
Generalization capabilities of translationally equivariant neural networks

Srinath Bulusu,* Matteo Favoni ,† Andreas Ipp ,‡ David I. Müller ,§ and Daniel Schuh ∥

Institute for Theoretical Physics, TU Wien, Austria

(Received 7 April 2021; accepted 16 August 2021; published 6 October 2021)

The rising adoption of machine learning in high-energy physics and lattice field theory necessitates
the reevaluation of common methods that are widely used in computer vision, which, when applied to
problems in physics, can lead to significant drawbacks in terms of performance and generalizability. One
particular example for this is the use of neural network architectures that do not reflect the underlying
symmetries of the given physical problem. In this work, we focus on complex scalar field theory on a two-
dimensional lattice and investigate the benefits of using group equivariant convolutional neural network
architectures based on the translation group. For a meaningful comparison, we conduct a systematic search
for equivariant and nonequivariant neural network architectures and apply them to various regression and
classification tasks. We demonstrate that in most of these tasks our best equivariant architectures can
perform and generalize significantly better than their nonequivariant counterparts, which applies not only to
physical parameters beyond those represented in the training set, but also to different lattice sizes.

DOI: 10.1103/PhysRevD.104.074504

I. INTRODUCTION

Machine learning has become an increasingly popular tool
for a diverse range of applications in physics. Particularly
suitable for the analysis of spatially arranged data are
convolutional neural networks (CNNs). Modern CNN archi-
tectures are based on the idea that a network’s prediction
should not change when the input is shifted. They rely on
two key ingredients that have already been introduced by the
neocognitron [1] over 40 years ago: convolutional layers
(S cells) and pooling (subsampling, downsampling) layers
(C cells). This incorporation of a translational symmetry was
an essential advantage over its predecessor, the cognitron [2].
However, equivariance under translations is not guaranteed
in a generic CNN, even though it is the idea behind weight
sharing in the convolutional layers.
In the past decade, the computer vision community has

created many different machine learning algorithms and
continues to refine them. During the ImageNet large scale
visual recognition challenge (ILSVRC) [3], which was a
popular competition that was held annually from 2010 until

2017, the performance of CNNs steadily increased, and, in
2012, AlexNet [4] was the first CNN to win the classi-
fication task. However, its first convolutional layer already
breaks translational equivariance by using a stride of four,
as do three max pooling layers with a stride of two that are
part of the network. Additionally, the output of the last
convolutional layer is flattened before it is passed to the
dense layers of the network. LeNet-5 [5], a very early CNN,
uses a stride of one in the convolutional layers, but the
average pooling layers with a stride of two break transla-
tional symmetry. An important step toward a translationally
equivariant network architecture has been made by the
introduction of global pooling layers. Global average
pooling (GAP) was first introduced in Ref. [6], and the
first winning network of the ILSVRC’s classification task
that makes use of it is ResNet [7] from 2015’s competition.
The grand success of machine learning in many different

tasks has also garnered attention within other research
communities. Although many ingredients can be carried
over from computer vision, differences in the tasks may
require a different treatment. A lot of effort has been made
to incorporate global [8–18] and gauge [19–21] symmetries
in the network architecture, since they play a central role
in modern physics, among other fields. Nevertheless, the
most basic one, translational symmetry, is often not strictly
enforced despite the fact that the task would allow for it.
Oftentimes, the data are flattened somewhere in the net-
work, as, e.g., in Refs. [22–27], and sometimes a convolu-
tional or pooling operation with a stride greater than one
spoils symmetry under translations, even though a global
pooling layer constitutes the transition from the convolu-
tional part of the network to its dense part, e.g., in Ref. [28].

*sbulusu@hep.itp.tuwien.ac.at
†favoni@hep.itp.tuwien.ac.at
‡ipp@hep.itp.tuwien.ac.at
§dmueller@hep.itp.tuwien.ac.at∥Corresponding author.

schuh@hep.itp.tuwien.ac.at

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 104, 074504 (2021)

2470-0010=2021=104(7)=074504(28) 074504-1 Published by the American Physical Society

https://orcid.org/0000-0001-6572-9618
https://orcid.org/0000-0001-9511-3523
https://orcid.org/0000-0002-8163-7614
https://orcid.org/0000-0001-7602-2503
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.074504&domain=pdf&date_stamp=2021-10-06
https://doi.org/10.1103/PhysRevD.104.074504
https://doi.org/10.1103/PhysRevD.104.074504
https://doi.org/10.1103/PhysRevD.104.074504
https://doi.org/10.1103/PhysRevD.104.074504
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


There are examples that make explicit use of this symmetry
though, such as Ref. [29], and we want to raise awareness
that one should take it into account when choosing a
network architecture.
In this paper, we focus on translational symmetry in

CNNs. In addition to providing theoretical reasons for
choosing a translationally equivariant architecture, we con-
duct experiments with three types of architecture on three
different machine learning tasks. We try to find well-perform
ing architectures for each of these types by doing an extensive
search with the optimization framework OPTUNA [30]. We
furthermore investigate the generalization capabilities of the
three network types in two different ways. First, we examine
how models generalize to different sets of physical param-
eters at a fixed lattice size, and, second, we inquire how well
they generalize to other lattice sizes. The latter is not possible
for networks including a flattening step, since they require a
fixed input size. Therefore, these types of model would have
to be retrained for each new lattice size.
This paper is structured as follows: We first discuss

translational symmetry in Sec. II and show under which
circumstances CNNs are indeed respecting equivariance
under translations, as well as certain pitfalls that break the
symmetry, in Sec. III. The next three sections are devoted to
three different machine learning tasks pertaining to a com-
plex scalar field on a lattice: a regression task with the aim of
predicting two observables of said scalar field (Sec. IV), a
classification task, in which the algorithm should judge
whether or not the flux of a given lattice configuration is
conserved (Sec. V), and another regression task, in which the
network is supposed to figure out how many flux violations
are present on the lattice (Sec. VI). Section VII contains
our conclusions and possible future research avenues. The
Appendixes encompass information about the complex
scalar field (Appendix A), our datasets (Appendix B), some
supplemental proofs for Sec. III (Appendix C), and some
additional analysis pertaining to the regression task in
Sec. IV (Appendix D).

II. TRANSLATIONAL SYMMETRY

In this section, we exemplify symmetry aspects on a
complex scalar field and explain how they may impact the
choice of machine learning models. The action of a
complex scalar field ϕ in an external potential V in D
dimensions can be written as

S ¼
Z

dDxL; ð1Þ

with the Lagrangian density

L ¼ ∂μϕ
�∂μϕ − Vðϕ�ϕÞ: ð2Þ

The latter is covariant under translations xμ → x0μ ¼
xμ þ aμ, with a constant vector aμ. This can be seen by

noting that the fields transform via ϕ0ðxμÞ ¼ ϕðxμ − aμÞ
and that the partial derivative is not influenced by trans-
lations ∂ 0

μ ¼ ∂μ. The action given by Eq. (1) is then
invariant under translations. This has important implica-
tions for the resulting physical theory, because finite
continuous symmetries of the action lead to conserved
quantities, according to Noether’s first theorem [31]. The
invariance under temporal translations entails energy con-
servation; the invariance under spatial translations leads to
momentum conservation.
Another important symmetry of the action in Eq. (1) is

a global Uð1Þ symmetry, given by ϕ → eiαϕ. It implies
the existence of a conserved four-current jμ and allows the
definition of a chemical potential μ. The action can be
modified to directly include the chemical potential via

S ¼
Z

dx0dD−1xðjD0ϕj2 − j∂iϕj2 − VðjϕjÞÞ; ð3Þ

with D0 ¼ ∂0 − iμ.
In the following, we consider a complex scalar field in

1þ 1 dimensions in a quartic potential

VðjϕjÞ ¼ m2jϕj2 þ λjϕj4 ð4Þ

on the lattice with periodic boundary conditions. The
parameters of the potential are the massm and the coupling
constant λ. A discretized version of the action in Eq. (3)
retains its invariance under discrete translations. We then
switch to a dual representation, called flux representation.
It describes the same physical content as the original
representation, but the variables are four integer fields
(link variables) kx;ν and lx;ν, with ν ¼ 1; 2, instead of
the complex scalar field. The corresponding partition
function reads

Z ¼
X
fk;lg

�Y
x;ν

1

ðjkx;νj þ lx;νÞ!lx;ν!
��Y

x

eμkx;2WðfxÞ
�

×

�Y
x

δ

�X
ν

ðkx;ν − kx−ν̂;νÞ
��

; ð5Þ

where the outer sum is a shorthand for

X
fk;lg

¼
Y
x;ν

X∞
kx;ν¼−∞

X∞
lx;ν¼0

: ð6Þ

The function WðfxÞ is given by

WðfxÞ ¼
Z

∞

0

dxxfxþ1e−ηx
2−λx4 ; ð7Þ

and the integer field fx is defined as

BULUSU, FAVONI, IPP, MÜLLER, and SCHUH PHYS. REV. D 104, 074504 (2021)

074504-2



fx ¼
X
ν

½jkx;νj þ jkx−ν̂;νj þ 2ðlx;ν þ lx−ν̂;νÞ�: ð8Þ

The dual formulation incorporates the same symmetry
properties as the original formulation. A more detailed
explanation of this procedure is given in Appendix A and in
Ref. [32]. To ensure the flux conservation demanded by the
Kronecker δ symbol in Eq. (5), the worm algorithm [33]
has been employed to update the link variables kx;ν. It is a
local algorithm that updates contiguous field values on the
lattice in successive steps. The resulting structures are
known as worms. When the head of a worm meets its tail, a
worm is closed; otherwise, it is open. Details about the
generation of our datasets can be found in Appendix B.
This dual representation in two dimensions allows for a

strong analogy with two-dimensional images. While every
pixel of an image is described by one (grayscale) or three
(color) numbers, every position of the dual lattice is
described by four values. An important difference between
them is their boundary conditions. Typically, image appli-
cations employ fixed boundary conditions, which break
translational equivariance at the boundaries. In contrast,
using periodic boundary conditions on the lattice, transla-
tional equivariance can be preserved.
The aforementioned four integer fields of the flux

representation are used as the input for the upcoming
machine learning tasks. In these tasks, the intensive or
extensive nature of an observable are important for the
choice of a global pooling layer, because the networks
should be able to generalize to other lattice sizes apart from
the one they have been trained on. In a regression task, an
intensive quantity requires a global average pooling layer,
while an extensive quantity calls for a global sum pooling
layer. In a classification task, it is not the physical
observable itself that is predicted but a decision boundary,
so the choice of global pooling layer is more subtle.
We are interested in the generalization capability to

larger lattices, because usually studies on the lattice are
intended as an approximation of the real case of an infinite
spacetime background. Therefore, a compromise has to be
found between lattice size and computational effort such
that the simulation produces results satisfactorily close to
the physical ones in a reasonable amount of time. The
approach adopted throughout this paper is to train models
on small lattices and examine how well they generalize to
larger lattices.
The three machine learning tasks that are described at the

end of Sec. I are tackled with three different types of CNN
architecture, which are depicted in Fig. 1:

(i) a translationally equivariant architecture (EQ) that
uses only layers of stride one and a global pooling
layer and is applicable to different lattice sizes,

(ii) a strided architecture (ST) that breaks translational
equivariance due to spatial pooling layers with a
stride greater than one but is still suited to give

predictions on different lattice sizes due to a global
pooling layer, and

(iii) a flattening architecture (FL) that represents a
“traditional” architecture that breaks translational

(a)

(b)

(c)

FIG. 1. The three different architecture types used in this study:
(a) Equivariant architecture (EQ), (b) Strided architecture (ST),
and (c) Flattening architecture (FL). The check mark (✓) or cross
(✗) indicate spatial operations in which translational symmetry is
respected or violated, respectively. Translational symmetry can
be violated by convolutional or pooling layers with a stride
greater than one, as in (b) and (c), or by a flattening layer, as in
(c). A global pooling layer allows for the application of the same
network to different lattice sizes. Each of the layers can have a
number of channels (not depicted) without affecting the trans-
lational symmetry properties.

GENERALIZATION CAPABILITIES OF TRANSLATIONALLY … PHYS. REV. D 104, 074504 (2021)

074504-3



equivariance due to spatial pooling layers with a
stride greater than one and a flattening layer, which
restricts its usage to one particular lattice size.

After the global pooling or flattening step, a dense feed-
forward network, which is also known as multilayer
perceptron (MLP), can be attached without altering the
translational equivariance properties of the network. A
discussion about which network layers are translationally
equivariant and which ones are not, as well as what exactly
breaks said equivariance, can be found in Sec. III.
Dense neural networks can be seen as universal function

approximators [34,35], and as such, they do not respect any
particular symmetries. Such symmetries can be imple-
mented in (or “hard baked” into, as other authors [10] call
it) the network architecture, though, so that the function
that is learned is restricted to respect a certain symmetry by
design, independent of any training. We expect that such a
restriction, as incorporated by EQ architectures, is benefi-
cial and that CNNs of that kind, therefore, outperform
CNNs of the other two kinds.
Alternatively, symmetries can be learned, which can be

encouraged by augmenting the training data according to
the desired symmetry transformation. Thus, we expect data
augmentation to improve the performance of networks of
ST and FL architectures. Note, however, that, when using
data augmentation, it is not guaranteed that the network
respects the symmetry even on the training set, let alone on
the test set. In addition, data augmentation only establishes
a relation between the input layer and the output layer; it
does not require the hidden layers in between to respect the
symmetry.
From a more theoretical standpoint, a CNN can be seen

as a special case of an MLP, where the latter learns to set its
weights so that the receptive fields are local (by setting
the other weights to zero) and to “share” the appropriate
weights (by setting them to the same value). The idea
behind the CNN was, though, that this does not have to be
learned but can be implemented in the architecture.
Note that if the observable to be studied violates the

symmetry that is implemented in the network, it cannot be
properly approximated by design. Therefore, it is important
to understand the symmetry properties of the task before
selecting a particular architecture.

III. SYMMETRY PROPERTIES OF MACHINE
LEARNING LAYERS

If a network layer’s output is invariant under a symmetry
transformation of the input, the outputs of all subsequent
layers are invariant under the symmetry transformation of
the former layer’s input as well. However, invariance of the
network’s prediction does not require every individual layer
to be invariant under this symmetry. The more general
concept of equivariance not only is a sufficient requirement,
but also allows for more expressive networks. Group
equivariant convolutional neural networks (G-CNNs) [8]

exploit symmetry transformations that are described by a
group G. Conventional CNNs can be seen as a special case
of G-CNNs, with the translation group T as their symmetry
group, i.e., G ¼ T .
The following discussion about equivariance is based on

Ref. [8]. The condition for equivariance of a network layer
Φ under a group transformation Lg by the element g ∈ G is
given by

ΦðLgxÞ ¼ L0
gΦðxÞ: ð9Þ

Note that Lg ≠ L0
g, in general, and that invariance under Lg

is the special case L0
g ¼ 1.

