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We present results on the isoscalar form factors including the disconnected contributions, as well as on
the strange and charm quark form factors. Using previous results on the isovector form factors, we
determine the flavor decomposition of the nucleon axial form factors. These are computed using an
ensemble of Nf ¼ 2þ 1þ 1 twisted mass fermions simulated with physical values of quark masses. We
investigate the SU(3) flavor symmetry and show that there is up to 10% breaking for the axial and up to
50% for the induced pseudoscalar form factors. By fitting the Q2-dependence, we determined the
corresponding root mean square radii. The pseudoscalar coupling of the η meson and the nucleon is found
to be gηNN ¼ 3.7ð1.0Þð0.7Þ, and the Goldberger-Treiman discrepancy for the octet combination about 50%.
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I. INTRODUCTION

Axial form factors play a key role in the interactions of
nucleons with the W and Z bosons, the carriers of the weak
force. They also provide insights into the structure of the
nucleon that in turn can affect our ability to compute cross
sections that may aid us into revealing new physics.
Neutron beta decay and other charged current weak
interaction processes like νμ þ n → pþ μ− are sensitive
to the isovector axial form factor Gu−d

A ðQ2Þ. Neutrino
elastic scattering on protons is sensitive to the strange
axial form factor of the proton Gs

AðQ2Þ, which for Q2 ¼ 0

determines the strange quark contribution to the proton spin
Δs. The role of strange quarks is also important for
calculating the cross sections for a class of popular cold
dark matter candidates [1]. A variety of experiments
ranging from nuclear recoil direct-detection experiments
to collider indirect-experiments are searching for dark
matter candidates that use as input either spin-dependent
or spin-independent nucleon cross sections. A first meas-
urement of parity-violating asymmetries in forward elastic
electron-proton scattering by HAPPEx [2] combined with
data from neutrino and antineutrino-proton elastic scatter-
ing cross sections from Brookhaven E734 [3] determined

simultaneously the strange vector and axial form factors of
the proton at nonzero momentum transfer square Q2 [4].
Additional parity-violating data from the G0 experiments
[5,6] improved the determinations of the strange axial form
factors [7]. The MicroBooNE neutrino detector at Fermilab
aims to extract the strange axial form factor of the nucleon
in the range of momentum transfers of 1 GeV2 to as low as
0.08 GeV2 [8,9]. Combining neutrino-proton neutral and
charged current scattering cross section measurements with
available polarized electron-proton/deuterium cross section
data is expected to reduce the experimental uncertainty and
allow for the extraction of Δs with an order of magnitude
better accuracy complementing polarized deep inelastic
scattering experiments. The axial form factors are the main
source of error in the description of neutrino-nucleon
interactions. Therefore, a calculation of these form factors
within lattice QCD will provide valuable input in experi-
ments such as DUNE [10,11] and Hyper-K [12,13].
Lattice QCD provides the ab initio nonperturbative

framework for computing the nucleon axial form factors
using directly the QCD Lagrangian. While there are a
number of lattice QCD studies of the isovector axial form
factors with recent results given in Refs. [14–19], only a
few studies are done for other flavor combinations [18–20].
The reason for this is that the isovector flavor combination
is free of quark disconnected contributions. In Ref. [14] we
presented our results for the isovector axial form factors,
while also investigating finite volume effects. This work
focuses on the study of the isoscalar, octet and singlet flavor
combination by computing all disconnected contributions,
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allowing us to perform a flavor decomposition. The
computation is performed using one ensemble of Nf ¼
2þ 1þ 1 dynamical quarks with the up, down, strange and
charm masses tuned to their physical values, referred to as
physical point.
The remainder of this paper is organized as follows: In

Sec. II we discuss the PCAC relation and the parametriza-
tion of theQ2 dependence of the form factors. In Sec. III we
explain in detail the lattice methodology to extract the
nucleon axial and induced pseudoscalar form factors. In
Sec. IV we discuss the renormalization, and in Sec. V we
show results for the isoscalar combination, where both
connected and quark disconnected contributions are pre-
sented. The strange and charm form factors are presented in
Sec. VI, in Sec. VII the flavor singlet and octet combina-
tions are discussed and in Sec. VIII we provide the results
for the form factors for each quark flavor. Final results are
quoted in Sec. IX, comparisons with previous studies are
carried out in Sec. X, and in Sec. XI we conclude.

II. MATRIX ELEMENTS, FORM FACTORS AND
Q2-DEPENDENCE

In a previous paper [14], we presented results on the
isovector axial form factors Gu−d

A ðQ2Þ and Gu−d
P ðQ2Þ, as

well as, the pseudoscalar Gu−d
5 ðQ2Þ. We refer the reader to

that paper for details on the computation of the isovector
combination. In this paper, we will describe the flavor
combinations where disconnected contributions are
involved, such as the isoscalar combination,

Auþd ¼ uγuγ5uþ dγuγ5d: ð1Þ

Combining the isovector and isoscalar matrix elements one
can extract the axial form factors for the up and down
quarks. We will also compute the strange and charm form
factors and construct SU(3) flavor combinations.
Considering the u, d and s flavor triplet we form the
flavor singlet combination given by

A0
μ ≡ Auþdþs

μ ¼ ūγμγ5uþ d̄γμγ5dþ s̄γμγ5s; ð2Þ

and the flavor octet given by

A8
μ ≡ Auþd−2s

μ ¼ ūγμγ5uþ d̄γμγ5d − 2s̄γμγ5s: ð3Þ

In the SU(3) flavor symmetric limit, the matrix elements of
A8
μ will only have connected contributions. The axial Ward-

Takahashi identity that leads to the partial conservation of
the axial-vector current (PCAC) is

∂μA8
μ ¼ 2imqP8; ð4Þ

where P8 is the octet pseudoscalar density. The octet
combination of the induced pseudoscalar form factor

Guþd−2s
P is related to the pseudoscalar coupling between

the η-meson and the nucleon.
The isosinglet flavor combination, on the other hand, has

an anomalous term [21] and it satisfies a modified relation,

∂μA0
μ ¼ 6Qþ 2imqP0; ð5Þ

where P0 ¼ ūγ5uþ d̄γ5dþ s̄γ5s is the isosinglet pseudo-
scalar current, QðxÞ is the topological density QðxÞ ¼
1

32π2
ϵμνρσTr½FμνðxÞFρσðxÞ� and Fμν is the field strength

tensor of QCD. The anomalous gluonic term is induced
by the axial anomaly. Since gluons couple equally to each
quark flavor, the anomalous term vanishes only for non-
singlet combinations as in Eqs. (4). The anomaly term has
the consequence that the axial-vector flavor singlet current
is not conserved even for massless quarks.
The nucleon matrix element of the axial operators

in Eqs. (1), (3) and (2) can be written in terms of the
axial, GAðQ2Þ, and induced pseudoscalar, GPðQ2Þ, form
factors as

hNðp0;s0ÞjAμjNðp;sÞi

¼ ūNðp0;s0Þ
�
γμGAðQ2Þ− Qμ

2mN
GPðQ2Þ

�
γ5uNðp;sÞ; ð6Þ

where uN is the nucleon spinor with initial (final) momen-
tum pðp0Þ and spin sðs0Þ, q ¼ p0 − p the momentum
transfer and q2 ¼ −Q2. The expression is given in
Euclidean space. Note that we have suppressed the index
denoting the flavor combination for simplicity.
Calculations on the lattice allow us to compute the form

factors only at given discrete values of Q2. In order to
investigate their full Q2 dependence we use two fit forms,
the well-known dipole Ansatz, and the model independent
z-expansion [22,23]. In the case of the dipole Ansatz we
have that

GðQ2Þ ¼ Gð0Þ
ð1þ Q2

m2Þ2
: ð7Þ

In the case of the axial form factor, Gð0Þ gives the axial
charge and m the axial mass for the flavor combinations
under investigation. The radius is extracted from the slope
in the limit Q2 → 0, namely,

hr2i ¼ −
6

Gð0Þ
dGðQ2Þ
dQ2

����
Q2→0

: ð8Þ

Combining Eqs. (7) and (8) one can show that the radius is
connected to the dipole mass as

hr2i ¼ 12

m2
: ð9Þ
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Customarily, one characterizes the size of a hadron probed
by a given current by the root mean square radius (rms)
defined as

ffiffiffiffiffiffiffiffi
hr2i

p
.

