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We present a precise calculation of the pion form factor using overlap fermions on seven ensembles of
(2þ 1)-flavor domain-wall configurations with pion masses varying from 139 to 340 MeV. Taking
advantage of the fast Fourier transform and other techniques to access many combinations of source and
sink momenta, we find the pion mean square charge radius to be hr2πi ¼ 0.430ð5Þð13Þ fm2, which agrees
well with the experimental result, and includes the systematic uncertainties from chiral extrapolation, lattice
spacing and finite-volume dependence. We also find that hr2πi depends on both the valence and sea quark
masses strongly and predicts the pion form factor up to Q2 ¼ 1.0 GeV2, which agrees with experiments
very well.

DOI: 10.1103/PhysRevD.104.074502

I. INTRODUCTION

The spacelike pion electric form factor fππðQ2Þ is
defined from the pionic matrix element and its slope at
Q2 ¼ 0 gives the mean square charge radius

hπiðp0ÞjVj
μð0ÞjπkðpÞi ¼ iϵijkðpμ þ p0

μÞfππðQ2Þ; ð1Þ

hr2πi≡ −6
dfππðQ2Þ

dQ2

����
Q2¼0

; ð2Þ

where Vj
μ ¼ ψ̄ 1

2
τjγμψ is the isovector vector current, τi are

the Pauli matrices in flavor space, and jπii are the pion
triplet states. hr2πi has been determined precisely based on
the existing πe scattering data [1–3] and eþe− → πþπ−
data [4,5] averaged by the Particle Data Group [6] as

hr2πi ¼ 0.434ð5Þ fm2. Phenomenologically, fππðQ2Þ is fit-
ted quite well over the range 0 < Q2=m2

ρ < 0.4 with the
single monopole form ð1þQ2=Λ2Þ−1, with Λ ∼mρ. This
gives credence to the idea of vector dominance [7,8]. In
chiral perturbation theory, hr2πi has been calculated with
SUð2Þ chiral perturbation theory [9] at next-to-next-to-
leading order (NNLO) and also at next-to-leading order
(NLO) with the SUð3Þ formula [10], which entails the
uncertainties of the low-energy constants.
Since lattice QCD is an ab initio calculation and the

experimental determination of hr2πi from the πe scattering is
very precise, it provides a stringent test for lattice QCD
calculations to demonstrate complete control over the
statistical and systematic errors in estimates of the relevant
pionic matrix element in order to enhance confidence in
their reliability to calculate other hadronic matrix elements
where further technical complications occur. Over the
years, the pion form factor has been calculated with the
quenched approximation [11,12], and for the Nf ¼ 2
[13–17], Nf ¼ 2þ 1 [18–23], and Nf ¼ 2þ 1þ 1 [24]
cases.
In this work, we use valence overlap fermions to

calculate the pion form factor on seven ensembles of
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domain-wall fermion configurations with different sea pion
masses, including three at the physical pion mass, four
lattice spacings and different volumes to control the
systematic errors. Due to the multimass algorithm available
for overlap fermions, we can effectively calculate several
valence quark masses on each ensemble [25–28] and also O
(100) combinations of the initial and final pion momenta
with little overhead with the use of the fast Fourier
transform (FFT) algorithm [29] in the three-point function
contraction. This allows us to study both the sea and the
valence quark mass dependence of hr2πi in terms of partially
quenched chiral perturbative theory, besides giving an
accurate result at the physical pion mass. This work is
based on Ref. [30] with more statistics on the ensembles at
the physical pion mass.
The paper is organized as follows: in Sec. II, we present

the numerical details of this calculation and a brief
description of the FFT on stochastic-sandwich method.
Fits and extrapolations are discussed in Sec. III with results
compared with other studies. A brief summary is given
in Sec. IV.

II. NUMERICAL DETAILS

We use overlap fermions on seven ensembles of hyper-
cubic (HYP) smeared (2þ 1)-flavor domain-wall fermion
configurations with Iwasaki gauge action (labeled with I)
[31,32] and Iwasaki with dislocation suppressing determi-
nant ratio (DSDR) gauge action (labeled with ID) [33,34]
as listed in Table I. The effective quark propagator of the
massive overlap fermions is the inverse of the operator
ðDc þmÞ [35,36], where Dc is chiral, i.e., fDc; γ5g ¼ 0
[37]. It can be expressed in terms of the overlap Dirac
operator Dov as Dc ¼ ρDov=ð1 −Dov=2Þ, with ρ ¼
−ð1=ð2κÞ − 4Þ and κ ¼ 0.2. A multimass inverter is used
to calculate the propagators with two to six valence pion
masses varying from the unitary point to ∼390 MeV. On
24I, 32I, and 24IDc (c stands for coarse lattice spacing),
Gaussian smearing [38] is applied with root mean square
(rms) radii 0.49, 0.49, and 0.53 fm, respectively, for both
source and sink. On 48I, 32ID, and 32IDh (h for heavier
pion mass), box-smearing [39,40] with box half sizes 0.57,

