physical (degenerate) light quark masses
(mu ¼ md) and a physical strange quark mass (ms) that
have been presented, previously [31,32]. The HotQCD
Collaboration presented such results obtained in calcula-
tions with the HISQ action. Making use of recently
obtained high statistics data, we update here the continuum
extrapolation of the second order cumulants and present fits
to a set of four independent second order cumulants that are
suitable for analyzing all six second order cumulants in the
conserved charge (B, Q, S) basis as well as the (u, d, s)
flavor basis [27] for the chemical potentials.
Among the six second order cumulants, only four are

independent at vanishing values of the chemical potential.

The other two are constrained by isospin symmetry as our
calculations, as well as most other lattice QCD calculations,
are performed for two degenerate light up and down quarks.
This leads to two constraints [27],

χS2 ¼ 2χQS
11 − χBS11 ; ð11Þ

χB2 ¼ 2χBQ11 − χBS11 : ð12Þ

In the quark flavor basis, the four independent observables
and the two constraints relate to the three diagonal and three
off-diagonal cumulants for the light and strange quark
number fluctuations and correlations. The two constraints
merely reflect that u- and d-quark fluctuations are identical
as are their correlations with the strange quarks, i.e., χu2 ¼
χd2 and χus11 ¼ χds11. We also note that the above constraints
are fulfilled to better than 1% also in HRG model
calculations that utilize the experimentally determined,
physical hadron resonance spectrum [33]. Here, small mass
differences among isospin partners arise from differences in
the up and down quark masses as well as electromagnetic
interactions. The above constraints, of course, also hold for
HRG model calculations using hadron spectra calculated,
e.g., within relativistic quark models [34–36] as well as for
spectra obtained in lattice QCD calculations [37,38].
All possible second order cumulants and ratios thereof,

calculated either in the (B, Q, S) or (u, d, s) basis for the
chemical potentials [39], thus can be obtained from four
independent observables; we focus on the set of observ-
ables χQ2 , χ

QS
11 , χ

BQ
11 , χ

BS
11 . While the first two cumulants are

dominated by contributions from the nonstrange (χQ2 ) and
strange (χQS

11 ) meson spectra, the latter two are dominated
by the nonstrange (χBQ11 ) and strange (χ

BS
11 ) baryon sectors of

the hadron spectrum.
The second order cumulants have been obtained in

recent high statistics calculations on lattices with temporal
extent Nτ ¼ 8, 12, 16 that focused on a calculation of
higher order cumulants [26,40]. These calculations have
been extended, focusing on the temperature range in the
vicinity of the pseudocritical temperature, Tpc;0, for the
chiral transition. The current statistics, accumulated in
these calculations, are given in Table I. Moreover, we
used datasets obtained earlier on lattices with temporal
extent Nτ ¼ 6 [1,27]. For each Nτ, we used cubic
spline interpolations of our data in the interval T ∈
½134 MeV∶178 MeV� (see Appendix B). These interpola-
tions allow us to obtain for each of the four different lattice
sizes cumulants at the same temperature. This has been
done for each of the two schemes used to define a
temperature scale at nonvanishing values of the lattice
spacing.
Continuum extrapolations of these observables have

been performed in both schemes, using linear and quadratic
extrapolations in 1=N2

τ ,
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f2ðT;NτÞ ¼ f2ðTÞ þ
a2
N2

τ
; ð13Þ

f4ðT;NτÞ ¼ f4ðTÞ þ
b2
N2

τ
þ b4
N4

τ
: ð14Þ

For some temperature values, the linear and quadratic
extrapolations are shown in Appendix B. Results obtained
with linear extrapolations on the Nτ ¼ 8, 12, 16 datasets
based on the r1 and fK temperature scales are compared
in Fig. 1.
Differences in the continuum extrapolation shown in

Fig. 1, that arise from the usage of two different tempera-
ture scales, reflect systematic errors arising from the
parametrization of a=r1 and afK at finite values of the
gauge coupling. Moreover, the restrictions to linear fit
Ansätze react differently to truncated higher order correc-
tions in both schemes. Our final continuum extrapolation
result for second order cumulants is obtained by averaging
over the two different linear fit results. The difference in the
two extrapolations at each temperature is taken as a

systematic error and has been added linearly to the
statistical errors of the two extrapolations based on the
r1 and fK temperature scales, respectively. Further details
on our continuum extrapolations are given in Appendix B.
The presentation of the continuum extrapolations in Fig. 1

makes use of a specific choice for thevalue of r1 to define the
temperature scale; i.e., we used1 r1 ¼ 0.3106 fm, which is
the central value for r1 quoted by the MILC Collaboration
[41], r1 ¼ 0.3106ð8Þð14Þð4Þ fm. Here, the errors are stat-
istical, systematic, and experimental, respectively. The
statistical error and part of the systematic error on the value
for r1, quoted by the MILC Collaboration, correspond to
errors also arising in our calculation when analyzing results
obtained with two different T scales, different fit Ansätze,
and fit ranges used for the continuum extrapolations.
In addition to this error, we obviously need to add the

systematic uncertainty in the T scale arising from the error

FIG. 1. Continuum limit extrapolations for the cumulants χBS11 (top, left), χBQ11 (top, right), χQS
11 (bottom, left), and χQ2 (bottom, right) at

several values of the temperature, which has been obtained from afK (colored bands) and a=r1 (black bands), respectively.
Extrapolations are linear in 1=N2

τ and for data obtained on lattices with temporal extent Nτ ¼ 8, 12, 16. Crosses indicate the
corresponding QMHRG2020 value at that temperature. Note that for χBQ11 these HRG results are not shown for all temperature values as
the deviations from the corresponding QCD results are too large. For χQ2 QMHRG2020 with the finite-volume corrected contributions
for pions and kaons in a volume LT ≡ Nσ=Nτ ¼ 4 has been used (see Sec. V B).

