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We study numerically the chromoelectric-chromomagnetic asymmetry of the dimension two A2 gluon
condensate as well as the infrared behavior of the gluon propagators at T ≃ Tc in the Landau-gauge SUð3Þ
lattice gauge theory. We find that a very significant correlation of the real part of the Polyakov loop with the
asymmetry as well as with the longitudinal propagator makes it possible to determine the critical behavior
of these quantities. We obtain the screening masses in different Polyakov-loop sectors and discuss the
dependence of chromoelectric and chromomagnetic interactions of static color charges and currents on the
choice of the Polyakov-loop sector in the deconfinement phase.

DOI: 10.1103/PhysRevD.104.074508

I. INTRODUCTION

It is widely hoped that the behavior of the Green’s
functions of gauge fields encodes the confinement
mechanism [1–3]. Thus their dependence on the volume,
temperature and momentum at temperatures close to the
confinement-deconfinement transition attracts particular
interest.
In the one-gluon exchange approximation, the Fourier

transform of the gluon propagator measures interaction
potential between static color charges. We also should
mention the relation of the low-momentum longitudinal
and transverse propagators to the chromoelectric and chro-
momagnetic screening masses and, therefore, to the proper-
ties of strongly interacting quark-gluon matter. Motivation
for the studies of the asymmetry and gluon propagators is
also discussed in [4–7] and references therein.

Recently, significant correlations between the chromo-
electric-chromomagnetic asymmetry and the Polyakov
loop as well as between the zero-momentum longitudinal
propagator and the Polyakov loop were found in SU(2)
gluodynamics [8,9]. This made it possible to describe
critical behavior of the asymmetry and the propagator
and to reliably evaluate finite-volume effects.
Our attention here is concentrated on the behavior of

these quantities in the Landau-gauge SUð3Þ lattice gauge
theory. It is well known that the first-order phase transition
occurs in this model and the Polyakov loop jumps from
zero to a nonzero value [10,11] which is associated with the
spontaneous breaking of the Z3 center symmetry.
Though the behavior of the asymmetry and the gluon

propagators at T ∼ Tc have received much attention in
the literature, the situation with their temperature and
volume dependence in a close vicinity of Tc is far from
being clear. The behavior of the gauge-field vector poten-
tials under the Z3 symmetry transformation is also poorly
understood.
We suggested a new approach to the studies of the

longitudinal propagator at zero momentum DLð0Þ, which
makes it possible to clarify its critical behavior in the
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infinite-volume limit of the SUð2Þ gluodynamics and
evaluate the respective critical exponent to 6-digit precision
[9]. It was shown that the critical exponent γ is unrelated to
the critical behavior of DLð0Þ.
Our approach is based on correlations between the

Polyakov loop P and DLð0Þ and between P and the
asymmetry A. In the studies of these correlations
we employ well-established properties of the Polyakov
loop.
The paper is organized as follows. In the next section we

introduce the definition and describe the details of our
numerical simulations. The correlation between the asym-
metry A and the Polyakov loop P forms the subject of
Sec. III. Our analysis begins with the observation that, in a
finite volume, the values of P are distributed in a finite
range making it possible to collect a sufficient number of
configurations generated at different temperatures, but
giving the same value of the Polyakov loop. This allows
us to study the dependence of conditional distributions ofA
on the temperature and conclude that such distributions are
governed by the value of the real part of the Polyakov loop
rather than by the temperature itself. This finding and the
knowledge of the critical behavior of the Polyakov loop
enables one to determine the critical behavior of the
asymmetry. The propagators are studied in a similar way
in Sec. IV. We obtain the critical behavior of only the
longitudinal propagator because it correlates with the real
part of the Polyakov loop much more significantly than the
transverse propagator. Therewith, we evaluate both chro-
moelectric and chromomagnetic screening masses in all
Polyakov-loop sectors and obtain their dependence on the
temperature. It turns out that, in the deconfinement phase,
the chromoelectric screening mass depends crucially on the
choice of the Polyakov-loop sector. We discuss conse-
quences of this in the context of the center-cluster scenario
of the deconfinement transition [12]. In the Conclusions we
summarize our findings.

