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Parton distribution functions (PDFs) and light cone distribution amplitudes (LCDAs) are central
nonperturbative objects of interest in high-energy inelastic and elastic scattering, respectively. As a result,
an ab initio determination of these objects is highly desirable. In this paper we present theoretical details for
the calculation of the PDFs and LCDAs using a heavy-quark operator product expansion method. This
strategy was proposed in a previous paper [Phys. Rev. D 73, 014501 (2006)] for computing higher
moments of the PDFs using lattice QCD. Its central feature is the introduction of a fictitious, valence heavy
quark. In the current article, we show that the operator product expansion of the hadronic matrix element
we study can also be expressed as the convolution of a perturbative matching kernel and the corresponding
light cone distribution, which in principle can be inverted to determine the parton momentum fraction
dependence. Regarding the extraction of higher moments, this work also provides the one-loop Wilson
coefficients in the operator product expansion formulas for the unpolarized PDF, helicity PDF and
pseudoscalar meson LCDAs. Although these Wilson coefficients for the PDFs can be inferred from existing
results in the literature, those for the LCDAs are new.
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I. INTRODUCTION

Factorization in quantum chromodynamics (QCD)
allows one to describe many hard hadronic reactions as
a convolution of a short-range (high-energy) perturbative
kernel and a long-range (low-energy) process-independent
function [1]. Historically, the approach used to describe
high-energy hadronic processes has been to calculate the
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short-range kernel using perturbation theory and to extract
the long-distance piece from experimental data. The val-
idity of this approach is established by the universality of
the long-range contributions, which are intrinsic properties
of the hadron.

While the low-energy functions in QCD factorization can
be measured from experimental data, they are also calculable
within a non-perturbative field theoretic framework.
Currently, the only nonperturbative first-principles approach
to QCD is through lattice regularization, and such low-
energy functions are prime candidates for a direct calcu-
lation using this framework. Recently the advances in
computational power, numerical algorithms and theoretical
understanding have enabled these quantities to be computed.
The two simplest examples of these long-distance functions
are the parton distribution functions (PDFs) introduced
to explain deep inelastic scattering (DIS) [2—4], and the
light-cone distribution amplitudes (LCDAs) introduced to
describe high-energy exclusive processes [5,6].

Published by the American Physical Society
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Direct evaluations of the PDFs and LCDAs require the
computation of matrix elements involving nonperturbative
dynamics on the light cone, and hence are not possible in a
Euclidean formulation of field theory like lattice QCD.
Historically, this problem in lattice calculations has been
addressed using Wilson’s operator product expansion
(OPE) [7,8] to express the nonlocal operator as an infinite
sum of local operators. Matrix elements of these local
operators are directly calculable within the framework of
lattice QCD, and are related to moments of the PDFs and
LCDAs. In principle, knowledge of these moments facil-
itates the reconstruction of the PDFs and LCDAs. See,
for example, Refs. [9-11] for earlier works employing this
strategy. Nevertheless, the renormalization procedure for
the local operators appearing in this approach requires
subtractions of power divergences that arise from the
breaking of the O(4) Euclidean space-time symmetry.
As a result, the method is practically applicable only to
the determination of a few leading moments.

Over the past two decades, various alternative strategies
have been proposed to extract PDFs and LCDAs using
lattice QCD [12-20]. All of these strategies involve lattice
computations for matrix elements of nonlocal operators. In
this article, we expand the theoretical details of the proposal
suggested in Ref. [14]. This proposal is originally designed
to allow access to higher moments with lattice QCD. Its key
ingredient is the introduction of a fictitious, valence heavy
quark that enables additional control of an OPE for
calculating higher moments. Here we call this the heavy-
quark operator product expansion (HOPE) method. In the
current paper we show how one may extend the HOPE
method to enable the direct determination of £ dependence
of the PDFs and LCDAs. This is achieved, as explained in
detail in Sec. IIl A, by demonstrating that the hadronic
amplitudes appearing in the HOPE approach can be
expressed as the convolution of a perturbative matching
kernel and either a PDF or LCDA. Concerning the
computation of the moments, we complement the discus-
sions in Ref. [14] by analyzing the convergence properties
of the HOPE. This analysis is presented in Sec. III B below.
Furthermore, in this work we provide the relevant one-loop

|

Wilson coefficients for extracting moments of the unpo-
larized and helicity PDFs as well as the meson LCDAs.
This allows one to account for renormalization scheme and
scale dependence in the moments more precisely. Although
the Wilson coefficients for the PDFs can be inferred from
results in Refs. [21,22] where the cross sections for heavy-
quark production in charged-current DIS are computed,
we perform alternative calculations and describe them in
Secs. IVA and IV B. Finally, in Sec. IV C we give one-loop
results for the LCDAS, which are new.

II. DEFINITIONS AND ELEMENTARY
PROPERTIES

In order to make this paper self-contained, we give
formal definitions for the PDF and LCDA, summarize their
uses and motivate the necessity for computing these
quantities from first principles. Although we intend this
calculation to be used for a determination of moments of
the LCDA using Euclidean lattice field theory, in this work
we proceed in Minkowski space and utilize the “mostly
negative” metric: ¢* = diag(+1,—1,—1,—1). Results in
Euclidean space can be obtained straightforwardly pro-
vided the analytic continuation of the matrix element
considered is possible. Further discussion of this point is
found in Sec. III B.

A. Parton distribution function

Parton distribution functions were introduced in the
context of the study of DIS [2—4] and are an important
input in the Standard Model predictions of collisions at
high-energy hadronic colliders like the LHC. Currently
nucleon PDFs are extracted through global fits to a number
of different cross sections [23-27]. However, it is a goal
of lattice field theory to produce predictions of the PDFs
from first-principle calculations in QCD of similar or better
precision to those extracted from experiments. Formally
the unpolarized PDF, f, (& 4%) and helicity PDF,
Afiu(E p?) for a quark of flavor i carrying a fraction &
of momentum in a hadron H are defined as

Fnlea) = [ G e () W O (0) Hp.9)). (1
Aignle?) = 55 [ o e (H )y s Wa O (0) Hp.9)) @

where 4 is the renormalization scale of the light cone separated operator, s* is the spin vector of the hadron of mass mj,

with s> = —m?%, and s - p = 0, and

W(x,y] = Pexp <igly dz,,AZ(z)ta) (3)
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is a Wilson line which ensures gauge invariance of the
matrix element. We use light cone coordinates where for a
general four-vector V¥ the “plus” and “minus” components
are defined as

vE :\%(VoiV”). (4)

In order to keep the notation relatively simple, in what
follows we shall drop explicit flavor labels unless they are
necessary. Correspondingly, fi/y and Af;/y will be de-
noted as fy and Afy, respectively.

B. Light cone distribution amplitude

The LCDA was originally introduced in order to study
the asymptotically large momentum transfer limit of the
pion electromagnetic form factor [5]. At around the same
time, it was realized [6] that meson and baryon LCDAs
were the central objects of interest in describing a number
of exclusive process at high energy. In a light cone gauge
where A* =0, the LCDA ¢, (&, %) of a meson M is
interpreted as the probability amplitude for converting the
meson into a collinear quark-antiquark pair with longi-
tudinal momentum fractions (1+¢&)/2 and (1—¢)/2,
respectively, at the renormalization scale y. For pseudo-
scalar mesons, the LCDA is defined by the matrix
element [5,6]

(Q(2)y,rsWiz, —zlw(=2) M (p))

1 .
= ifup, / ey (), (5)

where (Q| is the physical vacuum state, z> = 0 is a lightlike
separation and f,, is the pseudoscalar meson decay
constant defined by the z — 0 limit of Eq. (5). The most
studied of the LCDAs is that of the pion. In the isospin limit
where the masses of the up and down quarks are degen-
erate, the pion LCDA is symmetric under the interchange
& — =, that is

¢E<§’/’{2) = ¢n’(_§’ﬂ2)' (6)
We shall assume isospin symmetry in this work. At leading
logarithmic accuracy, the natural orthogonal polynomial

basis for the LCDA is the set of Gegenbauer polynomials
[6,28],

c={c?@EIn=0.12.1% (7)

The pion LCDA can thus be expressed as

1-2) Y #ee?©. ®

n=0,2,...

