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In this paper we study, bymeans of numerical simulations, the behavior of the scalar glueball mass and the
ground state of the torelon for trace deformed Yang-Mills theory defined on R3 × S1, in which center
symmetry is recovered even at small compactification radii.We find, by investigating both SUð3Þ and SUð4Þ
pure gauge theories, that the glueball mass computed in the deformed theory, when center symmetry is
recovered, is compatible with its value at zero temperature and does not show any significant dependence on
the compactification radius; moreover, we establish a connection between the deformation parameter and an
effective compactification size, whichworkswell at least for small deformations. In addition, we observe that
the ground state of the torelon which winds around the small traced deformed circle with size l acquires a
plateau for large values of the strength h, with values which are compatible with a 1=l behavior but, on the
other hand, are still not in complete agreement with the asymptotic semiclassical large-N predictions.
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I. INTRODUCTION

Large-N volume independence of SUðNÞ Yang-Mills
and similar theories is a topic discussed since long [1–6].
The possibility that the nonperturbative properties of the
theory might be encoded in a simplified model with small
compactification radii is very appealing, also in view of the
fact that the inverse compactification radius sets a high
energy scale, which makes weak coupling approaches
viable. It has long since been clarified that volume
independence holds only when no transition, leading to
the breaking of center symmetry, takes place: unfortunately,
the breaking happens in most cases, e.g., at the thermal
radius where the theory deconfines.
More recently, trace deformed theories [7,8] have been

introduced, as a way to maintain center symmetry unbroken
even in the presence of arbitrarily small compactification
radii. That provides a tool to study the issue of volume
independence in a controlled way, e.g., by numerical lattice
simulations, and also to compare with the expectations
from semiclassical analytic computations. The idea,
inspired by the perturbative form of the Polyakov loop
effective action at high T [9], is to introduce center

symmetric couplings to the Polyakov loop and its powers,
so as to inhibit the spontaneous breaking of center
symmetry. This offers the possibility to test volume
independence and, at the same time, to investigate the
connection of center symmetry to many other nonpertur-
bative features of Yang-Mills theories.
Several studies have already considered the use of trace

deformed theories and also of possible alternatives, like
the introduction of adjoint fermions [5,6,10–25]. From
the point of view of lattice simulations, recent studies
have provided extensive numerical evidence regarding
θ-dependence in SUð3Þ [26] and SUð4Þ [27] gauge
theories, considering in particular the first two coefficients
of the Taylor expansion of the free energy expansion as a
function of θ. The remarkable result is that, even for
compactification radii as small as ð500 MeVÞ−1, one
recovers, within numerical errors, the same θ-dependence
as in the confined phase as soon as center symmetry is
completely restored by means of the trace deformations.
This goes even beyond the expectations from analytic
semiclassical computations, since the volume independ-
ence, at least for what concerns θ-dependence, is quanti-
tatively exact (within errors) and observed for not-too-large
values of N. The result is even more interesting when
considering that, from a dynamical point of view, the
restoration of center symmetry takes place in a slightly
different way in the standard confined phase and in the
deformed theory [26,27], so it seems that it is just the
realization of the symmetry that counts, at least for
θ-dependence, independently of other details.
That claims for a deeper investigation, regarding also

other nonperturbative properties of Yang-Mills theories. In
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this study we consider the physical spectrum of the theory,
which for a pure gauge theory consists mostly of glueballs.
The glueball spectrum is known to undergo strong mod-
ifications when crossing the deconfinement transition
[28,29], therefore checking if it goes back to the T ¼ 0
spectrum by just recovering center symmetry represents a
strong test of volume independence: anticipating somewhat
our conclusions and the final discussion, the answer is
positive, at least for the SUð3Þ and SUð4Þ gauge theories
which are investigated in the present study. A different
issue regards the torelon masses, i.e., the masses of physical
states corresponding to flux tubes winding around the
compactified direction: this has no correspondence with the
infinite volume theory, however there are well defined
semiclassical predictions [7] that one would like to com-
pare with.
The paper is organized as follows. In Sec. II we

summarize the definition of SUðNÞ pure gauge theories
in the presence of trace deformations and our lattice
implementation. In Sec. II B we review the theoretical
and numerical methods adopted to determine the glueball
and torelon spectrum in our numerical simulations. In
Sec. III we present our numerical results for SUð3Þ, which
consist of determinations of glueball and torelon masses
both with and without trace deformations, in order to assess
a possible correspondence between the two cases, and for
different values of the lattice spacing, in order to assess the
relevance of cutoff effects. In Sec. IV we present some
exploratory results regarding the SUð4Þ case. Finally, in
Sec. V, we draw our conclusions.

