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As fermions are added to a lattice gauge theory, one is driven to stronger bare coupling in order to
maintain the same renormalized coupling. Stronger bare couplings are usually associated with larger gauge
fluctuations, leading to larger cutoff effects and more expensive simulations. In theories with many light
fermions, sometimes the desired physical region cannot be reached before encountering a phase boundary.
We show that these undesired effects can be reduced by adding Pauli-Villars fields. We reach significantly
larger renormalized couplings while at the same time damping short-distance fluctuations of the gauge
field. This may allow for controlled continuum extrapolations from large lattice spacings.
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I. INTRODUCTION

There is wide interest in the nonperturbative properties of
asymptotically free gauge theories at strong renormalized
coupling. Lattice gauge theory simulations aim to inves-
tigate strong-coupling physics at large distances while
starting at weak coupling at short distances. Tuning the
bare coupling to zero decreases the lattice spacing and
reduces cutoff effects but requires increasing the lattice
volume to keep the physical volume sufficiently large.
Various improvement programs, both perturbative and
nonperturbative, attempt to reduce lattice artifacts so that
simulations even at reasonable lattice volumes can predict
continuum physics with high precision. This approach
works well when the gauge coupling runs fast, as in
QCD with a few flavors of light fermions.
As is well known, fermion fields screen the gauge

interaction and thus slow down the running of the gauge
coupling. Sufficiently many fermions even lead to the
emergence of an infrared fixed point. In slowly running
systems, computationally acceptable lattice volumes do not
allow significant change from the bare to the renormalized
coupling. In order to reach strong renormalized couplings,
simulations must start with a large bare coupling. This, in
turn, brings in large cutoff effects. Often the large ultra-
violet (UV) fluctuations induce unwanted lattice artifacts
like bulk phase transitions.

We illustrate the problem with Fig. 1. The top panel
shows g2GF, the gradient-flow coupling1 at fixed lattice
distance as a function of the bare coupling β for SU(3)
gauge theory coupled to nHYP staggered fermions with
Nf ¼ 0, 4, 8, and 12 (continuum) flavors. Each theory
except the pure Yang-Mills theory exhibits a first-order
bulk transition to an S4 phase2 at strong coupling. The
leftmost point in each dataset is slightly to the right of the
phase transition for that model. One can see that the largest
g2GF that can be reached before encountering the phase
transition gets smaller with increasing Nf. The bottom
panel of Fig. 1 shows the corresponding plaquette values
(normalized such that the maximal value is 3). Comparing
the two panels reveals that, as the number of fermions
increases, reaching the same value of g2GF (if possible) is
accompanied by a smaller plaquette value. In other words,
it comes at the price of stronger short-distance gauge field
fluctuations.
Small plaquette values typically signal a difficult sim-

ulation. Worse is the presence of the phase boundary. There
is the possibility that simulations intended to study the
properties of the Gaussian fixed point at g20 ¼ 0 but
performed near the first-order transition will reflect the
properties of the bulk transition. In any case, bulk phase
transitions limit the physical range that lattice simulations
can probe.
Cutoff effects will be reduced if we can suppress ultra-

violet fluctuations without affecting the infrared physics.
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1For the precise definition of the gradient-flow coupling see
Sec. II A.

2The S4 phase is characterized by the spontaneous breaking of
the staggered shift symmetries [1–3]. For a possible explanation
of this symmetry breaking pattern see [4].
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In this paper we show that adding to the lattice action a set
of heavy Pauli-Villars (PV) fields achieves this goal. These
are bosonic Dirac fields that we choose to have the same
lattice action as the fermions, but with heavy masses fixed
at amPV ¼ Oð1Þ. These PV fields play a role similar to that
of the continuum PV fields in regularizing fermions at large
momenta [5]. While fermions screen the gauge coupling,
the PV fields antiscreen. At short distances r≲ 1=mPV they
will enhance the running of the coupling. At large distances
r ≫ a the running of the gauge coupling is physical and
will not be altered by the presence of the PV fields.
Matter fields whose mass is fixed in lattice units, whether

fermions or bosons, decouple in the continuum limit where
the lattice spacing a → 0 or the lattice correlation length
ξ → ∞. The effect of the PV bosons can be summarized as
an addition to the lattice action. They generate a local
effective gauge action [6] that can balance the screening
effect of the fermions at short distances. This recalls the old
idea of gauge fields wholly generated by heavy matter
fields [7,8], but here the goal is only to compensate for the
short-distance effects of lattice fermions. While continuum