1.0, and 1.0 fm, respectively, is applied as an economical
substitute for Gaussian smearing.
To extract pionic matrix elements, the three-point func-

tion (3pt) C3ptðτ; tf ; p⃗i; p⃗fÞ is computed,

C3pt ¼
X
x⃗f ;z⃗

e−ip⃗f ·x⃗feiq⃗·z⃗hT½χπþðxfÞV3
4ðzÞχ†πþðGÞ�i;

¼
X
x⃗f ;z⃗

e−ip⃗f ·x⃗feiq⃗·z⃗hTr½γ5SðGjzÞγ4SðzjxfÞγ5Sðxf jGÞ�i;

ð3Þ
where χπþðx⃗; tÞ ¼ d̄ðx⃗; tÞγ5uðx⃗; tÞ is the interpolating field
of the pion with u and d the up and down quark spinors,
SðyjxÞ is the quark propagator from x to y, z≡ fτ; z⃗g,
xf ≡ ftf ; x⃗fg, p⃗i and p⃗f are the initial and final momenta of
the pion, respectively, q⃗ ¼ p⃗f − p⃗i is the momentum trans-
fer, and G is the smeared Z3-noise grid source [41]. The
disconnected insertions in Eq. (3) vanish in the ensemble
average [12].
In practice, SðGjzÞ in Eq. (3) is calculated using γ5

Hermiticity, i.e., SðGjzÞ ¼ γ5S†ðzjGÞγ5, and SðzjxfÞ is
usually obtained in the sequential source method with
γ5Sðxf jGÞ as the source [42,43]. The calculation of the
sequential propagators would need to be repeated for
different p⃗f and different quark mass m, so that the cost
would be very high when dozens of momenta and multiple
quark masses are calculated. Instead, we use the stochastic-
sandwich method [44,45], but without low-mode substi-
tution (LMS) for Sðxf jGÞ since it is not efficient for
pseudoscalar mesons [25]. However, the separation of sink
position xf and current position z in splitting the low and
high modes for the propagator SðzjxfÞ between the current
and sink can facilitate FFT along with LMS, which is still
useful here. More specifically, the propagator from the sink
at xf to the current at z, SðzjxfÞ, can be split into the exact
low-mode part based on the low lying overlap eigenvalues
λi and eigenvectors vi of the ith eigenmode of Dc, plus the
noise-source estimate SHnoi of the high-mode part,

SðzjxfÞ ¼ SLðzjxfÞ þ SHðzjxfÞ;

SLðzjxfÞ ¼
X
λi≤λc

1

λi þm
viðzÞv†i ðxfÞ;

SHðzjxfÞ ¼
1

nf

Xnf
j¼1

SHnoiðz; ηjÞη†jðxfÞ; ð4Þ

where λc is the highest eigenvalue in LMS and is much
larger than the quark mass m with the typical number of
eigenmodes nv ∼ 400 on 24I and 32I, and nv ∼ 1800 on
32ID, 32IDh, 24IDc, 32IDc, and 48I; and SHnoiðz; ηjÞ is the
noise-estimated propagator for the high modes with the
low-mode deflated Z3 noise ηjðxfÞ [44,45]. Sink smearing
is applied on all the sink spatial points xf of noise ηjðxfÞ and
eigenvectors v†i ðxfÞ.

TABLE I. The ensembles and their respective lattice size
L3 × T, lattice spacing a, pion mass mπ and number of con-
figurations ncfg.