1Note that we could have shown Fig. 1 also for fixed Tr1 or
T=fK . We used a scale in MeV only for clarity and better
orientation.
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on the experimental value of the pion decay constant, fπ ,
quoted by MILC as Δr1 ¼ 0.0004 fm. This gives rise to an
uncertainty of the T scale of about 0.2 MeV in the T range
considered by us. There also is a substantial spread in
values for r1 obtained by several groups and quoted by the
Flavour Lattice Averaging Group (FLAG) [42], for instance
in their Table 56. We estimate this overall systematic
uncertainty on r1 as Δr1 ¼ 0.001 fm, which for the
temperature range considered by us amounts to a scale
uncertainty of ΔT ≃ 0.6 MeV. The resulting systematic
error is shown separately for all our continuum extrapolated
results on second order cumulants. Continuum extrapolated
results for all four independent second order cumulants,
calculated on lattices with temporal extent Nτ ¼ 6, 8, 12,
and 16 are shown in Fig. 2 in the temperature range
130 MeV < T < 180 MeV. In that figure, we also show
separately the systematic error arising from the scale
uncertainties discussed in the previous paragraph (red
band) and the combined statistical and systematic error
arising from the continuum extrapolation using two differ-
ent T scales (gray band). The insets in these figures show a
comparison between the lattice QCD results and a specific
HRG model calculation that is based on the QMHRG2020
list of resonances (see Sec. VA 1). This is discussed further
in the next section.

The uncertainty of the T-scale determination has been
propagated into a systematic error for our continuum
extrapolated observables at temperature T. This is quoted
as a systematic error on the observables at temperature T.
Results for some values of the temperature are given in
Table II and compared with corresponding results obtained
in Ref. [32]. As can be seen, agreement between these two
analyses is quite good.
Further details on our continuum extrapolated results and

comparisons with various HRG model calculations as well
as results obtained from virial expansions are presented in
the next sections.

B. Parametrization of the continuum extrapolated
second order cumulants

When performing the continuum extrapolations of sec-
ond order cumulants, we did not assume any specific
Ansätz for the temperature dependences of the cumulants.
It, however, will be useful also for comparisons with other
observables and model calculations to have at hand a
parametrization of the four independent second order
cumulants as well as the two dependent observables, χB2
and χS2. For this purpose, we provide a parametrization in
terms of rational polynomials,
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FIG. 2. Four independent second order cumulants versus temperature calculated on lattices with different temporal extent Nτ. Lines
show results from HRG model calculations using pointlike, noninteracting resonances and the hadron spectrum list QMHRG2020
discussed in Sec. VA 1. The insets show the ratio of continuum extrapolated lattice QCD results and HRG model calculations based
on QMHRG2020. Also shown are results from Bellwied et al. [32]. For the presentation of data at finite values of Nτ, the temperature
scale based on calculations of afK has been used. Here and in all other figures, the yellow band corresponds to the crossover
temperature, Tpc;0.
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χXY11 ðTÞ ¼
P

3
k¼0 n

XY
k t̄k

1þP
3
k¼1 d

XY
k t̄k

; t̄ ¼
�
1 −

Tpc;0

T

�
; ð15Þ

where X; Y ∈ B;Q; S, and it is understood that χXY11
should be replaced by χX2 for X ¼ Y. This parametrization
corresponds to the center of the error bands shown in Fig. 2.

The coefficients for these parametrizations are given in
Table III.
As a consistency check, we use the parametrizations of

the four independent cumulants and compare with the
diagonal susceptibilities χS2 and χB2 , respectively. Note that
for fixed Nτ these data fulfill exactly the constraints given
in Eqs. (11) and (12). The data for χBQ11 , χ

BS
11 , and χQS

11 ,
however, are correlated, which may lead to slight
differences in the continuum extrapolated results. We show
the continuum extrapolations for χB2 and χS2 in Fig. 3. Here,
the error band has been obtained in the same way as for the
off-diagonal cumulants. The continuum extrapolated
results for these diagonal second order cumulants are given
in Table IV for the same temperature values as those given
in Table II for the set of four independent second order
cumulants. Although the continuum extrapolated results for
χB2 and χS2 have been obtained without imposing explicitly
the relations given in Eqs. (11) and (12), we find that the
continuum extrapolated cumulants are consistent with these
constraints within errors and also the parametrization of

TABLE II. Continuum extrapolated results for the set of four independent second order cumulants obtained at some values of T. The
second error given for our data corresponds to the uncertainty in the physical value of r1 as discussed in the text. In the case of χQ2 ,
we explicitly indicate that these results are sensitive to finite volume effects and have been obtained on lattices with aspect ratio
LT ≡ Nσ=Nτ ¼ 4 (see discussion in Sec. V B). Also shown are results from Bellwied et al. [32].

T (MeV)

χBQ11 χBS11 χQS
11 ðχQ2 ÞLT¼4

This work [32] This work [32] This work [32] This work

135 0.0114(5)(2) 0.0101(8) −0.0197ð15Þð3Þ −0.0167ð17Þ 0.0576(13)(6) 0.0604(20) 0.285(4)(2)
140 0.0140(4)(3) 0.0124(8) −0.0251ð7Þð7Þ −0.0227ð13Þ 0.0655(10)(9) 0.0699(18) 0.312(4)(3)
145 0.0172(4)(3) 0.0162(12) −0.0345ð8Þð11Þ −0.0332ð18Þ 0.0760(12)(12) 0.0806(20) 0.342(4)(3)
150 0.0204(4)(3) 0.0217(17) −0.0469ð10Þð14Þ −0.0491ð28Þ 0.0883(12)(13) 0.0914(12) 0.374(5)(3)
155 0.0235(4)(3) 0.0242(10) −0.0616ð14Þð15Þ −0.0676ð38Þ 0.1018(14)(14) 0.1045(9) 0.404(5)(3)
160 0.0261(4)(2) 0.0266(7) −0.0775ð20Þð16Þ −0.0825ð27Þ 0.1160(16)(14) 0.1193(15) 0.433(5)(3)
165 0.0280(3)(1) 0.0278(6) −0.0938ð22Þð15Þ −0.0981ð26Þ 0.1300(18)(14) 0.1345(20) 0.458(5)(2)
170 0.0288(2)(0) 0.0277(4) −0.1097ð24Þð14Þ −0.1136ð23Þ 0.1434(20)(12) 0.1478(22) 0.476(4)(1)
175 0.0281(3)(1) 0.0269(4) −0.1244ð30Þð12Þ −0.1296ð24Þ 0.1553(26)(12) 0.1600(23) 0.489(4)(1)

TABLE III. Parametrization of second order cumulants repre-
senting lines for central values of the fits shown in Fig. 2 in the
interval T ∈ ½135 MeV∶175 MeV�.