II. NUMERICAL SETUP

A. Traced deformed Yang-Mills theory

Trace deformed SUðNÞ Yang-Mills (YM) theories were
first proposed in Ref. [7], although a previous lattice study
was already presented in Ref. [8]. Additional center
symmetric couplings to the Polyakov loop are added to
the usual YM action, in order to prevent center symmetry
breaking, even for compactification length l smaller than
the critical one lc. The action of trace deformed SUðNÞYM
theory is thus given by [7]:

Sdef ¼ SYM þ
X
n⃗

XbN=2c

j¼1

hjjTrPjðn⃗Þj2; ð1Þ

where n⃗ identifies a point in the space orthogonal to the
compactified direction, bc denotes the floor function, P is
the Polyakov loop in the compactified direction and the hjs
are the deformation parameters, corresponding to the
number of independent, center-symmetric functions of
the Polyakov loop; 1 and 2 parameters are needed respec-
tively for the cases N ¼ 3 and N ¼ 4 explored in the
present study. SYM is the standard YM plaquette action:

SYM ¼ β
X
□

�
1 −

1

N
ReTrU□

�
; β ¼ 2N

g2
: ð2Þ

Trace deformation and other alternatives (like the intro-
duction of adjoint fermions or the use of nonthermal
boundary conditions) have already been studied in several
previous works [5,6,10–25,30–33]. The possibility of
preserving center symmetry, also in the limit of vanishing
compactification radius, is quite intriguing; weak coupling
methods based on the small compactified direction could be
used to study the confining properties of YM and the
volume independence predicted by Eguchi and Kawai in
Ref. [1] could be exploited. Moreover, trace deformation is
also a powerful tool to investigate the connection between
the realization of center symmetry and the properties
typical of the low temperature, confining region. In
Refs. [26,27] the θ dependence of the phase in which
center symmetry is recovered has been studied both for
SUð3Þ and SUð4Þ. In both cases topological observables
reach a plateau as soon as the deformation coupling h is
high enough to restore full center symmetry. The plateau
value of such observables is also compatible with the
corresponding value of the undeformed theory. This result
shows, at least for topological observables, that the center
stabilized phase has the same nonperturbative properties of
the usual confining, zero temperature one.

B. Mass extraction on the lattice

Masses of color singlet states in lattice gauge theories
can be calculated using the standard decomposition of a
Euclidean correlator of some operator ϕðtÞ, with high
enough overlap onto the physical states in terms of the
energy eigenstates of the Hamiltonian H:

hϕ†ðt ¼ antÞϕð0Þi ¼ hϕ†e−Hantϕi ¼
X
i

jcij2e−aEint

¼t→∞ jc0j2e−aE0nt ; ð3Þ

where the energy levels are ordered,Eiþ1 ≥ Ei, withE0 that
of the ground state. The only states that contribute in the
above summation are those that have nonzero overlaps i.e.,
ci ¼ hvacjϕ†jii ≠ 0. We, therefore, need to match the
quantum numbers of the operator ϕ to those of the state
we are interested in. In this work we are interested in
glueballs and torelons, thus, we need to encode the right
quantum properties within the operator ϕ which will enable
us to project onto the aforementioned states.
The extraction of the ground state relies on how good the

overlap is onto this state and how fast in t we obtain the
exponential decay according to Eq. (3). The overlap can be
maximized by building operator(s) which “capture” the
right properties of the state, in other words by projecting
onto the right quantum numbers as well as onto the physical
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length scales of the relevant state. In order to achieve a
decay behavior setting in at low values of t one has to
minimize contributions from excited states. To this purpose
we employ the variational calculation or GEVP (general-
ized eigenvalue problem) [34] applied to a basis of
operators built by the same lattice path albeit in several
blocking levels [35,36]. This reduces the contamination of
excitation states onto the ground state and maximizes the
overlap of the operators onto the physical length scales.

1. Extracting the scalar glueball mass

We extract the ground state mass of the scalar glueball by
making use of the variational calculation. To this purpose
we employ two different operators for accomplishing the
GEVP. Namely, we use the simple plaquette operator as
well as the rectangular operators with size 1a × 2a and
2a × 1a. We take linear combinations of such operators
along perpendicular spatial slices so that the resulting
operator has the right 0þþ rotational properties.
On a homogeneous cubic spatial lattice with all the

spatial sizes being equal and the action being homogeneous
along all spatial directions the rotational symmetry is
described by the octahedral subgroup of the full rotation
group. There are only five irreducible representations
within this group usually labelled as R ¼ A1, A2, E, T1,
T2. These five irreducible representations have dimensions
of 1, 1, 2, 3, 3 respectively. The states one can calculate will
belong to these five representations. In addition, glueball
states are characterized by the discrete quantum numbers of
parity P and charge conjugation C. Hence, at finite lattice
spacing the glueball states will be labeled by RPC. As the
lattice spacing tends to zero one recovers the full rotational
invariance, with the states falling into the 2J þ 1 multiplets
labeled by the value of angular momentum J. So, in
principle, the glueball states can be characterized by the
angular momentum J. The ground state characterized by
Aþþ
1 identifies that described by quantum numbers