Lattice L3 × T a (fm) La (fm) mπ (MeV) mπL ncfg

24IDc 243 × 64 0.195 4.66 141 3.33 231
32IDc 323 × 64 0.195 6.24 141 4.45 53
32ID 323 × 64 0.143 4.58 172 3.99 199
32IDh 323 × 64 0.143 4.58 250 5.80 100
48I 483 × 96 0.114 5.48 139 3.86 158
24I 243 × 64 0.111 2.65 340 4.56 202
32I 323 × 64 0.083 2.65 302 4.05 309
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Thus C3pt can be decomposed into factorized forms
within the sums of the eigenmodes for the low modes and
the nf number of noises ηj for the high modes,

C3ptðτ; tf ; p⃗i; p⃗fÞ ¼
�X

λi≤λc

Tr

�
1

λi þm
GL

i ðq⃗; τÞFL
i ðp⃗f ; tfÞ�

þ
Xnf
j¼1

1

nf
Tr½GH

j ðq⃗; τÞFH
j ðp⃗f ; tfÞ

��
;

ð5Þ

where

GL
i ðq⃗; τÞ ¼

X
z⃗

eiq⃗·z⃗γ5SðGjzÞγ4viðzÞ; ð6Þ

FL
i ðp⃗f ; tfÞ ¼

X
x⃗f

e−ip⃗f ·x⃗fv†i ðxfÞγ5Sðxf jGÞ; ð7Þ

GH
j ðq⃗; τÞ ¼

X
z⃗

eiq⃗·z⃗γ5SðGjzÞγ4SHnoiðz; ηjÞ; ð8Þ

FH
j ðp⃗f ; tfÞ ¼

X
x⃗f

e−ip⃗f ·x⃗fη†jðxfÞγ5Sðxf jGÞ; ð9Þ

which are calculated by using FFTs on the spatial points z⃗
and x⃗f for each of GL

i , F
L
i , G

H
j , and F

H
j to obtain any q⃗ and

p⃗f with the computational complexity OðV logVÞ, with V
the lattice spatial volume. Compared with the stochastic-
sandwich method for a fixed p⃗f which also includes the
summation over the spatial points z⃗ and x⃗f , eigenvectors vi
and noises ηj, the additional cost factor of using FFTs,
namely OðlogVÞ, is only of order ∼7 for our largest 48I
lattice. This allows us to calculate any combination of q⃗ and
p⃗f without much additional cost compared to the traditional
stochastic-sandwich method; this is of order ∼10 times less
expensive if we calculate more than seven different sink
momenta p⃗f and average over different directions. In
practice, since larger p⃗i or p⃗f will lead to worse signals,
we choose three cases so that for a givenQ2 we use as small
p⃗f and p⃗i as possible: (1) p⃗i ¼ 0 with q⃗ ¼ p⃗f or p⃗f ¼ 0

with q⃗ ¼ −p⃗i, which probes small Q2; (2) p⃗f ¼ −p⃗i

with q⃗ ¼ 2p⃗f , which probes reasonably high Q2; (3) for
a given q⃗, we calculate q⃗=2 and choose lattice momenta p⃗f
and −p⃗i, which are close to q⃗=2. This can also probe high
Q2 which fills Q2 between the previous two cases.
We use the lattice dispersion relation Ê2 ¼ m̂2 þP

i p̂
2
i

with aÊ ¼ 2 sinhðaE=2Þ, am̂ ¼ 2 sinhðam=2Þ, and
ap̂i ¼ 2 sinðapi=2Þ to define Q2 for all ensembles so that
there is a well defined physical limit. This is also used in
Ref. [23] to calculate the pion charge radius. More details
about checking the dispersion relation are included in
Appendix B.

III. ANALYSIS AND RESULTS

A. Three-point function fit

The source-sink separations tf used in this work with
different ensembles are collected in Table II. The largest tf
is ∼2.0 fm on the coarsest lattice 24IDc and the smallest
one is ∼0.7 fm on the finest lattice 32I.
With the use of Wick contractions and gauge invariance,

the three-point function (3pt) with two coherent sources
(we have put a source at each of t ¼ 0 and t ¼ T=2 for
most ensembles to increase statistics) has contributions
from the three diagrams shown in Fig. 1. (We assume
T=2 > tf > τ > 0.) Figure 1(1) contributes

C3pt;ð1Þðτ; tf ; p⃗i; p⃗fÞ

¼ Zp⃗i
Zp⃗f

ðEi þ EfÞ
EiEfZV

fππðQ2Þðe−Eiτ−Ef ðtf−τÞÞ

þ C1e−Eiτ−E1
f ðtf−τÞ þ C2e−E

1
i τ−Efðtf−τÞ

þ C3e−E
1
i τ−E

1
f ðtf−τÞ; ð10Þ

which includes the first excited-state contamination, where
Zp⃗ is the spectral weight and E and E1 are the ground state
and first excited state energies, respectively. Zp⃗i

