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Quantum chromodynamics (QCD) claims that the major source of the nucleon invariant mass is not the
Higgs mechanism but the trace anomaly in the QCD energy-momentum tensor. Although experimental and
theoretical results support such a conclusion, a direct demonstration is still absent. We present the first
lattice QCD calculation of the quark and gluon trace anomaly contributions to the hadron masses, using
the overlap fermion on the 2þ 1-flavor dynamical domain wall quark ensemble at mπ ¼ 340 MeV and
lattice spacing a ¼ 0.1105 fm. The result shows that the gluon trace anomaly contributes to most of the
nucleon mass, the contribution in the pion state is smaller than that in others nearly by a factor of ∼10, and
the gluon trace anomaly density in the center of the pion is negative. The gluon trace anomaly coefficient
β=g3 ¼ −0.056ð6Þ we obtained is consistent with its regularization-independent leading-order value

ð−11þ 2Nf

3
Þ=ð4πÞ2 perfectly.

DOI: 10.1103/PhysRevD.104.074507

I. INTRODUCTION

The most essential and nontrivial feature of the quantum
field theory is the regularization. It introduces a tiny and
artificial modification on the short-distance part of the
original theory to make the contributions from the virtual
particle loops finite and calculable.Regularization efforts can
be absorbed into the renormalization of fields and the
coupling constants, and are then irrelevant to the long-
distance physics. Thus, the exceptional cases are called
“quantum anomalies.”
Taking the trace anomaly of the QCD energy-momentum

tensor (EMT) with quark field ψ and gluon field strength

tensor Fμν as an example, the gluon part of the original
EMT is traceless, but it is unavoidable to introduce a
nonvanishing trace term on the EMT during the regulari-
zation, like the dimensional regularization case discussed in
Ref. [1]. In lattice regularization, the renormalization
eliminates the regularization dependence in the additional
trace terms and converts them into something proportional
to the strong coupling constant [2,3]. The renormalized
EMT trace can be expressed as

Tμ
μ ¼ Hm þ

�
γmHm þ β

2g
F2

�
; ð1Þ

where the quark mass term Hm ¼ P
q mqq̄q is the classical

trace of EMT, and both the other terms are the trace anomaly.
The anomalous terms are proportional to the anomalous
dimension of the quark mass mq, γm ¼ − μ

m
∂m
∂μ ¼

2
π αs þOðα2sÞ, and to that of the strong coupling αs ¼ g2

4π,
β
2g ¼ μ2

2αs

∂αs
∂μ2 ¼ ð− 11

8π þ
Nf

12πÞαs þOðα2sÞ, respectively.
The trace anomaly leads to the most nontrivial feature of

QCD: quantum particles like nucleons can have positive
masses, even though the light quark mass is small and the
gluon is massless. The argument is simple: the hadron mass
can be expressed as [4–8]
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MH ¼ hTμ
μiH ¼ ð1þ γmÞhHmiH þ β

2g
hF2iH; ð2Þ

with hOiH ≡ hHjOjHi. Note that one needs to subtract the
vacuum expectation value of F2 in the calculation of the
hadron matrix element hF2iH. The gluon trace anomaly
β
2g hF2iH can contribute a positive hadron mass even in the
chiral limit where mq → 0 and hHmiH vanish. The only
exception is the pion mass: its mass will be zero in the
chiral limit, and then the contribution of the trace anomaly
will approach zero. Recently, there have been some studies
aiming to understand the QED trace anomaly effect in the
Lamb shift [8,9].
The above argument can be verified indirectly through

the sum rule in Eq. (2): The nucleon mass MN can be
measured at 10−10 accuracy, and the hHmiH values from the
three light flavors can be extracted from the SU(3) flavor
breaking of the baryons and/or explicit lattice QCD
calculations, which arrive at a value of about 90 MeV
[10,11]. The heavy quark contribution is canceled by the
flavor dependence of β

2g at the leading order based on the
heavy quark approximation [6,12]:

mQQ̄QmQ → ∞�����! −
αs
12π

F2 þOðα3sÞ; ð3Þ

and then it is effectively decoupled.
In terms of Eq. (3), the heavy quark contribution in

hHmiH terms is canceled by the heavy quark flavor
dependence in β

2g at the leading order in Eq. (2).
Most of the nucleon mass is contributed by the second

term on the right-hand side of Eq. (2), while only the light
quark flavor dependence remains in β