χBQ11 χQS
11

χBS11 χQ2 χB2 χS2

nXY0 0.0243 0.106 −0.066 0.413 0.115 0.279
nXY1 0.0122 0.0629 −0.327 −0.159 0.328 −1.172
nXY2 −0.376 −0.6097 0.0290 −2.099 −0.933 −6.661
nXY3 −1.219 −3.896 3.834 −6.362 −6.522 −28.378
dXY1 −3.036 −3.572 −2.505 −2.605 −2.922 −9.135
dXY2 3.006 3.166 2.952 1.677 3.189 13.624
dXY3 −2.133 −5.080 3.0973 3.892 −0.245 −66.402
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FIG. 3. The diagonal second order cumulants χB2 (left) and χS2 (right) versus temperature calculated on lattices with different temporal
extent Nτ. Lines show results from HRG model calculations using pointlike, noninteracting resonances and the hadron spectrum list
QMHRG202, introduced in Sec. VA 1. The insets show the ratio of continuum extrapolated lattice QCD results and the HRG model
calculations based on QMHRG2020.
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second order cumulants given in Table III do so to
better than 1%.

V. SECOND ORDER CUMULANTS IN QCD AND
THE HADRON RESONANCE GAS MODEL

In this section, we compare QCD results for second order
cumulants with HRG model calculations. We discuss the
importance of additional resonances contributing to corre-
lations of net strangeness fluctuations with net baryon-
number and net electric-charge fluctuations, respectively.
We also discuss in detail the quite different behavior of
correlations between net baryon-number and net electric-
charge fluctuations on the one hand and net baryon-number
and net strangeness fluctuations on the other hand, which is
apparent when comparing QCD and HRG model calcu-
lations. Furthermore, we comment on the significance of
finite volume effects visible in the second order cumulant of
net electric-charge fluctuations.

A. Sensitivity of second order cumulants to details
of the hadron resonance gas spectrum

Obviously, conclusions drawn from a comparison of
HRG model calculations with QCD results crucially
depend on the hadron spectrum which is input to the
HRG model calculations. Although such models can rely
on a lot of information from experimentally determined
resonances [33], it has been noted that this information is
not sufficient to constrain interactions in a hadron reso-
nance gas to such an extent that these models do provide
satisfactory comparisons with QCD results. As noted
earlier [43], in particular, in the baryon sector of the
spectrum additional strange hadron resonances seem to
be needed to obtain reasonable agreement between HRG
model calculations and QCD results for strangeness fluc-
tuations and their correlations with electric-charge and
baryon-number fluctuations, respectively.
In particular, when using in HRG model calculations

with pointlike, noninteracting resonances only well

established mesons and 3- and 4-star baryon resonances
listed in the summary tables of the Particle Data Group
(PDG) [33], the comparison with QCD results yields
only poor agreement in the strangeness sector [see
Fig. 4 (top)]. Including additional resonances that have
been predicted in QCD based quark model (QM) calcu-
lations, e.g., in [34–36], as well as lattice QCD calculations
[37,38], significantly improves the comparison between
HRG model and QCD calculations. However, such an
approach is not unique. It depends on details of the
relativistic quark model calculations (for a recent compi-
lation of results see [44]) as well as the treatment of the not
well established resonances listed by the PDG. Moreover, it
is well understood since the early work of Hagedorn [5] and
Dashen, Ma, and Bernstein [8] that a modeling of strong
interactions in terms of pointlike, interacting resonances is
not sufficient to account for all interactions in strongly
interacting matter. The need for a proper treatment of
additional repulsive interactions, for instance, by assigning
an intrinsic volume to each hadron, has been pointed out
early on [13,14]. However, it also has been noted that at the
same time the interplay between repulsive and attractive
interactions needs to be taken into account.

TABLE IV. Continuum extrapolated results for χB2 and χS2
obtained at some values of T. The second error reflects the
uncertainty in the value of r1 used for setting the temperature
scale as discussed in the text.

T (MeV) χB2 χS2

135 0.0422(22)(10) 0.134(4)(2)
140 0.0532(14)(14) 0.156(2)(2)
145 0.0689(15)(18) 0.187(3)(3)
150 0.0878(18)(20) 0.224(3)(4)
155 0.1085(22)(21) 0.266(4)(4)
160 0.1296(26)(21) 0.310(5)(4)
165 0.1497(28)(19) 0.354(6)(4)
170 0.1673(27)(15) 0.396(7)(4)
175 0.1809(29)(11) 0.435(8)(4)
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FIG. 4. Continuum extrapolated results for χBS11 (top) and χBQ11
(bottom). Shown is a comparison to HRG model calculations
based on different lists for hadron resonances as discussed in the
text. Also shown are results obtained with excluded volume HRG
models, using an excluded volume parameter b ¼ 0.4 fm3 and
virial expansions [11,45], respectively.
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A more rigorous treatment of interactions among
hadrons in medium can be achieved in the S-matrix
formalism [8] which is the starting point for a systematic
virial expansion of relativistic quantum gases [9,46]. The
subtle interplay of attractive and repulsive interactions is, at
least in principle, taken care of in the virial expansion. In
the case of the strange meson K�

0ð700Þ, for instance, an
analysis of the effect of attractive and repulsive contribu-
tions in the S-matrix, partial wave analysis led to the
conclusion that the contribution of this resonance to the
thermodynamics of strong-interaction matter is strongly
suppressed. Effectively, it does not contribute at all, and the
resonance thus should not be included in pointlike, non-
interacting HRG models [47,48], despite the fact that it is
listed as a well established resonance in the PDG tables.
Setting up a HRG model for the description of the

thermodynamics of strong-interaction matter in the low
temperature, hadronic regime thus is subject to a certain
amount of ambiguity. Nonetheless, such models are a good
starting point for the comparison to QCD calculations and
can serve as a mediator between QCD calculations and
experimental observations.

1. QMHRG2020

Previously, we used a list of hadron resonances
(QMHRG) that included only established mesons and
3- and 4-star baryon resonances listed in the PDG summary
tables and had been augmented with a list of QM states in
the strange and nonstrange baryon sectors [43]. We now
updated this list of hadron resonances by taking into
account the 1- and 2-star baryon resonances as well as
mesons not listed as being well established in the PDG
2020 summary tables [33]. We, however, left out the
K�

0ð700Þ (see below). This defines the list of hadron
resonances, QMHRG2020.2

To a large extent, the resonances, listed in the PDG
tables, have counterparts in the hadron spectrum calculated
in relativistic quark models [34–36]. In order to avoid
double counting, we used from the QM calculations only
states that have no identified counterparts in the PDG
tables. QMHRG2020 differs from the QMHRG2016þ list
[50] by only a few resonances. In the strange baryon sector,
this leads to a few percent differences in the HRG model
calculation of χBS11 that are of significance when comparing
HRG model calculations with QCD results, while in all
other cases differences in the two lists are negligible. For
instance, for temperatures below the QCD pseudocritical
temperature, i.e., for T ∼ ð140–155Þ MeV, HRG model
results for χBS11 , obtained from both lists, differ by about 6%.
Eliminating the QM counterparts [34,36] of two 4-star as
well as two 3-star resonances from the QMHRG2016þ list
reduces this difference to 3%. In Table VI of Appendix C,

we give a list of eight strange baryon resonances that are
listed in the PDG tables and also have been calculated in
relativistic quark models. Eliminating the latter from
QMHRG2016þ reproduces results obtained with
QMHRG2020 within 1% accuracy.3

In the following, we use the QMHRG2020 list of hadron
resonances as baseline model for comparisons with QCD
calculations. In the insets of Fig. 2, we have compared
the continuum extrapolated results for four independent
second order cumulants, obtained in (2þ 1)-flavor QCD,
with HRG model calculations that make use of the
QMHRG2020 list. The insets show the ratio of results
obtained in HRG model calculations and QCD, respec-
tively. As can be seen, at low temperatures, the agreement is
fairly good. In detail, however, the differences seen in QCD
and HRG model calculations are quite different for the four
second order cumulants and reflect different physics. We
discuss this in more detail in the following subsections. We
note already here that the difference between QCD results
and HRG calculations is particularly striking for correla-
tions between net baryon number and electric charge, χBQ11 .

2. Net baryon-number fluctuations and correlations

In Fig. 4, we compare HRG model calculations using
different hadron resonance spectra with continuum extrapo-
lated lattice QCD results for (2þ 1)-flavor QCD. As can be
seen, correlations between net baryon-number and strange-
ness fluctuations (χBS11 ) are particularly sensitive to con-
tributions from the strange baryon resonances, while
correlations between net baryon-number and electric-
charge fluctuations (χBQ11 ) show only little sensitivity to
contributions from additional baryon resonances; this
cumulant only depends mildly on the strange baryon sector
as only jSj ¼ 2, 3 baryons contribute to χBQ11 . The small
differences seen in the magnitude of χBQ11 when calculated
with PDGHRG and QMHRG spectra, respectively [Fig. 4
(bottom)], mainly arise from additional nonstrange baryons
obtained in QM calculations.
We note that jχBS11 j, calculated in a HRG model using

QMHRG2020, is larger by about 30% relative to calcu-
lations based only on 3- and 4-star resonances listed by the
PDG.HRGmodel calculations of χBS11 , using QMHRG2020,
are consistent with QCD results at and below the pseudoc-
ritical temperature. HRGmodel results for χBQ11 , on the other
hand, are clearly larger than the corresponding QCD results
for temperatures T ≳ 145 MeV. They are about 20% larger
at Tpc;0. This is a quite robust result, as HRG model

calculations for χBQ11 are not very sensitive to the details
of theHRG resonance spectrumused, and even the inclusion

2The list of hadron resonances, QMHRG2020, and also the
PDGHRG list used by us, can be found in [49].

3Both lists still differ to the extent that masses of strange
baryons, obtained in quark model calculations, are taken from
[36] in QMHRG2020, whereas QMHRG2016þ uses results
from [34].
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of 1- and 2-star resonances has little effect, as can be seen in
Fig. 4 (bottom).
In the case of net baryon-number fluctuations, χB2 , which

are related to χBQ11 and χBS11 through Eq. (12), this still leads
to 10% larger results in HRG model calculations than QCD
results obtained at Tpc;0.
In Fig. 5, we show for temperatures close to and below

Tpc;0 a comparison between HRG model calculations,
performed with the QMHRG2020 and QMHRG2016þ
resonance lists and QCD. In this figure, we also
compare our results with results obtained by Bellwied
et al. [32]. Within the current statistical and systematic
uncertainties, the results of both works are consistent with
each other.
As outlined above, the larger magnitude obtained for

jχBS11 j when using QMHRG2016þ arises from the fact that
this list uses some quark model states that are also listed in
the PDG tables. As a consequence, the HRG model
contains too many strange baryons; QMHRG2020 gives
better agreement with QCD results below Tpc;0.
The differences between lattice QCD calculations and

HRG model calculations using pointlike, noninteracting
hadronic resonances indicate that these models do not
correctly reflect interactions in a strongly interacting
medium. It has been attempted to improve the model
calculations by taking into account additional repulsive
interactions in so-called excluded volume HRG models
(EVHRG) [15,16,18]. Generically, the magnitude of sec-
ond order cumulants involving net baryon-number fluctua-
tions is decreased in such excluded volume HRG models.
Indeed, in the case of χBQ11 , this may improve the compari-
son to QCD. However, at the same time, it is obvious that
EVHRG model calculations for χBS11 will spoil the good
agreement observed between QCD results and HRG model
calculations with pointlike, noninteracting resonances
observed below Tpc;0. While χBS11 favors only small excluded

volumes, χBQ11 would require large volumes to achieve

agreement between HRG model calculations and QCD
results.
In fact, the relative change in second order cumulants

involving net baryon-number fluctuations, calculated in
HRG and EVHRG models, respectively, is identical [18],

REV
B ¼ ðχBQ11 ÞEVHRG

ðχBQ11 ÞHRG
¼ ðχBS11 ÞEVHRG

ðχBS11 ÞHRG
¼ ðχB2 ÞEVHRG

ðχB2 ÞHRG
¼ 1 − 2bPHRG

B ðTÞ=T þOðb2Þ: ð16Þ

Here, b parametrizes the size of the excluded volume for all
baryons, and PHRG

B ðTÞ denotes the contribution of baryons
and antibaryons to the pressure in a resonance gas model
for noninteracting pointlike resonances. It contains all
information on details of the hadron spectrum. The
excluded volume parameter b is related to the hard-sphere
radius (r) of a hadron through b ¼ 16πr3=3.
The comparison of EVHRG model calculations and

QCD results, shown in Figs. 4 and 5 for χBS11 and χBQ11 ,
makes it clear that no unique choice for b exists that would
give better agreement between QCD and HRG models for
both cumulants simultaneously. In fact, using Eq. (16) we
may write

ðχBX11 ÞEVHRG
ðχBX11 ÞQCD

¼ REV
B

ðχBX11 ÞHRG
ðχBX11 ÞQCD

; X ¼ Q; S: ð17Þ

Within the errors put on QCD results, this ratio should be
consistent with unity for EVHRG models in order to be
consistent with QCD results. This puts bounds on the
magnitude of the excluded volume parameter b. Using the
QCD result for χBX11 , X ¼ S,Q, and including the combined
statistical and systematic error ΔX, we find the largest
(bþ) and smallest (b−) excluded volume parameters that
would yield EVHRG model results consistent with QCD
results,