A. Convolutional layers

On a two-dimensional rectangular lattice, a convolution1

is defined as

½f⋆ψ �ðxÞ ¼ X
y∈Z2

fðyÞψðy − xÞ ¼
X
y∈Z2

fðxþ yÞψðyÞ; ð10Þ

where the feature map f and the kernel (or filter) ψ are real-
valued functions:

f∶ Z2 → R; ð11Þ

ψ∶ Z2 → R: ð12Þ

The kernel ψ is assumed to have finite supportΨ ⊂ Z2; i.e.,
there is only a finite number of points on Z2 where ψ is
nonzero. In principle, this allows us to restrict the sum on
the rhs of Eq. (10) to Ψ, but for simplicity we keep the sum
running over all of Z2. For our purposes, the feature map f
is understood to be defined on a finite, rectangular proper
subset F ⊂ Z2 with periodic boundary conditions. We can
avoid explicitly dealing with periodic boundaries by
assuming that the feature map periodically repeats outside
F. In machine learning frameworks such as PyTorch [36],
periodic boundary conditions are enforced through the use
of circular padding. As a result of periodicity, the output
of the convolution Eq. (10) has the same size as the
feature map f.
We define a translation of the feature map via

½Ltf�ðxÞ ¼ fðx − tÞ; ð13Þ

where t ∈ T is an element of the translation group, which
can be identified with an element of Z2. The convolution is
equivariant under translations due to

1The cross-correlation in signal processing is often referred to
as convolution in the machine learning community. For this
paper, we adopt this nomenclature. Additionally, we disregard a
possible bias term b to be added to Eq. (10) without loss of
generality.

BULUSU, FAVONI, IPP, MÜLLER, and SCHUH PHYS. REV. D 104, 074504 (2021)

074504-4



½Ltf⋆ψ �ðxÞ ¼
X
y∈Z2

fðy − tÞψðy − xÞ

¼
X
y0∈Z2

fðy0Þψðy0 − ðx − tÞÞ

¼ ½f⋆ψ �ðx − tÞ
¼ ½Lt½f⋆ψ ��ðxÞ: ð14Þ

Equation (10) assumes the convolution to have a stride s
of one; i.e., the number of points that the kernel is shifted
when the convolution is performed is one. More generally,
convolutions with strides s ≥ 1 can be written as

½f⋆ψ �sðxÞ ¼
X
y∈Z2

fðyÞψðy − sxÞ: ð15Þ

This definition reduces to the original convolution if s ¼ 1.
For s ≥ 2, the output size of the convolution is smaller than
the input size of the feature map f. Strided convolutions
with s ≥ 2 generally break translational equivariance. This
can be demonstrated by considering a translation t ∈ T
with jtj < s. For example, we can choose t ¼ ð1; 0Þ.
Performing this translation on the input feature map f
yields

½Ltf⋆ψ �sðxÞ ¼
X
y∈Z2

fðy − tÞψðy − sxÞ

¼
X
y0∈Z2

fðy0Þψðy0 − sxþ tÞ

¼
X
y0∈Z2

fðy0Þψðy0 − sðx − t=sÞÞ: ð16Þ

In order for the above expression to be equivariant, we
would need to be able to rewrite it in terms of a shifted
position x0 ¼ x − t=s ∈ Z2. However, this is not possible,
because t ¼ ð1; 0Þ is not divisible by s ≥ 2. On the other
hand, the strided convolutions are equivariant if we con-
sider only the subgroup T s ⊂ T consisting of translations
by multiples of s lattice points. In that case, any element
t ∈ T s is divisible by s and, therefore,

½Ltf⋆ψ �sðxÞ ¼
X
y∈Z2

fðy − tÞψðy − sxÞ

¼
X
y0∈Z2

fðy0Þψðy0 − sðx − t=sÞÞ

¼
X
y0∈Z2

fðy0Þψðy0 − sx0Þ

¼ ½Lt0 ½f⋆ψ �s�ðxÞ; ð17Þ

where t0 ¼ t=s ∈ T . This means that a convolutional layer
with a given stride is equivariant only under translations
that are a multiple of that stride. Equivariance under all

possible translations is given only for s ¼ 1. The gener-
alization to more than one feature map, i.e., multiple
channels, is straightforward. Note that a convolution with
s ≥ 2 is equivalent to a convolution with s ¼ 1 combined
with a subsequent subsampling step.

B. Spatial pooling layers

Spatial pooling layers are usually used to subsample,
i.e., s ≥ 2 in pooling layers. For this discussion, let us split
this layer up into a pooling step and a subsampling step.
Since average pooling is equivalent to a special case of a
convolution, where all weights of ψ are identical and given
by 1=jΨj, with jΨj denoting the cardinality of Ψ, the
average pooling step is equivariant under translations. The
subsequent subsampling, however, breaks this equivar-
iance, which again leads to equivariance only under trans-
lations that are a multiple of the spatial average pooling
layer’s stride.
This holds not only for average pooling though, but for

spatial pooling, in general: We take again the pooling step by
itself or, equivalently, with s ¼ 1. It acts on the feature map f
by performing the same operation on subsets Ux of F:

PfðxÞ ¼ P
y∈Ux

fðyÞ: ð18Þ

These subsets correspond to the kernel of the pooling
operation. Its dependence on x depicts the “sliding” of
the kernel over the feature map. A spatial pooling step
respects Eq. (9), as can be seen by

PLtfðxÞ ¼ P
y∈Ux

fðy − tÞ

¼ P
y0∈Ux−t

fðy0Þ

¼ LtPfðxÞ: ð19Þ

Thus, also in a spatial pooling layer it is the stride that
restricts the equivariance of the layer to translations by
multiples of said stride.
We want to stress that spatial pooling layers with s ¼ 1

respect translational equivariance and can, therefore, be
included if one desires an architecture that incorporates
such a symmetry, albeit in a different role than usual
because it does not subsample.

C. Global pooling

If we wanted to use a traditional CNN architecture on a
two-dimensional lattice with periodic boundary condi-
tions, we would have another problem as well: The last
convolutional or pooling layer is often flattened and
densely connected to the linear layers at the end of the
network. Since different positions in one feature map are
connected to different weights without a sliding kernel,
this is another point where translational equivariance

GENERALIZATION CAPABILITIES OF TRANSLATIONALLY … PHYS. REV. D 104, 074504 (2021)

074504-5



is broken. A possible solution to this problem is a global
pooling layer between the last convolution and the first
dense layer. The GAP layer was first introduced in
Ref. [6]. There, the authors proposed to create one feature
map for each class and to feed the average of each feature
map directly to a softmax layer. This approach would
respect translational symmetry, although, in general,
dense layers could be used between the global pooling
and the softmax operation.

D. Equivariant architectures

On the aforementioned two-dimensional lattice with
periodic boundary conditions and for similar problems,
we propose the following network architecture for classi-
fication and regression tasks: The input is fed to a convolu-
tional layer with a stride of one and circular padding so that
the output of the convolution has the same size as its input.
The kernel size can be odd or even. Translational equivar-
iance is retained by applying consecutive convolutional
layers, all with s ¼ 1, with nonlinear activation functions
in between. Activation functions do not influence the
symmetries of an individual layer, since they are applied
pointwise. If information from different scales is required,
dilated convolutions [37] can be used with a stride of one.
Since dilated convolutions are equivalent to convolutions
with a larger kernel and the appropriate weights set to zero,
they are also equivariant under translations if their stride is
one. Spatial pooling layers for subsampling, which use
s > 1, break translational equivariance, but it is still possible
to use them with s ¼ 1 between convolutional layers. Away
of subsampling that respects translational equivariance is
rendered possible by coset pooling [8]. However, since this is
a nonlocal operation, we do not expect it to be suitable for
the machine learning tasks discussed in this paper, which
focus on local quantities and predictions. In the special case
of translationally invariant functions, we suggest to utilize a
global pooling layer after the last convolution. The output of
the global pooling layer is translationally invariant, and,
therefore, the rest of the network can be a general MLP
without breaking the symmetry.
There is still one important point to be made: Every layer

before the GAP respecting translational equivariance is
sufficient to guarantee invariance under translations after
the GAP, but it is not necessary. If a spatial average pooling
layer that breaks translational equivariance and a subsequent
convolutional layer are inserted just before the GAP, the
output of the GAP can still be invariant under translations,
depending on their strides (Theorem 1 in Appendix C). If
there is an activation function after the convolutional layer,
as is usually the case, the GAP’s output is, in general, no
longer invariant under translations. The activation function is
also necessary for the convolution not to lead to a single
multiplicative and additive factor of the GAP, as is shown in
Lemma 2 in Appendix C. We thus stick to the aforemen-
tioned sufficient conditions for translational equivariance

and apply an activation function after the convolutional layer
right before the GAP.

IV. REGRESSION: PREDICTING OBSERVABLES
ON THE LATTICE

This section revisits a regression task that has previ-
ously been performed in Ref. [22]: Given a lattice
configuration as input, the network shall predict two
physical observables, namely, the particle density n and
the lattice averaged squared absolute value of the field
jϕj2. The former is given by

n ¼ 1

NxNt

X
x

kx;2; ð20Þ

where the summation of one of the four integer fields kx;2
runs over all NxNt lattice sites. The latter is given by

jϕj2 ¼ 1

NxNt

X
x

Wðfx þ 2Þ
WðfxÞ

; ð21Þ

which contains the highly nonlinear function WðfxÞ. It is
given in Eq. (7) and depends on all four integer fields.
The function WðfxÞ also depends on the physical

parameters λ, η, and μ, which are set to the same values
as in Ref. [22]. Concretely, the values of the coupling
constant λ and the mass m will be kept fixed in this task
(λ ¼ 1, η ¼ 4þm2 ¼ 4.01), and the chemical potential
μ lies in the interval μ ∈ ½0.91; 1.05�, with steps of
Δμ ¼ 0.005.
In Ref. [22], the networks have been trained on lattice

configurations and observables that have been generated
with two values of μ, specifically, the outermost values
μ ¼ f0.91; 1.05g, but tested on data that have been created
on the whole given interval of the chemical potential. This
allows for an analysis of the architectures’ generalization
capability to lattice configurations that correspond to chemi-
cal potentials that are not represented in the training set. We
will follow this procedure, with the exception that we will
use only a single μ to generate training data, namely, the
uppermost one μ ¼ 1.05. Since we would test on only
smaller values of the chemical potential than the one that has
been used for training in our approach, we deviate from
Ref. [22] in that we create additional test data that contain
higher values of the chemical potential. They lie in the
interval μ ∈ ½1.1; 1.5�, with steps of Δμ ¼ 0.1. This renders
possible an analysis of the architectures’ generalization
capability to lattice configurations that correspond to values
of μ that are greater than the one used to create the training
set. We will come back to these test data only at the end of
this section. In addition to the generalization ability to
different values of the chemical potential, we will investigate
the generalization ability to lattice sizes that the models have
not been trained on. This highlights a key advantage of

BULUSU, FAVONI, IPP, MÜLLER, and SCHUH PHYS. REV. D 104, 074504 (2021)

074504-6



architectures that employ a global pooling layer between
their convolutional and their dense layers over architectures
that simply flatten the data, because the latter are restricted to
a given input size.

A. Architecture choice

The datasets stem from a physical system, whose
properties should be taken into account when choosing a
network architecture for a model that should learn from said
dataset. Let us assume for the following discussion that we
have no knowledge of the exact form of Eqs. (20) and (21).
First, the observables are invariant under arbitrary trans-

lations of the lattice configuration. This leads to the
restriction of preferred architectures that has been proposed
at the end of Sec. III: The input is passed to a convolutional
layer with a stride s ¼ 1 and circular padding that causes its
output to have the same size as its input. Such layers are
used consecutively, with nonlinear activation functions in
between. Optionally, spatial pooling layers with s ¼ 1 can
be inserted. The output of such convolutional and pooling
layers is equivariant under translations of the input. The
output of the last convolution is fed to a global pooling
layer, which makes it invariant under translations of the
input. Then, the data are passed through an MLP with two
output nodes, one for each observable.
Second, the observables are derivatives of the logarithm

of the partition function on the lattice. The partition
function is a product over quantities at each lattice site.
The observables can, therefore, be written as a sum over
the lattice. Consequently, we want to use a global pooling
layer that respects this fact, which excludes global max
pooling. Since the observables are intensive quantities
and the network shall be able to generalize to different
lattice sizes, global average pooling is the natural choice.

The MLP at the end does not modify the intensive nature of
the prediction.
To check how the above theoretical considerations

perform in practice, we want to compare the three types
of architecture that are depicted in Fig. 1 from Sec. II. A fair
comparison among these network architecture types is
quite difficult. One could take a translationally equivariant
architecture and break equivariance by inserting at least
one spatial pooling layer with s > 1. This would keep the
number of parameters the same. However, having found a
decent EQ architecture, it is not guaranteed that the
corresponding ST architecture is a good one compared
to other ST architectures and vice versa. Also, keeping
the weights constant may not lead to a fair comparison with
FL architectures.
Therefore, we define a space of possible architectures for

each of the three types separately, which are illustrated
in Tables I–III, and use an optimization procedure to find
an adequate representative for each architecture type
individually.
Table I depicts the search spaces of EQ, Table II of ST,

and Table III of FL architectures. The possible parameter
values of the first run are inspired by manual trials, which
also included different activation functions (ReLU, tanh,
PReLU, and LeakyReLU). Its results lead to modifications
of the parameter space of the second run and the choice
of LeakyReLU for a suitable activation function. Both of
them try 50 different combinations of parameters in their
optimization procedure on each training set, which will be
specified in the next subsection. The extended search
explores an enlarged parameter space with 100 trials, also
with unique combinations of parameter values, in order to
check if a better architecture was missed during the first two
runs due to the choice of a too small search space. This
search involves only the largest training set. After every

TABLE I. Search spaces for EQ architectures. It lists the possible number of convolutional (conv, s ¼ 1) and linear
layers (lin), kernel sizes, the number of channels of the convolutional layers, and the number of nodes in the linear
layers. Spatial pooling layers with s ¼ 1 seem to worsen the predictions and have, therefore, not been included in
these search spaces.

Conv Lin Kernel size Channels or nodes

Run 1 [2, 3] [0, 1] fð1 × 1Þ; ð2 × 2Þg f4; 8; 16; 24; 32; 48; 64; 80g
Run 2 [2, 4] 1 fð1 × 1Þ; ð2 × 2Þg f4; 8; 16; 24; 32; 48; 64; 80g
Extended search [2, 4] [0, 3] fð1 × 1Þ; ð2 × 2Þg f4; 8; 16; 24; 32; 48; 64; 80g

TABLE II. Search spaces for ST architectures. It shows the possible number of convolutional (s ¼ 1) and linear
layers (abbreviated as in Table I), kernel sizes, the number of channels of the convolutional layers, the number of
nodes in the linear layers, the number of spatial pooling layers (SPL, s ¼ 2), and the spatial pooling mode (SPM).