In the case of the z-expansion, the form factor is
expanded in a series as

GðQ2Þ ¼
Xkmax

k¼0

akzkðQ2Þ; ð10Þ

where

zðQ2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
−

ffiffiffiffiffiffi
tcut

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
þ ffiffiffiffiffiffi

tcut
p ; ð11Þ

imposing analyticity constrains, with tcut the particle
production threshold. We use the three-pion cut, tcut ¼
9m2

π [23] for all flavor combinations, although apart from
the isovector case, the cutoff might be higher due to heavier
decay modes. The coefficients ak appearing in Eq. (10)
should have an upper bound, so that the series converges at
some value of k. Larger values of ak that could appear for
k > 1 can lead to instabilities. Therefore, we employ
Gaussian priors, which are centered around zero with a
chosen standard deviation wmaxðja0j; ja1jÞ [19], and with
w controlling the width of the prior. The value of the form
factor at zero momentum is a0 and the radius is

hr2i ¼ −
3a1

2a0tcut
: ð12Þ

The coefficients a0 and a1 are anticipated to have opposite
signs in order to lead to positive values of the radii. If we
compare the above equation with the one extracted for the
dipole fit of Eq. (9) we can define the corresponding mass
determined from the z-expansion to be

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
8a0tcut
a1

s
: ð13Þ

This relation will allow us to compare the radius extracted
from the dipole and the z-expansion.

III. LATTICE METHODOLOGY

This section explains the methodology we use within
lattice QCD in order to compute correlation functions and
ensure ground state dominance. It also provides details on
the gauge ensemble used in the analysis.

A. Correlation functions

For the computation of the correlation functions we use
the standard nucleon interpolating field,

J Nðt; x⃗Þ ¼ ϵabcuaðxÞ½ubTðxÞCγ5dcðxÞ�; ð14Þ

where C ¼ γ0γ2 is the charge conjugation matrix and uðxÞ,
dðxÞ the up and down quark fields. The two-point function
in momentum space is then expressed as

CðΓ0; p⃗; ts; t0Þ
¼
X
x⃗s

e−iðx⃗s−x⃗0Þ·p⃗Tr½Γ0hJ Nðts; x⃗sÞJ̄ Nðt0; x⃗0Þi�; ð15Þ

where with x0 we denote the source and xs the sink
positions on the lattice where states with the quantum
numbers of the nucleon are created and destroyed, respec-
tively. Γ0 is the unpolarized positive parity projec-
tor Γ0 ¼ 1

2
ð1þ γ0Þ.

For the construction of the three-point correlation func-
tion the axial-vector current is inserted at a time slice, tins,
between the time of the creation and annihilation of states.
The three-point function is given by

CμðΓρ; q⃗; p⃗0; ts; tins; t0Þ
¼

X
x⃗ins;x⃗s

eiðx⃗ins−x⃗0Þ·q⃗e−iðx⃗s−x⃗0Þ·p⃗0Tr½ΓρhJ Nðts; x⃗sÞ

× Aμðtins; x⃗insÞJ̄ Nðt0; x⃗0Þi�; ð16Þ

with Γρ is the polarized projector, Γρ ¼ iΓ0γ5γρ.

B. Ground state dominance

The interpolating field of Eq. (14) creates the nucleon
ground state but also excited states. We apply Gaussian
smearing [24,25] to the quark fields entering the interpolat-
ing field in order to increase the overlap with the ground
state. See Ref. [14] for more details about our smearing
procedure. To isolate the matrix element of interest we
construct a ratio of three- to a combination of two-point
functions [26–29],

RμðΓρ; p⃗0; p⃗; ts; tinsÞ

¼CμðΓρ; p⃗0; p⃗; ts; tinsÞ
CðΓ0; p⃗0; tsÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðΓ0; p⃗; ts− tinsÞCðΓ0; p⃗0; tinsÞCðΓ0; p⃗0; tsÞ
CðΓ0; p⃗0; ts− tinsÞCðΓ0; p⃗; tinsÞCðΓ0; p⃗; tsÞ

s
: ð17Þ

Overlap terms and time decaying exponentials cancel in the
ratio. In Eq. (17) and from now on, we consider that ts and
tins are expressed relative to the source t0 i.e., ts − t0 → ts
and tins − t0 → tins. The ratio of Eq. (17) leads to the
nucleon matrix element in the large time ts and tins limits,
that is
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RμðΓρ; p⃗0; p⃗; ts; tinsÞ⟶
ðts−tinsÞΔE≫1

tinsΔE≫1
ΠμðΓρ; p⃗0; p⃗Þ; ð18Þ

where ΔE is the energy gap between the first excited state
and the nucleon state. The rate of convergence to the
nucleon state depends, besides the smearing procedure,
also on the type of the insertion operator. In order to ensure
ground state dominance, we employ three methods, namely
a one state fit (plateau method), a two-state fit and the
summation method. For a more detailed description about
those three methods we refer the reader to Ref. [14].
In this analysis we consider the same energy spectrum

decomposition in both the two- and three-point functions.
Unlike the isovector operator where πN states are expected
to couple strongly [30], in this study, we consider flavor
combinations given in Eqs. (1)–(3) which are not isovector
[14]. Indeed for the isovector combination one finds that
πN states are enhanced enhancing excited states contami-
nation [14,15,31]. However, for octet and singlet flavor
operators which are related to η, η0 coupling to the nucleon
such an enhancement of πN states is not motivated.
We determine the first excited state energy E1ðp⃗Þ for

each value of p⃗ by fitting the two-point function and use it
when fitting the ratio of Eq. (17). We also fit the zero
momentum two-point function to extract the nucleon mass
and then use the continuum dispersion relation to determine
the lowest state energy E0ðp⃗Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ p⃗2
p

for a given
value of momentum. As shown in Ref. [14], the continuum
dispersion relation is satisfied for all the momenta consid-
ered in this work.
From the nucleon matrix element one can determine the

axial GAðQ2Þ and induced pseudoscalar GPðQ2Þ form
factors using the decomposition of Eq. (6). Since there
are several combinations of insertion, projector indices and
momenta there is an over-constrained system of equations
which determines the form factors. Details are given in
Appendix B of Ref. [14].

C. Ensemble of gauge configurations

This work is based on the analysis of an Nf ¼ 2þ 1þ 1
twisted mass clover-improved fermion ensemble, referred
to as cB211.072.64 (see Table I). In Ref. [14], where we
studied the isovector form factors, we also analyzed two
Nf ¼ 2 ensembles with the same light quark action,

namely the cA2.09.48 and cA2.09.64 ensembles that have
the same lattice spacing but different volumes (see Table I).
Results on the axial form factors for the cA2.09.48
ensemble were first presented in Ref. [18]. For all the
ensembles the lattice spacing is determined using the
nucleon mass. More details are given in Refs. [32–35].
Finite volume effects have not been detected within the
statistical precision obtained for the isovector quantities,
and therefore we do not consider them here.
These gauge configurations are produced by the

Extended Twisted Mass Collaboration (ETMC) using the
twisted mass fermion formulation [37,38] with a clover
term [39] and the Iwasaki [40] improved gauge action.
Since the simulation is done at maximal twist, we have
automatic OðaÞ improvement for the physical observables
studied here.