PV fields are introduced in one-to-one correspondence with
the fermions in order to cancel UV divergences, on the
lattice we may allow the number of PV fields to be a free
parameter. The induced term in the gauge action is simply
proportional to the number of PV fields.3

This paper is organized as follows. In Sec. II we present
the PV fields that accompany the staggered fermions in our
simulations. We also review the idea that massive fields can
be considered as generating an effective action for the
gauge field. Section III gives an account of our exper-
imentation with the PV fields, and in Sec. IV we give our
conclusions.

II. PAULI–VILLARS FIELDS

A. Lattice definitions

In this paper we use a gauge action that includes fun-
damental and adjoint plaquette terms with couplings β≡
βF and βA, respectively, related by βA=βF ¼ −0.25 [1]. The
gauge links in the staggered operator D are nHYP-smeared
links [13,14] with smearing parameters α ¼ ð0.5; 0.5; 0.4Þ.
This lattice action has been used in several studies of 8- and
12-flavor systems, including explorations of the phase
diagram [1,2], the discrete β function [15,16], the scale-
dependent mass anomalous dimension [17], and the large-
scale spectrum studies of the LSD Collaboration [18,19].
The finite volume gradient-flow coupling is defined

by [20–23]

g2GFðt;LÞ ¼
128π2

3ðN2
c − 1Þð1þ δÞ ht

2EðtÞi; ð2:1Þ

where Nc ¼ 3 and the term 1=ð1þ δÞ corrects for the
gauge zero modes due to periodic boundary conditions
[23]. We evaluate g2GF at flow time fixed by

ffiffiffiffi
8t

p ¼ cL;
throughout this paper we use c ¼ 0.45.
In Eq. (2.1), EðtÞ is the (flowed) energy density.

Different operators and flows, like the plaquette and clover
operators, or Wilson and Symanzik flows, give slightly
different g2GF, but for

ffiffiffiffi
8t

p ¼ 0.45L this variation is usually
mild. In the following we define g2GF using Wilson flow and
the clover operator. Since we use the same flow and
operator throughout this work, the specific choice should
not affect the qualitative results.
We define the staggered lattice Dirac operator as

M ¼ Dþm; ð2:2Þ

where D is the single-component, massless, anti-Hermitian
staggered operator. The fermion action constructed using
this operator gives rise to Nf ¼ 4 continuum flavors when

FIG. 1. Gradient flow coupling g2GF (top) and plaquette (bot-
tom) vs. the bare coupling β for SU(3) gauge theory with Nf ¼ 0,
4, 8, and 12 flavor staggered fermions, with nHYP smearing, on
lattice volume 84. The finite-volume gradient-flow coupling of
Eq. (2.1) is defined by the choice c ¼ 0.45. The fermion mass is
am ¼ 0.005. All systems but the pure Yang-Mills theory show a
first order transition to an S4 phase, just to the left of the
corresponding data set.