Conv Lin Kernel size Channels or nodes SPL SPM

Run 1 [2, 4] [0, 3] fð1 × 1Þ; ð2 × 2Þg f4; 8; 16; 24; 32; 48; 64; 80g f1; 2g favg;maxg
Run 2 [2, 4] [0, 2] fð1 × 1Þ; ð2 × 2Þg f4; 8; 16; 24; 32; 48; 64; 80g f1; 2g avg
Extended search [2, 4] [0, 3] fð1 × 1Þ; ð2 × 2Þg f4; 8; 16; 24; 32; 48; 64; 80g f1; 2g favg;maxg

GENERALIZATION CAPABILITIES OF TRANSLATIONALLY … PHYS. REV. D 104, 074504 (2021)

074504-7



convolutional layer and after every linear layer but the
last one, a LeakyReLU activation function [38] is applied.
Its advantage over the ReLU activation function is the
avoidance of so-called dead or dying neurons, which
never activate initially or become inactive during the
training process.
ST architectures can be thought of as EQ architectures

with at least one spatial pooling layer with s ¼ 2 in the
convolutional part of the network. This is either an average
pooling or a max pooling layer, both with a 2 × 2 kernel. A
spatial pooling layer is neither directly applied to the input
nor inserted just before the global pooling layer. The position
of the spatial pooling layer(s) is part of the search space, but
it is restricted by the choice of the number of convolutional
layers, as is the number of spatial pooling layers. If, e.g., two
convolutional layers are chosen, there can only be one spatial
pooling layer at only one specific position, that is, between
the convolutional layers.
FL architectures are inspired by how we think one would

construct a CNN traditionally for this machine learning
problem. At its core are two 2 × 2 convolutions, followed
by a spatial pooling layer with a 2 × 2 kernel and a stride
of 2. Optionally, there can be a 1 × 1 convolution before
each of the 2 × 2 convolutions and between each of them
and the respective following spatial pooling layer, leading
to a possible total count of six convolutional layers.
Our optimization procedure of choice has been OPTUNA.

The performance metric is the validation loss averaged
over three different parameter initializations. This averaging
process is applied to counteract the statistical fluctuations
introduced by the random initializations of the trainable
network parameters. It is important, because OPTUNA

changes its search space dynamically, so early search results
influence the probability distributions that serve as the basis
to select later parameter values. This optimization process is
done for different sized training sets individually, since on
smaller training sets different architectures might perform
better than on larger ones.
After the optimization procedure by OPTUNA, models of

the best architectures are retrained ten times from scratch and
evaluated on the validation set to verify their performance

while further minimizing statistical fluctuations due to
the random parameter initializations. Our results show that
the same architectures that perform well on small training
sets also perform well on larger training sets and that many
architectures perform similarly. Thus, we select the best-
performing architecture of each type according to the mean
validation loss as a representative and compare only them.
These best-performing architectures are shown in Table IV.
We use ConvðK × K;Nin; NoutÞ to denote a two-dimen
sional convolution, where K is the kernel size and Nin
(Nout) is the number of input (output) channels. Before every
convolutional operation, we use circular padding to enforce
periodic boundary conditions. Additionally, we use a stride
of one for each convolution. Average pooling layers with
kernel size K and stride s are written as AvgPoolðK × K; sÞ.

TABLE III. Search spaces for FL architectures. It shows the possible number of convolutional (s ¼ 1) and linear
layers, kernel sizes, the number of channels of the convolutional layers, the number of nodes in the linear layers, the
number of spatial pooling layers (s ¼ 2), and the spatial pooling mode. The number of convolutional layers is not
chosen directly but follows from the number of 1 × 1 convolutions that are selected. The asterisk next to “kernel
size” signifies that the kernel size of the convolution depends on its position. Two 2 × 2 convolutions with a
respective subsequent spatial pooling layer are mandatory. Additional 1 × 1 convolutions are possible, namely,
before each of the 2 × 2 convolutions and between each of them and their corresponding subsequent spatial pooling
layer. The abbreviations are the same as in Table II.

Conv Lin Kernel size� Channels or nodes SPL SPM

Run 1 [2, 6] [1, 3] fð1 × 1Þ; ð2 × 2Þg f4; 8; 16; 24; 32; 48; 64; 80g 2 favg;maxg
Run 2 [2, 6] [1, 3] fð1 × 1Þ; ð2 × 2Þg f4; 8; 16; 24; 32; 48; 64; 80g 2 avg
Extended search [2, 6] [1, 3] fð1 × 1Þ; ð2 × 2Þg f4; 8; 16; 24; 32; 48; 64; 80g 2 favg;maxg

TABLE IV. Best architectures for fitting two observables n and
jϕj2 for each type of architecture. This table shows feed-forward
networks as found by our OPTUNA searches. The field configu-
ration in the form of ðNt; Nx; 4Þ tensors is fed into the network at
the top. (The batch size is omitted here.) There are two output
nodes for the two observables. The last row denotes the number
of trainable parameters for each type.

EQ ST FL

Convð1 × 1; 4; 64Þ Convð1 × 1; 4; 80Þ Convð1 × 1; 4; 64Þ
LeakyReLU LeakyReLU LeakyReLU
Convð1 × 1; 64; 48Þ Convð1 × 1; 80; 80Þ Convð2 × 2; 64; 80Þ
LeakyReLU LeakyReLU LeakyReLU
Convð1 × 1; 48; 80Þ Convð1 × 1; 80; 48Þ AvgPoolð2 × 2; 2Þ
LeakyReLU LeakyReLU Convð1 × 1; 80; 48Þ
Convð2 × 2; 80; 80Þ AvgPoolð2 × 2; 2Þ LeakyReLU
LeakyReLU Convð2 × 2; 48; 80Þ Convð2 × 2; 48; 64Þ
GlobalAvgPool LeakyReLU LeakyReLU
Linear(80, 2) GlobalAvgPool AvgPoolð2 × 2; 2Þ

Linear(80, 2) Convð1 × 1; 64; 24Þ
Flatten

Linear(360, 24)
LeakyReLU
Linear(24, 2)

33202 26370 47394

BULUSU, FAVONI, IPP, MÜLLER, and SCHUH PHYS. REV. D 104, 074504 (2021)

074504-8



Dense layers are denoted by LinearðNin; NoutÞ with Nin
(Nout) input (output) nodes.

B. Training and testing

The training is performed for every model of each of these
three architectures and for each training set analogously:
Mean squared error (MSE) is selected as a loss function; the
total loss is the arithmetic mean of the individual losses, each
of which corresponds to one physical observable. It is
optimized with the AMSGrad [39] variant of the AdamW
optimizer [40] with a vanishing weight decay. Training
models on different sized training sets gives us information
about the sample efficiency. Limiting the size of training sets
is motivated by machine learning tasks where the generation
of training samples is costly, for example, in medical
applications or in large-scale simulations on supercomputers.
The number of training samples in a training set ranges from
100 to 20000, with steps Δ ¼ 50 from 100 to 250, Δ ¼ 250
from 250 to 1000, Δ ¼ 500 from 1000 to 3000, and
Δ ¼ 1000 up to 20000 training samples. The corresponding
validation sets contain 10% of the amount of the training
set’s data. The batch size during training was chosen to be
100 for training sets with at least 500 training samples and 50
otherwise. The reason behind this choice is that the
algorithm shall be trained with minibatches. To avoid that
this approaches batch training for smaller training sets, a
smaller batch size is chosen for them. The training lasts
between 100 and 1000 epochs; the exact number is
determined by early stopping based on validation loss with
a patience value of 25. The model is taken at the time it has
had the lowest validation loss. An overview of the chosen
parameters is given in Table V.
The training takes place on a 60 × 4 lattice; the first

number refers to the temporal dimension and the second to
the spatial one. All data in the training set and the validation
set have been generated with μ ¼ 1.05.
Both translationally nonequivariant architectures (STand

FL) are trained with and without data augmentation. The
training data are augmented by randomly shifting the input
data by a number of pixels that is determined by the
symmetry properties of the respective architecture. ST
architectures contain at most two spatial pooling layers
with a 2 × 2 kernel and a stride of 2, as is shown in Table II.
Therefore, they still incorporate translational equivariance
under shifts of multiples of 4 (see Sec. III); and the data can

be augmented by shifts of [0, 3] in both directions. FL
architectures, however, do not incorporate translational
equivariance under any shifts of the input; thus, the data
have to be augmented by shifts determined by the lattice
size, i.e., by [0, 59] in the time direction and by [0, 3] in the
space direction.
The testing can be divided into two parts. As a first step,

each architecture is evaluated on the same lattice size as it
has been trained on, for various values of μ. This checks
whether networks of a given architecture are able to
generalize to values of μ that are not represented in the
training set. Then, the generalization ability to other lattice
sizes is investigated. This second step can be done only
with architecture types EQ and ST, because FL architec-
tures require a fixed input size.
The test set on the 60 × 4 lattice contains samples that

have been generated with various values of μ, most of
which have not been used for the training and validation
sets. This test set contains 4000 lattice configurations
pertaining to each μ ∈ ½0.91; 1.05�, with steps of
Δμ ¼ 0.005, where only the last value μ ¼ 1.05 has
been used for training and validation. This amounts to
1.16 × 105 testing samples in total.
For testing on different lattice sizes, we generated a test

set analogous to the one on the 60 × 4 lattice on a 50 × 2, a
100 × 5, a 125 × 8, and a 200 × 10 lattice. For each of
these lattice sizes, we created again 1.16 × 105 test sam-
ples, 4000 pertaining to each μ ∈ ½0.91; 1.05�, with steps of
Δμ ¼ 0.005. Note that the winning ST architecture (see
Table IV) can be evaluated on the 50 × 2 lattice, because it
contains only one spatial pooling layer with a 2 × 2 kernel
and a stride s ¼ 2. Further details on the dataset generation
can be found in Appendix B.

C. Results

In this subsection, we will discuss the test results on the
60 × 4 lattice, which is the lattice size on which the training
took place, in detail before analyzing the generalization
ability to other lattice sizes of the different network types.
Then, we will investigate the silver blaze phenomenon on
the larger lattice sizes with our trained models. Finally, we
will discuss the results on our second set of test sets, which
contains data generated with a chemical potential greater
than the one used to create the training set.

TABLE V. Loss, optimizer and early stopping settings for PyTorch.

Loss Size_avg Reduce Reduction

MSELoss None None “Mean”
Optimizer lr betas eps weight_decay amsgrad
AdamW 0.001 (0.9,0.999) 10−8 0 True

Monitor min_delta Patience Mode
EarlyStopping “val_loss” 0 25 “min”

GENERALIZATION CAPABILITIES OF TRANSLATIONALLY … PHYS. REV. D 104, 074504 (2021)

074504-9



1. Results on the same lattice size as training

The loss over the whole test set is a metric for how well
the network performs. It is displayed in Fig. 2 for different
training sets with a varying number of training samples.
Essentially, all of our models are trained until conver-
gence, since we choose a very high number of maximum
epochs and employ early stopping based on validation
loss. Therefore, the comparison in Fig. 2 shows how the
different architectures perform under limited information
for smaller training set sizes. The plot at the top shows that
the performance of the EQ architecture improves with the

size of the training set, as can be expected. The other two
architectures do not seem to benefit from increasing the
number of samples in the training set, which is quite
surprising. Another remarkable result is that data aug-
mentation does not seem to lead to an increase in
performance either, as can be seen in the plot in the
middle and at the bottom. At first sight, one may draw the
conclusion that the ST and the FL architectures do not
allow for approximations that are as precise as the one of
the EQ architecture. If the model has already converged
to an optimal solution, adding more training samples,
irrespective of them being newly created or coming from
data augmentation, will not improve its performance.
However, the blue downward spikes in the loss of the
ST model show that some models succeed in finding a
good approximation of the observables. Therefore, we
draw the conclusion that, although possible, it is more
unlikely for the ST and FL models than for the EQ models
to learn a good approximation of n and jϕj2.
The predictions of the individual observable’s ensemble

averages per μmade by the best EQmodel, according to the
test loss, are displayed in Fig. 3. It shows that the model,
although trained only on samples generated with μ ¼ 1.05,
can generalize to all other values of the chemical potential
in the investigated interval. This seemingly astonishing
generalization ability can be understood by recognizing
that the network does not need to generalize from one μ to
all others but from the training samples to other samples,
each consisting of a lattice configuration and two observ-
ables. Even though the training set contains only lattice
configurations that have been generated with μ ¼ 1.05, the
range of possible values for n and jϕj2 is quite large, and the
chosen value of μ in the training set already covers most of
the observable values in the test set.
We exemplify this point using ST models that have been

trained on 18000 samples: Figure 4 shows the predicted
versus the true values of both observables of the best (top)

FIG. 2. Test loss on the whole test set on the 60 × 4 lattice
against the size of the training set (number of samples in the
training set) on which the respective model has been trained. At
the top, the results of the three architecture types (trained without
data augmentation) are shown. In the middle and at the bottom,
the effect of data augmentation during training of ST and FL
models, respectively, is depicted. The plots display the best and
worst loss (solid lines), the arithmetic mean of all ten random
initializations for training (dashed lines), and the 20% quantiles
(shaded regions). The symbols visualize the positions of the
measurements; the lines are there to guide the eye.

FIG. 3. Predicted and true values for ensemble averages hni and
hjϕj2i as a function of chemical potential μ on a 60 × 4 lattice.
The predictions in this plot are made by the EQ model with the
smallest test loss. The model has been trained on data generated
with μ ¼ 1.05 only but shows remarkable generalization capa-
bilities to other values of μ. In this and in subsequent plots, the
training point is highlighted by a rectangle.

BULUSU, FAVONI, IPP, MÜLLER, and SCHUH PHYS. REV. D 104, 074504 (2021)

074504-10



and the worst (middle) performing ST model (according to
the test loss) evaluated on the test set. The performance of the
worst ST model on the training data is shown at the bottom
in Fig. 4. Note that in this scatter plot we do not average over
the ensemble but show the predictions of the network for
each individual example. Both networks are able to predict
the larger values of both observables, but the worse one fails
to predict the smallest values, since they are missing from the
training set. The difference between the better and the worse
STmodels is the ability to generalize to lattice configurations
and ranges of observable values that is has not seen during
training. The bad performance overall with some better
performing outliers, which is shown in Fig. 2, suggests that
ST networks succeed only sometimes with this generaliza-
tion. FL models show a similar behavior to ST models, but
the predictions are less precise throughout. A more detailed

discussion of the input value distributions is given in
Appendix B.

2. Results on different lattice sizes

One big disadvantage of FL architectures impedes them
from predicting on other lattice sizes than the one it was
trained on: It requires a fixed input size. For this reason, we
can compare only the performance of the EQ and the ST
architecture. Since the results for the latter with and without
data augmentation are very similar, we will show only the
results without data augmentation. Also, we will fix the size
of the training set for this comparison to 20000 training
samples.
Figure 5 displays the overall test loss (top) and the

individual losses of the observables (middle and bottom).
Even though the STarchitecture keeps its worse performance
from the 60 × 4 lattice, the generalization ability to the
different lattice sizes is comparable for the EQ and the ST
architecture, with the exception of the 100 × 5 lattice for the
latter. This kink in the blue curve shows up in the prediction
of both observables, whereas this particular lattice size does
not seem to be extraordinary to the EQ architecture. The
problem is the odd number in the lattice dimension. This
behavior can be explained by a closer inspection of the ST

FIG. 4. Predicted versus true observables for the best and the
worst ST networks that have been trained on 18000 samples. It
shows that the ST architecture’s best instance is able to accurately
estimate the whole ranges of observable values (top) and that its
worst instance is failing to do so for smaller values of n and jϕj2
(middle). The reason for this is that the training set includes only
larger values of the observables (bottom) and that the worst model
is not able to generalize beyond that. The top and the middle plot
show 1% of the test data; the bottom plot shows 4% of the
training data.