2g at the leading order.
The asymptotic freedom and confinement of QCD require
the QCD coupling to be stronger at larger distances, and
then β is negative; thus, the expectation value of F2 in the
nucleon hF2iN should be negative.
The experimental measurement of the trace anomaly

arouses great interest and is considered one of the major
scientific goals of the future Electron-Ion Collider (EIC)
[13] and EicC [14]. One approach to detecting the trace
anomaly is measuring the cross section of exclusive
photoproduction of heavy quarkonium, which depends
on the gluon condensate at the nonrelativistic limit [15–17].
The gluon gravitational form factors can relate to J=Ψ
production amplitude in the large momentum limit, which
is also a possibility worth further investigation [18]. There
are also other theoretical discussions on the related exper-
imental possibility [19,20].
On the theoretical side, the central challenge is verifying

whether the difference between a hadron mass and its quark
mass contribution actually comes from the trace anomaly
effect. Such a calculation is highly nonperturbative and can
only be performed by lattice QCD, but the chiral symmetry
breaking in the quark mass term of the Wilson-like action

will mix with the original trace anomaly, since its bare
quark mass suffers linear divergence. The Wilson term also
leads to a large discrepancy between the renormalization
constants of singlet and nonsinglet scalar currents [21]. For
a staggered fermion, one needs to overcome the taste
mixing problem; the ground-state mass of the baryon is
not degenerate. Thus, the overlap fermion is a good choice
to evade these difficulties.
The overlap Dirac operator is written as [22–24]

DovðρÞ ¼ ρð1þ γ5ϵðγ5Dwð−ρÞÞÞ: ð4Þ
Dwð−ρÞ is the Wilson fermion operator, while ρ is the mass
parameter and is chosen to be ρ ¼ 1.5 in our calculation. ϵ
is the sign function and satisfies ϵ2 ¼ 1.DovðρÞ satisfies the
Ginsparg-Wilson relation [25]:

Dovγ5 þ γ5Dov ¼
1

ρ
Dovγ5Dov: ð5Þ

The effective Dirac operator can be defined as

Dc ¼
Dov

1 − 1
2ρDov

: ð6Þ

Dc is chiral and satisfies fDc; γ5g ¼ 0 [26]; this relation
also frees the overlap fermion from the flavor mixing of the
scalar operator in the massless renormalization scheme—
e.g., the MS scheme. More generally, this mixing effect will
occur if one chooses a massive renormalization scheme;
even so, one can anticipate that this mixing effect is small,
since it occurs in the two-loop level.
In this work, we present the first demonstration of the

quantum trace anomaly contribution for three types of
hadrons since this mass generation mechanism was pro-
posed more than 40 years ago. We confirm that Eq. (2) is
satisfied in all hadrons we calculated in this work, with γm
and β determined nonperturbatively. In addition, we also
find that the gluon trace anomaly density in the pion turns
out to be much smaller than that in the other hadrons like
nucleons and vector mesons, due to the significant differ-
ence in the gluon trace anomaly distribution inside the
hadrons.

II. NUMERICAL SETUP

We perform the calculation on a 243 × 64 2þ 1-flavor
domain-wall fermion ensemble from the RBC collabora-
tion [27,28], with the pion massmπ ¼ 340 MeV. The other
information of the ensemble we use summarized in Table I.

TABLE I. Information of the RBC ensemble [27,28] used in
calculation. The pion and kaon masses are in units of MeV.