II. DEFINITIONS AND SIMULATION DETAILS

We study SU(3) lattice gauge theory with the standard
Wilson action in the Landau gauge. Definitions of the
chromo-electric-magnetic asymmetry and the propagators
can be found e.g., in [5,6,8,13].
We use the standard definition of gauge vector potential

Axμ lattice [14]:

Axμ ¼
1

2i
ðUxμ − U†

xμÞtraceless ≡ Aa
x;μTa; ð1Þ

Transformation of the link variables Uxμ ∈ SUð3Þ under
gauge transformations gx ∈ SUð3Þ has the form

Uxμ↦
g
Ug

xμ ¼ g†xUxμgxþμ:

The lattice Landau gauge condition is given by

ð∂AÞx ¼
X4
μ¼1

ðAxμ −Ax−μ̂;μÞ ¼ 0: ð2Þ

It represents a stationarity condition for the gauge-fixing
functional

FUðgÞ ¼
1

4V

X
xμ

1

3
ReTrUg

xμ; ð3Þ

with respect to gauge transformations gx.
The bare gluon propagator Dab

μνðpÞ is defined as

Dab
μνðpÞ ¼

a2

g20
hÃa

μðkÞÃb
νð−kÞi; ð4Þ

where ÃðkÞ is the Fourier transform of the gauge potentials
(1). The physical momenta p are given by pi¼
ð2=aÞsinðπki=NsÞ, p4¼ð2=aÞsinðπk4=NtÞ, ki ∈ ð−Ns=2;
Ns=2�, k4 ∈ ð−Nt=2; Nt=2�. We consider only soft modes
p4 ¼ 0.
The gluon propagator on an asymmetric lattice involves

two tensor structures [15]:

Dab
μνðpÞ ¼ δabðPT

μνðpÞDTðpÞ þ PL
μνðpÞDLðpÞÞ; ð5Þ

where the longitudinal PL
μνðpÞ and the transverse PT

μνðpÞ
projectors are defined at p4 ¼ 0 as follows:

PL
44ðpÞ ¼ 1; PL

μiðpÞ ¼ PL
iμðpÞ ¼ 0;

PT
ijðpÞ ¼

�
δij −

pipj

p⃗2

�
; PT

μ4ðpÞ ¼ PT
4μðpÞ ¼ 0: ð6Þ

Therefore, the longitudinal DLðpÞ and the transverse
DTðpÞ form factors (also referred to as the longitudinal
and transverse propagators) are given by

DLðpÞ ¼
1

8

X8
a¼1

Daa
44ðpÞ; DTðpÞ ¼

1

16

X8
a¼1

X3
i¼1

Daa
ii ðpÞ:

ð7Þ

At p⃗ ¼ 0 the zero-momentum propagators DTð0Þ and
DLð0Þ have the form

DTð0Þ ¼
1

24

X8
a¼1

X3
i¼1

Daa
ii ð0Þ; DLð0Þ ¼

1

8

X8
a¼1

Daa
00ð0Þ:

ð8Þ
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The longitudinal propagator DTðpÞ is associated with the
electric sector and the transverse propagator DLðpÞ is
associated with the magnetic sector.
Our calculations are performed on asymmetric lattices

Nt × N3
s , where Nt is the number of sites in the temporal

direction (in our study, Nt ¼ 8 and Ns ¼ 24). The temper-
ature T is given by T ¼ 1=aNt where a is the lattice
spacing. We use the parameter

τ ¼ T − Tc

Tc
ð9Þ

useful at temperatures close to Tc. We rely on the scale
fixing procedure proposed in [16] and use the value of the
Sommer parameter r0 ¼ 0.5 fm as in [13]. Making use of
βc ¼ 6.06 and Tcffiffi

σ
p ¼ 0.63 [17] gives Tc ¼ 294 MeV

and
ffiffiffi
σ

p ¼ 0.47 GeV.
In Table I we provide information on lattice spacings,

temperatures and other parameters used in this work.
In order to consider all three Polyakov-loop sectors in

detail, we generate ensembles of 200 independent Monte
Carlo gauge-field configurations for each of the sectors:

ðIÞ −
π

3
< argP <

π

3

ðIIÞ π

3
< argP < π

ðIIIÞ − π < argP < −
π

3
: ð10Þ

Consecutive configurations (considered as independent)
were separated by 200 ÷ 400 sweeps, each sweep consisting
of one local heatbath update followed by Ns=2 micro-
canonical updates.
Following Refs. [5,13] we use the gauge-fixing

algorithm that combines Zð3Þ flips for space directions
with the simulated annealing (SA) algorithm followed by
overrelaxation.
Here we do not consider details of the approach to the

continuum limit and renormalization considering that the
lattices with Nt ¼ 8 (corresponding to spacing a ≃ 0.08 fm
at T ∼ Tc) are sufficiently fine.
In terms of lattice variables, the asymmetry has the form