3PV bosons are also included when using lattice domain
wall fermions, in one-to-one correspondence with the fermions
[9–12].
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the bare gauge coupling is tuned to the Gaussian fixed point
g20 ¼ 0 (equivalently, β → ∞), provided that the fermion
mass m is accordingly tuned to zero in lattice units.
The squared determinant ofM can be represented using a

single pseudofermion field ϕ,

ðDetMÞ2 ¼ DetðM†MÞ

¼
Z

dϕdϕ† exp

�
−ϕ† 1

M†M
ϕ

�
: ð2:3Þ

The path integral that includes ðDetMÞ2 gives Nf ¼ 8

flavors in the continuum limit. By restricting M†M to the
even sites only, one obtains Nf ¼ 4 flavors in the con-
tinuum limit.
Pauli-Villars fields have the opposite statistics. The

bosonic inverse determinant is represented similarly as

½DetðM†
PVMPVÞ�−1 ¼

Z
dΦdΦ† exp ð−Φ†M†

PVMPVΦÞ;

ð2:4Þ

where we define

MPV ¼ DþmPV: ð2:5Þ

Unlike the pseudofermion action, the PVaction is local. As
above, we restrictM†

PVMPV to the even sites only. Including
NPV copies of such PV fields in Eq. (2.4) would amount to
4NPV bosonic Dirac fields in the continuum limit if we
were to tune the PV mass to zero. We stress, however, that
the PV mass will always be held fixed in lattice units, in
order to decouple the PV fields in the continuum limit.

B. Integrating out heavy matter fields

Matter fields with mass of the order of the cutoff
decouple from the infrared dynamics, but they generate
an effective gauge action, affecting the bare gauge cou-
pling. Ns staggered fermions give an induced contribution
to the gauge action,

e−Sind½U� ¼
Z YNs

i¼1

dψ idψ̄ i exp

�
−
XNs

i¼1

ψ̄ iðDþmÞψ i

�

¼ DetðDþmÞNs ¼ eNsTr logðDþmÞ: ð2:6Þ

The full effective action for the gauge field is thus

Seff ½U� ¼ Sgauge½U� þ Sind½U�: ð2:7Þ
For thin (unsmeared) links, an expansion in powers of 1=m
gives

Sind ¼ −Ns

X
l

ð−1Þl=2
lð2amÞl

X
x

X
Cl

EClTrUCl ; ð2:8Þ

where the sum over Cl is a sum over all closed loops
of length l originating from lattice site x, and ECl ¼
1
4
Trðγμ1 � � � γμlÞ is a sign factor that depends on the

geometry of the loop.
For heavy staggered fermions interacting with thin

(unsmeared) gauge links the leading term in Sind is a
plaquette term with coefficient,

βðpÞind ¼ Ns

ð2amÞ4 : ð2:9Þ

The coefficient of F2
μν from all the loops (representing

the leading term in an expansion in the lattice spacing)
can be expressed as a new inverse bare gauge coupling
βeff ¼ β þ βind. Smeared link actions generate a smeared
plaquette at leading order that also corresponds to an
induced action characterized by a shift in β.
Reference [24] investigated the finite temperature phase

transition of various systems (with thin links) and con-
cluded that fermions with am≳ 0.1 are well described by
an effective gauge action. The possibility of replacing the
entire gauge action with an effective action generated by
fermions was explored in Ref. [7], while Ref. [8] consid-
ered heavy scalar fields in the adjoint representation.
If we replace the fermions by PV bosons, the only

change is that the overall sign on the right-hand side of
Eq. (2.8) is flipped. For equal masses mPV ¼ m, the PV
bosons exactly cancel out the Sind generated by Ns ¼ NPV
staggered fields. Similarly, in continuum perturbation
theory, and for scales μ ≫ mPV ¼ m, the contribution of
the PV bosons to the one- and two-loop beta function
would be exactly opposite to that of the fermions.
In the next section, we turn to a numerical study of the

effect of PV bosons with masses amPV ¼ Oð1Þ.