AW

b (Ep?) =

From this decomposition, it is clear that knowledge of the
Gegenbauer moments ¢7(u?) is sufficient to reconstruct
the LCDA. In the limit that y?> — oo, ¢o(u*) — 1 and the
higher moments go logarithmically to zero. As a result

Dulest — 00) =3 (1-2). ©

The high-energy behavior of certain exclusive processes in
QCD are controlled by this asymptotic form of the distri-
bution amplitude given in Eq. (9). In particular, in Ref. [6],
predictions are given for transition and electromagnetic form
factors of the pion. The success of this formalism is
particularly clear for the case of the yy* — z° transition
form factor, where experimental data from Belle [29]
appears to show the predicted asymptotic form, although
previous experiments appeared to suggest that this predic-
tion underestimated the data [30,31]. For the case of the pion
electromagnetic form factor, the situation is less clear. The
most recent experimental data [32,33] does not agree with
the prediction of Ref. [6]. Although the extracted values of
the pion form factor are in principle model dependent
[34,35], it has been shown that they are relatively insensitive
to the model used [36,37]. Since the asymptotic form of the
distribution amplitude is only expected to be valid at very
high photon virtualities, it has been suggested that the
discrepancy between theory and experiment can be traced
to the use of Eq. (9) atenergy scales where the LCDA has not
yet evolved to its asymptotic form. While further high-
energy measurements of the pion electromagnetic form
factor are certainly required, it is clear that precise deter-
minations of the pion LCDA are also necessary to fully
understand this discrepancy.

C. Current theoretical approaches

Due to the importance of having accurate calculations of
PDFs and LCDAs, much work has been done to obtain
information about the these quantities using many different
phenomenological approaches. As we have previously
emphasized, the most reliable theoretical determinations
of such nonperturbative objects are obtained from lattice
QCD. The “traditional” approach involves a determination
of the Mellin moments of either the PDF or LCDA. These
moments may be written as linear combinations of the
Gegenbauer moments. The Mellin moments of the unpo-
larized PDF f, helicity PDF Af and LCDA ¢, for meson
M are defined, respectively, as

1
att, (12) = A dEEf (. 12). (10)
o) = [ deearyean.
() = / 1 dEE Dyt (E12). (12)
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With exact knowledge of all the Mellin moments, one is
able to reconstruct the full £ dependence of the distribu-
tions. In practice, numerical determinations restrict one to
calculating a finite set of moments, and further difficulties
appear when one attempts to compute matrix elements of
twist-two operators with spin greater than four in a lattice
regularized field theory [38]. This is because the lattice
regularization breaks the full rotation group SO(4) and
leads to mixing of operators with different mass dimen-
sions, hence the appearance of power divergences. These
power divergences make the determination of the higher
moments difficult. Nevertheless, this approach has been
well studied and has yielded results for the lowest three
moments of the pion PDF [11,39-43] (for the lattice
calculations of nucleon PDF moments see a recent review
in Ref. [44]) as well as the first nontrivial moment of
the pion LCDA and the first two moments of the kaon
LCDA [9,10,42,45,46]

To go beyond the calculation of the lowest moments of
the PDF or LCDA, several alternative approaches have
been proposed. One method is based on the short-distance
OPE of a current-current correlator [15,47], where the issue
of power-divergent operator mixing can be avoided since
the currents have a well-defined continuum limit, and one
can in principle extract the n > 4 moments of the LCDA
given sufficient numerical precision. The current-current
correlator has also been used in the calculation of PDFs in
recent studies [20,48]. A method has been proposed to
restore the broken rotational symmetry [16], which would
reduce the power-divergent mixing so that the higher
moments can be directly computed on the lattice. More
recently, the formalism of large-momentum effective theory
[17,49,50] was proposed as a method to determine the &
dependence of the PDF [51-53]. In this approach, one
calculates the “quasi-PDF” which is defined as the Fourier
transform of equal-time quark bilinear corrrelators in a
hadron state with large momentum. The large-momentum
effective theory approach has also been applied to the
lattice calculation of the LCDAs for light mesons [54-56].
The same matrix element that defines the quasi-PDF can
also be used in a short-distance coordinate space expansion
known as the “loffe-time pseudo distribution” approach
[19,57]. Using this formalism, several moments of the PDF
have been determined, and the & dependence has been
determined via a fit to a parametrized ansatz [58-60]. A
direct lattice calculation of the hadronic tensor has also
been proposed and explored [61,62]. In a similar vein, an
application of the Feynman-Hellman theorem allows indi-
rect access to the hadronic tensor via a determination of
two-point correlators coupled to external fields [18,63].

In this work we pursue a different approach: the HOPE
method [14,64,65]. This procedure was first proposed in
Ref. [14] and builds on the conventional OPE by perform-
ing the numerical simulation of a current-current correlator
with the currents containing a fictitious heavy quark species

which leads to a number of advantages over the standard
treatment [14]. In the next section, we review this strategy
and provide more details about its theoretical foundation
and practical implementation.

III. THE HOPE METHOD

The HOPE method was originally proposed in Ref. [14]
as a way to extract information about the moments of PDFs
and LCDAs via an analysis of matrix elements which we
refer to as hadronic amplitudes. We define these as

T (p,q) = /d4zei4'Z<H(p,s)|T{Jg(z/2)J;(—z/2)}

x |H(p.s)). (13)

V(p.q) = / 27 (QIT (1% (2/2) 7% (~2/2)} M (p)).
(14)

where 7 is the time-ordering symbol and the heavy-light
axial-vector current J%(z) is given by

Ju(2) =P (2)rysw(z) +w()r'ysP(z).  (15)

We denote the fictitious heavy quark species as ¥ and
the light quark species as y. Note that other choices for
the Dirac matrix structure in the current are also possible.
The application of the HOPE method to 7#*(p, q) enables
one to extract the moments of the unpolarized and helicity
PDFs. The matrix element V#*(p, g) allows a determina-
tion of the LCDA moments since both the current-current
operator shown above and the operator in Eq. (5) can be
expanded in terms of the same local operators [66].

The HOPE strategy is characterized by its use of a
fictitious flavor-changing heavy-light current [Eq. (15)].
The heavy quark is quenched and as a result only
propagates between the two currents [14]. We note that
the use of a quenched heavy quark removes certain higher-
twist diagrams entirely from the calculation and also
provides a source of higher-twist suppression beyond the
large momentum transfer at the currents due to the heavy
quark mass, my. In order for the heavy quark mass to be
considered a “large” scale we require that

Agep < my ~ /02, (16)

where Q% = —¢>.
To apply the HOPE method, we define the operator

#(g: my) = / T (/204 (~2/2)) (1)

and perform an OPE. In the case of the symmetrized
isovector operator, this yields [14]
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2q,4n)

z qull

even

t{/“/} q m\y

where C; , are the Wilson coefficients and we have defined

0% = —¢* + m3, (19)
Higher twist contributions are suppressed by at least one
extra inverse power of Q. The operators occurring on the
right hand side of Eq. (18) are the well-known standard
twist-two operators:

_ gl Sy}
Oy =gy (iD”)..(D ")y —tr,  (20)
<, }
Ol =yl s(iD")... (D" . (21)
and the twist-three operators:
Ot = (D" )D")... (D -t (22)

where i is the quark flavor, {---} denotes total symmet-
rization of the Lorentz indices and trace subtraction, and

<u

= (D" -D").