D. Disconnected three-point functions and statistics

The three-point function defined in Eq. (16), in general,
has two different contributions: (i) one in which the
insertion operator couples directly to a valence quark in
the nucleon, leading to the so-called connected three-point
function and (ii) one in which the current couples to a sea
quark giving the disconnected three-point function. In the
case of the flavor isovector or octet currents, the dis-
connected contribution vanishes in the SU(3) flavor
symmetric mass point and in the continuum limit. In
the case of the flavor octet given in Eq. (3), and flavor
singlet given in Eq. (2), disconnected contributions are
nonzero. Since for the octet combination the disconnected
contribution vanishes only in the SU(3) flavor symmetric
limit, any nonvanishing contribution can be used to
assess the level of SU(3) symmetric breaking. For the
evaluation of the connected contributions we employ
standard techniques, as discussed in Ref. [14], where
we also give the statistics used for computing the con-
nected contributions.
Here we describe our approach to compute the discon-

nected three-point functions. The disconnected quark loop
for the axial-vector current is given by

Lðtins; q⃗Þ ¼
X
x⃗ins

Tr½D−1ðxins; xinsÞγμγ5�eþix⃗·q⃗: ð19Þ

TABLE I. The parameters of the simulation for the Nf ¼ 2þ 1þ 1 cB211.072.64 ensemble [32] but also the two Nf ¼ 2 ensembles
cA2.09.48 [36] and cA2.09.64. cSW is the value of the clover coefficient and β ¼ 6=g where g is the bare coupling constant. Nf is the
number of dynamical quark flavors, the lattice spacing is a and the lattice volume is V.mπ is the pion mass and mN the nucleon mass. L
the spatial lattice length in physical units.

Ensemble cSW β Nf V mπL a [fm] mN=mπ amπ amN mπ [GeV] L [fm]

cB211.072.64 1.69 1.778 2þ 1þ 1 643 × 128 3.62 0.0801(4) 6.74(3) 0.05658(6) 0.3813(19) 0.1393(7) 5.12(3)
cA2.09.64 1.57551 2.1 2 643 × 128 3.97 0.0938(3)(1) 7.14(4) 0.06193(7) 0.4421(25) 0.1303(4)(2) 6.00(2)
cA2.09.48 1.57551 2.1 2 483 × 96 2.98 0.0938(3)(1) 7.15(2) 0.06208(2) 0.4436(11) 0.1306(4)(2) 4.50(1)
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The trace of the all-to-all quark propagator D−1ðxins; xinsÞ,
is the most computationally intensive quantity. Inverting
from every point to every point on the lattice is computa-
tionally impossible for the lattice sizes considered in this
work and the resources available. Instead, we combine
stochastic methods to estimate the value of the quark loop.
A novel method we employ is the combination of hierar-
chical probing [41] and deflation of low eigenvalues.
Hierarchical probing allows for partitioning the lattice up
to a distance in a hierarchical manner using the Hadamard
vectors as a basis. The partitioning is done through a
coloring approach, up to a distance 2k where 2dðk−1Þþ1

Hadamard vectors are needed (d ¼ 4 for a four-dimen-
sional coloring). The computational cost of the method
increases as 24 each time one increases the coloring
distance. Thus, even if the probing is done in a hierarchical
manner allowing us to reuse the results from previous
distances, the gain is small when we increase further the
distance. Contributions from points beyond the probing
distance are expected to be suppressed since the quark
propagator decays exponentially fast with the distance from
the diagonal. We further suppress such contributions using
stochastic vectors that have the properties,

1

Nr

X
r

jξrihξrj ¼ 1þO
�

1ffiffiffiffiffiffi
Nr

p
�
; ð20Þ

and

1

Nr

X
r

jξri ¼ 0; ð21Þ

where Nr is the number of stochastic vectors. The off
diagonal contributions are suppressed by 1=

ffiffiffiffiffiffi
Nr

p
. The

hierarchical probing method was first employed in studies
for heavier than physical pion masses [19,42,43] yielding
results with unprecedented accuracy. For simulations at the
physical point, it was shown [33] that a larger probing
distance is required, as expected, since the light quark
propagator decays slower due to the smaller quark mass.
Instead of increasing the probing distance, which translates
to a significant increase in computational cost, we combine
hierarchical probing with deflation of the low modes [44].
Namely, for the light quarks we construct the low mode
contribution to the quark loops by computing exactly the
smallest eigenvalues and corresponding eigenvectors of the
squared Dirac operator and combine them with the con-
tribution from the remaining higher modes, which is
estimated using hierarchical probing. Additionally, we fully
dilute in spin and color and employ the one-end trick [45],
that was employed in our previous studies [18,46,47].
The parameters used for the evaluation of the quark loops

are collected in Table II. Two hundred low modes of the
square Dirac operator are computed in order to reduce the
stochastic noise in the computation of the light quark loops.
For the charm quark we use a coloring distance 22 in

hierarchical probing as compared to 23 used for the light
and the strange quark loops. To increase the accuracy in the
charm quark case we compute 12 stochastic vectors instead
of one used for the light and strange quark loops. Nucleon
two-point functions are evaluated for two hundred ran-
domly chosen source positions that are sufficient for
reducing the gauge noise for the large sink-source time
separations of the disconnected three-point functions. Since
they are available, we use the same number of two point
functions for all sink-source time separations.
For disconnected quantities we are not limited to using

p⃗0 ¼ 0 since no additional inversions are needed.
Therefore, we consider several values of p⃗0, namely p⃗0 ¼
ð2π=LÞn⃗0 up to n⃗02 ¼ 2 and for p⃗ up to n⃗2 ¼ 22. This
allows us to compute the disconnected parts of the form
factors for a higher density of Q2 values.

IV. RENORMALIZATION FUNCTIONS

In order to relate the matrix elements computed on the
lattice to physical observables one needs to renormalize.
Here, we summarize our procedure. A more detailed
description can be found in Ref. [48]. We employ a
mass-independent renormalization scheme and analyze five
Nf ¼ 4 ensembles generated specifically for the determi-
nation of the renormalization functions. The value of β is the
same as that of the cB211.072.64 ensemble. The pion
masses are in the range of [366-519] MeV. These are used
to take the chiral limit. The lattice volume is 243 × 48 for all
Nf ¼ 4 gauge ensembles. TheRome-Southamptonmethod,
RI0 scheme [49], is employed where the quark propagators
and vertex functions are nonperturbatively determined. For
the axial-vector operator we need to renormalize with ZA,
and, sincewe consider also disconnected contributions, both
singlet and non-singlet renormalization factors are needed.
We impose the following renormalization conditions:

Zq ¼
1

12
Tr½ðSLðpÞÞ−1SBornðpÞ�jp2¼μ2

0
; ð22Þ

TABLE II. Parameters and statistics used for the evaluation of
the disconnected quark loops for the cB211.072.64 ensemble.
The number of configurations analyzed is Ncnfs ¼ 750, and the
number of source positions used for the evaluation of the two-
point functions is Nsrcs ¼ 200 per gauge configuration. In the
case of the light quarks, we compute the lowest 200 modes
exactly and deflate before computing the higher modes stochas-
tically. Nr is the number of noise vectors, and NHad the number of
Hadamard vectors. Nsc ¼ 12 corresponds to spin-color dilution,
and Ninv is the total number of inversions per configuration.