III. NUMERICAL SIMULATIONS WITH
PAULI–VILLARS FIELDS

We have explored the effect of the PV fields in the SU(3)
gauge theory with Nf ¼ 12 massless fermions, using a
staggered action with nHYP smearing (see Sec. II A). This
theory exhibits a first-order transition into the S4 phase
[1–4], which persists for all the combinations of PV fields
that we have tried out.
In Fig. 2 we show the effect of a growing number of PV

fields, always keeping amPV ¼ 0.5. We consider NPV ¼ 0,
2, 4, 6, and 8. The lattice volume is 84. The top panel of
Fig. 2 shows g2GF as a function of the inverse bare gauge
coupling β. A striking feature is how much fixed physics,
defined by a given value of g2GF, gets pushed back towards
larger β. This is thanks to the antiscreening effect of the PV
fields. For example, let us consider g2GF ¼ 11. Without PV
fields, this value is achieved for β ≃ 2.8 (see Table I). With
NPV ¼ 2, amPV ¼ 0.5, the same renormalized coupling is
attained for β ≃ 6.8. With each further addition of 2 to NPV,
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the value of β shifts by about 2.2. This behavior is
qualitatively consistent with the predictions of the hop-
ping-parameter expansion, see Sec. II B.
The bottom panel of Fig. 2 shows that increasing the

number of PV fields while keeping the renormalized cou-
pling fixed is accompanied by increasing plaquette values.
This demonstrates that the short-distance fluctuations of the

gauge field are damped. The system without PV bosons has
plaquette expectation value around 0.6 (out of 3) just above
the bulk transition. Such rough gauge fields would not be
considered acceptable in QCD simulations.
Another striking feature seen in the top panel of

Fig. 2 is the larger range of renormalized gauge couplings
made accessible when PV fields are added. As in Fig. 1,
the leftmost point in each dataset is just to the right of
the phase transition into the S4 phase. As we increase
NPV from left to right, the corresponding maximal values
of g2GF are approximately 14, 17, 20, 25, and 29.4 The
largest renormalized coupling attainable with NPV ¼ 8 is
about twice that without any PV fields.
Figure 3 is similar to Fig. 2, but this time we keep

the number of PV fields fixed at NPV ¼ 4, and we con-
sider three values of the PV mass, from large to small:
amPV ¼ 1.0, 0.75, and 0.5. As expected, the effect of
the PV fields increases with decreasing mass. Comparing
Figs. 3 and 2 we deduce, for example, that NPV ¼ 4 with
mass amPV ¼ 0.75 has roughly the effect of NPV ¼ 3 with
mPV ¼ 0.5. If parameters of the simulation require it,
one can always raise the PV mass to amPV ¼ 1, and then
increase NPV till the desired antiscreening effect is
achieved. (There is no reason to consider heavier PV
bosons, since amPV ¼ 1 already sets the PV mass equal
to the cutoff.) We stress again that the PV mass should be
held fixed in lattice units when taking the continuum limit.
The reader may wonder if PV bosons with mass amPV ¼

0.5 are heavy enough to decouple. First, we have found that
the mass of the PV pion—the ghost pion made of two PV
bosons—is roughly equal to 2mPV. This implies that the
couplings between remote sites in Sind decrease exponen-
tially with a decay rate ∼2mPV.
We can also examine this question from the point of view

of the infrared scales. In systems where chiral symmetry is
not broken, the only dimensionful parameters, besides
mPV , are the fermion masses (denoted generically as m)
and the lattice volume. Fermion bound states are expected
to scale with m, so as long as mPV ≫ m and mPV ≫ 1=L,
the PV bosons decouple. This applies both in mass-
deformed conformal systems and in QCD-like systems
at high temperature, where there is no condensate. In
particular, if simulations are performed in the chiral limit,
the only condition ismPVL ≫ 1. Where chiral symmetry is
broken, an additional condition mPV ≫ ΛQCD has to be
imposed. In practice one can check that mPV ≫ MH where
MH is the heaviest physically accessible hadron of the
system.
The flow-time evolution of g2GFðt;LÞ is always charac-

terized by three regions. It starts with an initial rise at

TABLE I. Performance of simulations with different PV con-
tent that yield g2GF ≃ 11, on volume 84 with Nf ¼ 12 staggered
fermions. The fermion mass is am ¼ 0 while amPV ¼ 0.5.
Trajectories are of unit length. Nstep is the number of MD steps
per trajectory, NCG is the average number of CG iterations for the
pseudofermion inversions, and jδHj is the average error in the
MD energy.