JPC ¼ 0þþ. Therefore, we will focus on the Aþþ
1 repre-

sentation, assuming that its ground state provides the scalar
ground state glueball mass.
If we choose the length in the x direction to be smaller

than the other two spatial sizes and/or switch on the trace
deformation, i.e., h ≠ 0, the rotational symmetry cannot
characterize the states irreducibly any more and the
variational calculation built for the A1 representation
projects onto all irreducible representations of the octahe-
dral group of rotations. Nevertheless, the ground state of the
calculation still belongs to the Aþþ

1 channel and, thus,
reflects the scalar glueball mass. Since operators can
exchange intermediate glueballs along the toroidally com-
pactified boundaries we should also be aware of finite
volume effects along the x direction. Recent calculations of
the glueball spectrum [37,38] provide bounds below which
one would expect to experience such effects.

2. Extracting the torelon mass

In the same manner we can extract the mass of the
torelon which winds around the compactified deformed
direction. We obtain the torelon mass by calculating the
ground state energymTðh; LÞ of a flux tube of length L that
closes on itself by winding once around the spatial
compactified deformed torus. We use Eq. (3) where the
operator ϕ is the product of SUðNÞ link matrices taken
around a noncontractible closed path that winds once
around the spatial torus. The simplest such operator is
the elementary Polyakov loop:

ϕðntÞ ¼ PðntÞ ¼
X
ny;nz

Tr

�YLx

nx¼1

Uxðnx; ny; nz; ntÞ
�
: ð4Þ

The above formula denotes the path ordered product
of link matrices in the x-direction winding once around
the x-torus. Then we sum over translations along the
x-torus and a time slice so that we project onto zero
longitudinal as well as transverse momentum respectively
i.e., ðpx; py; pzÞ ¼ ð0; 0; 0Þ.
The above operator is invariant under rotations about its

torelon axis and so has angular momentum J ¼ 0. It is also
clearly invariant under a combined parity and charge
conjugation transformation (CP). Therefore, this operator
is ideal for projecting onto the torelon ground state. Once
more we employ smearing and blocking techniques in
order to enhance the projection onto the physical states.
Torelon operators are not invariant under center symmetry
transformations and, thus, their vacuum expectation value
is zero as long as this is not broken.

III. NUMERICAL RESULTS FOR SUð3Þ
The main goal of this paper is to investigate how the

masses of glueballs and torelons behave in the presence of a
trace deformed term in the action along the x-circle. For this
reason, in most of our simulations we consider lattices with
a small fixed extent along the x-direction (while the rest of
the lattice sizes are kept fixed to a much larger value), such
that the undeformed theory stays in the deconfined phase.
By switching on the trace deformations we begin to inhibit
the spontaneous breaking of center symmetry: as expected,
above some threshold, confinement is restored and one
might expect the glueball mass to acquire a value consistent
with that for T ¼ 0.
However, before going to the main point, we will present

an extensive study of the spectrum in the nondeformed
theory. The reason is that an alternative way to recover
confinement, even in absence of any deformation, is by
increasing the lattice size in the x-direction: once the length
lx is larger than the deconfining critical length lc, confine-
ment is restored. Therefore, investigating how the glueball
and torelon spectrum behave as a function of lx will set the
ground for a meaningful comparison with the behavior of
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the spectrum at fixed lx as a function of the deformation
parameter: that will permit to interpret results at nonzero h
in terms of an effective lx and will shed light on some of our
findings.

A. Results for the nondeformed theory

We discuss glueball masses at first, then torelons. The
latter present a nontrivial dependence on the compactifi-
cation radius even in the confined phase, which is relevant
to the discussion of results obtained for the deformed
theory.

1. Glueballs in the nondeformed theory

We begin our study by performing an exploratory
investigation of the glueball ground state mass. To under-
stand how the ground state mass behaves for h ¼ 0 and a
lattice volume with one of the lattice lengths smaller than
the others, we perform a quick calculation for a sequence of
increasing Lx while keeping the other three lattice extents
fixed to Ly ¼ Lz ¼ Lt ¼ 30. In Fig. 1 we present the
ground state of Aþþ

1 at β ¼ 6.0 which results from the
GEVP using the simple plaquette as well as the rectangular
1 × 2 and 2 × 1 operators in 5 different blocking levels. The
main features of this figure can be described in three
different regimes of length Lx.
Starting from the largest value of Lx and moving

downwards, at Lx ¼ 30 the mass of our variational calcu-
lation is simply the mass of the ground state of the scalar
glueball with quantum numbers Aþþ

1 . The hypercubic
lattice is homogeneous and therefore there are no mixings
with other irreducible representations of the hypercubic
group of rotations. As we start reducing the length in the x
direction, the variational calculation although starts pro-
jecting onto all irreducible representations of the octahedral
group of rotations, its ground state is still that of the Aþþ