Symbol L3 × T a (fm) 6=g2 mπ mK Ncfg

24I 243 × 64 0.1105(3) 2.13 340(1) 593(1) 203
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For the valence quark, we use the chiral fermion through
the overlap approach to avoid the additional term in the
trace of EMT under the lattice regularization.
In order to determine the values of γm and β precisely and

make an accurate verification of the sum rule, we consider
the partially quenched QCD [29], which allows the valence
quark mass to be different from that in the gauge ensemble.
In such a case, Eq. (2) becomes

MH ¼ ð1þ γmÞ
�
hHmivH þ

�X
i

miq̄iqi

�
H

�
þ hHg

aiH;

ð7Þ

where Hg
a ¼ β

2g F
2, hHmivH includes the connected quark

diagrams with the operator mvq̄vqv only, and the index i
just includes the sea quark flavors in the gauge configu-
rations: degenerated light up/down and also strange quarks.
Their contributions can only be obtained by calculating the
disconnected insertion diagrams.
In this work, we consider the cases with five quark

masses: mv ¼ 0.026, 0.092, 0.160, 0.319, and 0.479 GeV.
Only the lightest quark mass corresponds to the unitary
point; the lightest two quark masses represent the light and
strange quark masses in the gauge ensemble we used.
First of all, the hadronmass can be extracted from the two-

point correlation function with wall source and wall sink

C2ðtf;HÞ ¼
�X

y⃗

Hðtf; y⃗Þ
X
x⃗

H†ð0; x⃗Þ
�
; ð8Þ

whereH is the hadron interpolation field. As implemented in
Ref. [30], when we calculate the contribution of valence
quark mass, we use the Feynman-Hellmann-theorem-
inspired method [31] to construct the summed three point-
correlation function for the connected insertion case,

SCqv
3 ðtf;HÞ ¼

�X
y⃗

Hðtf; y⃗Þ
X
t;z⃗

Oqvðt; z⃗Þ
X
x⃗

H†ð0; x⃗Þ
�
;

ð9Þ

where Oqv ¼ mv
qq̄vqv is the valence quark operator. For the

disconnected insertion case, we modify the expression into

SCqs;g
3 ðtf;HÞ

¼
�X

y⃗

Hðtf; y⃗Þ
X

t∈ðtf;0Þ;z⃗
Oqs;gðt; z⃗Þ

X
x⃗

H†ð0; x⃗Þ
�
; ð10Þ

where the sum of the current time slices in the light sea quark
operatorOq ¼ msq̄sqs (wherems is the sea quark mass) and
the gluon operator Og ¼ F2 are limited to t ∈ ðtf; 0Þ to
remove the statistical uncertainty from the region t < 0 and
t > tf, which is irrelevant to the matrix elements we want to

calculate, and the gluon field tensor Fμν is defined through
the standard clover definition. The detailed expressions ofC2

and SC3 and how to construct them with propagators are
shown in the Appendix.
For each hadron, we carry out a joint correlated fit of

C2ðtf;HÞ and SCq;g
3 ðtf;HÞ to extract the MH, hHmiH, and

hF2iH values simultaneously. As mentioned above,
SCqv;qs;g

3 ðtf;HÞ is the summed three-point correlation
function which has summed the total contribution of the
matrix element of the interpolated quark and gluon operator
between 0 and tf. The fit expression can be written as [30]

SCi¼qv;qs;g
3 ðtf;HÞ ¼ e−MHtfðB0tfhOiiH þ Bi

2e
−δmtf

þ Bi
3tfe

−δmtf þ Bi
4Þ;

C2ðtf;HÞ ¼ B0e−MHtfð1þ B1e−δmtfÞ; ð11Þ

where hOqv;qsiH ¼ hHv;s
m iH; hOgiH ¼ hF2iH; the e−δmtf

terms are introduced to account for the contamination from
higher states; and δm, B0, B1, and Bqv;qs;g

2;…;4 are free
parameters. The contributions from the transition between
the ground state and the higher excited state are included in
Bqv;qs;g
2;…;4 . The above form is equivalent to extracting the

desired quantities in the large-tf limits [30,31]:

MH ¼ log
C2ðtf − 1;HÞ
C2ðtf;HÞ þOðe−δmtfÞ;

hHmiH ¼ ΔRqðtf;HÞ þOðe−δmtfÞ;
hF2iH ¼ ΔRgðtf;HÞ þOðe−δmtfÞ; ð12Þ

where ΔRi¼q;gðtfÞ≡ SCi
3
ðtf ;HÞ

C2ðtf ;HÞ −
SCi

3
ðtf−1;HÞ

C2ðtf−1;HÞ . When tf is large

enough, the terms proportional to Oðe−δmtfÞ are negligible,
so the three summed functions can be rewritten into the
following form:

SCqv;qs;g
3 ðtf;HÞ ¼ e−MHtfðB0tfhOqv;qs;giH þ B4Þ;
C2ðtf;HÞ ¼ e−MHtfB0: ð13Þ

Then, one can obtain that hOqv;qs;giH ¼ SCi
3
ðtf ;HÞ

C2ðtf ;HÞ −
SCi

3
ðtf−1;HÞ

C2ðtf−1;HÞ in the large-tf limit.