(23)

| =

T (p.q) = (n(p)|t¥ (g: my)|x(p)).

i © i
=5 (4p”p” > @ Cy (0% my u?)2ar (W) +
n=0

even

+2ig"my Yy @' Cs,(Q2, my, u?)2b% (u?) —

even

where our expansion parameter is

1

Xp

2p-q
QZ

, (29)

(i) =

and p* is the momentum of the external hadronic state.
Target mass corrections can be resummed using the

Cl,n(Q2 m\ll?

1OV ()

- C3.n(Q2’ m2‘{h M2)@I};].“Mn (,Ll)

C‘L"(Qz, m?y,MZ)OD}ﬂI.‘.M

il -+ higher twist(u),

(18)

Lorentz covariance allows us to write the general form for
the twist-two matrix elements as

(H(p,s)|O, " |H(p,s))=2ally (u*)[p"...pH —tr], (24)
(H(p.s)|O) " |H(p.s))=2all , (u?)[s pr=...pr) — ],
(25)
(H(p.s)|Ow |H(p,s))= 265 (u?)[p"...p" — 1], (26)
QIO IM(p))= fu (& ")y (W?)[p" pHe...p* — ],
(27)

where |H(p,s)) is a general hadronic state H with
momentum p and spin s, |[M(p)) is a general pseudoscalar
mesonic state with momentum p, af\,, a!,, b}l and (&),
are the Mellin moments, and f,, is the meson decay
constant.

Explicitly, for the symmetric case of Eq. (13) in a pion,
we have

Q¢ > @"Cy (0
n:Z

iy j2)2a5 y ()

(5]

) Ca (2, m\umzamv(ﬁ)), (28)

n=1
odd

2(p"q" + q"p*

|
standard techniques [67-70], and the explicitly resummed
expression for Eq. (28) can be found in Ref. [14]. In either
case, the application of the formalism to lattice QCD is as
follows: first, numerically calculate the required hadronic
amplitude, then fit the HOPE expression to lattice data with
the moments as free parameters. Note that the applicability
of the approach requires |@| < 1, leading to kinematical
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suppression of higher moments. Successful application of
the HOPE method requires 07 > AéCD, so in order to
enhance the contributions from higher moments for fixed
g", one must increase the hadron momentum |p|. This point
has been discussed previously in Ref. [65].

A. Relationship to other approaches

The HOPE method allows extraction of information
about light cone quantities from a current-current correlator
where the standard current operator is replaced by that
given in Eq. (15). While the use of this fictitious flavor
changing current implies that the resulting matrix elements

|

3,0

T (p.q) = 8i7 0 N™ arc, (0% m},.
n=0,even

+ higher twist.

Importantly, this relation is valid to twist-two accuracy,
with higher-twist contributions being suppressed by at least
an extra factor of Agep/ Q. When the momentum of the
hadron becomes large, it also serves to suppress the target-
mass effects which are of higher twist. To see this, let us
compare the twist-two operator O, to the twist-four

counterpart g O, %, which is given by

w)ag,, (W) -

are not observables of standard QCD, the quenching of the
heavy quark ensures the modifications may be wholly
absorbed into the Wilson coefficients and thus the resulting
moments correspond to those of QCD. As a result it is
possible to show that the amplitude may be written in a
factorized form as is done in the quasi-PDF [17,49,50],
“lattice cross section” [20] or pseudo-PDF [19,57]
approaches. To do this, we start from Eq. (13) and use
the HOPE expression for the operator given in Eq. (18). By
taking u = 3, v = 0, we can remove contributions from the
twist-3 operators and as a result the HOPE expression for
the pion hadronic amplitude T#*(p, q) is [14]

0,3 3.0
.pq +pq Z ~ ~ P
4i wnC4,n(Q2’m‘zP’/’tz)anJr],V(:uz)

0? n=1.0dd
(30)
(26,,) (24, )9 (H(p.5)| O, [H (p.))
= 2a,\y 4’ m}). (33)
where agfz/ is the Mellin moment for the twist-four

operator Off%,. Thus we see that for kinematics where
q-p~—q*> m%, both the target mass corrections and
twist-four corrections are suppressed.

C’),f‘)/ =y(iD)y (31) Using Eq. (10), we may write
Their contributions to the OPE are 1 B
T(p.) = [ defuled K 6.0 0%)
(24,,)(2q,,)(H(p.s)|0,%' |H(p.s))
SN o + higher twist, (34)
=2a,y[(2q - p)” — q"my]. (32)
where the matching kernel is

. n 2 ¢ +rd, .. n+1 A2 2 2

Ko = ) [8it=E ()" Cr (0 my i) — 4LT:<§w> Cani1(QFmy?)|,  (39)
n=0,even

and we again emphasize that the flavor labels have been
suppressed in the above definitions of the PDF and
matching kernel. Assuming |@| < 1, we can resum the
resulting geometric series to find a closed-form expression
for the matching kernel [18,71]. More generally, one may
express the amplitude as the convolution of the PDF and the
short-range kernel K. Importantly, one must ensure that Q
is large enough to isolate the twist-two contribution so that
the matching coefficients can be calculated using pertur-
bation theory.

According to Eq. (34), the hadronic amplitude defined
by Eq. (13) may also be analyzed using a factorization
theorem similar to the quasi-PDF, lattice cross section or
pseudo-PDF approaches. If we obtain the hadron amplitude
as a continuous function in @ in its full range, then in
principle we can invert Eq. (34) as is done in the quasi-PDF
approach. Note that the kinematics we require to ensure a
valid OPE is equivalent to that for the factorization of the
amplitude into the light cone quantity of interest and a
perturbatively calculable matching kernel. To obtain large
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@ ~ 1, we need large pion momentum. With a limited range
of @, it is difficult to perform the inversion, so we have to
rely on either a model fit of the PDF to the hadronic
amplitude data using Eq. (34), or we can fit the lowest
moments using the OPE formula. In this regard, both
strategies allow us to extract the same amount of informa-
tion about the PDF, but the latter is model independent
because it does not introduce uncontrollable systematic
effects from modeling the PDF to perform the inversion.

Generically, fitting lattice data to OPE formulas allows
for the extraction of higher moments of the PDFs and
LCDAs. This evades the need for the direct evaluation of
matrix elements of local operators, which involve the
subtraction of power divergences in the renormalization
procedure. In principle, having information for all moments
enables one to reconstruct the PDFs and LCDAs. Indeed, as
demonstrated in the above section, the HOPE hadronic
amplitudes allow us to determine directly the £ dependence
in these latter quantities, since the matching kernel, K, in
Egs. (34) and (35) is perturbatively computable. The same
general idea has been realized in different practical ways.
For example, similar proposals for obtaining information
about parton physics can also be found in Refs. [18,72].
Compared to these other proposals, the introduction of the
fictitious (valence) heavy quark in the HOPE strategy
provides several advantages.1 As already explained in
Ref. [14], the heavy quark provides a large scale that
offers an additional parameter to control the OPE, and its
valence nature is crucial for suppressing higher-twist
effects. Here we would like to point out two other assets
that arise from the introduction of this heavy quark. First, in
the setting where m%, 2 (p + ¢)?, it is natural that no on
shell state can appear between the two currents in the
Minkowski-space counterpart of the HOPE hadronic
amplitudes. This means that their analytic continuation is
straightforward. Second, the presence of the heavy quark
serves to suppress the matrix element at large distances and
thus ensure that the effect of truncating the finite numerical
data when performing the temporal Fourier transform is
negligible.