FIG. 5. Overall test loss (top) and its two parts (middle and
bottom) that come from each observable, on various lattice
sizes. The training has taken place on the 60 × 4 lattice. Both
architectures generalize well to lattice sizes different from the
one they were trained on, but the STarchitecture (blue) performs
visibly worse on the 100 × 5 lattice. The reason for this is the
spatial pooling layer within the architecture, which drops 20%
of the data, leading to a less accurate prediction for both
observables.

GENERALIZATION CAPABILITIES OF TRANSLATIONALLY … PHYS. REV. D 104, 074504 (2021)

074504-11



architecture: The first three convolutions leave the input size
unchanged, because they employ circular padding. Then,
these 100 × 5 data are passed to a spatial pooling layer with
a 2 × 2 kernel and a stride of 2. This layer disregards 20%
of the data and outputs data with a shape of 50 × 2.
Consequently, the ST networks cannot use all of the data
to come to a prediction, which is, therefore, less precise. This
is far less severe on the 125 × 8 lattice, because there the
spatial pooling layer disregards only 1=125 of the data, which
is not enough to be visible in Fig. 5. A more detailed analysis
of said kink in the blue curve can be found in Appendix D.

3. Silver blaze phase transition

The silver blaze [41] phenomenon refers to a second-
order phase transition at vanishing temperature T, where
thermodynamical observables are independent of the
chemical potential μ below a critical value μc [32]. This
means that the observables hni and hjϕj2i are constant for
μ < μc, whereas they start rising if the chemical potential
surpasses its critical value. The particle density hni is an
order parameter of the silver blaze phase transition. As a
result of the finiteness of our lattices, the temperature is
nonzero (T ∝ 1=Nt, where Nt is the number of lattice sites
in the time direction), and, thus, the transition is not
necessarily sharp. Because of the networks being trained
to approximate the particle density and the lattice averaged
squared absolute value of the field, this phase transition
should also be visible in their predictions.
Figure 6 visualizes predictions of the EQ architecture

model that has been trained on 20000 training samples and
reached the lowest validation loss. More precisely, it shows
the mean prediction of each observable for each individual
μ, as well as the true mean value, on the 100 × 5 (top), the
125 × 8 (middle), and the 200 × 10 (bottom) lattice. The
largest lattices show both phases, whereas the smaller
lattices show no phase transition in the range of μ that
we analyzed. This is because μc decreases for increasing
temperature.
The silver blaze phase transition is also predicted

correctly by the ST models that accurately generalize to
the smaller values of the observables, e.g., by the model
that is shown at the top in Fig. 4, but not all ST models
generalize well.

4. Extrapolation to larger chemical potentials

After inspecting the remarkable results that the EQ
architecture and somemodels of the STarchitecture achieved
on the interval μ ∈ ½0.91; 1.05�, the question remains as to
how the different architectures perform on data correspond-
ing to chemical potentials greater than the one of the training
set.2 To answer it, we evaluate the already trained networks
on additional test sets, without retraining them. We have

created one test set for each lattice size under consideration.
Each of them contains 4000 lattice configurations corre-
sponding to each μ ∈ ½1.1; 1.5�, with steps of Δμ ¼ 0.1.
This amounts to 2 × 104 test samples per lattice size.
The predicted versus the true values of both observables

on the 60 × 4 lattice are shown in Fig. 7. The individual rows
correspond to the respective best model of each architecture,
according to the validation loss. Although the extrapolation
to higher jϕj2 seems to be more difficult than to higher n, the
predictions of the EQ architecture’s best model remain close
to the identity line, and they are visually better than the
predictions of the other two architectures’ best models, the
FL model performing the worst. This leads to a visible
deviation in the ensemble averages of the observables only
for μ ¼ 1.5 and is comparable on all lattice sizes under
consideration, with the exception of the FL architecture,
which allows only for predictions on the 60 × 4 lattice
without adapting the architecture and retraining. Note that
“best” refers to the validation loss and that there are models

FIG. 6. Predicted and true mean values of each observable for
each individual μ on the larger lattices. The predictions come
from the EQ model that has the lowest validation loss from all EQ
models that have been trained on 20000 training samples. The
training has been performed at μ ¼ 1.05. The kinks in the curves
allow for an estimate of the silver blaze phase transition, which is
indicated by the color gradient from the shaded region to the
white background.

2This was done thanks to a suggestion by the referee.

BULUSU, FAVONI, IPP, MÜLLER, and SCHUH PHYS. REV. D 104, 074504 (2021)

074504-12



of each architecture that extrapolate better than the respective
ones depicted in Fig. 7. However, since we are analyzing the
generalization capabilities of the networks, we are restricted
to metrics that take into account only the training and the
validation data, and we chose the validation loss.
Figure 8 shows the total and individual test losses over μ

on the 60 × 4 lattice. While the large difference between the
different architectures in performance on chemical poten-
tials smaller than μ ¼ 1.05 is quite substantial, the perfor-
mance on larger values of μ differs by less. At μ ¼ 1.5, for
example, the mean and median losses of the EQ architec-
ture are lower than their respective counterparts belonging
to the other architectures, but there the ST architecture’s
best model leads to the lowest. An analogous comparison
between the EQ and the ST architecture on other lattice
sizes leads to similar results, with the exception of the
100 × 5 lattice, on which the latter fails. Note that Fig. 7
depicts the model with the lowest validation loss pertaining

to each individual architecture. For the EQ architecture, it is
a model of the ensemble that has been trained on 20000
training samples, whereas for the ST and the FL architec-
tures, it is a model that has been trained on 18000 training
samples. Figure 8, however, shows the ensemble of models
trained on 20000 training examples for each individual
architecture.

5. Results summary

In summary, the best translationally equivariant architec-
ture performs better than the respective best model of the
other two types on the lattice size that they have been trained
on. Only some ST networks are able to generalize beyond
values of observables that they have encountered during
training, while EQ networks show no such problem. The FL
architecture shows similar behavior to the ST architecture,
but its predictions are less precise overall. Models of FL
architectures cannot be applied to different lattice sizes. The
EQ and the ST architectures are both capable of generalizing
to different lattice sizes, although the latter retains the higher
average test loss from the 60 × 4 lattice due to the bad
generalization to observable values that were not in the
training set. Furthermore, ST architectures are not suited to

FIG. 7. Predicted versus true observables for the best (accord-
ing to the validation loss) model of each architecture evaluated on
the test set generated from μ ∈ ½1.1; 1.5� on the 60 × 4 lattice.
Each model is able to predict higher values of n than given during
training, but the generalization of jϕj2 exhibits a clear difference
between the generalization capabilities of the models. All these
plots show 6.25% of the test data.

FIG. 8. Total test loss and its parts corresponding to the
individual observables n and jϕj2 over the chemical potential
on the 60 × 4 lattice. It displays the ensemble of models that have
been trained on 20000 training samples corresponding to each
architecture. The large difference in the quality of the predictions
for μ ≤ 1.05 is also visible in Fig. 2. For μ > 1.05, the
performance is more similar, although, for μ ¼ 1.5, the mean
value of the total test loss of the ST models still differs from the
mean values of the other architecture’s models by roughly one
order of magnitude.

GENERALIZATION CAPABILITIES OF TRANSLATIONALLY … PHYS. REV. D 104, 074504 (2021)

074504-13



make predictions on every arbitrary lattice size. Each lattice
dimension has to regard the behavior of the spatial pooling
layers in the network in order to use all the data for the
prediction. EQ architectures have the advantage to impose
no such restriction. Even though all the models have been
trained only on μ ¼ 1.05 on the 60 × 4 lattice, many of them
are able to predict the silver blaze phase transition on a
different lattice size, where μc ≪ 1.05. The EQ architectures
do this especially well. We found that data augmentation
does not help in the training of ST and FL architectures,
which is why we refrain from using it in the next two tasks.
Lastly, we want to make a comparison to the results of

Ref. [22] where the same regression task was performed.
Our best model needs much fewer trainable parameters
than the one in Ref. [22], i.e., approximately 3 × 104

compared to over 107 as extracted from their network
architecture. We also found well-performing models that
contain by an order of magnitude fewer parameters than our
best one. Furthermore, their network architecture would fall
in our FL category, which means that it can be employed on
only one specific lattice size.

V. CLASSIFICATION: DETECTING FLUX
VIOLATIONS

In the previous section, we have found that rather simple
CNN models can approximate the functions n and jϕj2
sufficiently well. In fact, the function n can be exactly
represented by a linear, equivariant model with a single 1 × 1

convolution. Similarly, while jϕj2 does not admit an exact
representation in terms of 1 × 1 convolutions, it is easy to see
that the lattice averaged quantity

P
x jϕxj2=ðNtNxÞ can be

written as a sum over a function that receives dominant
contributions from kx;μ and lx;μ at the same lattice site x.
In order to study models that require larger kernel sizes,

we need to shift our focus to quantities that cannot be
computed by taking into account only field values at a
single lattice site. One example for such a quantity is the
local flux violation

F x ≡
XD
ν¼1

ðkx;ν − kx−ν̂;νÞ ∈ Z: ð22Þ

Evaluated at some lattice site x, it specifically requires
information from nearest neighbors surrounding x.
We therefore propose to solve the following classifica-

tion task: An arbitrary field configuration X ¼ fkx;μ; lx;νg is
mapped to the label yðXÞ:

yðXÞ ¼
�
0 F x ¼ 0; ∀ x;

1 else:
ð23Þ

Since the worm algorithm generates only physical field
configurations which by design satisfy the flux constraint
F x ¼ 0; ∀ x, we adapt it to generate configurations

including open worms. The field configurations generated
this way exhibit flux violations at each end of the open worm
(see Fig. 9). While we will be using such open worm
configurations only for the purpose of classification and
regression tasks, they are typically utilized in the calculation
of n-point functions of ϕ [42,43].
For this task (and the following counting task in Sec. VI),

we have generated field configurations on square lattices
of various sizes given by ðNt × NxÞ ∈ f8 × 8; 16 × 16;
32 × 32; 64 × 64g. The value of the coupling constant is
fixed to λ ¼ 1, the mass m takes values given by
η ¼ 4þm2 ∈ f4.01; 4.04; 4.25g, and possible values of
the chemical potential μ are given by μ ∈ f1; 1.25; 1.5g.
Training is performed only on the smallest lattice size (8 × 8)
and two specific choices for the pair ðη; μÞ: ðη1; μ1Þ ¼
ð4.25; 1Þ and ðη2; μ2Þ ¼ ð4.01; 1.5Þ. We use a fixed number
of training examples, Ntrain ¼ 4000, distributed equally
between the two classes: On half of the generated field
configurations, we generate an open worm on top of a flux-
constraining configuration. Other combinations of parame-
ters and lattice sizes are used only during testing. Further
details regarding the datasets can be found in Appendix B.

A. Architecture search, training, and testing

We aim to make a comparison between the three
different architecture types that have been presented in
Fig. 1. As discussed previously, both EQ and ST archi-
tectures can be applied to field configurations of varying
lattice size, while FL architectures are compatible only
with a fixed lattice size. As we are dealing with a binary
classification problem, a sigmoid activation function is
applied to the output of our models.
To facilitate a fair comparison among architecture types,

we use OPTUNA to perform a search for well-performing
architectures using validation loss (binary cross entropy
loss) as the metric to optimize for. In all three cases, we
allow for up to Nconv;max ¼ 3 convolutional layers with
circular padding and a maximum kernel size of K ¼ 3 and
Nch ∈ f4; 8; 16; 32g possible channels. Every convolution
is followed by applying a LeakyReLU activation function.
In addition, after every convolution except the last, we
allow for the insertion of a pooling layer (either average or
max pooling) with stride s ¼ 1 in the case of EQ networks
and s ¼ 2 in the case of ST and FL networks. For
nonequivariant architectures, we require at least one pool-
ing layer with s ¼ 2 to break translational equivariance.
Following this convolutional part of the network, we either
apply a global max pooling layer (EQ and ST) or flatten the
remaining lattice structure (FL). Although other global
pooling layers are possible (e.g., average pooling or sum
pooling), global max pooling seems to be the most fitting
choice when the task is to detect pointlike defects in the
field configuration. We note that, as an additional search
parameter, we allow for explicitly setting bias terms to zero
in every convolutional layer. The resulting feature map is

BULUSU, FAVONI, IPP, MÜLLER, and SCHUH PHYS. REV. D 104, 074504 (2021)

074504-14



then fed to a dense network with up to Ndense;max ¼ 2 layers
with Nnodes ∈ f4; 8; 16; 32g nodes. Every linear layer is
followed by the application of LeakyReLU. A final linear
layer is used to map the activation values to a single output
node, which is followed by a sigmoid activation function.
As before, we use binary search parameters for setting bias
terms to zero in each linear layer.
For each architecture type, we perform two OPTUNA

search runs with 400 trials each. Each model candidate
(i.e., a set of hyperparameters) is trained five times with
randomly initialized weights to reduce random fluctuations
from the stochastic optimization algorithm. Among the two
searches, the best-performing architecture (according to
validation loss) is chosen and retrained 50 times to build an
ensemble of models for each architecture type.
Training proceeds similar to the regression task in Sec. IV.

We use the AMSGrad variant of the AdamW optimizer
without weight decay, a learning rate of λlr ¼ 10−3, a batch
size of 100, and 200 epochs. We employ early stopping
based on validation loss with a patience value of 50. The
validation set consists of 2000 examples from the same
distribution as the training set.
The best architectures found during the OPTUNA search

for each type are shown in Table VI.

B. Results

Our main results are presented in Figs. 10 and 11.
Figure 10 shows a comparison of all three architecture
types evaluated on 8 × 8 lattices as a function of μ.

Both EQ and ST exhibit very good classification accuracy
and test loss, while our ensemble of FL models contains a
few outliers which increase the average test loss.
Figure 11, which shows an average (loss and accuracy)
of all available test datasets, demonstrates that both EQ
and ST architectures generalize well on larger lattices. FL
architectures are not included, since they can be used for

TABLE VI. Best architectures for detecting flux violations.
This table shows feed-forward architectures as found by our
OPTUNA searches. Input in the form of ðNt; Nx; 4Þ tensors is fed
into the network at the top. The output of each network is a
classification probability. The last row denotes the number of
trainable parameters for each type. We use an asterisk (*) to
denote layers where the bias is explicitly set to zero.