NPV β g2GF Nstep NCG jδHj
0 2.8 10.87(6) 15 1190 0.45
2 6.8 10.89(9) 12 400 0.062
4 9.0 10.58(8) 12 365 0.033
6 11.2 10.87(30) 12 353 0.033
8 13.4 10.87(100) 12 359 0.034

FIG. 2. The effect of increasing the number of PV fields. The
top panel shows the gradient-flow coupling g2GF and the bottom
panel the plaquette vs. the bare coupling β for the SU(3) theory
with Nf ¼ 12 fermions in the chiral limit. All systems exhibit a
first-order transition to the S4 phase. As before, the leftmost point
in each set is a little to the right of the phase transition; data points
inside the S4 phase are not shown.

4We have identified the location of the transition to the S4
phase to within about 0.1 in β. The quoted maximal values of g2GF
have statistical and systematic errors of about 0.3 and 1.0,
respectively.
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t=a2 ≲Oð1Þ that depends strongly on the specific action,
flow, and operator choice. This is followed by a physical
region, and finally the flow saturates due to the finite
volume. In Fig. 4 we show the t dependence of g2GFðt;LÞ for
β just above the S4 transition, as shown in Fig. 3. In the
absence of any PV fields the “knee” where g2GF turns from
the initial short-distance rise to the physical (and, here,
decreasing) part occurs at t=a2 ≃ 0.6. The inclusion of PV
fields induces a short-distance gauge interaction that affects
the small-t behavior. In the flows with four PV fields the
turning point between the two regions moves to the right as
mPV is lowered, while the maximum of g2GF grows.
For c ¼ 0.45 and L ¼ 8 we read off the gradient-flow

coupling at t=a2 ≃ 1.62. This small volume obviously does
not leave much room for a physical region. In Fig. 4 we also
show the flows for L ¼ 12. Here the gradient-flow coupling
is determined at t=a2 ≃ 3.65, which is now well beyond the
turning point of the flows for all values of mPV. Both the
maximum of g2GFðt;LÞ and its value at

ffiffiffiffi
8t

p ¼ 0.45L do not
change much with the volume.5

Finally, we turn to the cost of the PV fields. As long as
the number of PV bosons is not extremely large, adding
them to the simulation is inexpensive. The PV action (2.4)
requires only one inversion (with large mass) at the
beginning of an HMC trajectory to generate each PV field
Φ. During the molecular dynamics (MD) evolution of the
gauge field, calculating the force due to the PV action
requires mutiplication with the Dirac operator, but no
inversion.
As a matter of fact, the PV fields can even make the

simulations less expensive. In Table I we report the per-
formance of simulations with different numbers of PV fields
withmPV ¼ 0.5.6 AsNPV is increased from zero, we change
β to keep g2GF ≃ 11 fixed (cf. Fig. 2).We observe decreases in
(1) the number of conjugate-gradient (CG) iterations and in
(2) the average error jδHj in the MD energy due to large
forces in the equations ofmotion. Sharp decreases are seen in
going from NPV ¼ 0 to 2 despite an increased step size
dτ ¼ 1=Nstep.

7 A decrease in jδHj brings about improved
acceptance and should allow yet larger values of dτ, further
decreasing the computational cost.

IV. DISCUSSION

In this paper we investigated the possibility of countering
the effective action generated by fermions at short distances
by including heavy Pauli-Villars fields. The effective action
generated by PV bosons has the opposite sign to that
generated by fermions; while fermions screen the gauge

FIG. 4. The gradient flow coupling g2GFðt;LÞ as a function of
the flow time t=a2 at couplings β just above the respective bulk
transitions (see Fig. 3). We show data with no PV fields and with
four PV bosons with decreasing mass mPV, on volume 84 (short
curves) and 124 (long curves). The vertical lines correspond to
flow time at c ¼ 0.45 for the two volumes.