Flavor Ndef Nr NHad Nsc Ninv

Light 200 1 512 12 6144
Strange 0 1 512 12 6144
Charm 0 12 32 12 4608
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and

Z−1
q ZO

1

12
Tr½ðΓLðpÞÞΓBorn−1ðpÞ�jp2¼μ2

0
¼ 1: ð23Þ

SLðpÞ and ΓLðpÞ are the quark propagator and amputated
vertex function, respectively, while SBornðpÞ and ΓBornðpÞ
are the corresponding tree-level values. We note that the
trace is meant to be taken over both spin and color indices
and the RI0 renormalization scale is denoted by μ0. In order
to compute the vertex functions nonperturbatively, we
make use of momentum sources [50]. This allows us to
achieve per mil statistical accuracy on a very small sample
of configurations [51,52]. With a high statistical precision,
systematic errors need to also be under control.
The momenta are chosen isotropic in the spatial direction,
that is

ðapÞ≡ 2π

�
2nt þ 1

2T=a
;
nx
L=a

;
nx
L=a

;
nx
L=a

�
; ð24Þ

where nt ∈ ½2; 10�, nx ∈ ½2; 5� and T=aðL=a) are the
temporal(spatial) lattice extent. The momenta satisfy the
condition

P
i p

4
i =ð

P
i p

2
i Þ2 < 0.3 [53] in order to suppress

the non-Lorentz invariant contributions. These appear in
Oða2Þ terms in the perturbative expansion of the Green’s
function and is expected to have non-negligible contribu-
tions from higher order in perturbation theory [48,51,52].
We improve the nonperturbative estimates by removing

lattice artifacts in both Zq an ZA. The artifacts are calculated
to one loop lattice perturbation theory [48]. In particular,
one extracts the Greens functions of the axial operator
using the same lattice action and values of the momentum p
entering Eq. (23). For an optimal improvement, we
calculate Oðg2a∞Þ terms, which cannot be obtained ana-
lytically. It should be noted that, the subtraction of the
Oðg2a∞Þ terms can be done either at the level of the vertex
functions ΓLðpÞ, or on ZA after the trace is taken. We have
checked that both procedures lead to compatible results for
the improved ZA. For consistency, we employ the sub-
traction in the final estimates of ZA, as performed
in Ref. [14].
The evaluation of the Z-factors for the nonsinglet current

was presented in Ref. [14]. Here we present the evaluation
of the singlet Z-factor, which is more complicated. For the
computation of the singlet renormalization function Zs

A we
follow the same procedure as for the nonsinglet case. In this
case, in addition to the connected contributions, there are
contributions from the disconnected quark loops. We
employ the same noise reduction approaches discussed
in Sec. III D for the evaluation of these disconnected
contributions, namely we use hierarchical probing with
512 Hadamard vectors, the one-end trick and spin color
dilution. Deflation is not used in this case since the Nf

ensembles are generated for heavy pion masses. In addition

to the appearance of disconnected loops, a further com-
plication is that, in contrast to the nonsinglet case, Zs

A is
scheme and scale dependent. We express it in the MS-
scheme, which is commonly used in experimental and
phenomenological studies. The conversion procedure is
applied on the Z-factors obtained on each initial RI0 scale
ðaμ0Þ, with a simultaneous evolution to a MS scale, chosen
to be μ̄ ¼ 2 GeV. In particular, we use the conversion
factor calculated to two-loops in perturbation theory [54].
In Fig. 1 we compare the nonsinglet and singlet

Z-factors. As can be seen, including the disconnected
quark loop contributions lowers the value of the renorm-
alization function and increases the error. We find ZA ¼
0.763ð1Þ for nonsinglet and Zs

A ¼ 0.753ð5Þ for singlet.

V. ANALYSIS OF THE ISOSCALAR AXIAL FORM
FACTORS Gu+ d

A ðQ2Þ AND Gu+ d
P ðQ2Þ

For the extraction of the axial and induced pseudoscalar
form factors from the correlation functions we use the
methodology presented in Sec. III. In order to identify the
nucleon ground-state contribution we apply the three
approaches discussed in Sec. III B. In Fig. 2, we demon-
strate the effect of the excited-states contamination to the
connected contribution for the isoscalar axial form factor
Guþd

A ðQ2Þ for two representative values of Q2. In the first
column, we show the ratio of Eq. (17) for all the available
values of ts. In the construction of the ratio, we use the two-
point functions computed with the same source positions as
the corresponding three-point functions to exploit their
correlation leading to a reduction in the overall error. As ts
increases, we observe a decrease in the values of the ratio.
In the second column of Fig. 2 we show the values
extracted by fitting the ratio to a constant excluding five
time slices from the source and sink. This is done for
ts=a > 12, yield a good χ2=d:o:f:, namely in the range 0.7
to 1.1. In the third column of Fig. 2 we show results from
the two-state and summation fits. For the two-state method
we perform a simultaneous fit to all ratios for which
ts ≥ tlows excluding tins=a ¼ 1; 2, ts − 1, ts − 2 and seek

FIG. 1. Results for the nonsinglet (red squares) and singlet
(blue cicles) ZA as a function of the initial renormalization scale
ðaμ0Þ2. The dashed lines are linear fits and open symbols are the
extracted extrapolated values.
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to identify convergence in the extracted value of the matrix
element as we increase tlows . The resulting fit bands using
these two-state fits are shown in the left panel. We show the
prediction of the two-state fit of the time dependence of the
ratio in the middle panel when we fix tins ¼ ts=2. As can
be seen, the two-state fit prediction describes well the time
dependence of the values extracted from the plateau
method. We also observe that the value extracted using
the two-state fit with tlows ¼ 8a is consistent with the values
extracted for higher values of tlows . The results from the
summation method converge to those of the two-state fit for
tlows > 1.2 fm i.e., at about half the ts value where the
plateau fit yields convergent result. Based on these find-
ings, we adopt as a criterion for the final value the one
extracted from the two-state fit for the smallest tlows that
shows convergence and is in agreement with the value from
the summation method at some higher tlows . Our final value
is indicated with the open symbol in Fig. 2.
In Fig. 3, we present the excited-states contamination

analysis for the case of the connected contributions to the
isoscalar induced pseudoscalar form factor. In contrast to
GA, suppression of excited states results in larger values for

GPðQ2Þ especially for the smaller Q2 values. As Q2

increases, contamination from excited states suppresses,
with most of the plateau values being compatible with the
two-state fit. We use the same criterion as for Guþd

A for the
selection of our final values. Therefore, we take the values
extracted from the two-state fit for tlows ¼ 8a.
In Fig. 4, we show the analysis to identify excited-state

contributions for the disconnected parts contributing to
Guþd

A ðQ2Þ and Guþd
P ðQ2Þ. Although in these cases, all the

sink-source time separations can be computed without
additional cost, in practice, as the time separation ts
increases, the errors become very large. Thus, we limit
ourselves to ts ∈ ½0.48 − 2.08� fm in what follows however
the last four separations are used to check convergence of
our final value. As can be seen for both form factors, the
disconnected contributions are nonzero. Eliminating
excited states by increasing ts leads to more negative
values for both axial and induced pseudoscalar form
factors. In both cases, results for ts ≥ 16a extracted from
the plateau method are in agreement with each other, as
well as with those extracted using the two-state and
summation methods. We thus opt to perform a weighted

FIG. 2. Results on the connected renormalized Guþd
A ðQ2Þ extracted using the plateau, two-state and the summation methods for two

different values of Q2, namely for Q2 ¼ 0.167 GeV2 (top row) and Q2 ¼ 0.464 GeV2 (bottom row). In the left panel, we show results
on the ratio of Eq. (17) for sink-source time separations ts=a ¼ 8, 10, 12, 14, 16, 18, 20 denoted with blue circles, orange down triangles,
up green triangles, left red triangles, right purple triangles, brown rhombus and magenta crosses, respectively. The results are shown as a
function of the insertion time tins shifted by ts=2. The dotted lines and associated error bands are the resulting two-state fits when the
lowest value of ts used in the fit (tlows ) is tlows ¼ 8a ¼ 0.64 fm. In the middle panel, we show the plateau values or the value of the ratio
for tins ¼ ts=2 when no plateau is identified, as a function of ts using the same symbol for each ts as used for the ratio in the left panel. In
the right panel, we show the extracted values using the two-state fit (black squares) and the summation method (green filled triangles) as
a function of tlows . The open symbol shows our selected value with the grey band spanning the whole range of the figure being the
associated statistical error. The color bands on the left column are the predicted time-dependence of the ratio using the parameters
extracted from the two-state fit when tlows ¼ 8a ¼ 0.64 fm. The χ2=d:o:f: is 1.09 forQ2 ¼ 0.167 GeV2 and 1.24 forQ2 ¼ 0.167 GeV2.
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average of the converged plateau values to extract the
final value.
The final values of the axial form factor Guþd

A ðQ2Þ are
shown in the left panel of Fig. 5, where we show separately

the connected and disconnected contributions as a function
of Q2. We observe that the connected contribution is
positive, while the disconnected is negative. To extract
the disconnected part, we combine various values of p⃗0 ≥ 0⃗

FIG. 3. Results for the connected renormalized induced pseudoscalar form factor GPðQ2Þ. The notation is the same as that in Fig. 2.