B. Convergence and analytic structure
of HOPE hadronic amplitude

In this section, we shall analyze the convergence proper-
ties of the HOPE hadronic amplitude 7#*(p, g). A similar
analysis can also be made for the matrix element V*(p, q).
The materials presented in this section are important for

"The presence of an extra large mass scale modifies the Wilson
coefficients C in = 1, 2, 3, 4) that have been derived in the
massless case [73—81]. Therefore, a precise determination of the
PDF or LCDA would necessitate the recalculation of C;, and K
with the explicit dependence on the heavy quark mass. One can
determine K from the Wilson coefficients C;, presented in
Sec. IV.

examining the validity of the HOPE method, and they
complement the discussion in Ref. [14] where the approach
was first proposed. To begin with, we note that T7#*(p, q) is
arank-2 tensor and thus the most general Lorentz covariant
decomposition is

T"(p.q) = ¢ A\(q*. - q:my) + P* P Ay (47, p - g3 my)
+ P A (G p - qmy) + @ pPAL(G P gimy)
+4"q"As (4%, p- q;my)
+ie P q,ppAc(q, p - qsmy), (36)

where the A; are scalar functions which are dependent
on all possible kinematic variables. In the HOPE method,
one performs an OPE as described in Ref [14]. We may
equivalently express the scalar functions A; in terms of the
variables

= 0%/0% (37)
0% and @ [defined in Egs. (19) and (29), respectively] as
A=A (0% @.7). (38)

Understanding the analytic properties of these scalar
functions will enable us to understand the radius of
convergence for the HOPE strategy in terms of the
expansion variable @. Since the intention of this work is
to describe the theoretical background for a numerical
calculation using lattice QCD, we note that the relevant
Euclidean constraint can be found by taking g, — iq, in @,
provided the amplitude is analytic for this value of g,. Since
@ is in general complex, we seek to determine the radius of
convergence in the complex plane. To study this, we must
analyze the general analytical properties of the amplitude
without recourse to perturbation theory. We shall consider
the amplitude purely in Minkowski space and derive
relations for the physical poles and branch points.
Information regarding the locations of these singularities
is important for determining the radius of convergence.
To discuss the analytic properties of the scalar functions
A;(Q% @,7), it is useful to express these amplitudes in
terms of standard Mandelstam variables. Noting that the
matrix element we consider is in the forward limit, we write
s=(p+q? 1=0, u=(p-97° (39
Conservation of momentum allows us to relate u to ¢> and
s. We may express s in terms of the HOPE variables:

s=m2+10*(t '@ —1)=m2+ Q*@—1). (40)

The lowest pole @, in A;(Q?, @, 7) appears at a value of
s = m; corresponding to the propagation of a heavy-light
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axial-vector meson with mass my between the two
inserted currents:

2 2 2 2 2
mHL—m,,:l_m,,—Fm.},—mHL

0 0>
The first hadronic branch point which will appear is due to

the two-body threshold [s = (m, + myy )?]. The corre-
sponding position of the branch point in terms of @ is

(41)

Wpole = T =+

(myL 4 my)* = mg

02
(myg + my)? — mg — m;
7 |

Cbb.p. =7+

(42)

Further branch points appear due to the opening of more
channels as the energy increases. Finally, from Eq. (13) itis
possible to see that the amplitude is invariant under the
combined interchange

q < —q, U< . (43)
Under this interchange the roles of s and u are reversed.

Above threshold this corresponds to the physical region of
the u-channel process. In terms of @, this leads to

@ < 0, (44)

and thus for each singularity or branch point we have
discussed in @ due to a physical process in the s channel
there will be a corresponding singularity or branch point at
—& for the u-channel process. The resulting analytic
structure of the amplitude is shown in Fig. 1. From this
discussion of the analytic properties of the hadronic

N

1 \ R{w}
VAYAVAVAVAVAVIRRRD: 4 |
-1} X1 VVWW
\ 1
FIG. 1. The analytic structure of HOPE Compton amplitude.

The radius of convergence is determined by the location of the
nearest singularity, which is represented as a cross. The first
branch point appears at |@y, , |=1+[(my+m,)> —m3—m2]/0*
and the branch cut is represented by the zigzag. In order to
ensure a convergent expression one should choose a value of

|o] < Dpote = 1 — (mz + m\zll - ’"%IL)/Q2

amplitude one may be assured that the HOPE method
converges when performing numerical simulations pro-
vided one chooses kinematics such that

m2 + md, — miy

~—2 .
Q

Note that in the limit that the heavy quark mass becomes

infinite, @y, — 1 and @, , — 1.

|&)| < C'bpole =1-

(45)

IV. ONE-LOOP WILSON COEFFICIENTS
FOR PDF AND LCDA

In this section, we derive the one-loop Wilson coef-
ficients in the HOPE of the hadronic amplitude in Egs. (13)
and (14) for both the PDF and pseudoscalar meson LCDA
cases. Compared to the OPE for the hadronic amplitude
from light-quark current-current correlators which has been
previously studied [15,72-84], the heavy-quark mass in the
HOPE method modifies the Wilson coefficients. Note that
for the unpolarized and helicity PDF cases, the Wilson
coefficents can be extracted from the cross section for
heavy quark production through the charged current in
neutrino DIS [21,22], while for the LCDA case there are no
known results in the literature. Therefore, our calculation of
the latter is new in this work.

We carry out calculations of such Wilson coefficients with
asymptotic massless external quarks, where both the ultra-
violet (UV) and infrared (IR, or collinear) divergences are
regulated using dimensional regularization. The OPEs for
the PDF and LCDA cases expand in terms of Mellin
and Gegenbauer moments, respectively, so we treat them
differently with different external states. The Feynman
diagrams contributing to the one-loop corrections are shown
in Figs. 2 and 3.

A. Parton distribution functions

The physical process that corresponds to the hadronic
amplitude for the PDF case is heavy quark production
through the charged current in neutrino DIS [21,22], except
that the latter only involves left-handed fermions. The next-
to-leading order correction to the cross section was first
calculated in Ref. [21], and a mistake in that calculation
was corrected in Ref. [22]. Currently, the QCD correction
has been computed up to O(a?) [85-89], and power
corrections due to heavy quark mass have also been
obtained at O(a?) [90]. In principle we can derive the
dispersion relation [91] for HOPE and the neutrino DIS
structure functions, which can be used to extract the Wilson
coefficients [85]. Nevertheless, in this work we directly
calculate the Wilson coefficients from the hadronic ampli-
tude using the standard method in field theory. To be
specific, we first compute the one-loop quark matrix
element of the current-current correlator, and then compare
the coefficients in its Taylor expansion in @ to the matrix
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q1 q2 q1 q2 q1 q2
i i /
I v M v 1% v

p1 P2 b1
(a) (b)
q1 q2
\ /
15 v
P1 }JQ

(d)

b2 P1 P2

(e)

FIG. 2. The hard scattering kernel up to O(a,). One must also sum crossed versions of these diagrams.

elements of the corresponding Mellin moments. The IR
divergences between the two at each order of @ must be
identical, and their difference gives the perturbative Wilson
coefficient. In the end, we compare our results to those

|

extracted from the one-loop neutrino DIS cross section
formula [21,22,85].

For the PDF case, we set p; = p, =
tree-level hadronic amplitude is

p in Fig. 2. The

wmmz/meMHmwnmﬂmmm

g+7+my

. -4+ p+ my
= # e ey e ; 46

where |p) is a free quark state and u(p) is a quark Dirac spinor. Due to chiral symmetry, the terms linear in my vanish
between the light-quark spinors as they are proportional to &(p)y*y*u(p) or a(p)y*y*u(p), and therefore

T4 (q.p)+T¢(q.p)

7" (q.p) = 5 ,

1 1 1
— il {up} {uyrt
B0 ) OO
)| e
¢ +2q-p-my ¢ =2q-p—my|’
2 2 J 2 2 vii...
__4ZZI< qm)_. (g/;n><p|q{ﬂoﬂl ﬂn}|p 412(;< qﬂl>-'.<g’;"><p|0lr;-‘:{2],vﬂn|p>
L) 2
+ig"”2(%).. (qﬂn>< 10457 | p). (47)
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Since the heavy-to-light currents we use are not conserved
due to the nonzero quark mass, the hadronic amplitude

Tf,” “}(g. p) does not satisfy the chiral Ward identity,

q,7{"(q.p) #0. (48)
Therefore, T({]" ”}(q, p) can include up to four independent
Lorentz tensor structures,

g, (p"q" + p*q").

where the first three structures are present at tree level, as
seen in Eq. (47), while the last one enters at O(a;).