FIG. 5. Comparison of continuum extrapolated lattice QCD results for the second order cumulants χBS11 (left) and χBQ11 (right) with
QMHRG model calculations based on the QMHRG2020 and QMHRG2016þ list of hadron resonances. In addition to the results from
this work (HotQCD), we also show results from Bellwied et al. [32]. For our results, we show separately statistical errors and systematic
errors (brackets) arising from the systematic error on r1.
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b� ¼ 1

2T3ðχB2 ÞHRG

�
1 −

ðχBX11 � ΔXÞQCD
ðχBX11 ÞHRG

�
: ð18Þ

Here, we used the relation between the baryonic part of the
pressure and the second order cumulant of net baryon-
number fluctuations in HRG models with pointlike
hadrons, PB=T4 ¼ χB2 . At low temperatures, these bounds
are not very stringent as the hadronic medium is dilute.
However, close to Tpc;0, i.e., for T ¼ ð150–155Þ MeV, we
find that b ≤ 0.4 fm3 is needed in order for EVHRG
calculations to be consistent with QCD results for χBS11 ,
whereas from χBQ11 , we find that b should be significantly
larger, i.e., 1 fm3 ≤ b ≤ 2 fm3.
In fact, the temperature dependence of χBQ11 favors

b ≃ 2 fm3. As can be seen in Fig. 2 (top, left), in QCD
calculations, it is found that χBQ11 rises much more slowly
with temperature than in HRG model calculations using
QMHRG2020. Avalue of b, significantly larger than 1 fm3

would be needed to account for this difference. In Fig. 6,
we show results for the temperature derivative of χBQ11
shown in Fig. 2 (top, left). In the case of QCD, these
derivatives are obtained from the parametrization given in
Eq. (15), using a bootstrap fit to the continuum extrapolated
results shown in Fig. 2. As can be seen, b≳ 2 fm3 would be
needed in an EVHRG calculation to reproduce the QCD
results for the temperature derivative of χBQ11 .
As excluded volume corrections are identical for all

baryon correlations and fluctuations, it is instructive to
look at ratios of second order cumulants involving net
baryon-number fluctuations. In this case, excluded volume
corrections drop out. Any difference between HRG and
QCD cumulants thus is of different origin. We also note that
due to the relation given in Eq. (12), it suffices to analyze
one ratio, e.g., χBQ11 =χ

BS
11 . Other ratios are then simply related

to this ratio, e.g.,

χB2
χBS11

¼ 2
χBQ11
χBS11

− 1;

χB2
χBQ11

¼ 2 −
χBS11
χBQ11

: ð19Þ

Differences found between QCD and HRG model calcu-
lations of χBQ11 =χ

BS
11 thus translate into corresponding

differences for the other two ratios. Results for χBQ11 =χ
BS
11

are presented in Fig. 7. This shows that deviations from
HRG model calculations, which cannot be accounted for in
excluded volume models using a single parameter b,
become significant already at temperatures T ≃ 145 MeV.
This, of course, is a direct consequence of the deviation of
HRG model calculations from QCD results setting in for
χBQ11 already at T ≃ 140 MeV, while at the same time results
for χBS11 obtained in HRG model calculations are in good
agreement with QCD up to Tpc;0.
A similar conclusion has been drawn from calculations

of the second virial coefficients using the S-matrix
approach [51], where it has been pointed out that the
influence of repulsive interactions, which motivated an
excluded volume Ansatz, is subtle and quite different in
various quantum number channels contributing in the
partial wave analysis of the second virial expansion
coefficient.
Although the S-matrix approach, which is based on

experimental information on phase shifts contributing to
the S matrix, provides a rigorous formulation of the
thermodynamics of an interacting hadron gas in the grand
canonical ensemble and, at least in principle, does not
require any a priori information on a particular spectrum
of resonances, it generally is difficult to arrive at first
principle, quantitative results on properties of second
order cumulants. In a systematic virial expansion of the
partition function, expressed in terms of the S matrix, even
the calculation of the second virial coefficient often suffers
from insufficient experimental information even for
two-particle interactions. Moreover, at higher densities
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multiparticle interactions become of importance [8,9],
which are poorly known and thus require approximations
when comparing an S-matrix based analysis to, e.g., first
principle lattice QCD calculations [10–12].
In Fig. 8, we compare QCD results for second order

cumulants involving net baryon-number fluctuations, with
corresponding results from calculations of the second virial
coefficient. In Ref. [11], the second virial coefficient for the
description of correlations between net baryon-number and
net strangeness fluctuations has been obtained in a unitary,
multichannel analysis [52,53]. We show results from this
analysis in Fig. 8 (top). As can be seen, agreement between
S-matrix calculations and lattice QCD results is within
10%–15% below the pseudocritical temperature. This
result is similar to, but does at present not improve over,
results that can already be achieved within a HRG model
calculation based on QMHRG2020.
A calculation of the second virial coefficient for the

description of correlations between net baryon-number and
net electric-charge fluctuations is more difficult as less
information on the relevant interaction channels is known.
In [45], χBQ11 has been analyzed in the S-matrix approach
taking into account two body interactions arising from
elastic π-N scattering and a small contribution from the
inelastic π-N → η-N channel. This partial calculation of
the second virial expansion coefficient turns out not to be
sufficient to achieve good agreement with QCD results

[12,45]. Although it improves the comparison with QCD,
deviations at low temperatures are about a factor of two
larger than in the S-matrix analysis of χBS11 . The inclusion of
further interaction channels and contributions from higher
order corrections clearly are needed.
At present the insufficient knowledge on scattering

process contributing to χBQ11 can only be overcome by
modeling contributions from three body and higher order
interactions. This has been attempted in [12] by approxi-
mating ππN interactions by a simple, structureless vertex.
The strength of the interaction vertex in this model has been
tuned to achieve agreement with lattice QCD results at
T ≃ 150 MeV. However, comparing the results obtained
in [12] with the precise QCD results presented here also
at lower temperatures shows that agreement in a wider
temperature range cannot be achieved with a temperature
independent coupling strength for this interaction vertex. At
lower temperatures, T ∼ 140 MeV, deviations from QCD
are still about 10%.