EQ ST FL

Convð2 × 2; 4; 32Þ Conv�ð2 × 2; 4; 16Þ Conv�ð3 × 3; 4; 8Þ
LeakyReLU LeakyReLU LeakyReLU
Convð1 × 1; 32; 32Þ MaxPoolð2 × 2; 2Þ MaxPoolð2 × 2; 2Þ
LeakyReLU Convð1 × 1; 16; 16Þ Convð2 × 2; 8; 32Þ
GlobalMaxPool LeakyReLU LeakyReLU
Linear(32, 32) Convð1 × 1; 16; 8Þ AvgPoolð2 × 2; 2Þ
LeakyReLU LeakyReLU Convð2 × 2; 32; 32Þ
Linear�ð32; 1Þ GlobalMaxPool LeakyReLU
Sigmoid Linear�ð8; 32Þ Flatten

Linear(32, 1) Linear�ð128; 1Þ
Sigmoid Sigmoid

2657 953 5600

(a) (b)

FIG. 9. Visualization of an open worm field configuration and of the best models’ predictions. (a) An example field configuration
including an open worm (highlighted in brown) and the resulting flux violation given by Eq. (22). The pointlike violations occur at the
two open ends of the worm (shown as crosses). (b) Feature maps of the convolutional part of the best EQ (top, green) and ST (bottom,
blue) model showing the first four channels (of 32 and 16, respectively). Because of overparameterization, only some of the channels
detect the violation (e.g., channels 2 and 3 for EQ and 1 and 3 for ST), while other channels (e.g., 0 and 1 for EQ and 0 and 2 for ST) do
not produce easily interpretable output.

GENERALIZATION CAPABILITIES OF TRANSLATIONALLY … PHYS. REV. D 104, 074504 (2021)

074504-15



only one specific lattice size (in this case, 8 × 8). It is
evident that FL models perform worse on average com-
pared to EQ and ST networks, but, in contrast to the
previous regression task, the nonequivariant architecture
without flattening (ST) exhibits similar performance to the
equivariant architecture (EQ). The loss of spatial infor-
mation due to pooling operations with stride s > 1 does
not seem to affect the ability of ST models to correctly
classify flux violations.
In light of the results in Figs. 10 and 11, the question

arises how EQ and ST models are able to make predictions
with such high accuracy and if the computation that is
performed by the networks can be easily understood and
interpreted. To answer this, we “dissect” fully trained EQ
and ST models by examining the feature maps that are
generated by the convolutional part of the network;
i.e., we modify models by removing the global pooling
operation and the dense network. Examples of these
feature maps are shown in Fig. 9(b). We see that some
of the channels of the output of the convolutional part of
the network highlight flux violations in the vicinity of one
of the open ends of the worm [see Fig. 9(a)]. At first, it
seems surprising that only one of the two open ends is
detected. However, one has to keep in mind that the
models were not directly trained on the local flux violation
as in Eq. (22) but instead were only given global
information about whether or not a field configuration
contains a violation. Detecting a single defect is sufficient
to make the correct prediction.
It is further noteworthy that, compared to typical deep

learning models, the models found in our architecture
search are rather small, with ∼2700 parameters in the case
of EQ models and ∼1000 parameters for our best ST
architecture on this task.

VI. REGRESSION: COUNTING FLUX
VIOLATIONS

A natural extension of last section is the study of lattice
configurations with more than one open worm, meaning a
regression task where the inputs are lattice configurations
that are labeled by the number of open worms Nworms that
they contain. The addition of an open worm implies the
emergence of a flux violation at its head and tail, meaning
that the quantity defined in Eq. (22) respectsF x ¼ �1 at an
open worm end point. As discussed in more detail in
Appendix B, we explicitly forbid end points of different
worms to lie on top of each other; therefore, a configuration
with Nworms open worms is characterized by 2Nworms points
where F x ¼ �1. With this clarification, the task we are
going to tackle in this section can be formally expressed as
the approximation of the function

yðXÞ ¼ 1

2

X
x

jF xj; ð24Þ

FIG. 10. Top: test loss for best equivariant (EQ, green), non-
equivariant strided (ST, blue), and nonequivariant flattening (FL,
red) classification architectures as a function of the chemical
potential μ on 8 × 8 lattices. Training was performed on data with
μ ¼ 1 and 1.5 only. Bottom: test accuracy as a function of μ. The
colored bands show the ensemble uncertainty from all 50
randomly initialized models with the thick line indicating the
median loss (accuracy) and the dashed line showing the mean loss
(accuracy). Both EQ and ST architectures outperform the FL
architecture.

FIG. 11. Top: test loss for best equivariant (EQ, green) and
nonequivariant strided (ST, blue) classification architectures as a
function of lattice size. Bottom: test accuracy as a function of
lattice size. The networks have been trained on the 8 × 8 lattice
only. We observe that both types of architecture lead to good
generalization across lattice sizes with slightly less variation in
the performance of the EQ architecture.

BULUSU, FAVONI, IPP, MÜLLER, and SCHUH PHYS. REV. D 104, 074504 (2021)

074504-16



where X is a lattice configuration fkμ; lνg. We note that this
task resembles a simplified version of other counting
problems, such as crowd counting [44].
The physical parameters are the ones mentioned in the

previous section, with the addition of a number of open
worms ranging from 0 to 10, yielding a total of 36 × 11 ¼
396 combinations of parameters. While the test set includes
data coming from all these combinations, the training set
consists of data created at only a small subset of such
combinations to inspect the generalization capabilities of
the architecture under consideration. We use a training set
with Ntrain ¼ 20000 samples distributed equally between
two different numbers of open worms Nworms ∈ f0; 5g and
physical parameters ðη; μÞ ∈ fð4.01; 1.5Þ; ð4.25; 1Þg. The
validation set contains Nval ¼ 2000 samples. For more
details regarding the datasets, see Appendix B.

A. Architecture search, training, and testing

A preliminary phase is carried out in order to explore
trends with different hyperparameter choices. We also
empirically confirm the relationship between the predic-
tion of an extensive quantity and the necessity of a global
sum after the convolutional part of the neural network,
as discussed in Sec. II. The information gathered in this
initial stage is then used to determine the architecture
search space for OPTUNA. As in the two previous tasks,
this is done for the three architecture types shown in
Fig. 1. The search spaces are designed to be as similar as
possible to eliminate favorable conditions for any of the
three architecture types.
The EQ architecture search space is characterized by

Nconv ∈ f2; 3; 4g convolutional layers with a kernel size
K ∈ f1; 2; 3g, followed by a global sum pooling layer which
leads to a dense network, composed of Ndense ∈ f0; 1; 2g
layers. The ST architecture search space is structured in the
same way with the additional insertion of Npool ∈ f1; 2g
spatial pooling layers with stride s ¼ 2. Since training is
conducted on 8 × 8 lattices, three such pooling layers would
reduce the lattice to only one site and render global sum
pooling ineffective, which is why we limit the choice of
Npool. The FL architecture search space features two
mandatory convolutions with a 2 × 2 or a 3 × 3 kernel,
each followed by a spatial pooling layer. A 1 × 1 convolu-
tion can be inserted before and after each mandatory
convolution, leading to a total number of convolutions
N0

conv ∈ f2; 3; 4; 5; 6g. This part is followed by the flattening
layer and a dense network consisting of N0

dense ∈ f1; 2; 3g
layers, where the maximum number of layers is increased
with respect to the other two architecture types to compen-
sate for the possible absence of 1 × 1 convolutions. All three
types share the following features: Circular padding is used
in every convolution; the channels in the convolutions and
the nodes in the dense layers are selected from the set
Nch=nodes ∈ f4; 8; 16; 32g; a LeakyReLU activation function
is used after every convolution and every linear layer not

leading to the output; the bias in both the convolutions and
the linear layers is turned off. We also mention that an
independent search is run also for EQ architectures with the
optional inclusion of spatial pooling layers with stride s ¼ 1,
in the same fashion described for ST models. However, none
of the EQ models found in this run are better than the EQ
models found in the previous search.
As in the previous section, two metrics are employed for

performance analysis: the MSE loss and the accuracy, for
which predictions are rounded to the closest integer. The
quantity monitored during the optimization phase is val-
idation loss. Since the hyperparameter search spaces are
large, two OPTUNA runs are executed to reduce the risk of
overlooking promising regions. For each hyperparameter
selection, three models are trained, in order to attenuate
initialization influences, for 200 epochs with no early
stopping. The other hyperparameters are defined prior to
the optimization: We adopt a batch size of 16, a learning
rate λlr ¼ 10−3, and the AMSGrad variant of the AdamW
optimizer with zero weight decay.
Out of 100 different architectures from the two OPTUNA

searches, the best three for each type are selected according
to the validation loss averaged over their three initializa-
tions. These architectures become the starting point of the
next step: training the most promising architectures from
scratch.
We keep all the same hyperparameters, except for

the number of epochs which is increased to 500, and the
same training and validation sets. For a fair comparison,
20 instances of the same architectures are trained to
mitigate the influence of random initializations, and for
each of them the best model is saved. We sort the
architectures according to the average over the 20 models
of the validation loss. Table VII portrays the details of the
feed-forward networks.

B. Results

Since FL models cannot be evaluated on input sizes
different from the ones they have been trained on, we make
two kinds of comparison between architectures: One
involves all three types tested only on 8 × 8 lattices, and
the other focuses on EQ and ST tested on all lattice sizes
available. The first analysis is featured in Fig. 12 and the
second in Fig. 13, where the dashed lines indicate the mean
values and the markers represent the medians.
A common takeaway of these plots is that for this task

equivariance proves to be an important property to incor-
porate into the network. Interestingly, Fig. 12 suggests that
ST and even more so FL have difficulties in recognizing
certain numbers of open worms, with the lowest perfor-
mance at Nworms ¼ 1, which is compatible with the fact that
the training set consists only of Nworms ∈ f0; 5g.
We observe that the podium ordering depends on

the metric chosen; for example, in Table VIII, the mean
and the median of the validation loss lead to different

GENERALIZATION CAPABILITIES OF TRANSLATIONALLY … PHYS. REV. D 104, 074504 (2021)

074504-17



winners for all architecture types. As the training and
validation sets are characterized by the same physical
parameters, which represent a very small subset of the

whole set of parameters used for testing, metrics on the
validation set may not be indicative of the generalization
capabilities of the network, so we investigate the same
metrics on the test set in the two manners described at the
beginning of this subsection.
An in-depth analysis is shown in Figs. 14 and 15,

depicting the relationship between the test and validation

TABLE VII. Best architectures for counting flux violations.
This table lists the feed-forward architectures resulting from the
OPTUNA searches sorted by their average validation loss over 20
instances trained from scratch. Four channels of size Nt × Nx are
the input tensors passed at the top of each network, which yields a
scalar output representing the predicted number of open worms.
The last row shows the number of trainable parameters for each
architecture.

1st EQ 2nd EQ 3rd EQ

Convð1 × 1; 4; 32Þ Convð2 × 2; 4; 8Þ Convð1 × 1; 4; 4Þ
LeakyReLU LeakyReLU LeakyReLU
Convð2 × 2; 32; 8Þ Convð2 × 2; 8; 8Þ Convð2 × 2; 4; 8Þ
LeakyReLU LeakyReLU LeakyReLU
Convð2 × 2; 8; 16Þ Convð1 × 1; 8; 4Þ Convð2 × 2; 8; 4Þ
LeakyReLU LeakyReLU LeakyReLU
Convð1 × 1; 16; 8Þ Convð1 × 1; 4; 8Þ Convð3 × 3; 4; 1Þ
LeakyReLU LeakyReLU LeakyReLU
GlobalSumPool GlobalSumPool GlobalSumPool
Linear(8, 1) Linear(8, 1)

1800 456 308

1st ST 2nd ST 3rd ST

Convð2 × 2; 4; 16Þ Convð2 × 2; 4; 4Þ Convð2 × 2; 4; 4Þ
LeakyReLU LeakyReLU LeakyReLU
Convð1 × 1; 16; 32Þ MaxPoolð2 × 2; 2Þ AvgPoolð2 × 2; 2Þ
LeakyReLU Convð2 × 2; 4; 4Þ Convð3 × 3; 4; 16Þ
Convð1 × 1; 32; 32Þ LeakyReLU LeakyReLU
LeakyReLU GlobalSumPool GlobalSumPool
AvgPoolð2 × 2; 2Þ Linear(4, 1) Linear(16, 32)
Convð1 × 1; 32; 8Þ LeakyReLU
LeakyReLU Linear(32, 1)
GlobalSumPool
Linear(8, 32)
LeakyReLU
Linear(32, 1)

2336 132 1184

1st FL 2nd FL 3rd FL

Convð2 × 2; 4; 4Þ Convð2 × 2; 4; 8Þ Convð2 × 2; 4; 32Þ
LeakyReLU LeakyReLU LeakyReLU
AvgPoolð2 × 2; 2Þ AvgPoolð2 × 2; 2Þ AvgPoolð2 × 2; 2Þ
Convð3 × 3; 4; 8Þ Convð3 × 3; 8; 4Þ Convð3 × 3; 32; 4Þ
LeakyReLU LeakyReLU LeakyReLU
AvgPoolð2 × 2; 2Þ AvgPoolð2 × 2; 2Þ AvgPoolð2 × 2; 2Þ
Flattening Flattening Flattening
Linear(8, 4) Linear(4, 4) Linear(4, 32)
LeakyReLU LeakyReLU LeakyReLU
Linear(4, 32) Linear(4, 32) Linear(32, 16)
LeakyReLU LeakyReLU LeakyReLU
Linear(32, 1) Linear(32, 1) Linear(16, 1)

640 640 2704

FIG. 12. Test loss (top) and test accuracy (bottom) of the best
architectures according to the mean of the validation loss tested
on all 8 × 8 lattices as functions of the number of open worms.
Training and validation are carried out at Nworms ¼ 0 and
Nworms ¼ 5, while test results are shown for Nworms ∈ ½0; 10�.

FIG. 13. Test loss (top) and test accuracy (bottom) of the best
architectures according to the mean of the validation loss tested as
functions of the lattice size. Training and validation are carried
out on the smallest lattice (8 × 8), while testing is performed on
all lattice sizes.

BULUSU, FAVONI, IPP, MÜLLER, and SCHUH PHYS. REV. D 104, 074504 (2021)

074504-18



loss for all 20 models of each architecture. If an architecture
is prone to generalization issues, its instances are scattered
mostly vertically, which manifestly happens to most of the
ST and FL architectures. EQ models are instead distributed
closer to the black line, where test and validation loss are
equal. These results suggest that for EQ architectures low
validation loss correlates with low test loss, and, therefore,
they tend to reliably generalize.
Remarkably, there is also a nonequivariant architecture

featuring this behavior, specifically, the 2nd ST, whose best
two instances even outperform the best EQ models by
almost an order of magnitude both in the validation and in

the test loss. This is an illustration that the validation
procedure does not guarantee generalization if the valida-
tion set is restricted to a small set of physical parameters.
Indeed, the test loss on 8 × 8 lattices in the central column
in Table VIII already contains a generalization in terms of
physical parameters, which implies that it would be
sufficient to include at least some of those configurations
in the validation set in order to select the best generalizing
architecture on different lattice sizes.
We observe two distinctive properties of this outstanding

ST architecture, that are possible contributing factors to its
success: It is the only one containing a spatial max pooling
layer, and it is characterized by a very small number of
parameters, the smallest of all the examined architectures,
as can be seen in Table VII. Max pooling can be beneficial
for the detection of local defects, as pointed out in the

TABLE VIII. Metrics of the best architectures for counting flux violations. Highlighted in bold are the results of the best architectures
for each type according to the corresponding metric.