In the actual calculation, we perform the joint fit for the
summed three- and two-point functions to extract the
matrix element of the ground state. The fit results of
χ2=d:o:f:, the mass of the ground-state hadron MH, the
expectation value of the quark mass

P
qhmqq̄qiH, and the

gluon operators −hF2iH and δm are listed in Table II for all
the hadrons used in this work. Note that one needs to
substitute SC2;3ðtfÞ into SC2;3ðtfÞ þ SC2;3ðTa − tfÞ for the
PS meson case in order to include the loop-around effect
and describe the data around tf ∼ Ta=2.
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III. RESULT

In this work, we calculate the quark propagator at five
different valence quark masses—mv ¼ 0.026, 0.092,
0.160, 0.319, and 0.479 GeV—and construct the two-
and three-point correlation functions for the nucleon (N),
pseudoscalar (PS), and vector (V) mesons. To suppress the
statistical uncertainty, we apply five steps of the HYP
smearing on the gauge operator, repeating the calculation at
all 64 time slices and taking the averaged result on each
configuration as an independent sample.
In Fig. 1, we plot the effective ratios ΔRq;gðtfÞ defined

in Eq. (12) for the PS (blue) and V (red) mesons
with mv ¼ 0.479 GeV. The disconnected light quark

contributions are not shown here, as their contributions
are small, about 1%. TheMH, hHmiH, and hF2iH values are
obtained using the joint fit defined in Eq. (11) with
χ2=d:o:f: ∼ 1, and the bands of ΔRq;gðtfÞ predicted by
the joint fit are also shown in Fig. 1 and agree with the data
perfectly. We can see that the gluon trace anomaly matrix
element −hF2iH ¼ −ΔRgðtfÞjtf→∞ in the V meson is more
than twice that in the PS meson, even though their quark
mass terms hHmiH ¼ ΔRqðtfÞjtf→∞ only differ from each
other by 10%.
Since the anomalous dimension γm and β should be

independent of the hadron states, we solve the equations

MPS − ð1þ γmÞhHmiPS −
β

2g
hF2iPSjmva¼0.3 ¼ 0;

MV − ð1þ γmÞhHmiV −
β

2g
hF2iV jmva¼0.3 ¼ 0 ð14Þ

and obtain the bare γm ¼ 0.38ð3Þ and β
2g ¼ −0.08ð1Þ. Both

γm and β
2g are small, since they are OðαsÞ, so hF2iPS=V

should be large enough to satisfy the sum rule.
On the lattice QCD, the ensembles are made up of gauge

links instead of gauge fields. A gauge link is a function of
the gauge field Aμ multiplied by the coupling constant g,
and the renormalization of both g and Aμ depend on the
discretized gauge faction. On the other hand, hg2F2iH is
renormalization independent for the massless QCD at the
one-loop level [12]. Hence, it is more natural to consider
hg2F2iH on the lattice instead of hF2iH. Thus, we divide the
coefficient βg by g

2 and obtain β
g3 ¼ −0.056ð6Þ. Such a value

perfectly agrees with the regularization-independent lead-

ing order βð0Þ
g3 ¼ ð−11þ 2Nf

3
Þ=ð4πÞ2 ¼ −0.057ð7Þ, with the

TABLE II. The χ2=d:o:f:, MH,
P

qhmqq̄qiH , −hF2iH , and δm based on the joint fit for different channels with mv ¼ 0.026, 0.092,
0.160, 0.319, and 0.479 GeV.