3. Contribution of K�
0ð700Þ to χQS11

In Fig. 2 (bottom, right), we have shown results for χQS
11

which also are found to agree well with HRG model
calculations using QMHRG2020. As mentioned in
Sec. VA 1, we did not include the scalar kaon resonance
K�

0ð700Þ (previously κ in PDG) [54,55] in theQMHRG2020
list, although it is listed as an established resonance in the
PDG tables. How to best accommodate for this resonance in
thermodynamic calculations is much discussed [47,48,56].
Kaons give the most significant contribution to the

correlations between net electric-charge and strangeness
fluctuations. At low temperatures, T ∼ 130 MeV, already
the ground state kaon and its P-wave excitation K�ð892Þ
contribute more than 80% to the second order cumulant
χQS
11 . All heavier strange mesons and baryons account for
the remaining contribution to χQS

11 . Adding the K�
0ð700Þ to

the list of strange meson resonances would change the
HRG model result for χQS

11 by almost 10%. However, as has
been shown in an analysis of the strangeness fluctuation
cumulant χS2 [48], the contribution of K�

0ð700Þ is largely
reduced when treating its contribution in a virial expansion
that makes use of information on scattering amplitudes in
the S-wave K-π channel.
The QCD results for χQS

11 are shown in Fig. 2 and
compared to our list of hadron resonances QMHRG2020,
in which we do not include the K�

0ð700Þ resonance.
In Fig. 9, we compare in more detail the HRG model
calculations, with and without the K�

0ð700Þ resonance
included, with QCD results. Here, we also show the
S-matrix calculation taken from [48], which includes
interactions in the I ¼ 1=2 and I ¼ 3=2 S-wave channels.
We combined the result obtained from the virial expansion
with those strange hadron resonances from the
QMHRG2020 list that are not taken care of in the S-matrix

0.8

0.9

1

1.1

1.2

1.3

1.4

140 145 150 155 160 165 170

QMHRG2020 / QCD (red)
Vir. ex./ QCD(green)

- 11
BS

T [MeV]

0.8

0.9

1

1.1

1.2

1.3

1.4

140 145 150 155 160 165 170

QMHRG2020 / QCD (red)

Vir. ex.[ - , - ]/ QCD(green)

11
BQ

T [MeV]

FIG. 8. Comparison of continuum extrapolated lattice QCD
results for χBS11 (top) and χBQ11 (bottom) with HRG model results
based on QMHRG2020 (red band) and second order virial
expansion results (green band) [11,45].

D. BOLLWEG et al. PHYS. REV. D 104, 074512 (2021)

074512-12



analysis. The analysis of interactions in the S-matrix
formulation of an interacting hadron gas thus motivates
that the K�

0ð700Þ resonance does not contribute to the
thermodynamics of such a system and thus should be left
out when using a gas of pointlike, noninteracting only.

4. Strangeness neutrality and the strangeness
chemical potential

The ratio χBS11 =χ
QS
11 is directly related to the ratio of

baryon and strangeness chemical potentials in a strangeness
and electric-charge neutral medium. As can be seen in
Eq. (9), it controls the value of μS=μB in the isospin
symmetric case (nQ=nB ¼ 1=2),

μS
μB

¼
�
1 − 2

χQS
11

χBS11

�−1
þOðμ2BÞ; ð20Þ

which also gives the dominant contribution in the case most
relevant for comparison with heavy ion experiments,
nQ=nB ¼ 0.4.

The good agreement found for χBS11 =χ
QS
11 when calculated

in lattice QCD and HRG models using QMHRG2020 [see
Fig. 9 (bottom)] suggests that a determination of the ratio of
chemical potentials from experimental data, using as an
intermediate step HRG model based relations, is appro-
priate at least for small values of the baryon chemical
potentials, for which the leading order Taylor expansion
expressions [Eq. (8)] are valid. The strong sensitivity of χBS11
on the strange baryon sector, on the one hand, and the small
sensitivity of χQS

11 on details of the spectrum, on the other
hand, also suggests that μS=μB provides information on
additional strange baryon resonances contributing to the
thermodynamics of strongly interacting matter at the
freeze-out temperature.
In Fig. 10, we compare results from QCD calculations to

HRG model calculations that use lists of hadron resonances
with (QMHRG) and without (PDGHRG) additional strange
baryon resonances included. As can be seen, the ratio
μS=μB obtained in QCD calculations when imposing the
strangeness neutrality conditions nS ¼ 0 and nQ=nB ¼ 0.4
differs by about 15% from HRG model calculations, that
only use the PDGHRG states, but is in good agreement
with QMHRGmodel calculations. This shows that the ratio
of strangeness and baryon chemical potentials indeed is
sensitive to the spectrum of strange hadron resonances in a
strongly interacting medium. We discuss this further in a
forthcoming publication, where we show that higher order
contributions to μS=μB are indeed negligible for μB=T ≲ 1,
which makes this ratio a good observable for probing
thermal conditions in a strongly interacting medium.

B. Volume dependence of the cumulant of
net electric-charge fluctuations, χQ2

As can be seen in Fig. 2 (top, right), even at temperatures
as low as 135 MeV continuum extrapolated results for the
second order cumulant of net electric-charge fluctuations
still differ from HRG model calculations. At such low
temperatures, electric-charge fluctuations are dominated by
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FIG. 9. Comparison of HRG model calculations with QCD
results for χQS

11 (top) and the ratio χBS11 =χ
QS
11 (bottom). The dashed-

dotted lines show results from a HRG model calculation where
also the contribution of K�

0ð700Þ is included in the list of hadron
resonances. In the lower figure, we show the result of a virial
expansion for χBS11 taken from [11]. The upper figure shows the
result of a virial expansion, based on the analysis of S-wave
scattering contributions in the K-π channel to strangeness
fluctuations [48], as discussed in the text.
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the contribution from pions. In this case, it is well known
that finite volume effects in a pion gas with mass mπ ≲ T
can lead to significant deviations from results obtained in
the thermodynamic limit [57–59].
The lattice QCD calculations presented in Fig. 2 have

been performed on lattices with a fixed ratio of spatial
versus temporal extent, Nσ=Nτ ¼ 4.; i.e., the spatial extent
of the physical volume, L ¼ Nσa, changes with tempera-
ture, T ¼ 1=Nτa, such that LT ¼ 4 stays constant. In the
temperature range shown in Fig. 2, we have calculated χQ2
for a pion gas in a finite volume with LT ¼ 4. This can be
done directly using the partition function of a Bose gas in a
finite volume [58,59]. In order to mimic periodic boundary
conditions and cubic box sizes as they are used in lattice
QCD calculations, we instead used a scalar field theory
discretized on a lattice as described in [57]. For a non-
interacting pion and kaon gas, we find that deviations from
infinite volume results are well parametrized by a straight
line Ansatz in the temperature interval of interest,
T ∈ ½130 MeV∶170 MeV�,