Validation loss on 8 × 8 Test loss on 8 × 8 Test loss up to 64 × 64

Mean Median Mean Median Mean Median

1st EQ 4.676 × 10−5 4.137 × 10−5 2.108 × 10−4 1.483 × 10−4 1.008 × 10−3 8.308 × 10−4

2nd EQ 1.042 × 10−4 2.440 × 10−5 3.525 × 10−4 8.783 × 10−5 1.807 × 10−3 7.936 × 10−4

3rd EQ 8.992 × 10−3 3.072 × 10−4 2.105 × 10−2 9.163 × 10−4 1.925 4.031 × 10−2

1st ST 2.331 × 10−5 2.173 × 10−5 9.438 × 10−3 3.576 × 10−3 4.446 3.026
2nd ST 8.479 × 10−5 4.372 × 10−5 2.545 × 10−4 9.340 × 10−5 3.738 × 10−3 1.171 × 10−3

3rd ST 2.869 × 10−4 2.171 × 10−5 1.676 × 10−2 1.381 × 10−3 2.943 9.580 × 10−1

1st FL 2.602 × 10−5 1.787 × 10−5 7.837 × 10−2 3.817 × 10−2

2nd FL 4.004 × 10−5 1.117 × 10−5 5.300 × 10−2 1.285 × 10−3

3rd FL 5.805 × 10−5 1.031 × 10−5 6.382 × 10−2 3.556 × 10−2

FIG. 14. Test loss on 8 × 8 lattices versus validation loss of
every instance for each architecture. This scatter plot shows 20
models obtained during retraining for the three winning
architectures of each type (EQ, ST, and FL). The diagonal
black line indicates where validation loss equals test loss.
Networks have been trained and validated for Nworms ∈ f0; 5g
and ðη; μÞ ∈ fð4.01; 1.5Þ; ð4.25; 1Þg on an 8 × 8 lattice. Gener-
alization (test loss) is checked with zero to ten open worms,
μ ∈ f1.0; 1.25; 1.5g, η ∈ f4.01; 4.04; 4.25g, and a fixed lattice
size of 8 × 8. The closer a particular point lies to the black line,
the better it generalizes. This appears to be generally the case
for EQ architectures (green circles).

FIG. 15. Scatter plot of test loss on all lattice sizes versus
validation loss of every instance for EQ and ST architectures.
Similar to Fig. 14, we demonstrate the generalization capabilities
of our models to different lattice sizes from 8 × 8 up to 64 × 64
and different physical parameters, while being trained on only
8 × 8. In particular, EQ models (green circles) are closer to the
black line where test loss and validation loss agree.

GENERALIZATION CAPABILITIES OF TRANSLATIONALLY … PHYS. REV. D 104, 074504 (2021)

074504-19



previous task, while the relative simplicity of this counting
problem calls for simpler network structures. Indeed,
OPTUNA favors overall small architectures for this task,
too, with a number of parameters between ∼100 and ∼3000
for the ones studied in detail.

VII. CONCLUSIONS AND OUTLOOK

In this work, we studied the effect of imposing global
translational invariance on convolutional neural network
architectures. We did so by comparing three different
architecture types that are commonly used and which differ
with regards to their equivariance and generalization proper-
ties. Network architectures that use only convolutions or
pooling operations of stride one and a global pooling layer
before a subsequent dense network preserve translational
equivariance. Such networks are also able to generalize to
different input sizes if the global pooling operation is
compatible with the intensive or extensive property of the
output quantity. Network architectures that contain pooling
operations with a stride greater than one generally break
translational equivariance. Using a flattening operation
instead of global pooling further impairs translational
equivariance of the network and restricts its usage to one
particular input shape, preventing a straightforward gener-
alization to other lattice sizes without retraining. This latter
architecture type has been particularly popular in image
classification tasks and has subsequently also been used in
physics applications.
We chose three different tasks related to characterizing

complex scalar field configurations on a two-dimensional
lattice with periodic boundary conditions that are given in
the flux representation. This representation contains inte-
ger-valued field configurations which have to obey a flux
conservation law. Valid configurations are generated using
the worm algorithm. The first task we performed was a
regression task to predict the particle density n and the field
average of jϕj2, given just the plain field configurations in
flux quantities. The predicted observables also depend on
various physical parameters, including the chemical poten-
tial μ, that are set during the generation of the configura-
tions. We found that it is sufficient to train at only one value
of μ in order to be able to generalize to other values of μ, in
particular, also to extrapolate beyond the silver blaze phase
transition. While this result seems surprising at first, it can
be explained by the fact that different input configurations
at fixed training chemical potential μtrain already cover a
wide range of possible input values that are shared between
physical parameters, i.e., other values of μ. Comparing the
three architecture types by selecting their best-performing
representatives from a network architecture search using
OPTUNA, we generally find that equivariant architectures
perform best at this task. They excel, in particular, when
increasing the size of the training set. We also explored
whether data augmentation on the input side can compen-
sate for missing equivariance, but this turned out to have a

barely noticeable effect on the result. Furthermore, we
investigated the generalization properties to smaller and
larger lattice sizes, which is possible only for architectures
that contain a global pooling layer. Again, across all lattice
sizes, the equivariant architecture wins. Strided architec-
tures can generalize only to lattice sizes that are multiples
of the stride combinations used in the network, whereas
flattening architectures are not able to generalize at all to
other lattice sizes. These architectures would have to be
retrained for each input size separately.
The next two tasks were related to detecting and

counting flux violations from open worm configurations.
Such configurations can appear in the calculation of n-point
functions. They are particularly interesting, as the result
cannot be approximated by a purely local function, which
would involve only 1 × 1 convolutions but requires at least
a 2 × 2 convolution. In the case of detecting flux violations,
flattening models perform worst, while equivariant and
strided architectures with global pooling layers are both
able to predict the result with comparably high accuracy.
Inspecting the feature maps of the trained models, we found
that these models learn to detect only one end of the open
worms, but this is sufficient to solve this task. For the third
task to count the number of flux violations, we trained
only on configurations containing either zero or five open
worms and tested on configurations that contained any
number of worms from zero to ten. In this setup, again the
equivariant architecture wins compared to strided or flat-
tening architectures. Interestingly, the networks have most
problems to differentiate between zero and one worms,
while a larger number of worms poses fewer problems.
Another interesting observation is that the selection pro-
cedure of the network architecture search can lead to
different optimal choices with very different generalization
properties. Because of our particular choice of validation
and test data, the validation loss alone is not sufficient to
select the architecture that can generalize best to other
physical parameters or network sizes. The optimal models
we found were much smaller regarding the number of
weight parameters than models used in comparable studies
in the literature.
Based on our findings, we can clearly recommend using

global pooling layers in future machine learning tasks
that involve systems with global translational invariance.
Global pooling layers allow one to easily generalize results
to different lattice sizes in regression and classification
tasks. Whether the advantages of using pooling layers with
a stride greater than one outweigh the possible disadvan-
tages of breaking translational equivariance depends on the
system being studied. An interesting aspect that warrants
further study is the question of why some architectures
seem to generalize better than others and whether there is a
way to identify or characterize such architectures already
before testing on an extended test set. Moreover, physical
parameters may not be the best quantities for assessing

BULUSU, FAVONI, IPP, MÜLLER, and SCHUH PHYS. REV. D 104, 074504 (2021)

074504-20



generalization capabilities, but one should rather study the
distribution of input and output values of the network.
While in this work we concentrated on translational
symmetry, it would be interesting to extend this study in
the future to further symmetries on the lattice using, for
example, G-CNNs. One could also examine coset pooling
at intermediate layers that respect translational invariance.
Finally, based on our findings, it seems worthwhile to
investigate and study possible translationally equivariant
versions of current architectures that explicitly break trans-
lational invariance, even though the underlying theory
would respect this symmetry.
The code and datasets used in this work are published in

a separate repository [45].

ACKNOWLEDGMENTS

We thank Kai Zhou for correspondence. D. I. M. thanks
Jimmy Aronsson for valuable discussions regarding group
equivariant neural networks. This work has been supported
by the Austrian Science Fund FWF No. P32446-N27,
No. P28352, and doctoral program No. W1252-N27. The
Titan V GPU used for this research was donated by the
NVIDIA Corporation.

APPENDIX A: THE COMPLEX SCALAR FIELD

The action of a 1þ 1-dimensional complex scalar field ϕ
in the continuum with quartic interaction, a nonzero
chemical potential μ, and no external sources can be
written as

S¼
Z

dx0dx1ðjD0ϕj2− j∂1ϕj2−m2jϕj2−λjϕj4Þ; ðA1Þ

with D0 ¼ ∂0 − iμ, the mass m, and the coupling constant
λ. The invariance property of the action under translations
in time and space gives rise to the conservation of the
energy momentum tensor. After a Wick rotation

x0 → ix2; x2 ∈ R; ðA2Þ

we obtain the imaginary time version of the action in
Eq. (A1), namely,

SE¼
Z

dx1dx2ðj∂1ϕj2þjD2ϕj2þm2jϕj2þλjϕj4Þ; ðA3Þ

with D2 ¼ ∂2 þ μ and the imaginary time x2.
The Euclidean action, which is given by Eq. (A3), can be

discretized, which makes it possible to analyze the complex
scalar field on the lattice. The result reads (see, e.g., [32])

Slat ¼
X
x

�
ηjϕxj2 þ λjϕxj4

−
X2
ν¼1

ðeμδν;2ϕ�
xϕxþν̂ þ e−μδν;2ϕ�

xϕx−ν̂Þ
�
; ðA4Þ

where η ¼ 2Dþm2 ¼ 4þm2 and δν;2 is the Kronecker
delta. The first sum is over all lattice sites x, and the second
one is over the two directions: space and imaginary time.
The position xþ ν̂ is reached by moving one unit vector ν̂
from x in the ν direction. Naturally, periodic boundary
conditions are employed. In Eq. (A4), we have explicitly
set the lattice spacing to unity. This implies that all
dimensionful quantities such as m and μ are understood
to be given in appropriate units of the lattice spacing.
We limit the extension of the system to L in the spatial
direction and to 1=T in the temporal one, where T denotes
the temperature.
For nonzero chemical potential μ, the action in Eq. (A4)

becomes complex. This is problematic, because in this
case the term e−Slat cannot be interpreted as a probability
distribution, and, therefore, it is not possible to use standard
Monte Carlo sampling to determine the partition function

Z ¼
Z

Dϕe−Slat ðA5Þ

and its derivatives. To circumvent this so-called complex
action problem, which is also known as the sign problem,
one can work in a dual formulation, known as flux
representation. The derivation of the partition function
in the flux representation can be found in Ref. [32].
The result reads

Z ¼
X
fk;lg

�Y
x;ν

1

ðjkx;νj þ lx;νÞ!lx;ν!
��Y

x

eμkx;2WðfxÞ
�

×

�Y
x

δ

�X
ν

ðkx;ν − kx−ν̂;νÞ
��

; ðA6Þ

with

X
fk;lg

¼
Y
x;ν

X∞
kx;ν¼−∞

X∞
lx;ν¼0

¼
X∞

k1;1¼−∞

X∞
l1;1¼0

X∞
k1;2¼−∞

� � �
X∞
lN;2¼0

; ðA7Þ

where the N lattice sites have been labeled with numbers
x ∈ f1; 2;…; Ng. The degrees of freedom are the four
integer fields kx;ν and lx;ν, where ν ¼ 1; 2. The former must
obey the flux conservation law

GENERALIZATION CAPABILITIES OF TRANSLATIONALLY … PHYS. REV. D 104, 074504 (2021)

074504-21



X
ν

ðkx;ν − kx−ν̂;νÞ ¼ 0 ðA8Þ

at all lattice sites x for the Kronecker delta not to vanish; the
latter are non-negative. The function WðfxÞ is given by

WðfxÞ ¼
Z

∞

0

dxxfxþ1e−ηx
2−λx4 ; ðA9Þ

and its integer valued argument reads

fx ¼
X
ν

½jkx;νj þ jkx−ν̂;νj þ 2ðlx;ν þ lx−ν̂;νÞ�: ðA10Þ

Observables can be derived from the partition function
and written in terms of the dual variables kx;ν and lx;ν.
In this paper, two quantities are of special interest, namely,
the particle number density n and the lattice averaged
squared absolute value of the field jϕj2. Their ensemble
averages h� � �i are given by

hni ¼ T
V
∂ lnZ
∂μ ¼ 1

NxNt

�X
x

kx;2

�
; ðA11Þ

hjϕj2i ¼ −
T
V
∂ lnZ
∂η ¼ 1

NxNt

�X
x

Wðfx þ 2Þ
WðfxÞ

�
; ðA12Þ

where Nx (Nt) is the number of lattice sizes in the spatial
(temporal) direction.
For our machine learning tasks, we associate each

individual configuration fkx;μ; lx;μg with particular values
of n and jϕj2 in Eqs. (20) and (21), even though the dual
formulation does not allow for a direct mapping between
field configurations ϕx and link configurations fkx;μ; lx;μg.

APPENDIX B: DATASETS

In this Appendix, we discuss the Monte Carlo procedure
we use to generate the datasets for our machine learn-
ing tasks.
The flux representation, which is given by Eq. (A6), is

characterized by the positive field l and the field k con-
strained by Eq. (A8). Since they are different in nature, a
suitable algorithm is composed of two distinct parts, each
of which takes care of the modifications of the respective
field. The link variables l are updated using a standard
Monte Carlo algorithm, where the Metropolis acceptance
probabilities are ratios of Boltzmann weights of the dual
action. The links k are updated by means of the worm
algorithm, originally proposed in Ref. [33], where the
acceptance probabilities follow the prescriptions given in
Ref. [32]. Using these algorithms, we generate all datasets
in this work.
The initial configuration is set to zero at every lattice site

for both k and l. Before reaching equilibrium, the system
undergoes a thermalization phase, which we discard. Since

autocorrelation in the dataset can affect the learning
process, we monitor it and set an appropriate number of
waiting sweeps between each measurement.