1

channel. As explained before, due to the exchange of
intermediate glueballs along the toroidally compactified
boundary, we should be aware of finite volume effects
along the x-direction. Recent calculations of the glueball
spectrum [37] suggest that no finite volume effects should
be visible for Li ≥ 20 at β ¼ 6.0 where i ¼ x, y, z. Hence,
we expect that some finite volume effects might appear to
show up for Lx < 20. Nevertheless, within our statistical
precision no such effects appear to rise and there is a well
defined plateau for the glueball ground state 0þþ along the
region Lx ∈ ½9; 30�.
As we move to smaller values of Lx (Lc < Lx < 9), due

to the fact that one of the spatial directions of the lattice
becomes critically small, our variational calculation can
capture an interacting torelon-antitorelon (ditorelon) state
which, as expected, vanishes as we approach the critical
length. The mass of the state is not just equal to twice the
mass of the torelon but there is a nonzero contribution due
to the interaction. The appearance of such a state in the
glueball calculation is not prohibited by center symmetry
and therefore there is some nonzero overlap with our
variational basis of operators. Of course as the number
of colors N increases we expect that such overlaps will be
suppressed. An investigation of the glueball spectrum in the
large-N limit [38] will demonstrate up to what value of N
such states are visible. Because the main contribution in
these states comes from twice the mass of the torelon for a
given Lx, as expected the mass of the ground state of our
variational calculation decreases with Lx. In general these
states can be considered to be finite volume states which
vanish as we increase all the spatial lattice sizes. In
addition, given that the phase transition is weakly first-
order, close to the critical length the masses of the glueballs
might be governed by the critical exponents of the theory.
This means that the mass of the 0þþ glueball might
experience a drift toward zero as we approach the critical
length from above. For larger values of N where the
aforementioned transition is strong first order the naive
expectation is that the transition does not affect the glueball
mass. To provide a definite answer on what these states are
a dedicated investigation should be carried out; however
this goes beyond the scope of this work.
Finally as expected, when we decrease Lx < Lc, the

calculation gives access to glueball screening masses. So,
as a matter of fact one can think of the theory on a lattice of
Lτ × L2 × LZ with Lτ ¼ Lx < L ¼ LZ and Lτ ¼ 1=aT
where T is the temperature. Our operators are build to
project onto the ground state of 0þþ for a calculation at
T ¼ 0 and will, thus, capture this state. The mass appears to
increase with temperature reflecting the large thermal shift
of the 0þþ mass.
Hence, our data for β ¼ 6.0 outline three different

regions in Lx, similar results have also been obtained for
β ¼ 6.2. To summarize:
(1) For lx < lc we obtain glueball screening masses.

3 6 9 12 15 18 21 24 27 30
L

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

am
0+

+

L x 30
3 β = 6.0

FIG. 1. The mass of the ground state of the variational
calculation as a function of Lx for h ¼ 0. The blue dashed
vertical line corresponds to the critical value of length Lc.
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(2) For lcðβÞ
ffiffiffi
σ

p
< lx

ffiffiffi
σ

p ≲ 2 we may obtain finite
volume effects such as ditorelon and glueball states
influenced by virtual glueball exchanges or the
glueball mass influenced by the weakly first order
phase transition.

(3) For 2≲ lx
ffiffiffi
σ

p
< ∞ we extract the 0þþ glueball

ground state.
The 0þþ glueball ground state, for the three values of β

considered in this work and extracted for a homogeneous
spatial lattice where the octahedral subgroup of rotations is
restored, are provided in Table I. These results are in good
agreement with recent calculations such as Ref. [37]. A
careful inspection over the gluball masses suggests that
m0þþ=

ffiffiffi
σ

p
does not scale linearly with a2σ, this is due to the

fact that the glueball mass for the coarsest lattice acquires
scaling corrections of higher power ða4σ2Þ, this can be seen
clearly in Fig. 11 of Ref. [37].

2. Torelons in the nondeformed theory

In this case, we calculate the ground state energy mTðlÞ
of a flux tube of length l that closes on itself by winding
once around a spatial torus of size l. For a theory without a
center deformation and with the torelon being formed along
a direction with size larger than the deconfining length lc ¼
aLc its mass is given by the ground energy of a relativistic
closed (noncritical) string. It has been demonstrated that a
very good approximation for the ground state of the torelon
is provided by the Nambu-Goto formula:

mTðh ¼ 0; l > lcÞ ¼NG σl
�
1 −

2π

3σl2

�
1=2

; ð5Þ

which derives from the light-cone quantization of the
bosonic string. Physically it arises from the regularized
sum of the zero-point energies of all the quantized
oscillators on the string. It is known to provide an excellent
approximation to the lattice calculations [40] for reasons
that have now become well understood (see for instance
Refs. [41,42].)
As a matter of fact one expects that this approximation