FIG. 3. Similar to Fig. 2, except the number of PV fields, where
present, is fixed at NPV ¼ 4, with decreasing values of mPV.
Again all systems exhibit a first-order transition to an S4 phase,
and the leftmost point in each set is a little to the right of the phase
transition.

5If, as in Fig. 2, we hold mPV fixed and vary NPV we observe a
similar trend: again the turning point moves to the right with
increasing NPV and the maximum of g2GF grows.

6Chiral symmetry breaking was not observed in any of our
datasets. This allowed us to work directly at am ¼ 0.

7Adding more than four PV fields seems to have no further
effect.
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coupling, PV bosons antiscreen. As long as their mass
amPV is kept at Oð1Þ, the PV bosons decouple from the
infrared dynamics.
Pauli-Villars fields are part of standard domain-wall

fermion actions. Indeed, domain-wall fermions are gen-
erally known for their small cutoff effects. In this paper, we
considered the use of a more general set of PV fields with
staggered fermions. Similarly, one can add heavy PV
bosons to a theory with Wilson fermions. We would always
use the same lattice Dirac operator for the unphysical PV
bosons as for the fermions (except of course with a heavy
mass mPV), anticipating that this is the optimal way to
reduce the cutoff effects of the fermions. One can also try
using a different PV action; the PV fields would simply
induce a different gauge action.
Increasing the number of heavy PV bosons (even beyond

the number of fermions) enlarges the induced gauge action.
As a consequence, the same physical regime is reached at
smaller bare gauge coupling (i.e., larger β) where the gauge
fields are smoother. The ability to work at small bare
coupling while maintaining the desired renormalized cou-
pling in the infrared means that cutoff effects are reduced.
In a way, introducing many PV bosons brings the system
closer to a perfect action.
Heavy PV bosons have an additional positive effect on

systems that exhibit bulk first order phase transitions in
strong coupling. These phase transitions are typically caused
by large ultraviolet fluctuations and are not physical.
Nevertheless they limit the range of possible renormalized
couplings. While the additional PV bosons in our test study
withNf ¼ 12 flavors did not remove the bulk transition, they
shifted the simulations to smoother gauge fields and opened
up the range of accessible couplings. In our experiments we
found about a factor of 2 increase in the maximal g2GF.
Adding several PV fields to the simulation is in-

expensive. In fact, the PV fields made our simulations less
expensive: Since the gauge fields are smoother, the CG
inversions needed for the fermion force converged signifi-
cantly faster. Moreover, the smaller MD forces resulted in
improved acceptance even with a larger step size.
The introduction of PV bosons can be particularly useful

for slowly running systems where, for the renormalized

coupling at the infrared scale to be large, normally the bare
coupling would have to be taken large, too. PV bosons
allow for independent control over the magnitude of
discretization effects in such systems.
Our aim in this paper has been to show that the addition

of PV fields smooths the gauge field and allows the
gradient flow to reach very strong couplings. We have
demonstrated these claims using Nf ¼ 12 flavor staggered
fermions. Any conclusions to be drawn from the data
presented will, as usual, depend on the results of taking
large-volume and continuum limits. The question of
whether the Nf ¼ 12 theory is ultimately confining
[25–28] or conformal [16,29] has been the subject of
extensive study. If the downward trend of the flows in
the physical region (Fig. 4) survives all relevant limits, this
would signal the presence of an infrared fixed point at some
smaller value of g2GF.
PV bosons can find their use in QCD, too. For given

computer resources, the only way to increase the physical
volume is by increasing the lattice spacing. This comes at
the price of growing discretization errors. Including PV
bosons might allow for simulations with larger lattice
spacings and hence with larger physical volumes, while
still keeping the discretization effects under control. At the
same time simulations with PV bosons could be computa-
tionally faster as well.
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