FIG. 4. Results on the renormalized disconnected parts of Guþd
A ðQ2Þ (top) and Guþd

P (bottom) for Q2 ¼ 0.057 GeV2 extracted using
the plateau, two-state fit and the summation methods. In the left panel we show results on the ratio of Eq. (17) for sink-source time
separations ts=a ¼ 6, 8, 10, 12, 14, 16 denoted with blue circles, up green triangles, right purple triangles, magenta crosses, orange
pentagons, and brown rhombus, respectively. For the middle column we show the values extracted from the plateau fits using the same
color and symbol as for the corresponding ts shown in the left column. In the constant fits we exclude tins=a ¼ 1; 2, ts − 1, ts − 2 points
for each ts. The red downward triangles show the values for intermediate (odd values ts=a) or larger ts not drawn for clarity in the left
panel. The horizontal red band denotes the final value computed as a weighted average using the converged plateau values indicated with
open symbols. The notation on the right panel is the same as that in Fig. 2.
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and thus can access a larger number ofQ2 values. We show
also Guþd

A ðQ2Þ after summing the connected and discon-
nected parts at the common Q2 values. Since the discon-
nected contributions have a larger magnitude at smaller Q2

values the slope of Guþd
A ðQ2Þ at small Q2 is smaller as

compared to its connected part. We fit the Q2 dependence
as shown in the right panel of Fig. 5 using the dipole Ansatz
and the z-expansion, as described in Sec. II, where for both
fits the value at Q2 ¼ 0 is not a fit parameter but it is fixed
form the forward matrix element yielding Guþd

A ð0Þ≡ guþd
A .

We find guþd
A ¼ 0.436ð28Þ in agreement with our previous

study [55]. The small difference is due to fact that in this
work we use also p⃗0 > 0⃗ for the evaluation of the

disconnected contributions but also odd numbers of ts
when averaging over the plateau values. Both fit forms
describe the Q2 behavior very well. The extracted values
for the axial masses and the radii are given in Table III. The
values extracted from the two fits are compatible, with the
z-expansion yielding larger uncertainties. We note that by
excluding larger values of Q2 in the fit does not have an
impact on the extracted parameters.
In Fig. 6 we show separately the connected and dis-

connected parts for the isoscalar induced pseudoscalar form
factor Guþd

P ðQ2Þ. The disconnected part is of the same
magnitude as the connected but with opposite sign. This
has already been observed in previous studies [18,19]. This
behavior leads to the cancellation of the sharp rise observed
in the connectedGuþd

P ðQ2Þ. Consequently, the isoscalar has
an almost flat Q2-dependence within uncertainties, unlike
the isovector combination where the pion pole gives a

FIG. 5. Left: Renormalized results for Guþd
A ðQ2Þ as a function of Q2. We show separately the connected (blue triangles) and the

disconnected (open red squares) contributions as well as the sum (black circles). Open symbols are used for the form factors versus Q2

when showing only disconnected contributions. Right: Renormalized results for Guþd
A ðQ2Þ as a function of Q2. The solid red line is the

result of the dipole fit and the dashed blue of the z-expansion fit. The red and blue bands are associated with the uncertainties of the
dipole and z-expansion fits. Note that the upper fit range is 1 GeV2.

TABLE III. Extracted values from the fits on the isoscalar axial
form factor as in the right panel of Fig. 5 using the dipole Ansatz
and the z-expansion. We use two ranges for the largest Q2 value
included in the fit, one up toQ2 ≃ 0.5 GeV2 and the second up to
Q2 ≃ 1 GeV2. The extracted parameters are the axial mass, mA

and the root mean square (rms) radius,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðruþd

A Þ2i
q

. In the last

column we give the χ2 per degrees of freedom (d.o.f.). We make
use of Eq. (9) to relate the mass to the radius and vice versa. The
isoscalar charge, guþd

A ¼ Guþd
A ð0Þ is 0.436(28). We note that for

the case of z-expansion the values of χ2=d:o:f: given take into
account the augmented definition of χ2.

Fit type
Q2

max

[GeV2]
muþd

A
[GeV]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðruþd

A Þ2i
q

[fm] χ2=d:o:f:

Dipole
≃0.5 1.188(169) 0.575(82) 0.79
≃1 1.216(144) 0.562(67) 0.72

z-expansion
≃0.5 0.949(215) 0.720(163) 0.49
≃1 0.975(234) 0.701(168) 0.59 FIG. 6. Renormalized results for Guþd

P ðQ2Þ as a function of Q2.
The notation is as in the left panel of Fig. 5.
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rapidly rising form factor at small Q2 [14]. Also, the fact
that the connected and disconnected parts are almost equal
but with opposite sign means that Guþd

P ðQ2Þ carries larger
statistical errors.

VI. ANALYSIS OF THE STRANGE AND CHARM
AXIAL FORM FACTORS

The strange and charm form factors receive only purely
disconnected contributions. They probe sea quark degrees
of freedom in the nucleon and provide us with an insight on
their nonperturbative dynamics. Let us first examine how
the ratio of Eq. (17) behaves when using the three-point
function of the strange axial-vector current. In Fig. 7, we
show the results on the ratio for different ts. As can be seen,
although there is a trend to more negative values, the
plateau region is consistent within the statistical uncertain-
ties as we increase ts. This is also seen in the middle panel
where we show the values extracted from plateau fits at
various ts values. Furthermore, the summation and two-
state fit methods yield results that are consistent with those
extracted from the plateau fit for all tlows values. Given that
the plateau values show convergence, we take the weighted
average over the converged plateau values observed for
ts ≃ 1.12 fm, resulting in the red band. The weighted
average is also in agreement with the results from the
two-state and summation fits, as we require to accept the
final value.
The corresponding analysis of excited states for the

three-point function of the charm axial-vector current is
shown in Fig. 8. The three-point function in this case is

more noisy, and for clarity we only show the ratio for time
separations up to 1 fm. As in the case of the strange three-
point function, the plateau region of the ratio shows
convergence as ts is increased within our current statistical
accuracy. The results extracted using the summation
method are noisy but yield consistent values. Two-state
fits are omitted since, given the accuracy of the data, they
are very noisy and thus yield no useful information. We
take the weighted average of the converged plateau values
to determine the final values on Gc

AðQ2Þ and Gc
PðQ2Þ.

The results for the strange axial form factor Gs
AðQ2Þ are

shown in left panel of Fig. 9. Gs
Að0Þ gives the strange axial

charge and we find gsA ¼ −0.044ð8Þ in agreement with
the values reported in our previous analysis using the
cB211.072.64 ensemble [55]. The small difference in the
mean value is well within errors and is due to taking
different datasets in the analysis. Gs

AðQ2Þ is negative for all
Q2 values up to 1 GeV2. Both fits to a dipole form and the
z-expansion describe the data well. The value at Q2 ¼ 0 is
used as an input parameter. In Table IV, we give the
χ2=d:o:f: for the fits. The reason for the smaller χ2=d:o:f:
for the z-expansion is that higher order terms are taken into
account that are sensitive to the values at larger Q2 values
giving rise to more curvature and thus a somewhat better
description of the data.
The extracted values for the strange axial mass ms

A and
rms radius

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrsAÞ2i

p
are given in Table IV. Although the

z-expansion fit has a steeper slope as Q2 → 0 as com-
pared to the dipole fit (see left panel of Fig. 9) the
resulting values of the radius are consistent within the
uncertainties. The strange induced pseudoscalar form

FIG. 7. Results on the renormalized strange axial form factors Gs
AðQ2Þ (top) and Gs

P (bottom) for Q2 ¼ 0.057 GeV2 extracted using
the plateau, two-state fit and the summation methods. In the middle panels, open symbols denote the plateau values that we take into
account in the weighted average resulting in our final value shown with the red band. The rest of the notation is the same as that in Fig. 4.
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FIG. 8. Results on the renormalized charm axial form factorsGc
AðQ2Þ (top) andGc

P (bottom) forQ2 ¼ 0.057 GeV2 extracted using the
plateau and the summation methods. The notation is the same as in Fig. 4.