works well for flux-tube lengths of l
ffiffiffi
σ

p
> 2.5 [40]. Thus,

by fitting the ground state as a function of the length l to
this expression we can extract the string tension σ. The

value of the string tension for each value of β is listed in
Table I.
The spectrum of the ground state as well as the low-lying

spectrum of the torelon has been investigated extensively
[40] and our results are in good agreement with previous
findings. Hence, this part of our study does not provide new
knowledge. Nevertheless, it provides the energy scale for
each different value of β we consider in our work as well
as a comparison with the spectrum of the torelons for
the trace deformed case; we will comment on that in
Sec. III B 3. In Fig. 2 we present the ground state mass of
the torelon mT=

ffiffiffi
σ

p
as a function of its length l

ffiffiffi
σ

p
for the

three values of β.

B. Results for the trace deformed theory

We turn now to the case of the trace deformed theory.
Practically, we kept Lx < Lc as well as Ly; Lz; Lt ≫ Lc,
and we changed h. For most simulations we fixed aLx ≃
0.54 fm exploring different lattice spacings, considering in
particular Lx ¼ 4, 6, 8 for β ¼ 5.8, 6.0, 6.2 respectively,
with Ly ¼ Lz ¼ Lt ¼ 30 in all cases. In addition, we
performed simulations for Lx ¼ 6 at β ¼ 6.2 and Lx ¼ 8
at β ¼ 6.1 in order to explore different values of the
compactification length, respectively lx ≃ 0.4 fm and
lx ≃ 0.62 fm.
Measurements of glueball and torelon states were taken

along each of the homogeneous directions, in order to
increase statistics, using around 4000 decorrelated con-
figurations for each value of h.

1. Glueballs in the trace deformed theory

Similarly to the case of the nondeformed theory, we
performed a measurement of the glueball scalar mass using
the variational technique with a basis of operators built out
of the simple plaquette as well as the rectangular operators,

1 2 3 4 5 6

lσ1/2

0

1

2

3

4

5

6

7

m
Tσ1/

2

β = 5.8
β = 6.0
β = 6.2 

FIG. 2. The mass of the torelon in units of
ffiffiffi
σ

p
as a function of

the flux-tube length in dimensionless units. The line corresponds
to the Nambu-Goto formula given in Eq. (5).

TABLE I. The value of the string tension calculated using the
NG formula, the value of the scalar glueball mass at T ¼ 0 as well
as the critical length for the three values of β. The critical length
has been extracted by cubic spline interpolations of the results
taken from Ref. [39].

β a2σ am0þþ Lc

5.8 0.09882(79) 0.8567(349) 5.000(5)
6.0 0.04644(60) 0.6763(192) 7.225(19)
6.2 0.02487(20) 0.5218(147) 9.892(46)
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using smearing and blocking techniques in order to
enhance the overlap onto the physical states. We extracted
the absolute ground state of the glueball mass which
corresponds to the 0þþ ground state as a function of h
for three values of the lattice spacing, i.e., three values of β.
Results obtained for lx ≃ 0.54 fm are shown in Fig. 3 where

we also report, for comparison, the expectation value of the
Polyakov loop, which becomes zero once the center
symmetry is restored.
The plots resemble to an adequate extent the behavior of

the glueball mass observed for the case of the nondeformed
theory, where we alter the lattice size along the x direction.
For very small values of h center symmetry is still broken,
so that the variational calculation captures the screening
mass. As we keep increasing h, center symmetry gets
restored and the theory experiences a transition to confine-
ment, so that the correlators start capturing confining states
such as bound states of two closed flux-tubes or glueball
states: the resulting glueball mass shows a dip after which,
deep in the confined phase, it reaches a well defined
plateau. This plateau appears to be consistent with the
glueball mass extracted at T ¼ 0. The critical value of h, as
expected, depends on β, i.e., on the lattice spacing.
Analogous results have been obtained for the other
explored values of lx: the plateau values in the reconfined
phase are summarized in Table II.
It is interesting to notice that this behavior resembles

closely that of the topological susceptibility χ, which is
reported for comparison in one case (β ¼ 6.0) and reaches a
plateau at approximately the same values of h: a similar
behavior is observed for the other cases. That shows that the
reconfined compactified theory recovers most of the non-
perturbative features of the original T ¼ 0 theory at the
same time.
Just for β ¼ 6.2 we report results extended to larger

values of the deformation parameter, namely up to h ¼ 10,
showing that the glueball mass in this case is also quite
stable: this is an interesting aspect, however it is not
essential and indeed the plateau is not so stable for other
values of the lattice spacing. In general, we are more
interested in the small h region, where the properties of the
reconfined phase can be compared to those of the standard
confined phase more closely, trying also to determine a sort
of h-dependent effective compactification radius, as we
illustrate in more details in the next paragraph.