mvðGeVÞ 0.026 0.092 0.160

Channel PS V N PS V N PS V N

χ2=d:o:f: 1.20 1.22 0.63 1.18 0.68 0.84 1.11 0.74 0.82
MHðGeVÞ 0.340(1) 0.881(4) 1.161(6) 0.647(1) 1.027(2) 1.468(4) 0.864(1) 1.174(2) 1.733(3)P

qhmqq̄qiHðGeVÞ 0.176(2) 0.126(5) 0.223(14) 0.341(2) 0.254(6) 0.447(10) 0.477(2) 0.387(4) 0.645(9)
−hF2iHðGeVÞ 1.25(42) 9.83(1.45) 10.92(1.48) 1.84(10) 8.84(45) 13.46(1.46) 2.23(12) 8.93(43) 11.77(1.07)
δmðGeVÞ 1.07(12) 1.22(17) 0.72(7) 1.00(5) 1.01(10) 0.61(4) 1.02(8) 0.82(5) 0.54(3)

mv 0.319 0.479

Channel PS V N PS V N

χ2=d:o:f: 1.11 1.06 0.98 0.96 1.26 1.18
MHðGeVÞ 1.277(1) 1.505(1) 2.280(2) 1.640(1) 1.825(1) 2.783(2)P

qhmqq̄qiHðGeVÞ 0.770(2) 0.682(3) 1.081(8) 1.047(1) 0.953(1) 1.478(1)
−hF2iHðGeVÞ 2.77(11) 7.69(26) 10.31(90) 2.52(28) 6.52(60) 9.56(37)
δmðGeVÞ 0.78(4) 0.68(3) 0.48(2) 0.72(1) 0.66(4) 0.44(2)

FIG. 1. The differential ratios ΔRq;g
PS;VðtfÞ of the pseudoscalar

and vector mesons with mv ¼ 0.479 GeV, which should
approach the ground-state matrix elements hHmiPS;V and
−hF2iPS;V , respectively, at the tf → ∞ limit. The bands show
the joint fit prediction using the form defined in Eq. (11), and they
agree with the data well.

FANGCHENG HE, PENG SUN, and YI-BO YANG PHYS. REV. D 104, 074507 (2021)

074507-4



uncertainty from the next-to-leading-order correction
using the bare αs. On the other hand, the γm ¼ 0.38ð3Þ
we obtained is comparable with that under the MS
(1=a ¼ 1.78 GeV), which is 0.325(10) [32], with the error
estimated from the Oðα4sÞ correction.
With the above values of γm and β

2g, we calculate the

hadron mass MH, quark mass term hHmiH, and hF2iH of
the pseudoscalar, vector meson, and nucleon with different
mv’s, and plot the ratio

RHðmvÞ ¼
ð1þ γmÞhHmiH þ β

2g hF2iH
MH

ð15Þ

in Fig. 2. We can see that the RH in all the cases is
consistent with 1 within the uncertainties. Note that the PS
and V meson cases with mv ¼ 0.479 GeV are exactly 1,
since they are the input cases. Such a result verifies the trace
anomaly sum rule in Eq. (2), and is consistent with our
expectation that both γm and β are universal.
The resulting gluonic trace anomaly contribution

hHg
aiH ¼ h β

2g F
2iH in the 2þ 1 flavor ensemble are plotted

in Fig. 3. We can see that hHg
aiH in the pion state is

generally smaller than in the other states, especially at the
unitary point for the 340 MeV pion mass. In such a case,
the gluon trace anomaly contributes about 100 MeVof the
pion mass, which is ∼30%, but ∼800 MeV in the ρ meson
and nucleon cases. It is exactly what we expected from the
trace anomaly sum rule: the trace anomaly contributes most
of the hadron masses, except for the pion case.
The difference will be much more significant at the phy-

sical quark mass. If we use the GMOR relation M2
π ∝ mq

and the Feynman-Hellman theorem hHmiH ¼ mq
∂Mπ∂mq

¼
1
2
Mπ þOðM3

πÞ [7,33], we can estimate the gluon trace
anomaly contribution in the physical pion state to be

1
2
ð1 − γmÞMπ ¼ 43ð2Þ MeV. On the other hand, the con-

tribution in the nucleon at the physical light quark mass will
be 816(10) MeV if we only consider the quark mass
contribution from three light quarks [10,11].
In order to uncover the origin of this difference, we also

investigate the gluon trace anomaly density inside the
hadron. Similarly to the previous study about the pion
charged radius [34], the density of the gluon trace anomaly
can be defined as