FIG. 9. Results for the strange form factor Gs
AðQ2Þ (left) and Gs

PðQ2Þ (right) as a function of Q2. Following the notation of Fig. 5, we
use open symbols when plotting the form factors as a function of Q2 when only disconnected contributions enter. We also show the fit
using the dipole form taking the upper fit range up to ≃0.5 GeV2 (green dotted line and band). The rest of the notation is the same as in
Fig. 5.

TABLE IV. Parameters extracted from Gs
AðQ2Þ and Gs

PðQ2Þ using the dipole Ansatz and the z-expansion. The notation is the same as
that in Table III up to column five. The next columns are Gs

pð0Þ, the value of the induced pseudoscalar form factor for Q2 ¼ 0, ms
P the

dipole mass and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrsPÞ2i

p
the rms radius.

Fit type Q2
max [GeV2] ms

A [GeV]
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrsAÞ2i

p
[fm] χ2=dof Gs

Pð0Þ ms
P [GeV]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrsPÞ2i

p
[fm] χ2=dof

Dipole ≃0.5 0.874(162) 0.782(145) 1.33 −3.328ð1.224Þ 0.381(59) 1.796(276) 0.91
≃1 0.992(164) 0.689(114) 1.48 −1.325ð406Þ 0.609(89) 1.122(164) 1.16

z-expansion ≃0.5 0.702(179) 0.973(248) 0.99 −2.531ð415Þ 0.502(19) 1.360(52) 0.66
≃1 0.695(169) 0.984(239) 0.81 −1.600ð237Þ 0.543(24) 1.260(56) 1.03
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factor Gs
PðQ2Þ as a function of Q2 is shown in the right

panel of Fig. 9. As in the case of Gs
AðQ2Þ, Gs

PðQ2Þ is
clearly negative and large in magnitude especially at low
Q2. The dipole and the z-expansion fits describe well the
data. However, when we limit the fit range up to Q2 ¼
0.5 GeV2 the rms and the value of the form factor at
Q2 ¼ 0 are significantly larger. This is due to the
curvature observed for small Q2.
We follow the same analysis described for the

strange form factors to extract the charm axial form
factors Gc

AðQ2Þ and Gc
PðQ2Þ that are shown in Fig. 10.

They are both clearly negative. Performing the dipole
and z-expansion fits we can determine the same
parameters as in the case of the strange form factors.
The values are given in Table V. Since the slope of the
z-expansion fit as Q2 → 0 is steeper, the rms radius
determined from the z-expansion tends to be larger as
it was the case for the corresponding strange rms radius. It
is worth mentioning that the z-expansion describes
better the data as compared to the dipole Ansatz as
indicated by the χ2=dof. For the charm axial charge we
find gcA ¼ −0.0098ð17Þ.

VII. ANALYSIS OF THE FLAVOR SINGLET AND
OCTET AXIAL FORM FACTORS AND THE SU(3)

SYMMETRY BREAKING

The determination of isoscalar and strange form factors
allows us to construct the corresponding SU(3) flavor octet

and singlet form factors. We would like to highlight that
these quantities are computed for the first time directly at
the physical point.
In Fig. 11 we present results for the SU(3) flavor octet

axial form factor Guþd−2s
A ðQ2Þ and for the singlet

Guþdþs
A ðQ2Þ. If SU(3) was exact, the disconnected con-

tributions would cancel in the octet combination. In
practice, we find deviations from SU(3) symmetry espe-
cially at low Q2 where the form factor is larger (see
Fig. 12). This demonstrates that SU(3) flavor symmetry is
violated due to the different mass between light and strange
quarks. This is an important result since many phenom-
enological analyses assume SU(3) flavor symmetry intro-
ducing an uncontrolled systematic error. We find that there
is up to 10% breaking for the axial and up to 50% for the
induced pseudoscalar form factors. This is determined by
comparing the results on the disconnected contributions of
Fig. 12 to the corresponding connected contributions.
Due to the suppression of disconnected contributions

in the octet combination, as can be seen in Fig. 12,
Guþd−2s

A ðQ2Þ is more precise as compared to
Guþdþs

A ðQ2Þ shown in Fig. 11. The data for both
octet and singlet form factors are well described by our
two fit Anzätze, namely the dipole form and the
z-expansion. The resulting values of χ2=dof are given in
Table VI. The value of the form factors at zero momentum
transfer, gives the octet and singlet axial charges guþd−2s

A

and guþdþs
A , respectively. We find guþd−2s

A ¼ 0.530ð22Þ and

FIG. 10. Results for the charm form factors, Gc
AðQ2Þ (left) and Gc

PðQ2Þ (right), as a function of Q2. The notation is the same as that in
Fig. 9.

TABLE V. Results from the charm form factors using the same notation as that in Table IV.

Fit type Q2
max [GeV2] mc

A [GeV]
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrcAÞ2i

p
[fm] χ2=dof Gc

Pð0Þ mc
P [GeV]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrcPÞ2i

p
[fm] χ2=dof

Dipole
≃0.5 0.800(142) 0.854(152) 3.2 −0.062ð69Þ 0.892(847) 0.767(726) 0.59
≃1 0.898(132) 0.761(112) 2.3 −0.063ð34Þ 0.867(272) 0.788(247) 1.02

z-expansion
≃0.5 0.534(56) 1.280(135) 1.6 −0.076ð40Þ 0.654(127) 1.045(203) 0.51
≃1 0.692(94) 0.987(133) 1.0 −0.060ð41Þ 0.762(315) 0.897(369) 0.96
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guþdþs
A ¼ 0.384ð33Þ. These charges have been also
extracted from phenomenological analyses. In Ref. [56],
the authors use polarized deep inelastic scattering data to
extract guþd−2s

A ¼ 0.46ð5Þ and guþdþs
A ¼ 0.36ð3Þð5Þ both in

agreement with our findings but with larger uncertainties. It
is worth mentioning that the analysis of Ref. [56] assumes
SU(3) flavor symmetry.
In Table VI, we collect the parameters extracted from

these fits. The SU(3) flavor octet axial mass muþd−2s
A tends

to have a smaller value than the corresponding singlet,

muþdþs
A , which translates to a bigger octet rms radius.

However, statistical errors on the singlet quantities are
large, and the two values agree within the statistical errors.
This is particularly true for the parameters extracted from
the z-expansion where the statistical errors are even larger.
The Q2-dependence of the induced octet pseudoscalar

form factors Guþd−2s
P ðQ2Þ is shown in Fig. 13 with the

corresponding extracted parameters provided in Table VII.
It is well-known that the isovector induced pseudoscalar
form factor, Gu−d

P ðQ2Þ has a pion pole behavior. Results on

FIG. 11. Results on the flavor octet (left) Guþd−2s
A ðQ2Þ and singlet (right) Guþdþs

A ðQ2Þ axial form factor as a function of Q2.

FIG. 12. Results on the disconnected contribution to the SU(3) flavor octet (red circles) and singlet (blue squares) for the axial (left)
and induced pseudoscalar (right) form factors.

TABLE VI. The axial mass and radius determined from fitting the SU(3) flavor octet and singlet axial form factor Guþd−2s
A ðQ2Þ and

Guþdþs
A ðQ2Þ, respectively, using the dipole Ansatz and the z-expansion. The notation is the same as the one in Table III.