In perturbative QCD, the hadronic amplitude Té" g
includes collinear divergences which are regulated by
dimensional regularization with d =4 — 2¢. At one-loop
order, all UV divergences in the Feynman diagrams in

|

PrpY, q'q", (49)

—— —_——
p p—Fk
FIG. 3. Self energy correction to the light quark.

Figs. 2 and 3 cancel, except for that from the heavy quark
mass correction. Therefore, the hadronic amplitude is
independent of the wave function renormalization scheme
for the quarks but depends on the scheme for heavy-quark
mass renormalization. In our calculation, we consider the
heavy-quark mass in both on shell and MS schemes.

The OPE of the hadronic amplitude 75 to all orders in
perturbation theory takes the form [21]

) _ 4ia(p)g¥yu(p) L,z s > o
Tq (q,p, mq/,/luv,ﬂir,é‘ir) = Q2 ;w Cl,n(Q aTa,uuv)an,V(eir’ﬂuwﬂir)
odd
41”(p)pé{zyy}”(p) f:d)"“Cz.n(Qz,r, W2 v (€, oy 13)
n=l1,
odd
_ %’W i " C3,0 (0%, 7, i3y )y (€30 iy 15)
n=1,
odd
" 2iqﬂqvﬁQ(i7)qM(P) i&)nc4’n(éz’ T’M%v)an,v(eirvﬂgv’:uizr)’ (50)
n=1,

where C;, (0% 7,u2,) are the Wilson coefficients, and
a,y (€, uay, p2) are the Mellin moments in perturbation
theory. We use €, and ¢;, to differentiate the UV and IR
divergences, and y,, and y; are the MS scales for UV
renormalization and IR regularization. The Mellin mo-
ments in the massless quark state are

1y
<€—/ —In %) + O(a?),

ir ir

a;Cr (0
dr T

I+

an,V (€irv /’t%w /"121')

(51)
where 1/€/. = 1/€;;, — yg + In(4x), and the factor
(0) 3+4+2n 3
O _p| 2T oy 2 52
4 {2 +3n+n? 2 (52)

is the minus one-loop anomalous dimension of a, , with
the harmonic number

(53)

n 1
Hn - Z—..
=1/

Note that the regulator ¢;, is introduced to bookkeep the IR
divergence in our perturbative calculation, but it is not a
prediction for the IR contribution in the hadron state, which
is intrinsically nonperturbative. Due to the cancellation of
€; dependence between the hadronic amplitude and the
Mellin moments, the Wilson coefficients only depend on
the UV scales and are thus perturbatively calculable, which
allows us to make predictions for the Mellin moments once
the hadronic amplitude are computed from lattice QCD.
For convenience, from now on we will not differentiate
€w and €, and we set p,, = p; =M, which is the
factorization scale. Therefore, the hadronic amplitude is

denoted as Tl{/‘ g (q, p, my, i, €), while the Mellin monents
are denoted a, y(€).

The Wilson coefficients C,,(Q?, 7, u*) are also series
expansions in @, given by

A CF
= 1 _—
+ 4

Cin )y o@), fori=1,23, (54)

Ay CF

C —
4.n 4

)+ 0@d).

(55)
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Therefore, at O(a),

(0)
C
Cinny(e) =1+ i [}/ »

"y cS,,,] L 0@, (56)

€
fori=1, 2,3, and

Ay CF

4n (57)

Canttyy(e) = L)+ O(a?).

The one-loop Wilson coefficients CS’In)(Q{T, #*) have

the structure

in in

2
. U ~ .
C(l>(Q2,T,/42) 27510) ln@—FR(l)(Qz,yz,r), fori=1,2,3,

(58)
!

12 =227 42022 = 1173 2(1 —7)(6 — 87+ 772 + 137°) In(1 — 7)

Cin( Q% rp?) = R, (). (59)
following the renormalization group equation of the
Mellin moments. Therefore, by Taylor expanding the
one-loop matrix element of the hadronic amplitude
Tc{/ v (q, p, my, u, €) in @, we can read off the finite term
Rl(ln) (z) by comparing to Egs. (50) and (56). This can be
achieved by employing the formulas provided in the
Supplemental Material [92].

The full one-loop result of T,{]” v (g, p, my, i, €) can be
found in Appendix A 1. Here, we provide the Wilson
coefficients for the first few moments.

In the on shell scheme for heavy-quark mass renorm-
alization, which we denote by “OS” in the superscripts of
RY3(z) below, there is no dependence on In(u?/0?), and

0s(1
Rl’]( )(T) B 373 37 ' (60)
ROS(I)( _ 480 — 6967 + 26272 + 1737 + 33274 — 824¢°
1 (0) 607°
(1 —17)(240 — 2287 + 577> + 977% + 2177z* + 3377°) In(1 — 7) (61)
3076 '
0s(1 2-57+27> 2(1—1)(1 =2+ 107%)In(1 — 1)
R2’1< )(T) = - 31_2 - 31’3 s (62)
ROS() 144 — 1987 + 23372 4+ 2267 — 6787 (1 —7)(72 — 637 + 977% + 1577° + 277¢*) In(1 — 7)
T
osty, ,  6—11t=52+77  2(1 -17)(3—4r—472 - 137°)In(1 — 1)
R3,l (T) - 3T3 + 3‘[4 4 (64)
ROS(I)(T) _ 120 — 3247 — 272 — 1037° — 182¢* + 7167
33 607°
1 —17)(60 — 1327 — 577> — 977 — 157¢* = 3377°) In(1 —
+( 7)( T T 16 T ) In( ’Z')’ (65)
307
os(1) 4(12 =18t + 47 +7°)  16(1 —7)%*In(1 — 1)
R =- - , 66
4.1 (7) 374 5 ( )
2(60 — 907 + 207> + 573 +2¢* +7°)  24(1 —7)*In(1 —
Rgim(r):— ( 907 + T:— T +2t 7)) 24( T)7n( 1)' (67)
' 5t T
The MS Wilson coefficients are related to the on shell scheme ones through
MS(1), » 0s(1) MS(1) , » 0s(1) ﬂ2
RR(@ 0= R (0) = RSV = (0 = <200+ 1 =) (443 ) (o
P
_ 2
RYSW(02, 42, 7) = RSM (2) = —2n(1 — 1) <4+3 lan—\z) , (69)
MS(1 0S(1
R (@) - R (@) =o. (70)
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Finally, we compare our results to those derived from
the Mellin moments of the hard coefficient functions in
Eq. (42) of Ref. [21] for heavy-quark productlon from
neutrino DIS, with a correction in Ref. [22]. Both R, n(])( )

and R3.n( () were presented as hd(z,n+2) and h? (z,n+2)
in compact forms for arbitrary n in Ref. [85]. We found
agreement in the on shell scheme for all the Rl p (r)

except that the factor A5 in Table I in Ref. [21] must
|

be corrected by a factor of two. Since the factor A, in
Table I in Ref. [21] is also missing a factor of two, as
was pointed out in Ref. [22], we believe that A5 has the
same problem.