1. Regression: Predicting observables on the lattice

The dataset contains lattice configurations and corre-
sponding n and jϕj2 values, the first ones being the input for
the CNN and the latter being the quantities to predict. We
create data with the following set of physical parameters:
η ¼ 4.01, λ ¼ 1, and μ ∈ f0.91;…; 1.5g, where values in
the range [0.91, 1.05] are separated by Δμ ¼ 0.005, while
Δμ ¼ 0.1 in the range [1.1, 1.5]. We choose five different
lattice sizes: 50 × 2, 60 × 4, 100 × 5, 125 × 8, and
200 × 10, where the first number is Nt ¼ 1=T and the
second one Nx ¼ L. Different Nt means different temper-
ature T, which influences the properties of the phase
transition, as shown in Fig. 4. The total amount of training
data is Ntrain ¼ 20000, generated at μ ¼ 1.05 on the 60 × 4
lattice, and the whole validation set consists of Nval ¼ 2000
at the same μ and lattice size. We define two distinct test
sets, both containing 4000 data points per each μ at each
lattice size. The first test set (test set A) is characterized by
values of μ ∈ f0.91;…; 1.05g, which correspond to the
ones used in Ref. [22], in order that a direct comparison
with the results found there is possible. The second test set
(test set B) is designed to examine the extrapolation
abilities of the neural networks to chemical potentials
higher than the one they have been trained on, specifically,
in the range μ ∈ f1.1;…; 1.5g. The total amount of test
data is Ntest ¼ 4000 × 5 × ð29þ 5Þ ¼ 680000. We discard
the first 1000 sweeps to disregard thermalization and then
save a configuration and the respective observables every
five sweeps. For some combinations of chemical potential
and lattice size, we observe a high autocorrelation. In these
cases, the number of sweeps is increased to 50, which
sufficiently reduces the autocorrelation.
We now closely inspect the distribution of the two

fundamental quantities needed for the computation of
the observables n and jϕj2, namely, kx;t and fx. This is
meant to give an additional insight into the dataset proper-
ties and the generalization capabilities of the architectures.
We remind that kx;t can take any integer value, while fx is
either 0 or a positive even number. In the following
discussion, we omit the lattice index x and use kt, kx,
and f instead.
In Figs. 16 and 17, the first histogram corresponds to the

distribution of the training set, while the second and third
show the distributions of test sets A and B, respectively.
The domains covered by the training set and test set A are
approximately the same, meaning that the generalization
we require does not involve an extrapolation. Given this, it
is easy to see why models that perform well during training
and validation are able to generalize to different physical
parameters. Despite having the same domain, there is an
evident discrepancy in the distributions of the training set

BULUSU, FAVONI, IPP, MÜLLER, and SCHUH PHYS. REV. D 104, 074504 (2021)

074504-22



and test set A, which is caused by the different values of μ
that are used to generate the lattice configurations. This
could be a possible source of generalization issues affecting
some architectures. Note that, while the distributions
appear to be somewhat similar, there may still be additional
differences in the correlations of these quantities, which
could further impair generalization capabilities of net-
works. The domain that is covered by test set B, however,
is larger than the domain of the training set, arguably
making the generalization to these data more demanding.
While the relationship between hni and kt is linear, as

shown in Eq. (A11), hjϕj2i is highly nonlinear in f, as
indicated by Eqs. (A12) and (A9). One might find it
surprising that a CNN is able to learn such a complicated
function and even generalize to other physical parameters.
Alongside the observations on domain and distributions,

we have to consider the ratioWðf þ 2Þ=WðfÞ that enters in
Eq. (A12). As shown in Fig. 17, it can be effectively
approximated by a linear function in the range where most
of the distribution of the training set and test set A is
concentrated. This explains why even simple models can
easily learn to predict jϕj2 on these data. The larger values
of f that are represented in test set B, however, lead to

FIG. 16. Distributions of the link field kt. These histograms
feature the distributions of kt in the training set (top), test set A
(middle), and test set B (bottom). The test sets maintain a similar
distribution along different lattice sizes. Even though training
and test set A cover the same domains, their distributions are
different, which is the origin of the generalization issues of some
architectures. The distribution of test set B also reaches higher
values of kt, which can make a generalization to data in test set B
even more difficult than to data in test set A. Bars corresponding
to weights smaller than 10−4 in each plot are not shown.

FIG. 17. Distributions of f and ratio of WðfÞ. The histograms
show the distributions of f in the training set (top), test set A
(middle), and test set B (bottom). The last plot portraysWðf þ 2Þ
=WðfÞ evaluated with the same physical parameters used
throughout the task, η ¼ 4.01 and λ ¼ 1. The markers represent
even integer values of f, which enter the computation of jϕj2. In
every histogram, we do not report weights below 10−4.

GENERALIZATION CAPABILITIES OF TRANSLATIONALLY … PHYS. REV. D 104, 074504 (2021)

074504-23



larger values of said ratio. At these values, the linear
approximation that might be a good approximation on the
training set and test set Aworsens, and so do the predictions
of jϕj2.

2. Classification: Detecting flux violations

The algorithm presented in Ref. [32] is designed to
generate only closed worm configurations, which respect
the flux conservation and allow one to compute the
observables n and jϕj2. For the classification and regression
tasks in Secs. V and VI, we want to create field configu-
rations where the flux conservation (A8) is violated. In
order to do this, we modify the algorithm of the previous
subsection in the following manner: After equilibrium is
reached via the original l and k alternate update, we start a
new worm and save the configuration with one open worm.
As the worm moves on the lattice, we replace the stored
configuration with probability 1=L, where L is the current
worm length, until the worm closes. One can easily check
that this corresponds to selecting one of the open worm
configurations with equal probability.
The dataset consists of closed worm configurations,

labeled as class 0, and open worm configurations, labeled
as class 1, each originating from two independent runs of
the algorithm. Both classes are characterized by the same
physical parameters, namely, η ∈ f4.01; 4.04; 4.25g, λ ¼ 1,
μ ∈ f1; 1.25; 1.5g, and Nt ¼ Nx ∈ f8; 16; 32; 64g. The
training set is generated on a particular subset, specifically,
the two combinations ðη; μÞ ∈ fð4.01; 1.5Þ; ð4.25; 1Þg on
the smallest lattice size, i.e., 8 × 8, with a total number of
Ntrain ¼ 4000 samples equally distributed among each
class and parameter combination. The validation set has
the same structure, the only difference being the number of
samples of Nval ¼ 400. The test set contains 100 instances
per each class and parameter combination, summing up to
100 × 2 × 36 ¼ 7200 samples. The number of skipped
configurations to avoid picking samples while the thermal-
ization process is still ongoing is chosen as 2000.We use 100
waiting sweeps between each measurement. The dataset
created for this task and the next one share very similar
characteristics. We address the analysis of only the third task
in the following subsection, implying that the considerations
we make there are also valid in this context.

3. Regression: Counting flux violations

The algorithm designed in the previous task is extended
to account for multiple worms. After the first configuration
with an open worm is saved as described in the last section,
it becomes the starting configuration for the next worm to
be drawn. We explicitly prohibit that a worm can cross
heads and tails of previous worms, i.e., lattice sites where
the flux is violated. By doing this, we ensure the absence of
mathematical ambiguity in the definition of the Metropolis
acceptance probability. As a consequence, three values for
the flux are possible: 0, þ1, and −1. The procedure is

repeated until the required number of open worms is
reached and the configuration is saved. Then the last
configuration without open worms is restored, the estab-
lished waiting sweeps are performed, and another set of
open worms is drawn.
The same set of physical parameters of the previous task

is used with the addition of the number of worms
Nworms ∈ f0; 1;…; 10g. The subset of parameters for the
training set is chosen as the combinations ðη; μÞ ∈
fð4.01; 1.5Þ; ð4.25; 1Þg and Nworms ∈ f0; 5g, again on the
smallest lattice size. The total amount of data used isNtrain ¼
20000 when training only on 0 and five worms. The
validation set consists as usual of a number of configurations
such that Nval ¼ Ntrain=10 of the number of training sam-
ples. The test set contains again 100 samples per parameter
combination, leading to a total of 100 × 11 × 36 ¼ 39600
instances. Initially skipped configurations and waiting
sweeps are the same as in the previous task.
The two quantities necessary for the computation of the

flux are the two integer fields kt and kx, as suggested by
Eq. (A8). Their distributions are depicted, respectively, in
Figs. 18 and 19. We can draw the same conclusions as in
the first task concerning the similarity of the domains and
the difference in the distributions between training and test
sets. We add that the choice of ðη; μÞ for the training set is
made specifically to include the lower and higher values of
kt, in such a way that the domain covered is the same in the
training and in the test set. This explains the two peaks in
the kt training distribution in the top histogram in Fig. 18.
Such behavior does not emerge in the case of kx because,
unlike kt, it is not coupled with the chemical potential.

FIG. 18. Distributions of the link field kt. These two histograms
feature the distributions of kt in the training set (top) and in the
test set (bottom).

BULUSU, FAVONI, IPP, MÜLLER, and SCHUH PHYS. REV. D 104, 074504 (2021)

074504-24



APPENDIX C: ADDITIONAL PROOFS

This Appendix contains proofs referenced in Sec. III.
The idea of the first lemma is to show a simple, albeit
arguably trivial, example of a network’s prediction being
invariant under translations of the input even though the
network contains a layer that breaks translational equivar-
iance before the global pooling layer.
Lemma 1.—Given an N × N0 feature map f and a k × k

spatial average pooling layer P with stride s ¼ k, kjN, and
kjN0, applying a global average pooling layer directly after
the spatial average pooling layer is equivalent to applying
only the global average pooling layer and omitting the
spatial average pooling layer.
Proof.—We want to show that

GAPðPfðxÞÞ ¼ GAPðfðyÞÞ: ðC1Þ

The global average pooling over anN × N0 feature map f is
given by

GAPðfðyÞÞ ¼ 1

NN0
X
y∈F

fðyÞ; ðC2Þ

with

f∶F ⊂ Z2 → R: ðC3Þ

The spatial average pooling P can be interpreted as a
special convolutional layer

PfðxÞ ¼ ½f⋆ψ �s¼kðxÞ ¼
1

k2
X
ϕ∈Ψ

fðkxþ ϕÞ; ðC4Þ

using the filter ψðxÞ ¼ 1=k2, where

ψ∶Ψ ⊂ Z2 → R: ðC5Þ

The resulting feature map f0∶F0 ⊂ Z2 → R has the dimen-
sions N=k × N0=k. The validity of Eq. (C1) can be seen by

GAPðPfðxÞÞ ¼ 1

ðN=kÞðN0=kÞ
X
x∈F0

1

k2
X
ϕ∈Ψ

fðkxþ ϕÞ

¼ 1

NN0
X
y∈F

fðyÞ

¼ GAPðfðyÞÞ: ðC6Þ

The first step uses Eqs. (C2) and (C4); note that the GAP is
performed over the feature map f0. The second equality
holds for s ¼ k, kjN, and kjN0, and the last one utilizes
again Eq. (C2) but for the feature map f. ▪
Remark.—Even though the spatial average pooling layer

with s > 1 breaks translational equivariance under arbitrary
translations, the result after the GAP is still invariant under
translations.
The following lemma shows that a convolutional layer

that is directly followed by a global average pooling layer
does not have the effect that one might expect a regular
convolution to have. Loosely speaking, it does not effec-
tively increase the network’s depth, because it collapses with
the global pooling layer. This lemma should, therefore,
also highlight the importance of the usage of an activation
function between the last convolutional and the global
average pooling layer.
Lemma 2.—Given anM ×M0 feature map f0 and an l × l

convolution ψ 0: Ψ0 ⊂ Z2 → R with a stride of one and a
single output channel, applying the convolution and then
performing a global average pooling is equivalent to
performing the global average, multiplying it by the sum
of the convolution’s weights, and adding the bias b.
Proof.—What we want to show is

GAPð½f0⋆ψ 0�ðxÞ þ bÞ ¼ GAPðf0ðxÞÞ
X
ϕ0∈Ψ0

ψ 0ðϕ0Þ þ b:

ðC7Þ

This can be seen by

FIG. 19. Distributions of the link field kx. These two histograms
feature the distributions of kx in the training set (top) and in the
test set (bottom).

GENERALIZATION CAPABILITIES OF TRANSLATIONALLY … PHYS. REV. D 104, 074504 (2021)

074504-25



GAPð½f0⋆ψ 0�ðxÞ þ bÞ

¼ 1

MM0
X
x∈F0

�X
ϕ0∈Ψ0

f0ðxþ ϕ0Þψ 0ðϕ0Þ þ b

�

¼ 1

MM0
X
x∈F0

X
ϕ0∈Ψ0

f0ðxþ ϕ0Þψ 0ðϕ0Þ þ b

¼
X
ϕ0∈Ψ0

ψ 0ðϕ0Þ 1

MM0
X
x∈F0

f0ðxþ ϕ0Þ þ b

¼
X
ϕ0∈Ψ0

ψ 0ðϕ0ÞGAPðf0ðxÞÞ þ b

¼ GAPðf0ðxÞÞ
X
ϕ0∈Ψ0

ψ 0ðϕ0Þ þ b: ðC8Þ

The first equality combines the definitions of the GAP,
given by Eq. (C2), and the convolution, given by Eq. (10).
The second one utilizes the fact that the bias does not
depend on the lattice site x. The third step takes advantage
of the fact that ψ 0 does not depend on x, and the fourth one
makes use of the periodic boundary conditions and of
Eq. (C2). The last equality holds because the result of the
GAP does not depend on ϕ0. ▪
Remark.—This is possible only without an activation

function between the convolutional layer and the global
average pooling. Also note the importance of periodic
boundary conditions.
The following theorem combines both lemmas and

shows that a spatial average pooling layer, followed by a
convolutional and a global average pooling layer, still leads
to an output that is invariant under translations of the input
if the strides and kernel sizes are chosen appropriately. It
emphasizes once again the importance of an activation
function before the global average pooling.
Theorem 1.—Given an N × N0 feature map, a k × k

spatial average pooling layer with stride s ¼ k, kjN, kjN0,
and an l × l convolution ψ 0 with a stride of one and a single
output channel, applying the spatial average pooling layer,
then the convolution and then the global average pooling
layer, is equivalent to applying the global average pooling
layer, multiplying the result by the sum of the convolution’s
weights, and adding the bias b.
Proof.—Combining Lemmas 1 and 2 withM ¼ N=k and

M0 ¼ N0=k leads to the desired result. ▪
Remark.—The generalization to more than one feature

map and multiple output channels is straightforward.

APPENDIX D: PARTIALLY OCCLUDED INPUT

In this Appendix, we analyze the worse performance of
the ST models on the 100 × 5 lattice from Sec. IV, which is
depicted in Fig. 5. The source of the problem is that a model
ignores part of the data at a strided operation if the kernel and
stride are not compatible with the data’s shape that the layer
in question receives. In the case of the ST models, these

operations are the strided spatial pooling layers. To examine
this problem in more detail, we perform an experiment in
which we hide a portion of the input data from the network
for both architectures, ST and EQ: On every lattice size, the
network is shown only a part of the input. This is done by
discarding 20% of it either on the right or on the bottom of
the lattice, so that the resulting restricted input still has a
rectangular shape and, thus, a valid input size for the
networks. This way, only 80% of the input data are shown
to the network, but the value of the observable still
corresponds to the full lattice configuration. The input size
of the 50 × 2 lattice becomes 40 × 2, 60 × 4 becomes
48 × 4, 100 × 5 becomes 100 × 4, 125 × 8 becomes
100 × 8, and 200 × 10 becomes 160 × 10 and 200 × 8,
respectively. Note that the data are discarded four times in
the temporal and twice in the spatial direction. The result of
this experiment is shown in Fig. 20. The overall test loss
(top) shows two kinks, namely, for the lattices, for which the
input was restricted in the spatial direction. These kinks are
also seen in the loss curve corresponding to jϕj2 (bottom) but
are much more pronounced for n (middle). In fact, if the data
are discarded in the temporal direction, the quality of the
prediction of n barely changes at all, as can be seen by
comparing the middle plot in Fig. 5 to the middle plot in

FIG. 20. Test loss (top) and its two parts (middle and bottom)
that come from each observable, corresponding to discarding
20% of the input data, on various lattice sizes. The networks are
trained on a 60 × 4 lattice. The dimension along which the input
data are occluded is marked in red. For n, the predictions become
worse if the data are concealed in the spatial direction. For jϕj2,
the predictions become worse if any data are hidden, but they are
slightly worse if data are suppressed in the spatial direction. The
reason for this lies in the nature of the observables.