Fit type Q2
max [GeV2] muþd−2s

A [GeV]
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðruþd−2s

A Þ2i
q

[fm] χ2=dof muþdþs
A [GeV]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðruþdþs

A Þ2i
q

[fm] χ2=dof

Dipole
≃0.5 1.097(104) 0.623(59) 1.07 1.255(240) 0.545(104) 0.68
≃1 1.154(101) 0.592(52) 1.04 1.261(188) 0.542(81) 0.65

z-expansion
≃0.5 0.876(121) 0.780(108) 0.45 1.016(335) 0.673(221) 0.50
≃1 0.898(134) 0.761(113) 0.57 1.051(359) 0.650(221) 0.59
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this form factor using the same ensemble were reported in
Ref. [14]. By similar arguments, the SU(3) flavor octet
form factor Guþd−2s

P ðQ2Þ is expected to have an η pole
behavior. Since the η-meson has a much larger mass
compared to the mass of the pion, the relations that hold
in the chiral limit for Gu−d

P ðQ2Þ are expected to be
significantly violated in this case.
InFig. 13we showalso results on ðm2

η þQ2ÞGuþd−2s
P ðQ2Þ

that cancel the η-meson pole, as well as the dipole and
z-expansion fits. This allows the extraction of the eta-nucleon
coupling gηNN in analogy to the determination of gπNN since

gηNN ¼ limQ2→−m2
η
ðQ2 þm2

ηÞGuþd−2s
P

4mNF8
η

; ð25Þ

where F8
η is the decay constant of the η meson and mη its

mass.We note that the mixing with the η0 has been neglected
in Eq. (25). The η decay constant F8

η can be determined
directly in lattice QCD in an analogous manner to the
computation of Fπ [57]. This will be computed for the
current ensemble in a future work. Here, we use the value of
F8
η determined from phenomenology [58] to extract the

coupling constant,

gηNN ¼ 4.5ð1.2Þ ðdipoleÞ ð26Þ

gηNN ¼ 3.7ð1.0Þ ðz-expansionÞ: ð27Þ

The extrapolation toQ2 ¼ −m2
η is shown in the right panel of

Fig. 13. As can be seen, the fact that one needs to perform a
large extrapolation in the negative Q2 region increases the
statistical uncertainty as compared to the isovector case. The
values extracted are in agreement with the ones extracted
from phenomenological studies [58–60].
If one defines a Goldberger-Treiman discrepancy for the

octet in a similar manner as done for the isovector
combination,

Δ8
GT ¼ 1 −

guþd−2s
A mN

gηNNF8
η

; ð28Þ

can assess how much the Goldberger-Treiman relation is
violated in this case. We find that

Δ8
GT ¼ 0.42ð12Þ ðdipoleÞ ð29Þ

Δ8
GT ¼ 0.50ð14Þ ðz-expansionÞ: ð30Þ

We find a violation of about 40%–50% for the octet
combination of ΔGT, which is much larger than the 2%
determined for the isovector combination [14]. This is a
consequence of the large η-meson mass. The flavor singlet
induced pseudoscalar form factor Guþdþs

P ðQ2Þ is noisy

FIG. 13. Left: Results on the induced flavor octet pseudoscalar form factor. The red and blue bands, which are overlapping, show the
results of the fits to the dipole form and using the z-expansion. Right: Results on the induced pseudoscalar form factor shown in the left
panel after canceling the η-meson pole; i.e., we show ðm2

η þQ2ÞGuþd−2s
P ðQ2Þ as a function of Q2.

TABLE VII. Parameters extracted from the induced pseudoscalar form factor for the flavor octet combination.

Fit type Q2
max [GeV2] Guþd−2s

P ð0Þ muþd−2s
P [GeV]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðruþd−2s

P Þ2i
q

[fm] χ2=dof

Dipole
≃0.5 7.194(1.072) 0.691(67) 0.989(95) 1.2
≃1 8.587(1.204) 0.602(47) 1.135(88) 0.85

z-expansion
≃0.5 6.024(947) 0.537(91) 1.273(216) 0.77
≃1 6.621(618) 0.484(20) 1.411(48) 0.59
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because of the disconnected contributions are large and of
opposite sign to the connected partly canceling each other,
as can be seen in Fig. 14.

VIII. THE UP AND DOWN AXIAL AND INDUCED
PSEUDOSCALAR FORM FACTORS

Having determined the isovector [14] and isoscalar form
factors we can disentangle the up and down quark con-
tributions to the these form factors.
In Fig. 15 we show results for the up and down quark

axial form factors,Gu
AðQ2Þ andGd

AðQ2Þ as a function ofQ2.
Gu

AðQ2Þ is found to be positive, while Gd
AðQ2Þ is negative

and about half in magnitude. The axial up and down quark
charges obtained at Q2 ¼ 0 are guA ¼ 0.859ð18Þ and gdA ¼
−0.423ð17Þ in agreement with the values found in
Ref. [55]. Since the value of the form factors at zero
momentum is known, we use it to eliminate one fit
parameter in the jackknife analysis. The values of
the up and down quark axial masses and rms radii

extracted from the dipole fit and using the z-expansion
are given in Table VIII. We find that mu

A ∼md
A andffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðruAÞ2i
p

∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrdAÞ2i

q
within statistical errors.

In Figs. 16 and 17 we show results on the up and down
quark induced pseudoscalar form factors. The large slope
observed for these form factors as Q2 → 0 is due to the
presence of the pion pole. Before we fit them with a dipole
form and the z-expansion we eliminate the pion pole and
consider instead

GP̃ðQ2Þ≡ ðQ2 þm2
πÞGPðQ2Þ ð31Þ

for the fits. Note thatGP̃ðQ2Þ has units of GeV2. Like in the
case of Gu;d

A ðQ2Þ, Gu
PðQ2Þ is positive and Gd

PðQ2Þ is
negative. However, unlike Gu;d

A ðQ2Þ, both Gu
PðQ2Þ and

Gd
PðQ2Þ have similar magnitude. For the case of GP̃ðQ2Þ,

the Q2-dependence is different being more linear for the up
quark as compared to down quark. The dipole fits to both
Gu

P̃
ðQ2 andGd

P̃
ðQ2Þ do not describe the curvature as well as

the z-expansion fit does, producing more curvature for the
former and less for the latter as compared to the lattice
QCD data.
In Table IX, we provide the parameters extracted from

the up and down induced pseudoscalar form factors. To
relate the parameters, we utilize the relations,

GPð0Þ ¼
GP̃ð0Þ
m2

π
; and hr2Pi ¼

6

m2
π
þ hr2

P̃
i: ð32Þ

IX. FINAL RESULTS

In this section we collect our final results extracted from
the fits to the axial and induced pseudoscalar form factors
for the various flavor combinations. Results are provided
using the z-expansion given in Eq. (10), since in most cases

FIG. 14. Results on the flavor singlet induced pseudoscalar
form factor. The notation is the same as that in Fig. 6.

FIG. 15. Results for the up (left) and down (right) quark axial form factors Gu
AðQ2Þ and Gd

AðQ2Þ an as a function of Q2. The red band
shows the results from the dipole fit and the blue band using the z-expansion.
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it fits better the form factors as in, e.g.,Gu;d
P̃
ðQ2Þ. Fits to the

dipole Ansatz are used as a determination of the systematic
error due to the choice of the fit form, by taking the
difference between the z-expansion and dipole fit values. In
addition, we use the two different Q2 fit ranges, namely
Q2 ≃ 0.5 and Q2 ≃ 1 GeV2 to extract a systematic due to
the fit range dependence. We quote as the parameters
extracted using as upper range Q2 ≃ 1 GeV2 in the fit and
the difference between the mean values extracted using the
two ranges as the systematic error.

In Table X, results for the axial and induced pseudoscalar
masses and r.m.s radii for the quark flavor combinations
considered are provided. It is worth mentioning that this is
the first time that these radii are determined for each quark
flavor separately but also for the octet and singlet combi-
nations providing us with detailed information on the
structure properties of the nucleon. A notable finding is
that the axial strange and charm rms radii tend to be larger
than those for the light quarks. However, the uncertainties
are still large and wewould need to improve the accuracy in

TABLE VIII. The axial mass and radius determined from fitting Gu
AðQ2Þ and Gd

AðQ2Þ, using the dipole Ansatz and the z-expansion.
The notation is the same as that in Table VI.