In the heavy-quark massless limit my — 0 or 7 — 1, the
above results no longer depend on the heavy-quark mass
renormalization scheme and agree with those in the
literature [73-78,82],

R (1) =RY)(1) = 3H,.,, —4H") 2Ht 4§Iil+ S S
Ll s/ = T2nit) 7 et T Dnt2) s okl a2 (n+1pP 7
(1) I 4 (1) 4
R,y (1)=R —_ = , 71
3,n( ) ln( ) n+2 4,n(7'-) n+2 ( )
where
.1
=N (72)
— J2
B. Helicity parton distribution functions
To calculate the helicity PDF, we use the antisymmetrized hadronic amplitude
v 79 (q.p) = Tq'(q.p
The HOPE of T[f Y (akes a similar form to Eq. (50),
v 2" ""q) _
Tgl ](q7 p»m‘l’vl’tv 6) = QZ : 7/075’4 ZCO"C )an,A(e)' (74)
The Wilson coefficients C, have the same perturbative expansion as in Egs. (54) and (58), i.e.,
Ci(l)(QZa T’,uz) - YI(l)an +R( )(Q M29T)’ (75)

so they can be extracted following exactly the same procedure as the unpolarized PDF.

The full one-loop result of Tg’
Wilson coefficients:

B 6(1—=7)In(1-1)

g (g, p, my, u, €) can be found in Appendix A 2. Here we provide results for the lowest four

RS ()= =3 (76)
T
ROS(])(T) _ B4+ 177+ 3472 — 847 (=79 +13r+ 2572 4+ 617%) In(1 —7) (77
? 1273 67t ’
~o0s(1), 300+ 67+ 11872 + 19273 + 2947* — 14337°
R4 (T) - 901_5
(1 =17)(50 + 267 + 417> + 617> + 917* + 1817°) In(1 — 7) (78)

and

157°
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Q) - R ()
—-—201+—U(1—r)<4+3hr—i> (79)
My

Again, we also find agreement between our results
and those from the neutrino DIS cross section for heavy-
quark production [21,22,85] in the on shell scheme In
particular, the reader can find a compact form of R,, S (7)
for arbitrary n in Ref. [85], where it was presented as
hi(z,n+1).

In the massless limit my — 0 or 7 — 1, the above
results become independent of the heavy-quark mass
renormalizaiton scheme and agree with those in the
literature [79-81],

3-2H,
(n+1)(n+2)
(80)

RV(1) =2H2,, —2H?) | +3H,,, +

C. Light cone distribution amplitude

For the pseudoscalar meson LCDA defined in Eq. (5),
we calculate the transition amplitude of the heavy-quark
|

v (1
vir'9q.p) = U(E(l = X0)Pp, i) [7”75@{7

——Wl\y

rrs + }’”}’s_qT

hadronic amplitude from vacuum to the asymptotic state
composed of a quark and antiquark, that is,

o(50+50m1)a(30-mp0) ) @)

with —1 < xy < 1.
In Fig. 2, this corresponds to choosing

|z(p))

1

_(1 +X0)p,

5 Py = —1(1 —Xxo)p, (82)

P1 = 3

so the external line carrying p, stands for the antiquark. In
this simple model, the LCDA at tree level is

¢% (x.x0) = 8(x — xo). (83)

The Gegenbauer moments [5] for fixed x, are therefore
4(n+3)
3(n+1)(n+2)

/ () (x. x0)
4(n+32)

- 2 32,
“ At ) ) (84)

¢ (x) =

At tree level, the hadronic amplitude is

prsfu(30 1) 69

——m\y

After antisymmetrization of u and v, the conformal or Gegenbauer OPE of the hadronic amplitude is [15]

VZWMO)(CJ, Py, Xo) = €°°q, Ty ;ysu {

2 €pw/m

1 1
+ }7
q2+xz7-q—m?p q* —xop - q—m

L 0yysu an Xo), (86)
where
0, 3ym(n+1)(n+2)n! ()" n+1 n+2 5 @
N == Fl—, Sl
Fu@) = 3 T + 5 \2) '\ 22 " ®7)

At one-loop order, the Gegenbauer moments and the Mellin moments, as defined in Eq. (12), share the same anomalous

dimensions. Therefore,

¢n()€0, 6) - ¢£10) (Xo) |:1 =+

Ay CF 72 )

4

+O(a )} (88)

Using the renormalization group equation of the Gegenbauer moments, the hadronic amplitude should be expanded in

the same fashion as that in Eq. (50),
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y 26"”” .
Vl[;l ](q’pvm‘l‘vxo’ﬂve) = U}/a}/SuZF ﬂszvr)¢l1(x09€)’
n={ O
2etPoq = a,C asC
=-" pyy675u2[f§1 (@ )(1+ o F ()< Tln ~2>> s FRn (02427, @) 4)20)()60)
Q n=0, Q
+O(a?), (89)
where the coefficient function F, is expanded to one-loop order as
. C 2 c
Ful Q2. 0,7) = Fi (@ >[1 + 2Ly 1%} + 2RO @) + O(ad). (90)

As one can see, the logarithmic part of F, is proportional to the tree-level coefficient function F 5,0) (@), because at
leading logarithmic accuracy QCD is conformal and the Gegenbauer moments do not mix with each other. Beyond the
leading logarithm, the conformal symmetry is broken, so the Gegenbauer moments start to mix.

In the conformal approximation, the OPE of the current-current correlator for the pion LCDA has been derived for
massless quarks in Refs. [15,72,84]. The coefficient functions in the conformal OPE are

' . 3va(n+1)(n+2)n! fO\" [ 1*\?° n+1+6 n+2+6 5 w?
conf 2, 2, ) == — F , , —+ 6, , 91
fn (Q I’l w ) 2 2n+2r(n+%) 2 Q2 241 2 2 n+2+ 4 Cn(as) ( )

|
where the logarithms of 4?/Q? have been resummed with  and compare it to F,(Q?, 42, @, 7) in the massless heavy-
the anomalous dimension quark limit = — 1, then we find that they are not equal,
which leads to the breaking of conformal symmetry in

_ % 0 2
o= IRl O(a), (92)  addition to the nonzero f8 function that enters at O(a?).
nd the factor Such conformal symmetry breaking effects in the MS
a ¢ facto scheme have been observed in the literature [93], and it
o a,Cr was proposed to rotate the MS factorization scheme to
c"(%) =1+ iy R ( )+ O( ) (93) the so-called conformal subtraction scheme where the

new Gegenbauer moments evolve autonomously without
mixing [93]. Nevertheless, the numerical difference
between F,(Q% p* @,1) and F(Q?, u?, @,5) turns
out to be small. Since in our calculation we use a
massive quark, the conformal symmetry is explicitly
Feort(02 u?, @, 9) broken anyway, so we use the exact MS result of
0 X ]—"n(QZ,qu,&),r).

5 %}" conf (02, 2, @,8') The full one-loop correction for the hadronic amplitude

§=0 from Figs. 2 and 3 is
+ O(a?), (94)

with Rw(l) beginning the same as those in the Wilson
coefficients for the helicity PDF case [79-81], which has
been given in Eq. (80).

If we expand F(Q?, u?, @,8) to O(ay),

— jc';:lonf(QZ’ﬂZ’ &)’ 0) 4

v _a,Crp2e™q, 1 : . ~ .
Vel (g, p.my. xo.p.€) = 4; e ’vm/su[( +InQ2) (1>(w,xo)+R<”(Q2,/42,r,w,xO)], (95)

where

_x2&)2
F(&,x) = = xé)d)j@ mpnr {3(x(2) - D@?* + [(x3 — 2)@* + 4] ln44 - 2)2
+a [(4 — 2@?)tanh" <2> + xo((2 = x3)@? — 4)tanh! <x°7>] } (96)
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and the finite part R(") is provided in the Supplemen-

tal Material [92]. The details of calculating V[,f ”](1)((], P,

My, Xo, 4, €) in both the on shell and MS schemes can be
found in Appendix A 3.