; Zp⃗f
, Ei,

Ef , E1
i , and E1

f are constrained by the joint fit with
the corresponding two-point function (2pt). ZV is the finite
normalization constant for the local vector current
and is determined from the forward matrix element as
ZV ≡ 2E

hπðpÞjV4jπðpÞi. C1, C2, and C3 are free parameters for

the excited-state contamination. Figure 1(2) contributes

C3pt;ð2Þðτ; tf ; p⃗i; p⃗fÞ ¼
Zp⃗i

Zp⃗f
ðEi þ EfÞ

EiEfZV
fππðQ2Þ ð11Þ

×ðe−EiðT=2þτÞ−Efðtf−τÞÞ; ð12Þ

TABLE II. The lattice setup of this calculation. The ni sets of
smeared noise-grid sources with fns; ns; ns; ntg points in
fx; y; z; tg directions, respectively, are placed on the lattice to
improve the statistics, together with nf sets of SHnoi at 2nt sink time
slices at i Tnt tf and T − i T

nt
tf with i ¼ f1 � � � ntg. On a given

configuration, the total number of the propagators we generated is
ni þ nf and nmeas ¼ nin3snt � ncfg is the number of measurements
of 3pt.

Lattice ni nt ns tf=a nf nmeas

24IDc 32 1 3 6, 7, 8, 9, 10 4, 4, 6, 4, 4 199584
32IDc 16 2 4 6, 7, 8, 9, 10 4, 4, 4, 4, 4 108544
32ID 6 2 2 9, 10, 11 4, 5, 12 19104
32IDh 6 2 2 9, 10, 11 4, 5, 12 9600
48I 16 3 4 8, 10, 12, 14 4, 4, 4, 4 485376
24I 8 1 2 10, 11, 12 3, 5, 5 12928
32I 8 1 2 8, 12, 15 4, 8, 12 19776

LATTICE CALCULATION OF PION FORM FACTORS WITH … PHYS. REV. D 104, 074502 (2021)

074502-3



in which we have ignored the excited-state contamination
from the source at T=2 since such terms are suppressed by
e−E

1
i T=2, which is of order ∼10−8 with E1

i ≈ 1.3 GeV
estimated with the experimental value of the first excited
state of the pion, and Fig. 1(3) contributes

C3pt;ð3Þðτ; tf ; p⃗i; p⃗fÞ ¼ C4e−EiðT=2−tf Þ−Ehðtf−τÞ; ð13Þ

in which this term corresponds to the creation of a hadron
state with operator V4 ¼ q̄γ4q at time slice τ with momen-
tum q as hhðqÞjV4j0i, an annihilation of a pion state at
time slice T=2with momentum pi as h0jχ†πþjπ−ðpiÞi and an
unknown matrix element hπ−ðpiÞjχπþjhðqÞi. The excited-
state contamination from E1

i is ignored for the same
reason as in the previous discussion and the excited-state
contamination from E1

h is ignored under current statistics.
In order to test the functional form ofC3pt;ð3Þðτ; tf ; p⃗i; p⃗fÞ,

we construct 3pt with one source at time slice T=2 ¼ 32
and sink time tf at 20,21,22 with p⃗i ¼ f0; 0; 0g and
p⃗f ¼ f0; 0; 2πLg. Then we can evaluate the effective mass
Eeff
h and Eeff

i from C3pt;ð3Þðτ; tf ; p⃗i; p⃗fÞ with

Eeff
h ðτ; tfÞ ¼ ln

�
C3pt;ð3Þðτ þ 1; tf ; p⃗i; p⃗fÞ
C3pt;ð3Þðτ; tf ; p⃗i; p⃗fÞ

�
;

Eeff
i ðτ; tfÞ ¼ ln

�
C3pt;ð3Þðτ þ 1; tf ; p⃗i; p⃗fÞ
C3pt;ð3Þðτ; tf − 1; p⃗i; p⃗fÞ

�
; ð14Þ

in which Eeff
i is evaluated by a simultaneous change

of τ and tf to single out Ei from the exponential
e−EiðT=2−tf Þ−Ehðtf−τÞ. They should equal to Eh ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

h þ ðp⃗f − p⃗iÞ2
p

and Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ p⃗2
i

p
¼ mπ in the tf ≫

τ limit, as confirmed in Fig. 2 and the fit results in Fig. 5.
Thus the final functional form is C3pt ¼ C3pt;ð1Þ þ