BULUSU, FAVONI, IPP, MÜLLER, and SCHUH PHYS. REV. D 104, 074504 (2021)

074504-26



Fig. 20. The reason for this is the way the configurations are
generated, namely, with the worm algorithm.
The nature of said algorithm is local, and each step

involves adjacent points, giving rise to modifications of
the field values that are contiguous on the lattice. This can
be formally expressed by interpreting worms as paths on
the toruslike space corresponding to the lattice with its
periodic boundary conditions. For this task, we deal with
only closed worm configurations, so the paths are, in fact,
loops. With this picture in mind, Eq. (20) represents an
(averaged) winding number in the temporal dimension of
the torus. Discarding data in this direction does not alter
the winding number. On the other hand, if data are
discarded along the other dimension, parts of the worm
might be discarded as well, leading to a very high
discrepancy from the true winding number.
The small kinks in jϕj2 can be explained by means of

some additional remarks: First of all, in the range of fx in
our dataset, the ratioWðfx þ 2Þ=WðfxÞ is almost linear, so

jϕj2 can be viewed as the average of fx in first approxi-
mation. The functionsW and fx are given by Eqs. (A9) and
(A10), respectively. The link variables lt and lx are not
modified by the worm but by a standard Monte Carlo
process; hence, their distribution is not biased in any
direction, and the average over the truncated lattice has
small deviations from the one over the whole lattice. Note
that these deviations decrease as the lattice increases in size.
Unlike the integer field kt, kx is not coupled to the chemical
potential; therefore, it is less likely for worms to wind
around the spatial dimension than the temporal. This means
that the average of kx is affected by a cut in the time
dimension, but deviations from the true value do not occur
often and decrease as the lattice size increases. Combining
all these remarks finally yields the reason for those two
kinks being at the same value of the restricted lattice size for
both observables in Fig. 20 and the reason why they are less
pronounced for jϕj2.

[1] K. Fukushima, Neocognitron: A self-organizing neural
network model for a mechanism of pattern recognition
unaffected by shift in position, Biol. Cybern. 36, 193
(1980).

[2] K. Fukushima, Cognitron: A self-organizing multilayered
neural network, Biol. Cybern. 20, 121 (1975).

[3] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S.
Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C.
Berg, and L. Fei-Fei, Imagenet large scale visual recognition
challenge, Int. J. Comput. Vis. 115, 211 (2015).

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet
classification with deep convolutional neural networks,
Commun. ACM 60, 84 (2017).

[5] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-
based learning applied to document recognition, Proc. IEEE
86, 2278 (1998).

[6] M. Lin, Q. Chen, and S. Yan, Network in network, arXiv:
1312.4400.

[7] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning
for image recognition, in Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2016 (IEEE, Las Vegas, USA, 2016), pp. 770–778.

[8] T. S. Cohen and M. Welling, Group equivariant convolu-
tional networks, in Proceedings of the 33rd International
Conference on Machine Learning, Vol. 48, PMLR, 2016
(JMLR, New York, USA, 2016), pp. 2990–2999.

[9] T. S. Cohen and M. Welling, Steerable CNNs, in Proceed-
ings of the International Conference on Learning Repre-
sentations (ICLR), 2017 (OpenReview, Toulon, France,
2017).

[10] D. E. Worrall, S. J. Garbin, D. Turmukhambetov, and G. J.
Brostow, Harmonic networks: Deep translation and rotation
equivariance, in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017
(IEEE, Honolulu, USA, 2017), pp. 7168–7177.

[11] D. Worrall and G. Brostow, CubeNet: Equivariance to 3D
rotation and translation, in Proceedings of the European
Conference on Computer Vision (ECCV), 2018 (Springer,
Cham; Munich, Germany, 2018), pp. 567–584.

[12] A. S. Ecker, F. H. Sinz, E. Froudarakis, P. G. Fahey, S. A.
Cadena, E. Y. Walker, E. Cobos, J. Reimer, A. S. Tolias, and
M. Bethge, A rotation-equivariant convolutional neural
network model of primary visual cortex, in Proceedings
of the International Conference on Learning Representa-
tions (ICLR), 2019 (OpenReview, New Orleans, USA,
2019).

[13] B. S. Veeling, J. Linmans, J. Winkens, T. Cohen, and M.
Welling, Rotation equivariant CNNs for digital pathology, in
Medical Image Computing and Computer-Assisted Inter-
vention (MICCAI), 2018 (Springer International Publishing,
Granada, Spain, 2018), pp. 210–218.

[14] T. S. Cohen, M. Weiler, B. Kicanaoglu, and M. Welling,
Gauge equivariant convolutional networks and the icosa-
hedral CNN, in Proceedings of the 36th International
Conference on Machine Learning, Vol. 97, PMLR, 2019
(JMLR, Long Beach, USA, 2019), pp. 1321–1330.

[15] M.W. Lafarge, E. J. Bekkers, J. P. W. Pluim, R. Duits, and
M. Veta, Roto-translation equivariant convolutional net-
works: Application to histopathology image analysis,
Med. Image Anal. 68, 101849 (2021).

[16] S. Pang, A. Du, M. A. Orgun, Y. Wang, Q. Sheng, S. Wang,
X. Huang, and Z. Yu, Beyond CNNs: Exploiting further
inherent symmetries in medical images for segmentation,
arXiv:2005.03924.

[17] K. A. Nicoli, C. J. Anders, L. Funcke, T. Hartung, K.
Jansen, P. Kessel, S. Nakajima, and P. Stornati, Estimation

GENERALIZATION CAPABILITIES OF TRANSLATIONALLY … PHYS. REV. D 104, 074504 (2021)

074504-27

https://doi.org/10.1007/BF00344251
https://doi.org/10.1007/BF00344251
https://doi.org/10.1007/BF00342633
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1145/3065386
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://arXiv.org/abs/1312.4400
https://arXiv.org/abs/1312.4400
https://doi.org/10.1016/j.media.2020.101849
https://arXiv.org/abs/2005.03924


of Thermodynamic Observables in Lattice Field Theories
with Deep Generative Models, Phys. Rev. Lett. 126, 032001
(2021).

[18] A. M. M. Scaife and F. Porter, Fanaroff-riley classification
of radio galaxies using group-equivariant convolutional
neural networks, Mon. Not. R. Astron. Soc. 503, 2369
(2021).

[19] G. Kanwar, M. S. Albergo, D. Boyda, K. Cranmer, D. C.
Hackett, S. Racanière, D. J. Rezende, and P. E. Shanahan,
Equivariant Flow-Based Sampling for Lattice Gauge
Theory, Phys. Rev. Lett. 125, 121601 (2020).

[20] D. Boyda, G. Kanwar, S. Racanière, D. J. Rezende, M. S.
Albergo, K. Cranmer, D. C. Hackett, and P. E. Shanahan,
Sampling using SUðNÞ gauge equivariant flows, Phys. Rev.
D 103, 074504 (2021).

[21] M. Favoni, A. Ipp, D. I. Müller, and D. Schuh, Lattice gauge
equivariant convolutional neural networks, arXiv:2012
.12901.

[22] K. Zhou, G. Endrődi, L.-G. Pang, and H. Stöcker, Regres-
sive and generative neural networks for scalar field theory,
Phys. Rev. D 100, 011501 (2019).

[23] S. J. Wetzel and M. Scherzer, Machine learning of explicit
order parameters: From the Ising model to SU(2) lattice
gauge theory, Phys. Rev. B 96, 184410 (2017).

[24] D. Bachtis, G. Aarts, and B. Lucini, Mapping distinct phase
transitions to a neural network, Phys. Rev. E 102, 053306
(2020).

[25] D. Bachtis, G. Aarts, and B. Lucini, Extending machine
learning classification capabilities with histogram reweight-
ing, Phys. Rev. E 102, 033303 (2020).

[26] S. Blücher, L. Kades, J. M. Pawlowski, N. Strodthoff, and
J. M. Urban, Towards novel insights in lattice field theory
with explainable machine learning, Phys. Rev. D 101,
094507 (2020).

[27] K. Padavala, A. Singh, and J. Kundu, Machine learned
phase transitions in a system of anisotropic particles on a
square lattice, arXiv:2102.03006.

[28] Y. Wang, Z. Cao, and A. B. Farimani, Deep reinforcement
learning optimizes graphene nanopores for efficient desali-
nation, arXiv:2101.07399.

[29] K. Zhang, S. Lederer, K. Choo, T. Neupert, G. Carleo, and
E.-A. Kim, Hamiltonian reconstruction as metric for varia-
tional studies, arXiv:2102.00019.

[30] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama,
Optuna: A next-generation hyperparameter optimization
framework, in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, Association for Computing Machinery,
2019 (Association for Computing Machinery, New York,
NY, USA; Anchorage, AK, USA, 2019), pp. 2623–2631.

[31] E. Noether, Invariante Variationsprobleme, Nachrichten von
der Gesellschaft der Wissenschaften zu Göttingen, Math.-
Phys. Kl. 1918, 235 (1918), http://eudml.org/doc/59024.

[32] C. Gattringer and T. Kloiber, Lattice study of the Silver
Blaze phenomenon for a charged scalar ϕ4 field, Nucl. Phys.
B869, 56 (2013).

[33] N. Prokof’ev and B. Svistunov, Worm Algorithms for
Classical Statistical Models, Phys. Rev. Lett. 87, 160601
(2001).

[34] G. Cybenko, Approximation by superpositions of a sigmoi-
dal function, Math. Control Signals Syst. 2, 303 (1989).

[35] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang, The expressive
power of neural networks: A view from the width, Adv.
Neural Inf. Process. Syst. 30 (2017), https://papers.nips.cc/
paper/2017/hash/32cbf687880eb1674a07bf717761dd3a-
Abstract.html.

[36] A.Paszke et al., PyTorch:An imperative style, high-performance
deep learning library, Adv. Neural Inf. Process Syst. 32 (2019),
https://papers.nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa
9f7012727740-Abstract.html.

[37] F. Yu and V. Koltun, Multi-scale context aggregation by
dilated convolutions, in Proceedings of the International
Conference on Learning Representations (ICLR), 2016
(OpenReview, San Juan, Puerto Rico, 2016).

[38] A. L. Maas, A. Y. Hannun, and A. Y. Ng, Rectifier non-
linearities improve neural network acoustic models, in
Proceedings of the ICML Workshop on Deep Learning
for Audio, Speech and Language Processing, 2013 (ICML,
Atlanta, USA, 2013), https://sites.google.com/site/
deeplearningicml2013/relu_hybrid_icml2013_final.pdf.

[39] S. J. Reddi, S. Kale, and S. Kumar, On the convergence
of Adam and beyond, in Proceedings of the International
Conference on Learning Representations (ICLR), 2018
(ICLR, Scottsdale, USA, 2018).

[40] I. Loshchilov and F. Hutter, Fixing weight decay regulari-
zation in Adam, in Proceedings of the International
Conference on Learning Representations (ICLR), 2019
(OpenReview, New Orleans, USA, 2019).

[41] T. D. Cohen, Functional Integrals for QCD at Nonzero
Chemical Potential and Zero Density, Phys. Rev. Lett. 91,
222001 (2003).

[42] C. Gattringer and T. Kloiber, Spectroscopy in finite density
lattice field theory: An exploratory study in the relativistic
bose gas, Phys. Lett. B 720, 210 (2013).

[43] T. Rindlisbacher, O. Åkerlund, and P. de Forcrand,
Sampling of general correlators in worm-algorithm based
simulations, Nucl. Phys. B909, 542 (2016).

[44] G. Gao, J. Gao, Q. Liu, Q. Wang, and Y. Wang, CNN-based
density estimation and crowd counting: A survey, arXiv:
2003.12783.

[45] See https://gitlab.com/openpixi/scalar_ml.

BULUSU, FAVONI, IPP, MÜLLER, and SCHUH PHYS. REV. D 104, 074504 (2021)

074504-28

https://doi.org/10.1103/PhysRevLett.126.032001
https://doi.org/10.1103/PhysRevLett.126.032001
https://doi.org/10.1093/mnras/stab530
https://doi.org/10.1093/mnras/stab530
https://doi.org/10.1103/PhysRevLett.125.121601
https://doi.org/10.1103/PhysRevD.103.074504
https://doi.org/10.1103/PhysRevD.103.074504
https://arXiv.org/abs/2012.12901
https://arXiv.org/abs/2012.12901
https://doi.org/10.1103/PhysRevD.100.011501
https://doi.org/10.1103/PhysRevB.96.184410
https://doi.org/10.1103/PhysRevE.102.053306
https://doi.org/10.1103/PhysRevE.102.053306
https://doi.org/10.1103/PhysRevE.102.033303
https://doi.org/10.1103/PhysRevD.101.094507
https://doi.org/10.1103/PhysRevD.101.094507
https://arXiv.org/abs/2102.03006
https://arXiv.org/abs/2101.07399
https://arXiv.org/abs/2102.00019
http://eudml.org/doc/59024
http://eudml.org/doc/59024
https://doi.org/10.1016/j.nuclphysb.2012.12.005
https://doi.org/10.1016/j.nuclphysb.2012.12.005
https://doi.org/10.1103/PhysRevLett.87.160601
https://doi.org/10.1103/PhysRevLett.87.160601
https://doi.org/10.1007/BF02551274
https://papers.nips.cc/paper/2017/hash/32cbf687880eb1674a07bf717761dd3a-Abstract.html
https://papers.nips.cc/paper/2017/hash/32cbf687880eb1674a07bf717761dd3a-Abstract.html
https://papers.nips.cc/paper/2017/hash/32cbf687880eb1674a07bf717761dd3a-Abstract.html
https://papers.nips.cc/paper/2017/hash/32cbf687880eb1674a07bf717761dd3a-Abstract.html
https://papers.nips.cc/paper/2017/hash/32cbf687880eb1674a07bf717761dd3a-Abstract.html
https://papers.nips.cc/paper/2017/hash/32cbf687880eb1674a07bf717761dd3a-Abstract.html
https://papers.nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://sites.google.com/site/deeplearningicml2013/relu_hybrid_icml2013_final.pdf
https://sites.google.com/site/deeplearningicml2013/relu_hybrid_icml2013_final.pdf
https://sites.google.com/site/deeplearningicml2013/relu_hybrid_icml2013_final.pdf
https://sites.google.com/site/deeplearningicml2013/relu_hybrid_icml2013_final.pdf
https://sites.google.com/site/deeplearningicml2013/relu_hybrid_icml2013_final.pdf
https://doi.org/10.1103/PhysRevLett.91.222001
https://doi.org/10.1103/PhysRevLett.91.222001
https://doi.org/10.1016/j.physletb.2013.01.068
https://doi.org/10.1016/j.nuclphysb.2016.05.026
https://arXiv.org/abs/2003.12783
https://arXiv.org/abs/2003.12783
https://gitlab.com/openpixi/scalar_ml
https://gitlab.com/openpixi/scalar_ml