A ¼ 6a2N2
t

β

X8
b¼1

�
hAb

x;4A
b
x;4i −

1

3

X3
i¼1

hAb
x;iA

b
x;ii

�
; ð11Þ

It can also be expressed in terms of the gluon propagators:

A ¼ 16Nt

βa2N3
s

�
3ðDLð0Þ −DTð0ÞÞ

þ
X
p≠0

�
3jp⃗j2 − p2

4

p2
DLðpÞ − 2DTðpÞ

��
ð12Þ

where DLðDTÞ is the longitudinal (transversal) gluon
propagators. Thus the asymmetry A, which is nothing but
the vacuum expectation value of the respective composite
operator, is multiplicatively renormalizable and its renorm-
alization factor coincides with that of the propagator.1

III. A2 ASYMMETRY NEAR Tc

Critical behavior of the asymmetry in SUð2Þ gluody-
namics was studied in [9], where the distribution of the
configurations in the asymmetry was considered and the
correlation between the asymmetry A and the Polyakov
loop P was found. Then the regression analysis based on
the conditional cumulative distribution function F ðAjPÞ
was employed to determine the dependence of the condi-
tional expectation of the asymmetry

hAiP ≡ EðAjPÞ ¼
Z

dF ðAjPÞ
dA

AdA ð13Þ

on the Polyakov loop, lattice volume, and the temperature.
It was found that, in the leading order in τ, the volume and
temperature dependence of the asymmetry is accounted for
by its dependence on the Polyakov loop.
In the SUð3Þ case, the correlation between the asym-

metry and the real part of the Polyakov loop is clearly seen
on the scatter plot in the left panel of Fig. 1. In view of this
observation, we employ regression analysis to estimate a
relationship between A and P using the linear regression
model based on the fit function

EðAjRePÞ ≃A0ðτÞ
þA1ðτÞRePðτÞ þA2ðτÞðRePðτÞÞ2; ð14Þ

where A is a predicted variable (regressand) and ReP is an
explanatory variable (regressor). The parameters A0, A1,
and A2 extracted from our data are presented in Table II.
The residuals

eAðnÞ ¼ An −A0 −A1RePn −A2ðRePnÞ2; ð15Þ

where n numbers gauge-field configurations, show corre-
lation with neither ReP nor ImP, as is shown in Fig. 2. It
follows from the scatter plot in Fig. 2 (right) that the
random variable eA is independent of ImP and, therefore,

TABLE I. Parameters associated with lattices under study.

β a fm a−1, GeV pmin, MeV τ

6.000 0.093 2.118 554.5 −0.096
6.044 0.086 2.283 597.7 −0.026
6.075 0.082 2.402 628.8 0.025
6.122 0.076 2.588 677.5 0.104

1Assuming that both DLðpÞ and DTðpÞ are renormalized by
the same factor.
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terms involving ImP should not appear in formula (14).
The scatter plot in Fig. 2 (left) reveals that the dependence
of the average value of eA on ReP is not seen on the
background of statistical fluctuations and, therefore, addi-
tional terms in formula (14) are not needed.
We have more to say on the temperature dependence of

the asymmetry. In the infinite-volume limit, the width of the
distribution of field configurations in the Polyakov loop
tends to zero and, consequently, Pn ¼ hPi.
Thus the expectation value EðAjP ¼ PðτÞÞ determines

the asymmetry in the infinite-volume limit:

hAi ¼ A0ðτÞ if τ < 0;

hAi ¼ A0ðτÞ þA1ðτÞRePðτÞ
þA2ðτÞðRePðτÞÞ2 if τ > 0: ð16Þ

The coefficients Ai evaluated on the lattices under con-
sideration show rather smooth dependence on τ in a
neighborhood of the point τ ¼ 0 associated with the
deconfinement transition: say, A0 changes by some 5%
as τ changes from −0.1 to 0.0. In the SUð2Þ case, they not
only posses this property but also depend very weakly on
the lattice volume [9]. For this reason, it is natural to
assume that the lattice size ∼2 fm used in our study is
sufficiently large for their evaluation.
As in the SUð2Þ case, now we employ our knowledge of

the critical behavior of the Polyakov loop for the inves-
tigation of the critical behavior of the asymmetry. At τ > 0

spontaneous breaking of the center symmetry occurs and
we choose a certain Polyakov-loop sector. In the infinite-
volume limit, P is some function of τ such that