ρHðjrjÞ ¼
hPy⃗Hðtf; y⃗ÞHg

aðt; y⃗þ r⃗ÞPx⃗H
†ð0; x⃗Þi

hPy⃗Hðtf; y⃗Þ
P

x⃗H
†ð0; x⃗Þi

����
t;tf−t→∞

;

ð16Þ

as ρHðjrjÞ can be related to the gluon trace anomaly matrix
element hHg

aiH ¼ R
r⃗ d

3rρHðjrjÞ and its squared charge

radius hr2giH ¼
R
r⃗
d3rr2ρHðjrjÞ
hHg

aiH . A naive guess is that ρH would

be insensitive to the hadron at small r, while it should decay
much faster in the pion than the other hadrons to cause the
integral and charge radius to be significantly smaller. But
our lattice QCD calculation has excluded such a possibility,
as shown in Fig. 4. First of all, the magnitude of ρH in the
nucleon and vector meson is comparable with the leading-
order estimate of the vacuum expectation value hρi ¼
−0.007 GeV4 [35] at small r, even though their signs
are opposite. At the same time, one can see that the density
of the pion is much smaller than that of the nucleon and the
vector meson; even more, the density tends to be negative
and then has the same sign as that in the vacuum. It means
that hHg

ai receives both suppression from the magnitude of
density and also short-range interaction, and it can cause
the pion-gluon trace anomaly radius to be larger than the

FIG. 2. The ratio of the hadron masses from the left- and right-
hand sides of Eq. (2), using the γm and β=g obtained from the PS
and V mesons with mv ¼ 0.479 GeV. It is consistent with 1
within the uncertainties in all the cases.

FIG. 3. The gluon trace anomaly contribution to the hadron
mass. For five different quark masses, the corresponding pion
masses are 0.340, 0.647, 0.864, 1.277, and 1.640 GeV. We can
see that it is always small for the PS meson, while it approaches
∼800 MeV for the nucleon and vector mesons in the chiral
limit mv → 0.
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other hadrons. More details of distribution calculation can
be found in the Appendix.

IV. SUMMARY AND OUTLOOK

In this work, we calculated the quark mass term hmψ̄ψiH
and gluon action terms hF2iH in the hadron. Based on the
EMT trace anomaly sum rule in the PS and V meson states
with mv ¼ 0.479 GeV, we determined the bare anomalous
dimensions of the quarkmass and gluon coupling constant as
γm ¼ 0.38ð3Þ and β

g3 ¼ −0.056ð6Þ (with five steps of HYP

smearing on the gluon operator), respectively, and confirmed
that they are independent on hadron states and quarkmass up
to the statistical uncertainties.With such γm and β

g3 values, we

find that the gluon trace anomaly contribution in the PS
meson mass is always much smaller than that in the other
hadrons, especially around the chiral limit.
An important check on the trace anomaly mechanism

can be carried out by renormalizing the hF2iH nonpertur-
batively [36] and converting it to that under the MS scheme;
then, one can obtain the values of γm and β

2g in the MS
scheme and compare them with perturbative results, and/or
deduce the conserved EMT with an Oða2Þ trace term
directly from the discretized QCD action. The calculations
at different lattice spacings, and at the same lattice spacing
but with different gauge actions (the Symanzik action used
by the MILC configurations and the Iwasaki action used
here can cause the bare g2 to be different by a factor of 1.7
at a ∼ 0.1 fm) are also desirable.
At the same time, it suggests that the coupling between

hadrons and the bilinear heavy quark operator can be
obtained indirectly based on the relation in Eq. (3). For
example, the total trace anomaly contribution including
both the γm and β

2g terms are generally ∼800 MeV for
most hadrons except for light pseudoscalar mesons. But
with γm ∼ 0.3, we will have h β