ðχQ2 ÞLT¼4

ðχQ2 ÞLT¼∞
¼

�
0.997 − 0.126T=Tpc;0; pion gas

1.002 − 0.032T=Tpc;0; kaon gas
: ð21Þ

At the pseudocritical temperature, Tpc;0, the net electric-
charge fluctuations in a pion gas in a volume LT ¼ 4 thus
is about 12% smaller than in the infinite volume limit. In
the HRG model, calculated with the resonance spectrum
QMHRG2020, this distortion effect gets reduced by almost
a factor of two, reflecting the relative contribution of pions
to the entire net electric-charge fluctuations. In the tempera-
ture interval T ∈ ½130 MeV∶180 MeV�, we find for a HRG
model using the QMHRG2020 list of hadrons,

ðχQ2 ÞLT¼4

ðχQ2 ÞLT¼∞
¼ 1.324 − 1.290T=Tpc;0 þ 1.316ðT=Tpc;0Þ2

− 0.411ðT=Tpc;0Þ3: ð22Þ

This amounts to a 6% finite volume correction for χQ2 at the
pseudocritical temperature, Tpc;0, which only changes
slowly as a function of temperature. We show this finite
volume correction to the QMHRG2020 result for χQ2 in
Fig. 2 (top, right).
Using the finite volume corrected QMHRG2020 results

for a comparison with QCD results in a finite volume, we
find that at Tpc;0 the latter are still smaller by about 5%. This
is consistent with large deviations observed in the charged
baryon sector (χBQ11 ) which contributes only about 15% to
the total electric-charge fluctuations.

C. Comparison of QCD results with various
model calculations at Tpc;0

Continuum extrapolated lattice QCD results for all six
second order cumulants at Tpc;0 and corresponding results
from HRG model calculations, using different hadronic
resonance spectra, as well as results from S-matrix calcu-
lations are summarized in Table V. Here, we also give
results for two of the three independent ratios of second
order cumulants. The third ratio would involve χQ2 , for
which at present no infinite volume extrapolated result
exists.

VI. CONCLUSIONS

We have presented an update of continuum extrapolated
results for second order cumulants of conserved charge
fluctuations and their cross-correlations. These results are
based on high-statistics data obtained in simulations within
the HISQ discretization scheme for staggered fermions.

TABLE V. Continuum-extrapolated values of second order cumulants at Tpc;0 ¼ 156.5ð1.5Þ MeV and for vanishing values of the
chemical potentials. First error in QCD is obtained by linearly combining statistical and systematical errors of our continuum
extrapolations, while the second error reflects the error on the determination of Tpc;0. Similarly the error in the HRG is due to the error of

Tpc;0. These results agree well with the continuum extrapolated data given in [32]. For χQ2 , we give results calculated in a finite volume
LT ≡ Nσ=Nτ ¼ 4. Numbers in brackets give the corresponding infinite volume result.

χBQ11 χBS11 χQS
11 ðχQ2 ÞLT¼4 [χQ2 ] χS2 χB2 χBS11 =χ

S
2 χBQ11 =χ

B
2

QCD
[this work]

0.0243(7)(9) −0.066ð4Þð5Þ 0.106(3)(5) 0.413(8)(9) 0.279(9)(12) 0.115(5)(7) −0.236ð5Þð6Þ 0.212(4)(5)
QMHRG2020
[this work]

0.031(3) −0.066ð6Þ 0.103(5) 0.437(14)
[0.466(15)]

0.272(14) 0.127(10) −0.243ð8Þ 0.244(3)

QMHRG2016+
[50]

0.031(3) −0.071ð7Þ 0.104(5) 0.444(15)
[0.472(15)]

0.277(16) 0.132(10) −0.256ð7Þ 0.235(2)

PDGHRG 0.030(2) −0.046ð4Þ 0.094(4) 0.419(12)
[0.447(14)]

0.234(11) 0.106(8) −0.197ð6Þ 0.283(2)

EVHRG2020
[b ¼ 1 fm3]

0.027(2) −0.059ð5Þ 0.103(5) 0.431(13)
[0.459(15)]

0.264(13) 0.113(8) −0.223ð5Þ 0.243(2)

S matrix ([11,48]) 0.020(1) −0.062ð5Þ 0.107(4) � � � � � � � � � � � � � � �
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Our results are found to be consistent with previous results
obtained by using the stout discretization scheme for
staggered fermions [32].
We compiled a new list of hadron resonances,

QMHRG2020, which differs from QMHRG2016þ, in
particular, in the strange baryon sector. HRG model
calculations with QHMHRG2020 provide a good descrip-
tion of strangeness fluctuations and correlations with
baryon-number and electric-charge fluctuations, respec-
tively. Deviations are found to be less than 10% in the
temperature range 135 MeV < T < Tpc;0. This puts strin-
gent bounds on the magnitude of excluded volume para-
meters for strange baryon interactions in EVHRG models.
The largest differences between QCD results and HRG

model calculations have been found for correlations
between net baryon-number and electric-charge fluctua-
tions. They amount to more than 20% at Tpc;0 when
comparing QCD with HRG models based on pointlike,
noninteracting resonances. Modeling these deviations and,
in particular, the quite different temperature dependence of
χBQ11 found in the vicinity of Tpc;0 in excluded volume HRG
models would require a large excluded volume para-
meter b > 1 fm3.
Calculations based on a virial expansion capture basic

features of the interplay between repulsive and attractive
interactions in the strongly interacting hadronic medium.
They successfully explain why, in particular, the strange
meson resonance K�

0ð700Þ does not contribute in that
medium. They also qualitatively describe the smaller
magnitude of χBQ11 found in QCD compared to HRG model
calculations with pointlike, noninteracting resonances.
However, in order to achieve quantitative agreement with
QCD, modeling of interactions that are not captured in
calculations of the second virial coefficient is needed.
The results presented here form the basis for a systematic

analysis of second order cumulants at nonvanishing values
of the chemical potentials. This will be discussed in a
forthcoming publication. All data from our calculations,
presented in the figures of this paper, can be found in [49].
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APPENDIX A: PARAMETRIZATION
OF a=r1 AND afK