lim
τ→0þ

jPðτÞj ¼ Pc > 0: ð17Þ

The discontinuity Pc > 0 implies that

EðAjP ¼ PcÞ − EðAjP ¼ 0Þ ¼ Gþ
A < 0; ð18Þ

when we choose the Polyakov-loop sector with argP ¼ 0
and

EðAjP ¼ e
2{π
3 PcÞ − EðAjP ¼ 0Þ

¼ EðAjP ¼ e
−2{π
3 PcÞ − EðAjP ¼ 0Þ ¼ G−

A > 0 ð19Þ
otherwise. That is, discontinuity in the Polyakov loop at
T ¼ Tc gives rise to the discontinuity of the asymmetry.
Our regression analysis indicates that the dependence ofA

on ReP is much stronger than on ImP and τ; that is,
temperature dependence of A at τ > 0 is accounted for
mainly by ReP. Scatter plot in the right panel of Fig. 1
demonstrates that the values of A plotted against ImP look
like the values of ReP plotted against ImP. Such pattern
agrees well with the conclusion that A is independent
of ImP.

IV. GLUON PROPAGATORS NEAR CRITICALITY

We begin with the observation that the zero-momentum
longitudinal propagator is strongly correlated with the real
part of the Polyakov loop, see the scatter plot in Fig. 3.
Some correlation between DTð0Þ and ReP also takes place
(see Fig. 4, right), whereas neither DLð0Þ nor DTð0Þ has a
correlation with ImP.
We prove this relying on a procedure analogous to that

used in the case of asymmetry. Namely, we also begin with

FIG. 1. Correlation between the asymmetry and the real part of the Polyakov loop (left); scatter plot “imaginary part of the Polyakov
loop—asymmetry” is consistent with the absence of correlation between them (right).

TABLE II. Results of the fit (14).

τ A0 A1 A2

−0.096 33.98(14) −962.8ð19.4Þ −603ð2182Þ
−0.026 35.54(14) −1060.5ð13.5Þ 7645(644)
0.025 37.26(24) −1104.6ð8.7Þ 7773(393)
0.104 39.78(35) −1040.3ð8.5Þ 5969(342)
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the conditional distribution FDðDjPÞ of the propagator
values D≡DLð0Þ and find the average value of the
propagator as a function of the Polyakov loop using a
linear regression model. An important difference from the
case of asymmetry is that the variance of the conditional
distributionFDðDjPÞ depends strongly onP as is shown in
Fig. 3, such dependence is usually referred to as hetero-
scedasticity.2 In other words, homoscedasticity of condi-
tional distributions in DLð0Þ at various values of P is
severely broken. The heteroscedasticity is so great that the
variance of the distribution FDðDjPÞ as a function of P

can hardly be evaluated on the basis of our limited dataset.
This may be related, in particular, to a non-Gaussian
character of the distribution of configurations in DLð0Þ,
which also may hold for the conditional distributions at
fixed P. In view of this, one has to evaluate the variance of
some unknown distribution with presumably long tail for
each narrow bin of values of P, which is hardly possible on
a limited statistics.
To obviate this problem, we consider the quantity

D ¼ lnðDLð0ÞσÞ ð20Þ

such that the conditional distributions of configurations in it
are normal (at least approximately) and the heteroscedas-
ticity can be evaluated. Having such evaluation, we find the
conditional average

FIG. 2. The residuals determined by the formula (15) are plotted versus ReP (left panel) and ImP (right panel). No dependence of the
conditional average of these residuals on P is seen.

FIG. 3. Correlation between the longitudinal gluon propagator at zero momentum and the real part of the Polyakov loop (left panel)
and the same (for two temperatures) on a logarithmic scale(right panel). It is seen that the variance of the conditional distribution of
DLð0Þ depends on P dramatically, whereas that of its logarithm—only a little.

2A set of random variables is heteroscedastic if its random
variables differ significantly in variance and homoscedastic if all
its random variables have the same finite variance. Here we deal
with a random variable DLð0Þ for each value of P, that is, with
the set of random variables fðDjPÞg.
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hDiP ≡ EðDjPÞ ¼
Z

dLDðDjPÞ
dD

DdD; ð21Þ

where we denote the conditional distribution in D by
LDðDjPÞ to avoid confusion with the conditional distri-
bution in D.
For this purpose, we employ the linear regression model

based on the fit function

D ≃D0ðτÞ þD1ðτÞRePðτÞ þD2ðτÞðRePðτÞÞ2: ð22Þ

The results of our analysis are presented in Table III. Over
the range −0.1 < τ < 0.1 variation of DðτÞ caused by the
change of the coefficients D0 and D1 is much smaller than
the variation caused by the change of P according to
formula (22), whereas the coefficient D2 is poorly deter-
mined on our statistics. Residuals show correlation with
neither ReP nor ImP indicating that DLð0Þ does not
depend on ImP and, within precision available on our
data, its dependence on ReP is accounted for by for-
mula (22) with the coefficients from Table III.
It should be noted that the quantity expðhDiÞ