2g F
2iN ∼ 0.84 GeV and

h β
2g F

2iηc ∼ 0.12 GeV. And then hmbψ̄bψbiN will be larger

than hmbψ̄bψbiηc by a factor of ∼5 and can be verified by
direct calculations.
Another interesting thing is that the gluon trace anomaly

densities in the pion and nucleon are comparable in their
extent, while their magnitudes are very different. Moreover,
the density in the center of the pion is negative, which is
opposite to the density in the nucleon but has the same sign as
that in the vacuum. A negative density in the center of the
pion is inconsistent with the naive expectation: ρH at the
center would be insensitive to the hadron. It opens a new gate
to understanding the relation between pion and vacuum, and
why the other hadrons are different from them.
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APPENDIX: SUMMARY OF TECHNICAL
DETAILS

1. Contraction of the Green’s functions

In this section, we will give the expressions of two-point
and summed three-point correlation functions constructed
by propagator. In our calculation, we use the Coulomb
gauge fixed-wall-source propagator Swðy⃗; t2; t1Þ ¼P

x⃗ Sðy⃗; t2; x⃗; t1Þ and the Feynman-Hellmann propagator
[31] S̃cðy⃗; t2; t1Þ ¼ mq

P
x⃗;t Sðy⃗; t2; x⃗; tÞSwðx⃗; t; t1Þ to con-

struct the two-point and connected three-point correlation
functions,

C2ðtf;MΓÞ ¼
X
y⃗

C2ðtf; y⃗;MΓÞ ¼ CMΓ
ðSw; Sw; tf; 0Þ;

SCqv
3 ðtf;MΓÞ ¼ CMΓ

ðSc; Sw; tf; 0Þ þ CMΓ
ðSw; Sc; tf; 0Þ;

ðA1Þ

FIG. 4. The density of the gluon trace anomaly in different
hadron states at the unitary point for the 340 MeV pion mass.
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where CMΓ
is defined as

CMΓ
ðS1; S2; tf; 0Þ ¼

X
y⃗

hTrðγ5S†1ðy⃗; tf; 0Þγ5ΓS2ðy⃗; tf; 0ÞΓÞi: ðA2Þ

For the meson MΓ with the interpolation field ψ̄Γψ , Sðy⃗; t2; x⃗; t1Þ is the quark propagator from ðx⃗; t1Þ to ðy⃗; t2Þ. For the
quark loop and gluon operator, we need to calculate the following disconnected three-point correlation functions:

SCqs;g
3 ðtf;MÞ ¼

X
0<t<tf

X
y⃗

X
x⃗

h½C2ðtf; y⃗;MΓÞ − hC2ðtf; y⃗;MΓÞi�½Oqs;gðt; x⃗Þ − hOqs;gðt; x⃗Þi�i: ðA3Þ

The definition ofOqs andOg is in the following content of Eq. (10). The nucleon case with the interpolation field ðuTC̃dÞu
is similar and can be obtained without much modification:

C2ðtf;N Þ ¼
X
y⃗

C2ðtf; y⃗;N Þ ¼ CN ðSw; Sw; Sw; tf; 0Þ;

SCqv
3 ðtf;N Þ ¼ CN ðSc; Sw; Sw; tf; 0Þ þ CN ðSw; Sc; Sw; tf; 0Þ þ CN ðSw; Sw; Sc; tf; 0Þ;

CN ðS1; S2; S3; t2; t1Þ ¼ hϵabcϵa0b0c0
X
y⃗

TrðΓmSaa
0

1 ðy⃗; tf; 0ÞÞTrðSbb02 ððy⃗; tf; 0ÞScc03 ðy⃗; tf; 0ÞÞ

þ TrðΓmSaa
0

1 ðy⃗; tf; 0ÞSbb02 ðy⃗; tf; 0ÞScc03 ðy⃗; tf; 0ÞÞi; ðA4Þ

where S is defined by ðC̃SC̃−1ÞT, C̃ ¼ γ2γ4γ5, and Γm ¼ 1
2
ð1þ γ4Þ is the unpolarized projector. The summed three-point

correlation functions for a light quark loop and gluon are defined as

SCqs;g
3 ðtf;N Þ ¼

X
0<t<tf

X
y⃗

X
x⃗

h½C2ðtf; y⃗;N Þ − hC2ðtf; y⃗;N Þi�½Oqs;gðt; x⃗Þ − hOqs;gðt; x⃗Þi�i: ðA5Þ

Note that during the calculation with the overlap fer-
mion, deflating the long-distance subspace of the Dirac
operator using its eigenvectors vðλÞ with jλj < ΛQCD are
essential to obtain the light quark propagator efficiently
[40]. At the same time, we can build the light quark loop
operator OqðtÞ only via those eigenvectors vðλÞ with little
cost, and the systematic uncertainty from the rest is
negligible [10]:

OqðtÞ≡
X
x⃗

Sðmq; x⃗; t; x⃗; tÞ ≃
X
x⃗

SLðmq; x⃗; t; x⃗; tÞ;

SLðmqÞ≡
Z

iΛQCD

−iΛQCD

dλ
vðλÞv†ðλÞ
λþmq

: ðA6Þ

In practice, 300 pairs of the low-lying eigenpairs of
the Dirac operator with λ ≤ 0.246 GeV are solved to speed

up the propagator calculation and construct the light
quark loops.
The clover definition of Fμν used for the gluon operator

F2 is the following:

gFμνðxÞ ¼
i

8a2
½P½μ;ν� þ P½ν;−μ� þ P½−μ;−ν� þ P½−ν;μ��ðxÞ;

Pμ;νðxÞ ¼ UμðxÞUνðxþ aμ̂ÞU†
μðxþ aν̂ÞU†

νðxÞ; ðA7Þ

where U−νðxÞ ¼ U†
νðx − aν̂Þ and P½μ;ν� ≡ Pμ;ν − Pν;μ.

2. The trace anomaly density and radius in the hadrons

We calculate the trace anomaly density using the
following summed three-point correlation function,

SCg
3ðtf; r;HÞ ¼

X
0<t<tf

X
x⃗

X
jy⃗−x⃗j¼r

�
½hC2ðtf; x⃗;HÞ − hC2ðtf; x⃗;HÞii�

�
F2ðy⃗; tÞ − 1

V

�X
z⃗

F2ðz⃗; tÞ
�	�

; ðA8Þ

and then ρH can be obtained by

ρHðrÞ ¼
β

2g
P

jy⃗−x⃗j¼r1

�
SCg

3ðtf; r;HÞ
C2ðtf;HÞ −

SCg
3ðtf − 1; r;HÞ

C2ðtf − 1;HÞ
�
jtf→∞;L→∞: ðA9Þ
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In practice, we use the joint fit defined in Eqs. (8) and (9) to
eliminate the excited-state contamination with the data at
finite tf.
Generally, the charge radius can be defined through the

integration of the normalized density ρ̄HðrÞ ¼ ρHðrÞR
d3r00ρHðr00Þ

,

hr2giH ¼
Z

d3r0r02ρ̄Hðr0Þ: ðA10Þ

But in a finite volume L3 × T, such a definition can only be
accurate when ρ̄HðrÞ is negligible at r ∼ L=2; otherwise, it
will receive additional contributions from ρHðL − rÞ. Thus,
we access the charge radius through the form factor FgðQ2Þ
as a function of the momentum transfer Q2,

hr2giH ¼ 6

Fgð0Þ
dFgðQ2Þ
dQ2

����
Q2→0

; ðA11Þ

which is a more effective way to reduce the containment
from the region r > L=2. A similar calculation at larger
size is used to suppress the finite volume effect.
As shown in Fig. 5, ρ̄H is still nonzero at r ¼ L=2,

especially for the pion case. Thus, integrating it with r2 to
obtain the charge radius can have huge systematic uncer-
tainty. But as in the figure, ρ̄πðrÞ is smaller than ρ̄NðrÞ for
all the r < 1.1 fm. Thus, generally, we can rewrite the pion
charge radius into

hr2giπ ¼
Z

d3r0r02ρ̄πðr0Þ ¼ hr2giN

þ
Z

d3r0ðr02 − r20Þðρ̄πðr0Þ − ρ̄Nðr0ÞÞ; ðA12Þ

where r0 is the intersection of ρ̄πðr0Þ and ρ̄Nðr0Þ, and we
have ρ̄πðr0Þ ¼ ρ̄Nðr0Þ at r0. Then the integrand of the
second term on the right-hand side will be always positive,
and one can expect hr2giπ > hr2giN .
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