C3pt;ð2Þ þ C3pt;ð3Þ as

C3ptðτ;tf ;p⃗i;p⃗fÞ¼
Zp⃗i

Zp⃗f
ðEiþEfÞ

EiEfZV
fππðQ2Þ

×ðe−Eiτ−Ef ðtf−τÞþe−EiðT=2þτÞ−Efðtf−τÞÞ
þC1e−Eiτ−E1

f ðtf−τÞþC2e−E
1
i τ−Efðtf−τÞ

þC3e−E
1
i τ−E

1
f ðtf−τÞþC4e−EiðT=2−tfÞ−Ehðtf−τÞ:

ð15Þ

The associated 2pt is fitted with

C2ptðt; p⃗Þ ¼
Z2
p⃗

E
ðe−Et þ e−EðT−tÞÞð1þ e−EðT=2−tÞÞ

þ A1ðe−E1t þ e−E
1ðT=2−tÞÞ; ð16Þ

with A1 being a free parameter for the excited-state
contributions and the exponential terms with T=2 account
for contributions from the source at T=2. An example of
fitted energies is shown in Fig. 3. It can be seen that the first
excited state energy E1 is close to the experimental value
1.3 GeVand it has been used to constrain that of the 3pt by
the joint fit of 2pt and 3pt to extract fππðQ2Þ.
For the special jp⃗ij ¼ jp⃗f j case, one can simply calculate

the ratio of 3pts, and obtain the pion form factor by the
following parametrization of the ratio R1,

R1ðτ; tf ; p⃗i; p⃗fÞ ¼ C3ptðτ; tf ; p⃗i; p⃗fÞ=C3ptðτ; tf ; p⃗i; p⃗iÞ
¼ fππðQ2Þ þ B1ðe−ΔEτ þ e−ΔEðtf−τÞÞ
þ B2e−ΔEtf ; ð17Þ

FIG. 1. Diagrams of pion three-point functions with sources at
time slices 0 and T=2.

FIG. 2. The plot on the left is of C3pt;ð3Þ on 24I with mπ ¼ 347 MeV, one source at time slice T=2, p⃗i ¼ f0; 0; 0g and p⃗f ¼ f0; 0; 2πLg.
The correlation function is a rising exponential which confirms that Eh > 0 in Eq. (13). The plots in the middle and right panels show the
corresponding effective masses Eeff

h and Eeff
i , respectively, obtained with Eq. (14).

WANG, LIANG, DRAPER, LIU, and YANG PHYS. REV. D 104, 074502 (2021)

074502-4



where the terms with B1 and B2 are the contributions from
the excited-state contamination, and ΔE ¼ E1ðp⃗iÞ − Eðp⃗iÞ
is the energy difference between the pion energy Eðp⃗iÞ and
that of the first excited state E1ðp⃗iÞ. These energies are also
constrained by the joint fit with the corresponding 2pt.
Since the excited-state contamination of the forward matrix
element in the denominator is known to be small and the
contribution from C4 term in Eq. (15) is suppressed by
e−Eðp⃗iÞT=2 with p⃗i ≠ 0⃗ for both the denominator and
numerator, we have dropped them in the parametrization
of the ratio and our fits can describe the data with
χ2=d:o:f: ∼ 1. Figure 4 shows a sample plot for 32ID with
the unitary pion mass of 174 MeVat Q2 ¼ 0.146 GeV2. In
view of the fact that the data points are symmetric about
τ ¼ tf=2, within uncertainty, it reassures that the sink

smearing implemented under the FFT contraction has
the same overlap with the pion state as that of the source
smearing.
In order to test the fit function of 3pt in Eq. (15), a

comparison of the fit of the one-source result with the
source at t ¼ 0 and that of the two-source result
with a source at each of t ¼ 0 and 32 in the same inversion
is shown in Fig. 5. For illustrative purpose, the data
points on the left and middle panels are shown with
ratio R2,

R2ðτ;tf ;p⃗i;p⃗fÞ¼C3ptðτ;tf ;p⃗i;p⃗fÞ=
�
Zp⃗i

Zp⃗f
ðEiþEfÞ

4EiEfZV

ðe−Eiτ−Efðtf−τÞ þe−EiðT=2þτÞ−Ef ðtf−τÞÞ
�

¼fππðQ2Þþexcited-state termsþC4term;