Using the orthonomality of Gegenbauer polynomials, we
can verify that

3
FP@n =5 [

and obtain R\ (0% 12,7, @) as

1
dxo(1 = x3)F (@, x0)Ci*(xo), (97)
1

RI(‘LU(Qza/'{zaT’d))
3 (1 -
21/ (1= RO 42,7, %)C *(x0),  (98)
-1
The results of R™ (02, 42, 7, @, x,) and R (0% 12,1, @)
are new in this work.

V. CONCLUSION

This paper contains novel and important information for
applying the HOPE strategy to determine directly the &
dependence and moments for the PDFs and LCDAs. In
particular, we discuss the theoretical details of the HOPE
method applied to the PDF and LCDA. After introducing
the unpolarized PDF, helicity PDF and LCDA we begin
with a general overview of the HOPE strategy. This
approach is a modified OPE relation where the conven-
tional current operators are replaced with heavy-light flavor
changing currents. Importantly the use of a fictitious heavy
quark species allows for suppression of higher-twist effects.
In the regime 0~ my, the effects of the heavy quark mass
can be incorporated into the Wilson coefficients, and thus
the resulting moments are the standard QCD moments. The
HOPE method was first proposed in Ref. [14] for comput-
ing higher moments of the PDFs with lattice QCD. The
results presented in this article extend this proposal for
direct determinations of & dependence of the PDFs and
LCDAs. As demonstrated in Sec. III A, the PDFs and
LCDAs can be related to appropriate HOPE hadronic
amplitudes through a perturbative matching condition.
This offers a novel, future direction for analyzing these
HOPE hadronic amplitudes.

Our work contains new ingredients required for a precise
lattice determination of higher moments of the PDFs and
LCD. First, as noted in Sec. III B, we investigate carefully
the convergence radius of the HOPE. The analysis shown
there also advances our understanding of the HOPE
strategy by indicating that large hadron momentum is
required for the extraction of these higher moments.
Second, in this paper we report calculations for the one-
loop Wilson coefficients, which are required for a precise
determination of the moments of the unpolarized and
helicity PDFs and meson LCDAs. The Wilson coefficients

for the PDFs can be extracted using the existing results
[21,22] of cross sections of heavy-quark production in DIS
involving flavor-changing currents. Nevertheless, we per-
form independent calculations, as described in Secs. IVA
and IV B, and confirm these previous computations. We
emphasize that the one-loop Wilson coefficients for the
LCDAs, presented in Sec. IV C, have not been previously
calculated in the literature, and are thus new to this work.
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APPENDIX: DETAILS OF ONE-LOOP
CALCULATIONS

In this appendix we provide the one-loop diagram-by-
diagram results of the hadronic amplitude for the unpo-
larized PDF, helicity PDF and pseudoscalar meson LCDA
cases. We only show the explicit expressions of the UV
and IR divergent parts, and the expressions for finite parts
can be found in the supplementary Mathematica notebook
file (Ref. [92]).

1. Unpolarized PDF

The one-loop hadronic amplitude can be expressed as

T;{Iﬂy}(l)/aSCF _ 4iu(p)gy u(p) o)

4n 0? !
4iu(p)p¥ytu(p
N ( )QZ ( )H<21>
_2igla(p)gu(p)
0? ’
it
| 24" u@({j)ﬁ[u(p) HD. (A1)
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The diagrammatic contributions are shown as follows:
The box diagram in Fig. 2(b).

. B 1 2\ 20— (1-@)In(l—®) + (1 +&)In(1+&
R B e

Eir ? @
r . 1 u\ 2o — (1 =@)In(1 — @) + (1 + @) In(1 + &) | ~
HYo @42 5.0,0) = -+ % 2 P (D). (A3

. B 1 W\ 20— (1-&)In(1-&)+ (1 +a&)In(1 +o
H;?gOX(QZ,'MZ,T’w,ﬂ,e) = (6_/4_111@) ( ) ( ) ( ) ( )

H) (0% 2 7, i, €) = WY, (2. @), (A5)

As one can see, the box diagram is UV finite but collinearly divergent.
The vertex diagrams in Figs. 2(c) and 2(d).

2 ~ ~2 ~2 PSRBT §
(1) ~ - (1 U 2d (1) . 1 >\ 2[2&* + In(1 — @*) — 2@tanh™' (@)]
H, yoner (@47 7.0, €) = (e’uv+ 1nQ2> 1= * Mvenn(7:8) - < o Q2> o(1-a7) ’
(A6)
| ~ N 1 W\ 2 | 5 1 u*\ 2[2&° + In(1 — @*) — 2@tanh™! (@)]
Hé,\)/ertex(Qz’ ruzv 7, w, €) = (6‘ +1n In QZ _ 5)2 + hé,\)/crtex(f7 w) € — +In In Q2 (1 2) ’
(A7)
2 ~ 2 ~2 ~2 ~tanh—1 (7
(1) ~ . (1 U 2® (1) . 1 u\ 2[2&° + In(1 — @*) — 2@tanh™! (@)]
H3,Vertex(Q2’:u2’ 7,w, 6) - (e/_uv + 1[1@) 1— 6)2 + h3,vertex<T’ a)) - <€_{r + 111@) &')(1 _ &)2) ’
(A8)
H.) e (0747 7.0, €) = 0, (A9)

The self-energy diagrams in Figs. (3) and 2(e).

0, 3 1 1 @ 1 ) 3 u? 4a | s
H(l,s)elf(QQ’/"27T’w’€):_<€/___/>1_~2 < +In ~2_(1_T) 7 —+3In (72)2+h(1,s)elf(1’w>7

uv €]r () €UV Q2 Q2

(A10)

where the first term comes from the light-quark self-energy, while the second and third terms originate from the heavy-
quark self-energy.

N = B 11 1 1 u? 1 3 W\ 2(1 + @) 1 .
Hé,s)elf(szM’T’a”e):_(/___/) ~2—<€,——|—ln~— 1_&)2_(1_7) €/—+3ln§ W"‘hégelf(f’w)v

o €) 1= uv Q2 uv (1
(A11)
gan(e i Lol L) @ 3 W\ 4d Do
Hg'ze”(Qz’”z”’“”e):‘(e'—‘e_f>1_@2‘<e/—+“‘? e I\ P3G gy (e 0)
(A12)
Hé(ss)e]f(Qz’:uzvfs d)s e) — V. (A13)
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The heavy-quark mass needs renormalization, and the
corresponding counterterms in the MS and on shell
schemes are

3 4@
5H11\/,I§1<1) = 5H1;/,I§z(l) =(1- T)’_(l w2>2’ (Al4)
o) =i
2 ~
u @
=(1-7)|—+4+3h=— . (AIS
(Tﬂm++ %ﬁu—”f A1)
sHyY = (1 —T)a =& (Al16)
6HOS(1) =(1-1) i+4+ 3lnﬁ M (A17)
2.m €{W leP (1 _ &)2)2 :

By summing all the one-loop diagrams, one finds out
that the UV divergences regulated by ¢}, cancel except for
that from the heavy-quark mass correction. The collinear
divergences regulated by ¢’ add up to

1®Q2+ @)+ (14 &%) |@ln(l — @) — 2tanh~! (@)]
e @*(1 - @?)

(A18)
|

,box

1 ~ ~ 1 ~ 1 ~ 1 ~
<%@w%wvw%mwww%m@@+@Q@@%hﬂ6m—

in HS” and Hgl) and

1@2+ @) +(1+ @)@l (1 —@*) —2tanh™ (@)]

¢ @ (1 —@?)

(A19)

in Hél), whose Taylor expansions in @ exactly reproduce
the collinear divergences in the Mellin moments in the
OPE in Eq. (50). This is an important consistency check of
our results.

In the limit of massless heavy quarks, i.e., 7 — 1, the
hadronic amplitude no longer depends on the heavy-quark
mass renormalization. Moreover, it satisfies the chiral ward
identity

4.Tq (¢, p.my = 0,u,€) = q,T4 (g, p,my = 0, . €)
=0, (A20)

which leads to the relations

Hl :&)Hz, Hl :H3+H4, (A21)
as we have also checked.