In order to estimate systematic errors in our continuum
extrapolations, we used two observables to set the scale for
the lattice spacing at finite values of the gauge coupling
β≡ 10=g2. We use the length scale r1, which is deduced
from the short distance part of the heavy quark potential,
and the kaon decay constant, which is obtained from fits to
the long distance behavior of strange meson correlation
functions. Both parametrizations have already been intro-
duced and used by us in [28].
Using the two-loop beta-function of 3-flavor QCD,

fðβÞ ¼
�
10b0
β

�
−b1=ð2b20Þ

expð−β=ð20b0ÞÞ;

with b0 ¼ 9=ð16π2Þ and b1 ¼ 1=ð4π4Þ, we parametrize
a=r1 and afK as

a=r1ðβÞ ¼
c0fðβÞ þ c2ð10=βÞf3ðβÞ

1þ d2ð10=βÞf2ðβÞ
; ðA1Þ

afKðβÞ ¼
cK0 fðβÞ þ cK2 ð10=βÞf3ðβÞ

1þ dK2 ð10=βÞf2ðβÞ
: ðA2Þ

For a=r1, we use

c0 ¼ 43.16ð15Þ; c2 ¼ 339472ð21144Þ;
d2 ¼ 5452ð387Þ: ðA3Þ

This parametrization is consistent with that given in [28].
The parameters changed slightly which reflects our new
bootstrap analysis of the data for a=r1. For afK, we use

cK0 ¼ 7.486ð25Þ; cK2 ¼ 41935ð2247Þ;
dK2 ¼ 3273ð224Þ: ðA4Þ
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This parametrization takes into account systematic errors
on the determination of the afK scale at nonzero values of
the lattices spacing, which arise from the fact that the
original data taken for afK are not directly taken on the line
of constant physics and needed to be corrected as discussed
in appendix C. 3 of [28]. Our parametrization gives for the
relation of r1 and fK in the continuum limit,

r1fK ¼ cK0
c0

¼ 0.1734ð9Þ; ðA5Þ

which for r1 ¼ 0.3106 fm gives for the kaon decay constant
the FLAG average value fK ¼ 155.7=

ffiffiffi
2

p
MeV [42]. This

value is used in all our figures when showing temperature
scales in physical units.
For our spline interpolations at nonzero lattice spacing,

i.e., at fixed temporal lattice extent Nτ, we add to the
statistical error of our data, determined at a certain value of
the coupling β, a systematic error arising from the width
of the bootstrap band at this β value. This is used as an error
on the T scale (x axis) when performing spline interpola-
tions of our data at fixed Nτ.

APPENDIX B: FITS TO SECOND
ORDER CUMULANTS

Using the temperature scales given in Appendix A, we
performed spline interpolations of our data for each value
of Nτ. These interpolations have been done using 800
bootstrap samples on each of the four different lattice sizes.
These interpolations are shown in Fig. 11 for the case of
χBS11 using a=r1 (left) and afK (right). Errors on the spline
interpolation are obtained from a bootstrap analysis where
each data point has its statistical error and a systematic error
arising from the errors on a=r1 and afK , respectively.
Continuum extrapolations at fixed temperature are then
performed using data at each Nτ value with errors given by
the error band of the spline interpolations. We performed
fits linear and quadratic in 1=N2

τ , as introduced in Eqs. (13)
and (14), respectively. Fits to χBS11 , χBQ11 , χQS

11 , and χQ2
performed at some temperature values, are shown in
Fig. 12. In the case of quadratic fits, we have used the
datasets for all Nτ, and for linear extrapolations, only
results for Nτ > 6 have been used. As can be seen, the
quadratic fits generally have larger statistical errors and a
χ2=dof which is 5–10 times larger. Linear extrapolations
for the Nτ ¼ 8; 12; 16 datasets generally yield χ2=dof ≃ 1.
This also is the case for the electric-charge fluctuations, χQ2 ,
except for the two lowest temperatures, T ¼ 135 and
140 MeV, where the χ2=dof is about 2, but becomes even
larger when using quadratic fits that include the Nτ ¼ 6
datasets. We thus used results from the linear extrapolations
in our final analysis.

APPENDIX C: COMPARISON OF QMHRG2020
AND QMHRG2016 +

We list here eight strange baryon resonances that are
treated differently in QMHRG2020 and QMHRG2016þ
lists of hadrons. When eliminating these states from the
QMHRG2016þ list, HRG model calculations performed
with the reduced QMHRG2016þ list agree with those
performed with the QMHRG2020, although some values of
the masses differ slightly as QMHRG2020 is based on the
masses given in Ref. [36], while QMHRG2016þ use
masses from Ref. [34].

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

135 140 145 150 155 160 165 170 175

r1 scale
- 11

BS

T [MeV]

N = 6
8

12
16

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

135 140 145 150 155 160 165 170 175

fK scale
- 11

BS

T [MeV]

N = 6
8

12
16

FIG. 11. Spline interpolations for the cumulant χBS11 performed
with the temperature scales obtained from r1 (top) and fK
(bottom) for Nτ ¼ 6, 8, 12, 16.

TABLE VI. Strange baryon resonances that are treated differ-
ently in the QMHRG2020 and QMHRG2016þ lists. While only
states listed by the PDG [33] are kept in the former, also the
corresponding quark model states are kept in the latter.

Particle

PDG [MeV] Quark Model [MeV]

[33] [34] [36]

Λð1405Þ 1405 1550 1406
Λð1830Þ 1830 1775 1861
Λð2050Þ 2050 2035 2030
Λð2325Þ 2325 2185 2322
Σð1750Þ 1750 1695 1747
Σð1910Þ 1910 1755 1856

(was Σð1940Þ)
Σð1940Þ 1940 2010 2025
Σð2070Þ 2070 2030 2062
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FIG. 12. Continuum extrapolations for the cumulants χBS11 , χ
BQ
11 , χ

QS
11 , and χQ2 (top to bottom) performed with the temperature scales

obtained from fK (left) and r1 (right) using linear and quadratic extrapolations in 1=N2
τ . Shown are results for four values of the

temperature below and close to the pseudocritical temperature of (2þ 1)-flavor QCD. Also shown are results obtained in HRG model
calculations using the QMHRG2020 list of hadrons (crosses). Note that for χBQ11 , these HRG results are not shown for all temperature
values as the deviations from the corresponding QCD results are too large. For χQ2 , QMHRG2020 with the finite volume corrected
contributions for pions and kaons in a volume LT ≡ Nσ=Nτ ¼ 4 has been used.
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