Fit type Q2
max [GeV2] mu

A [GeV]
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðruAÞ2i

p
[fm] χ2=dof md

A [GeV]
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrdAÞ2i

p
[fm] χ2=dof

Dipole
≃0.5 1.179(70) 0.580(34) 0.62 1.174(65) 0.582(32) 0.58
≃1 1.187(65) 0.576(32) 0.52 1.168(54) 0.585(27) 0.81

z-expansion
≃0.5 1.050(118) 0.651(73) 0.37 1.336(341) 0.512(130) 0.39
≃1 1.069(122) 0.639(73) 0.41 1.312(329) 0.521(131) 0.72

FIG. 16. Left: Results for the up quark induced pseudoscalar form factor Gu
PðQ2Þ as a function of Q2. Right: Results for the up quark

induced pseudoscalar form factor after cancelling the pion pole using Eq. (31). The notation is the same as Fig. 15.

FIG. 17. Results for the down quark induced pseudoscalar form factor as a function of Q2. The notation is the same as Fig. 16.
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order to draw any definite conclusion. The values of
Gu;d

P ð0Þ for both up and down quarks are very large
compared to the rest due to the presence of the pion pole.
This sharp rise of these two form factors is reflected in the
extracted rms radii which are significantly larger than all
the rest.
From the flavor octet combination we can determine the

pseudoscalar η-meson-nucleon coupling. The value is given
in Eq. (33), where the first error is statistical and the second
is a systematic due to the fit form used. This is the first
determination at the physical point. It is, however, in
agreement with a previous lattice QCD study [19] for an
ensemble with pion mass of 317 MeV. The Goldberger-
Treiman discrepancy ΔGT is also determined for the octet
combination, and it is found to be 50% which highlights

that such relations are badly broken for mesons with much
larger mass than the pion,

gηNN ¼ 3.7ð1.0Þð0.7Þ; Δuþd−2s
GT ¼ 0.50ð14Þð8Þ: ð33Þ

X. COMPARISON WITH PREVIOUS STUDIES

The form factors presented in this work were studied
previously by only another lattice QCD group, namely the
LHPC [19] but using an ensemble with pion mass
mπ ¼ 317 MeV. Here we restrict the comparison to studies
performed directly at the physical point and, therefore the
only other available results are provided from our previous
work [18] using theNf ¼ 2 ensemble cA2.09.48 of Table I.
In that study we did not employ the improved noise

TABLE IX. Extracted radii and dipole masses for the up and down quark induced pseudoscalar form factors Gu;d
P ðQ2Þ. Note that we

use Eqs. (31) and (32) to relate the parameters extracted from GP̃ðQ2Þ of Figs. 16 and 17 to those of GPðQ2Þ.
Fit type Q2

max [GeV2] Gu
Pð0Þ mu

P [GeV]
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðruPÞ2i

p
[fm] χ2=dof Gd

Pð0Þ md
P [GeV]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrdPÞ2i

p
[fm] χ2=dof

Dipole
≃0.5 119(4) 0.194(1) 3.526(18) 0.90 −122ð4Þ 0.191(1) 3.587(19) 0.62
≃1 125(4) 0.193(1) 3.536(18) 1.24 −115ð4Þ 0.191(1) 3.571(19) 1.30

z-expansion
≃0.5 119(3) 0.195(1) 3.503(18) 0.60 −126ð7Þ 0.195(1) 3.504(18) 0.38
≃1 119(3) 0.195(1) 3.503(18) 0.63 −130ð7Þ 0.191(1) 3.504(18) 0.72

TABLE X. Final results of this work. In the first column, we give the quark flavor combination considered, in the second and third
columns the axial mass and rms radii and in the rest three columns the value of the form factor extrapolated to Q2 ¼ 0, the dipole mass
and rms radii extracted from fitting the induced pseudoscalar form factor. The first error is purely statistical, the second is a systematic
due to different fit ranges and the third is a systematic due to the two different forms used to fit the Q2-dependence.

Comb. mA [GeV]
ffiffiffiffiffiffiffiffiffi
hr2Ai

p
[fm] GPð0Þ mP [GeV]

ffiffiffiffiffiffiffiffiffi
hr2Pi

p
[fm]

u 1.069(122)(19)(118) 0.639(73)(12)(63) 119(3)(0)(6) 0.195(1)(0)(2) 3.503(18)(0)(33)
d 1.312(329)(24)(144) 0.521(131)(9)(64) −130ð7Þð4Þð15Þ 0.195(1)(4)(0) 3.504(18)(0)(67)
s 0.695(169)(7)(297) 0.984(239)(12)(295) −1.600ð237Þð931Þð275Þ 0.543(24)(41)(66) 1.260(56)(100)(138)
c 0.692(94)(158)(206) 0.987(133)(293)(226) −0.060ð41Þð16Þð3Þ 0.762(315)(108)(105) 0.897(369)(148)(109)
uþ d 0.975(234)(26)(241) 0.701(168)(19)(139) −11.0ð7.6Þð4.0Þð16.0Þ 0.94(46)(24)(97) 1.37(67)(35)(1.40)
uþ d-2s 0.898(134)(22)(256) 0.761(113)(19)(169) 6.621(618)(597)(1.966) 0.484(20)(53)(118) 1.411(48)(138)(276)
uþ d-s 1.051(359)(35)(210) 0.650(221)(23)(108) −12.6ð7.6Þð4.1Þð16.0Þ 0.91(40)(21)(85) 1.33(59)(31)(1.20)

FIG. 18. Comparison of the axial form factors using the cB211.072.64 ensemble of this work (open red circles), and the Nf ¼ 2
ensemble cA2.09.48 (filled blue squares) presented in Ref. [18]. See Table I for details on the parameters of the two ensembles. The
upper plots show results for the isoscalar and strange axial form factor while the lower plot for the charm axial form factor.
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reduction approaches for the evaluation of the quark loops
that we use in this work and presented in Sec. III D. In our
previous study we used volume sources without spin nor
color dilution. For the light quarks we used 2250 stochastic
sources while for the strange we used 1024 and for the
charm 1250. For the strange and charm quark loops we also
used the truncated solver method [61]. We note that
hierarchical probing used in this work was not used for
the analysis of the cA2.09.48.
Results for the axial form factors are compared in

Fig. 18. For the isoscalar combination only few Q2

values are available in the case of the cA2.09.48
ensemble, namely up to Q2 ¼ 0.3 GeV2. For the strange
axial form factor, the results using the cA2.09.48 ensem-
ble are very noisy. This comparison provides a nice
demonstration of the improvements accomplished in this
work with about only twice the computational effort. The
situation is similar for the case of the charm axial form
factor.
In Fig. 19 we compare the results for the induced

pseudoscalar form factor. We observe agreement between
the results using the two ensembles with the results of the
current work being significantly more precise.

XI. CONCLUSIONS

The complete flavor decomposition of the axial and
induced pseudoscalar form factors of the nucleon is
determined directly at the physical point using one Nf ¼
2þ 1þ 1 ensemble of twisted mass fermions. We obtain
nonzero results for the up, down, strange and charm quark
form factors to increased accuracy as compared to our
previous study using an Nf ¼ 2 twisted mass ensemble
[18]. This is accomplished by using a combination of
deflation of lower mode, hierarchical probing, spin-colour
dilution and the one-end trick.
These results provide valuable input to on-going and

planned parity-violating experiments. They are also crucial
for the cross sections for a class of popular cold dark matter
candidates [1]. Having the complete flavor decomposition
allows us to check for SU(3) flavor symmetry. We find that
SU(3) symmetry is broken up to about 10% for the octet

axial and up to 50% for the induced pseudoscalar form
factors with the breaking being larger at low Q2 values.
This is an important result since many phenomenological
studies assume SU(3) flavor symmetry and thus carry an
uncontrolled systematic error.
In the future we plan to analyze two additional Nf ¼

2þ 1þ 1 twisted mass fermion ensembles with smaller
lattice spacings so that we can take the continuum limit.
This will also enable us to check the PCAC relation directly
in the continuum limit eliminating any cut-off effects that
may cause violations.
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