2. Trying to match the h-dependence of the deformed
theory to the l-dependence of the undeformed theory

The close resemblance between the dependence of the
glueball mass on l at h ¼ 0, and of that on h at fixed l,
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FIG. 3. The mass of the ground state resulting out of the
variational calculation for glueballs (in black) as well as the
average value of the Polyakov loop (in blue) in the trace deformed
theory as a function of h and the three values of β. For β ¼ 6.0we
also report, for comparison, results for the topological suscep-
tibility, which have been taken from Ref. [26].

TABLE II. The plateau value of am0þþ for the different lattice
setups used.

β Lx lx ½fm� am0þþ

5.8 4 0.54 0.85(4)
6.0 6 0.56 0.66(2)
6.2 6 0.40 0.46(2)
6.1 8 0.62 0.50(2)
6.2 8 0.54 0.59(2)
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suggests a possible interpretation of a nonzero h in terms of
an effective, h-dependent compactification size leffðl; hÞ,
i.e., a match of results at fixed l and h ≠ 0 to those obtained
with a compactification size leff at h ¼ 0. In order to further
test this possibility, we haveworked on a possible ansatz for
such dependence.
Since a positive/negative h will favor/disfavor confine-

ment, this is analogous to increasing or decreasing l. Hence,
the dependence of such leff on h must be odd at least at the
lowest order in a Taylor expansion around h ¼ 0. On the
other hand, it is sensible to look for a description in terms of
leff only for small values of h, since large values are expected
to modify the theory more substantially.
Therefore, we have considered the following linear

ansatz

leffðl; hÞ ¼ lð1þ AhÞ; ð6Þ

where A is a dimensionless parameter, which in general is
expected to depend on the ultraviolet (UV) cut-off since h is
a bare parameter.
Such ansatz turns out to work reasonably well. In Fig. 4

we compare results obtained for β ¼ 6.0, either at h ¼ 0
and variable Lx or at fixed Lx ¼ 6 and variable h, showing
that a reasonable match is obtained by taking A ≃ 2.10,
with an uncertainty estimated around 10% based on a by
eye matching. In Fig. 4 we report additionally also results
obtained for β ¼ 6.2 and Lx ¼ 8, just to show that in this
case A ≃ 1.35, confirming that it is indeed cutoff
dependent.
From Fig. 4 one could get the wrong suggestion that the

ansatz works well even for large values of h. However one
should consider that, once in the confined phase, the
glueball mass is in fact l-independent (hence volume-
independent), even in the undeformed theory. A better

feeling about the range of validity of the ansatz in Eq. (6) is
therefore obtained by looking at the torelon mass, which
turns out to have a nontrivial dependence on l in the
confined phase.

3. Torelons in the trace deformed theory

In order to discuss the behavior of the torelon ground
energy as a function of the deformation parameter, we start
by illustrating the results obtained at β ¼ 6.0 and Lx ¼ 6,
which are reported in Fig. 5 and compared with results
obtained in the undeformed theory, adopting the same
matching in terms of an effective compactification size
fixed from the glueball mass.
It is clear that the matching works pretty well also for

torelon masses as long as h is small (in particular for
h≲ 0.2). Then deviations are larger and larger and, con-
trary to the linearly rising behavior observed in the
undeformed theory, results seem to reach a well defined
plateau at asymptotically large values of h. A similar
behavior is observed also in other cases, as an example
in Fig. 6 we show the ground mass of the torelon as a
function of h for different values of the lattice spacing and
l ≃ 0.54 fm. Assuming that the ground energy indeed
reaches a plateau with h, we have tried to fit data in
Fig. 6 according to the following ansatz

amTðhÞ ¼ amTð∞Þ þ be−ch: ð7Þ

The fit works well, i.e., with a χ2=d:o:f: of order ∼1, if data
at the lowest values of h are discarded.
It is interesting to ask what the plateau values should be

compared with. Since large values of h tend to suppress
local fluctuations of the Polyakov loop more and more, it is
reasonable to look for predictions obtained in the
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FIG. 4. Gueball masses obtained either at h ¼ 0 and variable l
or at fixed Lx and variable h. In the latter case the horizontal scale
has been fixed according to the ansatz in Eq. (6), where the
constant A has been tuned based on a by eye matching.
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order to see if the ansatz in Eq. (6) works well for all observables,
at least for small values of h.
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semiclassical regime, such as those reported in Ref. [7].
When we switch on the trace deformation along a circle
of small radius, that is to say lx ≪ 1=

ffiffiffi
σ

p
, the trace

potential in the action becomes minimum if the
Polyakov loop along this circle acquires a diagonal value
of P ¼ Diagð1; e2πi=N; e4πi=N;…; e4πiðN−1Þ=NÞ up to conju-
gation by an arbitrary SUðNÞ matrix. If one works in a
gauge in which the Polyakov loop P is diagonal, and using
gauge-dependent language, this configuration may be
regarded as breaking the gauge symmetry down to the
maximal Abelian subgroup i.e., SUðNÞ → Uð1ÞðN−1Þ.
The modes of the diagonal components of the SUðNÞ