σ gives a
biased estimate of hDLð0Þi. However, here we focus
only on qualitative reasoning and it is sufficient for our
purposes that this bias can in principle be evaluated and

smooth dependence of hDiP on P implies smoothness
of hDLð0ÞiP .
In [18] it was concluded on the basis of simulations on the

343 × 4 lattice that a pronounced jump of the longitudinal
propagator is formed at the transition, however, it is not clear
whether this discontinuity survives the infinite-volume
limit. We argue that such jump can be caused by the
difference of the average values of the longitudinal propa-
gator in different Polyakov-loop sectors. In a sufficiently
small volume, this difference may be substantial even at
T < Tc (see next subsection for more detail); therewith,
in a finite volume the center symmetry is not broken
and no discontinuities in the propagator should emerge.
Nevertheless, one can see a discontinuity in the temperature
dependence of the propagator even on a small-size lattice
at any given temperature Tfake provided that one takes
into account all three Polyakov-loop sectors at T < Tfake
and only one Polyakov-loop sector atT > Tfake. Obviously,
such a jump is unrelated to the phase transition. The proper
jump of the longitudinal propagator should appear only
in the infinite-volume limit and we argue that such a jump
does emerge.
Our reasoning is based on
(i) smooth dependence of the quantity hDiP [and,

therefore, DLð0Þ] on the Polyakov loop.

FIG. 4. Left panel: near-Tc behavior ofDLð0Þ in different Polyakov-loop sectors in a finite volume (filled symbols) is compared with a
computation [5] (empty symbols) and our qualitative prediction for the infinte volume (dashed line). Right panel: correlation between
the transverse gluon propagator at zero momentum and the real part of the Polyakov loop.

TABLE III. Results of the fit (22). For each coefficient we present both the statistical error δSTAT and the systematic error δSYST
associated with different methods of evaluation of the heteroscedasticity.

τ D0 � δSTAT � δSYST D1 � δSTAT � δSYST D2 � δSTAT � δSYST

−0.096 1.692� 0.024� 0.002 −56.2� 3.5� 0.1 −94� 374� 10
−0.026 1.753� 0.026� 0.001 −66.7� 1.9� 0.5 293� 108� 11
0.025 1.926� 0.038� 0.026 −64.4� 1.2� 2.4 262� 87� 40
0.104 2.240� 0.044� 0.178 −51.4� 1.0� 4.0 −157� 42� 95
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(ii) the fact that, in the infinite-volume limit, the
distribution in P becomes infinitely narrow (the
Polyakov loop at V ¼ ∞ takes on a certain value);

(iii) the assumption that the coefficients Di in for-
mula (22) depend on the lattice size only weakly
(this does occur in the SUð2Þ gluodynamics [19],
however, should be verified in the SUð3Þ case).

Since the dependence of D [and, therefore, of DLð0Þ] on
P near the criticality is smooth and the Polyakov loop is a
discontinuous function of the temperature, we conclude
that the zero-momentum longitudinal gluon propagator is
also discontinuous.
In the infinite-volume limit, DLð0Þ jumps precisely at

T ¼ Tc: it jumps down provided that sector I is chosen by
the system at T > Tc and jumps up when the system at
T > Tc chooses sector II or III.
In any case, for a comprehensive investigation of the

critical behavior of Green functions all Polyakov-loop
sectors should be taken into account in some neighborhood
of the critical temperature.
Our view of behavior of the zero-momentum longitudinal

propagator at T ≃ Tc is illustrated in the left panel of Fig. 4.
Its values in a finite volume are shown by filled symbols. At
T < Tc the difference between the propagators in different
Polyakov-loop sectors decreases with an increase of lattice
volume and DLð0Þ tends to the values shown by a dashed
line as V → ∞. At T > Tc and V → ∞, DLð0Þ in Sector I
tends to its conditional average hDLð0ÞiPI

T
, where PI

T is the
infinite-volume limit of the Polyakov loop in sector I at
temperature T > Tc. These values are shown in Fig. 4 by the
lower branch of the dashed line at T > Tc. However, under
the same conditionsDLð0Þ in Sectors II and III tends to its
conditional average3 hDLð0ÞiPII