All the finite parts, hl("lgox, h;ljm and hg,ls)elf are provided
in the Supplemental Material [92]. Therefore, the finite
nonlogarithmic part of the hadronic amplitudes in the MS

scheme are

5 ~
] ~ ) ) y U 4@
hIIVIS(l)(QZ, /"2, T, 60) = h(11> (T, 60) + hg%\)/ertex(r’ w) + h(ﬂs)elf(r’ a))—(] Bl T) <3 tn _>

;ﬂ) 2(1+ @?)

2 ~
S(1), ~ ~ 1 ~ 1 ~ 1 - u 4@
h¥Wyw%mﬁw%mwmw%m@m+&@@@4Fa@m?xrfr

(A22)

whose Taylor expansion in @ gives the MS Wilson coefficients. The on shell scheme result is related to RMS(1) by

W0 (@) - Qe @) = 0 (@)~ 1

~ 2
(0% % 1.0) = (1— 1)4—0) <4—|—3 lnﬂ—2>. (A23)

(1 _ ~2)2

My

(A24)

(A25)
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2. Helicity PDF
The one-loop correction to the hadronic amplitude for
the helicity PDF case can be expressed as

2etP0q agC
g u(p)rarsu(p) =

Tl = _ HY.  (A26)

H

To simplify the calculation, we can choose p# =
(p*,0,0, p?) and u, v = 1, 2 without loss of generality.
The diagrammatic contributions are as follows:
The box diagram in Fig. 2(b).

box

which is UV finite but collinearly divergent.

Note that since the helicity PDF is defined with the
axial vector current, we must treat the definition of y5 with
care. In our calculation, we adopt the scheme used in
Refs. [83,94], where the treatment of y5 is determined by
calibrating the Wilson coefficients to those obtained with
quark off shellness p? < 0 as the regulator for collinear
divergence. Within this scheme, the moments of the helicity
PDF are the same as the unpolarized case in Eq. (51), while
only the box diagram must be modified, as one has to
|

0 s 5 1 W\ 2 1 5 1 > 4 2 (In(1 — @)
HE/eztex(Qz’/"zvf’w7€>: (6/_+ln~_ 1_6)2+h\(/eztex(r7w) €1r+1 Q2 ~2+T 1—-&

The self-energy diagrams in Figs. 3 and 2(e).

1 A ~ 1 1 1 1 ﬂ
Hie?f(Qz?/’lz”L , 6) — _<€/———/ 5 — 6/_+ Int—

w €)1 —@

The heavy-quark mass needs renormalization, and the
corresponding counterterms in the MS and on shell
schemes are

2

MS(1) 32(1+@
0s(1) 3 u? 2(1 +67)2)
uv m -

Again, one finds that the UV divergences regulated by
€l, cancel except for that from the heavy-quark mass
correction. Besides, collinear divergences regulated by ¢’
add up to

(0%, 1, 7,@,€) = _(l+ 1n~_> (1-@)In(1-d) + (1 +a&)In(l + &)

— +hi) (7, @), (A27)

0]

introduce a finite counterterm that is equivalent to the
replacement,

1 1
€ €ir

(A28)

This finite counterterm induced by the factor (—4) has been

absorbed into h,(m)x(r, @).

The vertex diagrams in Figs. 2(c) and 2(d).

) 1n§ 1:;))} |

(A29)

[0

2) 2(1 + 5)2) + h(l)

3
_&)2_(1_7)(€uv+31 Qz ( ~2)2 self(T’d))-

(A30)

[ 3 1+ @ (In(1-&) In(l+d)
__’[1 2T & (1—5) e )| A3

whose Taylor expansion in & exactly reproduces the
collinear divergences of the Mellin moments in Eq. (74).

All the finite parts, hbox, hﬁeitex and h, l)f are provided in
the Supplemental Material [92]. Therefore the finite non-
logarithmic part of the hadonic amplitude is

__ 1 - 1 ~
pMS() (Q ,/,t T, 0)) hbox( ) + hsleztex (T w) + hgel)f(r’ a))

173 Q>2<wa>)

q (A34)
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in the MS scheme, whose Taylor expansion in @ gives the MS Wilson coefficients. The on shell scheme result is
related to AMS(D by

_ 5 2(1 ~2 2
ROSO) (2, &) — IS (D2 42 7, @) = (1 _T)M <4+3 1n'“_>, (A35)

3. LCDA

The one-loop correction to the hadronic amplitude for the LCDA case can be expressed as

a, CF 2eHvpo q

V(1) — _
4 0?

L oysysuHW. (A36)

To simplify the calculation, we can choose p# = (p*,0,0, p*), ¢* = (qo, 0,0, ¢%) and u, v = 1, 2 without loss of generality.
The one-loop contributions are as follows:
The box diagram in Fig. 2(b).

- 1 2 4 4 — @? ~ ~
HﬁLl(QZ,yz,r,&),xO,e) :—(e—{—i-ln/:l—)( 55 {ln4 575 — Xotanh™ (xz )—l—wtanh (2>] +hé)o)x(r,(7),x0),

— Xp@

(A37)

where we treat ys with the same prescription for the helicity PDF case by making the substitution in Eq. (A28).
The vertex diagrams in Figs. 2(c) and 2(d).

(1) (D121, x0,€) = 1 " U2 8 o) (2,0, %) 1 n 12 8
H U, T,0, X =|—+In=— + T,0,X +|—+In=—
vertex M, T, 0, X0, € euv Q2 2 2 vertex 0 €{r Q2 (1 x%)d)( 1 (2)5)2)

x [—(1—x5)&) (ln44 %0 22+2> + (4 —x}@?)tanh™! (g) —xo(4—@?*)tanh™! <$>] (A38)

The self-energy diagrams in Figs. 3 and 2(e).

M) 70 2 11 4 1 B2\ 4 3 8(4 + x2@?)
H‘ s ,T,, s ==\ \| 1 =5 |5 2~2 1 - 3 1 A 2~2\2
self(Q et 6) <€{1v €{r> 4 — x(2)5)2 €{1v o Q2 4 — )C(Z)C’;)2 ( ) euv an Q2 (4 X a)2)2

+ hige (1., xp). (A39)

The heavy-quark mass needs renormalization, and the corresponding counterterms in the MS and on shell schemes are

S 3 8(4 + x2@?)
sHMSW — () _ 2 22T ) A40
( T) 6:1\, (4 x2w2)2 ( )
8(4
5H25“):(1—1)[3 +4+3In }Lfo‘fz) (A41)
€uv m‘I’ (4—)60&))

Same as the PDF cases, the UV divergences regulated by ¢/, cancel except for that from the heavy-quark mass correction.
The collinear divergences add up to Eq. (96), which also passes the consistency check that its conformal expansion

reproduces the collinear divergences of the Gegenbauer moments.
All the finite parts, héo)x, hge;ex and hgel)f, as well as their massless limits when 7 — 1, are provided in the Supplemental

Material [92]. We can identify that the finite term R{ >(r, @, xg) in Eq. (95) is

8(4 + xoa) 2)

v (A42)

RISU(02, 42, 7.5, x0) = h!) (2.0, 30) + hhes (5., 30) + W0 (2. 8, 20)—(1 = ) (31 s )
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in the MS scheme. The on shell scheme result is related to RMS() by

— - 8(4 2 =2 2
RO (2, @, xo) — RS2 42,7, @, x) = (1 —7) 8(4 + xpdr) (4+3 1n'“_2>.

(A43)

(4 — x3a?*)? mi,

Notably, in the massless limit, our result of R(1>(1, @, xo) reproduces Eq. (5.2); in the literature [83] it makes the

replacements

0> —20°,

1
x—)i(l—xo),

(A44)

W= = ——.
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