gauge field with no relative momentum along the com-
pactified direction describe photons associated with the
SUðNÞ Cartan subgroup while modes with nonzero relative
momentum form a Kaluza-Klein tower with masses being
integer multiples of 2π=L [7]:

mTðlÞ ¼
2π

Nl
¼ 2π

3l
: ð8Þ

Suchprediction shouldwork inprinciple forNΛl ≪ 1,where
Λ is the QCD scale, which is not the case for our simulations.
However, as amatter of fact, the results of Fig. 6 show that the
plateau values are quite close to the 2π=3l prediction, even if l
is only slightly smaller than the deconfining length lc. One
should consider that, in this case, we are discussing a sort of
large-deformation limit of what is found, and this could have
some influence on the final findings.
In Fig. 7 we report the three plateau values of Fig. 6 for

amTL as a function of 1=L2. Mind that 1=L2 ¼ a2=l2 with l
being fixed in physical units, thus this plot corresponds to
an extrapolation of amTL to the continuum limit and shows
two interesting things at the same time. First, the three
points can be adequately fitted with a straight line, i.e.,
assuming that UV corrections areOða2Þ, so that the plateau
value corresponds to a well-defined continuum quantity
which we derive to be amTL ¼ 2.1ð2Þ. Second, this
number is in good agreement with the theoretical expect-
ation in the semiclassical regime, i.e., 2π=3 ≃ 2.094.
However, in order to test if this is just a fortuitous

coincidence, we have decided to repeat our study for two
different values of l, one smaller and one larger. In
particular, we explored the case Lx ¼ 6 at β ¼ 6.2, corre-
sponding to l ∼ 0.4 fm, and the case Lx ¼ 8 at β ¼ 6.1,
corresponding to l ∼ 0.62 fm. It is not easy, in particular, to
go to smaller values, since it is difficult to keep lattice
artifacts well under control as l is reduced with a fixed
amount of lattice spacings Lx in the compactified direction
(see Ref. [43] for a discussion on this point).
In Fig. 8 we report, as a function of h, values obtained for

l ∼ 0.4 fm for both the glueball and the torelon mass. One
can see that the plateau region for the glueball mass is
somewhat reduced in this case (we consider the region up to
h ≃ 1), while the large-h plateau for the torelon mass is still

well defined. The plateau values for these new values of l
are reported in Fig. 9, where they are compared with those
previously obtained for l ≃ 0.54 fm, with results obtained
for the glueball masses and with the exploratory results
obtained for SUð4Þ which are discussed in the next section.
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FIG. 6. The mass of the ground state resulting out of the
variational calculation for torelons in the trace deformed theory as
a function of h and the three values of β.

ATHENODOROU, CARDINALI, and D’ELIA PHYS. REV. D 104, 074510 (2021)

074510-8



One can appreciate that the glueball mass does not show,
within errors, a significant dependence on l, while the
torelon mass has a well defined dependence which is still
compatible with the 2π=ð3lÞ prediction, apart from the
point at the largest explored value of l. Of course it would
be interesting, in future studies, to extend this investigation
to smaller values of l, possibly to the point where the
torelon mass and the glueball mass cross each other.

IV. SU(4)

The extension of our study to SUð4Þ in this context is
exploratory and aimed at enlightening the main differences

emerging when moving to N > 3; in particular, we expect
to go even farther from the semiclassical regime dictated by
NΛl ≪ 1, so that, in principle, the matching of torelon
masses to the prediction of Eq. (8) should be worse.
As explained in Sec. II, in this case one can introduce

two different deformation parameters, h1 and h2, leading to
a more structured phase diagram, which has been sketched
in Ref. [27] and is characterized by different phases where
center symmetry is completely broken, partially broken, or
completely restored. In this study we consider only the case
of the diagonal deformation h ¼ h1 ¼ h2, which guaran-
tees a complete restoration of center symmetry for large
enough h and is thus adequate to our purposes.
We have also considered a single value of the compac-

tification size, l ≃ 0.50 fm corresponding to a deconfined
phase in the undeformed theory, at a fixed value of the UV
cutoff, a ≃ 0.083 fm, with no aim toward an extensive
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study of l-dependence or continuum extrapolation. Results
for the glueball mass as a function of h are presented in
Fig. 10: the behavior resembles closely that already
observed for SUð3Þ, reaching a well defined plateau for
h≳ 0.5, which corresponds to a phase where center
symmetry is completely restored [27]. Moreover, the
plateau value is in good agreement with the T ¼ 0 value,
which is reported in the figure as well. The T ¼ 0 result has
been computed on an isotropic lattice with volume of 304,
with the same value of β and it is consistent with results
from Ref. [38].
Also results for the torelon ground state, which are

presented in Fig. 11, show a behavior quite similar to that
observed in SUð3Þ, with an approach to a plateau value at
large values of h which also in this case has been fitted
using the ansatz reported in Eq. (7). However, in this case
the plateau value turns out to be significantly larger than the
semiclassical prediction of Eq. (8): this is more clear from
Fig. 9, where the results obtained in SUð4Þ for both the
glueball mass and the torelon mass are compared with the
SUð3Þ results.