T
¼ hDLð0ÞiPIII

T
, where PII

T

and PIII
T are the infinite-volume limits of the Polyakov loop

in sectors II and III, respectively, at temperature T > Tc (at
T ¼ Tc we arrive at PII

T ¼ e
2{π
3 Pc and PIII

T ¼ e
−2{π
3 Pc). It

should be emphasized that, in view of formula (22),
hDLð0ÞiPIII

T
¼ hDLð0ÞiPII

T
≠ hDLð0ÞiPI

T
. These values are

shown in Fig. 4 by the upper branch of the dashed line
at T > Tc.
Empty symbols in the left panel of Fig. 4 show the result

of an earlier computation [5] of DLð0Þ. It was concluded in
[5] that DLð0Þ shows a smooth behavior around T ¼ Tc.
However, our reasoning now indicates that its smooth
behavior is a finite-volume effect. In the infinite volume
DLð0Þ has a pronounced discontinuity at T ¼ Tc.

A. Propagators in different Polyakov-loop sectors

Our statistics is not sufficient for a detailed study of the
gluon propagators at a given value of the Polyakov loop or,
more precisely, at a given value of ReP since they are

independent of ImP. However, certain conclusions on the
behavior of the propagators below and above Tc can be
drawn simply from considering them in different Polyakov-
loop sectors. Since the propagators computed in sector (II)
coincide with those in sector (III), we compare the
propagators evaluated in sector (I) referred to as “Re
P > 0”with those evaluated on configurations from sectors
(II) and (III) referred to as “Re P < 0”.
We begin with a comparison of zero-momentum values

of the propagators presented in Table IV. In addition to the
rapid decrease with increasing Polyakov loop shown in the
left panel of Fig. 3, it is clearly seen in Table IV that the
zero-momentum longitudinal propagator decreases with
temperature at Re P > 0 and increases with temperature
at Re P < 0. For the lattice size under consideration
(∼2 fm) the ratio

j ¼ DReP<0
L ð0Þ

DReP>0
L ð0Þ

runs up to 3 well below the critical temperature
(τ ¼ −0.026). Above the critical temperature, j shows a
rapid growth and reaches 30 at τ ≈ 0.1.
Both in the right panel of Fig. 3 and in Table IV it is

demonstrated that, in contrast to the longitudinal propaga-
tor, the zero-momentum transverse propagator slightly
increases with an increase of the Polyakov loop. Within
statistical errors, it does not change with temperature at Re
P > 0 and shows moderate decreasing at Re P < 0.
The propagators at momenta p < 2.2 GeV for different

Polyakov-loop sectors are shown in Fig. 5. A similar
dependent Polyakov-loop sector was found in [20,21].
The curves in Fig. 5 are the results of the fit based on the

Gribov-Stingl formula

DðpÞ ≃ c
p2 þ d2

ðp2 þM2Þ2 þ b4
ð23Þ

over the momentum range p < 2.5 GeV, here we only
mention that it works well. The following feature of the
behavior of the longitudinal propagator should be
mentioned. In the sector ReP > 0, the longitudinal propa-
gator substantially decreases with increasing temperature
over the range −0.1 < τ < 0.1, whereas in the sector

TABLE IV. Average values of the zero-momentum propagators
in different Polyakov-loop sectors. No difference between sectors
(II) and (III) has been found, they are referred to as “ReP < 0”.

DLð0Þ DLð0Þ DTð0Þ DTð0Þ
τ ReP > 0 ReP < 0 ReP > 0 ReP < 0

−0.096 20.88(65) 36.16(1.17) 9.36(14) 8.79(12)
−0.026 17.7(1.3) 54.97(1.93) 9.19(16) 8.35(12)
0.025 8.82(1.22) 99.35(2.11) 9.44(14) 7.57(11)
0.104 3.95(16) 125.53(1.38) 9.30(15) 6.68(10)

3hDLð0ÞiPII
T
¼ hDLð0ÞiPIII

T
because hDLð0ÞiP depends only on

ReP.
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ReP < 0 it decreases with increasing temperature only at
p≳ 0.4 GeV; at smaller momenta it rapidly increases over
the range −0.1 < τ < 0.1.

B. Screening masses

We also evaluate screening for different sectors of the
Polyakov loop. The chromoelectric and chromomagnetic
screening masses are obtained from the fit of the formula

1

DL;TðpÞ
≃
1

Z
ðm2

E;M þ p2 þ rp4Þ ð24Þ

to the data on inverse longitudinal and transverse gluon
propagators at low momenta, respectively; for more detail
about this definition of screening masses see Refs. [22,23].
We performed fit over the range 0 ≤ p < 1.3 GeV, in this
domain the fit formula (24) works well for both the
longitudinal and the transverse propagators giving a reli-
able fit quality for all Polyakov-loop sectors. The fit is
stable with respect to variations of the upper bound of the fit
range between 1.2 and 1.6 GeVand to an exclusion of zero
momentum. The results for screening masses are presented
in Table V.

Chromomagnetic screening masses in different Polyakov-
loop sectors differ slightly, if at all, and their temperature
dependence is not clearly seen. For this reason we take a
closer look at chromoelectric sector and consider mE and
DLð0Þ relative to their chromomagnetic counterparts.
As T=Tc increases from 0.9 to 1.1, the chromoelectric

screening mass in the sector ReP < 0 increases from
600 MeV to 1 GeV, whereas in the sector ReP < 0 it
decreases from 460 MeV to 160 MeV. The difference
between the screening masses in different Polyakov-loop
sectors at T < Tc can be attributed to finite-volume effects
related to a finite width of the distribution in ReP. In the
deconfinement phase screening of color charges is different
in different sectors. At T ¼ 1.1Tc, as an example, screening
radii differ substantially: 1.2 fm in the sector ReP > 0
versus 0.2 fm in the sector ReP < 0.
It was shown in [24] that, when the screening mass is

sufficiently large, the strength of chromoelectric or chro-
momagnetic interactions between static color charges or
currents should be characterized by the quantity

VE ¼ m3
EDLð0Þ or VM ¼ m3

MDTð0Þ ð25Þ

rather than by DLð0Þ or DTð0Þ, respectively. The screening
masses in the case under consideration are rather small,
nevertheless, in Table VI we present the values of VE;M

which have the meaning of the depth of the static-quark
potential well in the limit of large screening masses.
Though these quantities are normalization dependent, their
ratios give information, in particular, on the strength of
chromoelectric interactions relative to the strength of the
chromomagnetic interactions in different Polyakov-loop
sectors.
As the temperature increases from 0.9Tc to 1.1Tc, the

ratio VE
VM

j
ReP>0

decreases by some 30% and the ratio
VE
VM

j
ReP<0

decreases more than by a factor of four.

FIG. 5. Longitudinal (left) and transverse (right) gluon propagator as functions of the momentum in different Polyakov-loop sectors
below and above critical temperature. Notice logarithmic scale on the ordinate axis on the left panel.

TABLE V. Values of the chromoelectric and chromomagnetic
screening masses (in GeV2) obtained by the fit formula (24) in
different Polyakov-loop sectors. No difference between sectors
(II) and (III) has been found, they are referred to as “ReP < 0”.

m2
E m2

E m2
M m2

M

τ ReP > 0 ReP < 0 ReP > 0 ReP < 0

−0.096 0.373(31) 0.214(31) 0.638(34) 0.642(39)
−0.026 0.445(71) 0.136(11) 0.609(24) 0.586(32)
0.025 0.523(56) 0.0498(38) 0.672(37) 0.565(18)
0.104 0.95(20) 0.0272(11) 0.664(43) 0.611(8)
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Thus in the deconfinement phase the relative strength of
chromoelectric interactions decreases slightly in the sector
ReP > 0 and significantly in the sector ReP < 0. This
being so, the chromoelectric screening radius decreases in
the sector ReP > 0 both in absolute value and with respect
to the chromomagnetic screening radius and dramatically
increases in the sector ReP < 0.
Gluon matter in the deconfinement phase can be con-

sidered as chromomagnetic medium, that is, as a medium
with weaken and well-screened chromoelectric interactions
provided that the sector ReP > 0 is chosen. Choosing one
of the sectors with ReP < 0, we arrive at a medium with
strong and short-range chromomagnetic interactions and
weak and long-range chromoelectric interactions.

C. Speculations on the deconfinement phase transition

Thus the longitudinal propagator in the sector ReP > 0
differs dramatically from the longitudinal propagator in the
sector ReP < 0. In this connection, it is reasonable to
recollect the confinement scenario proposed, in particular,
in Refs. [12,25] and investigated in [26]. In these works, the
properties of the gluon medium responsible for confine-
ment of heavy static quarks were discussed. Such medium
can be characterized in terms of center clusters (the
domains where the Polyakov loop takes the values mainly
from one sector).
In the deconfinement phase, there exists a percolating

cluster associated with some center element of the gauge
group, and the remaining space is either occupied by finite-
size clusters associated with some center element or
characterized by the values of the Polyakov loop that does
not clearly favor a definite center element. As the temper-
ature decreases, the part of space occupied by the percolat-
ing cluster decreases until it disappears at the critical
temperature.
Let us proceed to some qualitative speculations to