V. DISCUSSION AND CONCLUSIONS

The purpose of this investigation was that of exploring the
properties of trace deformed Yang-Mills theories from the
point of view of their physical spectrum. Such theories are
defined on a space-time with at least one small compactified
spatial direction and in the presence of trace deformations
which prevent the breaking of center symmetry, giving the
possibility to check the conjecture of volume independence
for SUðNÞ gauge theories in the large-N limit. Lattice
simulations have already provided successful confirmations
at moderate values of N ¼ 3, 4 for what concerns the
topological properties of the theory [26,27].
Extending the investigation to the physical states of the

theory permits to better clarify the relation with the

standard large-volume theory, by distinguishing states in
the deformed theory which have a clear correspondence
with the standard physical states of the original theory, and
states which are linked to the large energy scale associated
with the small compactified direction and are expected to
decouple as the compactification radius goes to zero.
Having this in mind, we have performed a numerical study
of trace deformed SUð3Þ and SUð4Þ gauge theories,
focusing on two kinds of physical states: scalar glueballs
and torelons defined around the compactified direction.
The investigation has been performed for different values of
the compactification size and, just for one case, using also
different values of the lattice spacing, in order to check the
absence of significant cutoff effects and perform a con-
tinuum extrapolation.
The study of scalar glueballs has fully confirmed what

already observed for the case of θ-dependence, i.e., a
striking quantitative agreement with the values of the
original large volume theory, which is observed as soon
as the deformation is strong enough to make center
symmetry unbroken. This is a further confirmation of
volume independence, already observed even for moderate
values of N in the case of topological observables.
Further insight has been achieved by a comparison of

results for the glueball mass obtained at fixed compacti-
fication size l as a function of the deformation parameter h,
with results obtained in the undeformed theory as a
function of l. In particular, we have shown that results
in the deformed theory can be interpreted in terms of an
h-dependent effective compactification size, leffðl; hÞ, see
in particular Eq. (6) and Fig. 4.
Torelons have shown a different behavior. The matching

with results from the undeformed theory in terms of an
effective compactification size works well only for small
values of h, see Fig. 5. The different behavior, with respect
to glueballs, can be easily understood in terms of the fact
that the torelon mass is not volume independent even in
the confined phase, where it increases linearly with l,
see Fig. 7.
The last consideration sheds also light on striking

realization of volume independence that is observed, both
for glueballs and for topological observables, even for
moderate values of N. Such quantities are already practi-
cally volume independent in the underformed theory, as
long as center symmetry is safe, in the sense that they are in
fact temperature independent till the deconfinement tem-
perature is approached from below.
On the other hand, we have shown that the torelon mass

approaches a well-defined plateau value in the large h limit,
which moreover has a well defined continuum limit. We
have compared such value with the available semiclassical
prediction [6,7] for the lowest mass of the tower of Kaluza-
Klein modes associated with the compactified direction,
which is 2π=ðNlÞ, hence 2π=3l for SUð3Þ, where l is the
length of the compactified direction in physical units.
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While the 1=l factor is a generic expectation for Kaluza-
Klein modes, the additional 1=N factor is directly related to
the way in which center symmetry is expected to be
restored, in particular to the fact that the holonomy
eigenvalues are evenly distributed around the complex
unit circle and to the SUðNÞ → Uð1ÞN Higgsing of the
theory. Such prediction is expected to work only when
NΛl ≪ 1, where Λ is the strong interaction scale, meaning
l ≪ 1=N in fermi units. Nevertheless, we have observed a
reasonable agreement with SUð3Þ results even for l as large
as 0.4–0.5 fm, while some deviations are visible for
l≳ 0.6 fm; significant deviations instead emerge going
to larger values of N, in particular for the N ¼ 4 and
l ∼ 0.5 fm case explored in this study.
To summarize, our numerical study provides, on one

hand, a solid support to predictions regarding the way in
which center symmetry is restored in the trace deformed
theory. On the other hand, it fully confirms that, independ-
ently of the particular way the restoration is achieved, the
small volume unbroken theory is indistinguishable from the

original large volume theory for a large set of physical
observables, going from θ-dependence to the spectrum of
glueball states. Future studies could further extend such
evidence by considering smaller values of l, larger values of
N and different relevant observables.
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