outline directions of further investigations. Our finding
that the Polyakov-loop sectors differ in the infrared
behavior of the longitudinal gluon propagator gives some
evidence that static color charges interact differently in
different clusters. Thus the Polyakov-loop sectors are not

equivalent for gauge-dependent quantities even in a pure
gauge theory. In the Landau gauge, we obtain that the
“trivial” sector ReP > 0 is preferred in the sense that it
features the most screened chromoelectric interaction
between color static charges. This is the most natural
choice of the Polyakov-loop value in the deconfinement
phase. In the Landau gauge, the finite-size clusters asso-
ciated with the other center elements ReP < 0 can be
considered as “bubbles of glue” in the deconfinement
phase: in the Landau gauge, the longitudinal gluon propa-
gator provides long-range chromoelectric interaction of
static color charges within such clusters. Their volume
increases with decreasing temperature, whereas the range
of color-charge interaction within each such cluster
decreases. In a percolating cluster, the opposite happens.
Its volume decreases with decreasing temperature, whereas
the range of chromoelectric forces increases. At the critical
temperature all clusters become identical (in the infinite-
volume limit).
Such a scenario should be checked in further lattice

simulations; in particular, the color-singlet and color-octet
potentials in each Polyakov-loop sector should be studied.
Another problem is to study the high-temperature behavior
of the differences dLðpÞ and dTðpÞ which rapidly decrease
with increasing momentum. It is interesting to find out
whether there really is a momentum pJ, common to all
temperatures, such that both dLðpÞ and dTðpÞ become
negligible at p > pJ. Such a momentum would indicate the
boundary between nonperturbative infrared and perturba-
tive ultraviolet domains in gluodynamics.

V. CONCLUSIONS

We have studied the asymmetry A and the longitudinal
gluon propagator in the Landau-gauge SUð3Þ gluodynam-
ics on lattices 243 × 8 over the range of temperatures
0.9Tc < T < 1.1Tc. Our findings can be summarized as
follows:

(i) Both the asymmetry A and the zero-momentum
longitudinal propagator DLð0Þ have a significant
correlation with the real part of the Polyakov loopP.
The correlation between DTð0Þ and ReP is non-
negligible. Neither A nor DLð0Þ nor DTð0Þ has a
correlation with ImP.

(ii) We suggest a method to substantially reduce finite-
volume effects. In the deconfinement phase, the
conditional averages hAiP¼z or hDLð0ÞiP¼z give a
close approximation to the infinite-volume limit of
A orDLð0Þ at the temperature τ determined from the
equation P∞ðτÞ ¼ z provided that z is an allowed
infinite-volume value of the Polyakov loop in a
chosen sector and P∞ is the infinite-volume expect-
ation value of P.

(iii) We determined critical behavior of A and DLð0Þ in
the infinite-volume limit. Regression analysis re-
veals that the conditional averages hAiP and

TABLE VI. Strength of the chromoelectric (VE) and chromo-
magnetic (VM) interactions determined by formula (25) in
different Polyakov-loop sectors. Errors are not shown because
the presented values can be used only for rough qualitative
estimates.

VE, GeV VM, GeV

τ ReP > 0 ReP < 0 ReP > 0 ReP < 0

−0.096 4.8 3.5 4.8 4.5
−0.026 5.2 2.8 4.4 3.7
0.025 3.3 1.1 5.2 3.2
0.104 3.7 0.56 5.0 3.2
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hDLð0ÞiP are smooth functions of the Polyakov
loop. Discontinuity in the Polyakov loop at T ¼ Tc
in the infinite-volume limit implies discontinuity of
the asymmetry and the longitudinal gluon propaga-
tor. The discontinuities of A and DLð0Þ at T ¼ Tc
are readily determined from the dependencies of
hAiP and hDLð0ÞiP on ReP.

(iv) The infrared behavior of the longitudinal propagator
depends significantly on the Polyakov-loop sector; a
moderate dependence of the transverse propagator in
the infrared on the Polyakov-loop sector is also
observed.

(v) In the deconfinement phase, distinctions between
gauge-dependent quantities in different Polyakov-
loop sectors are significant. We have considered as
an example chromoelectric interactions relative to
chromomagnetic interactions, whose dependence

on the temperature and the Polyakov-loop sector
is not very significant. They are weakly suppressed
and short-range in the sector ReP > 0 and moder-
ately suppressed and long-range in each sector
with ReP < 0.
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