ð18Þ

in which Zp⃗ and E are determined from the fit of 2pt and ZV

from 3pt at zero momentum transfer. The data for the
top panels use ni ¼ 4 with fns; ns; ns; ntg ¼ f2; 2; 2; 1g
and the data for the lower panels use ni ¼ 2
with fns; ns; ns; ntg ¼ f2; 2; 2; 2g so that their statistics
are matched. The case with one source and p⃗i ¼ 0 and
q⃗ ¼ p⃗f is shown in the top left panel and the gray band is
close to the data points due to small excited-state con-
tamination. The similar case with two coherent sources is
shown in the lower left panel and the gray band is far away
from the rising data points due to the additional C4 term
with fitted Eh ¼ 820ð110Þ MeV, which is consistent with
the result of Fig. 2. The two results agree with each other
within uncertainty which confirms our fit formula, but a
comparison of the statistical errors reveals that the factor of
two lower cost from using two coherent sources versus one
source produces no net benefit for this case of p⃗i ¼ 0. Since
the contribution from the C4 term is suppressed signifi-
cantly for 3pts with pi ≠ 0, the data points and results from
one source and two coherent sources agree with each other
very well for the cases with p⃗f ¼ 0, q⃗ ¼ −p⃗i and p⃗f ¼ −p⃗i,
q⃗ ¼ 2p⃗f , which are shown in the middle and right
panels, respectively. In these kinematical cases, however,
the statistical errors are the same for one source versus
two coherent sources and thus the full factor of two lower
cost (in computation and storage) for the latter is fully
realized.
Thus for the general momentum setup jp⃗ij ≠ jp⃗f j, we can

proceed further to fit C3ptðτ; tf ; p⃗i; p⃗fÞ together with
C3ptðτ; tf ; p⃗f ; p⃗iÞ which corresponds to the exchange of
initial and final momenta. Figure 6 shows an example plot
on 32ID. The data points are fitted well (χ2=d:o:f: ∼ 1) with
Eq. (15) and the fit results are shown with colored bands.
The data points for C3ptðτ; tf ; p⃗; 0⃗Þ are lower and closer to
the gray band since the C4 term has a negative contribution

FIG. 3. Pion energies as a function of tini with ½tini; 15� the fit
range of the 2pt on 32ID with pion mass 173.7 MeV at zero
momentum. The contributions from the first excited state are
ignored for tini ≥ 6 under current statistics.

FIG. 4. Example of the ratios for the special jp⃗ij ¼ jp⃗f j case on
32ID with various values of source-sink separation tf and current
position τ. The data points agree well with the colored bands
predicted from the fit, and the gray band is for the fitted value of
the ground state form factor fππðQ2Þ.
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with a suppression factor e−Eðp⃗ÞT=2 compared to the case of
C3ptðτ; tf ; 0⃗; p⃗Þ in which the C4 term has a positive and

large contribution with only a suppression factor e−Eð0⃗ÞT=2.

B. z-expansion fit

To obtain fππðQ2Þ, we have done a model-independent
z-expansion [46] fit using the following equation with
kmax ≥ 3.

fππðQ2Þ ¼
Xkmax

k¼0

akzk;

zðt; tcut; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0

p ; ð19Þ

where t ¼ −Q2; fππð0Þ ¼ 1 after normalization, which
leads to the constraint a0 ¼ 1 −

Pkmax
k¼1 akz

kðt ¼ 0; tcut; t0Þ;
tcut ¼ 4m2

π;mix corresponds to the two-pion production
threshold, with mπ;mix the mass of the mixed valence
and sea pseudoscalar meson calculated in Refs. [47,48]
on each ensemble directly with one valence domain wall
propagator and one valence overlap propagator for each
valence quark mass; and t0 is chosen to be its “optimal”
value topt0 ðQ2

maxÞ ¼ tcutð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

max=tcut
p

Þ to minimize
the maximum value of jzj, with Q2

max the maximum Q2

under consideration.
In order to remove the model dependence of the z-

expansion fit, we need to take kmax to be large enough such
that the fit results are independent of the precise value of
kmax. One way of achieving this is putting a Gaussian prior
on the z-expansion parameters ak with central value 0. The

FIG. 5. Joint fit results on 24I with mπ ¼ 347 MeV for different source and momentum setups. The cases with p⃗i ¼ 0; q⃗ ¼ p⃗f;
p⃗f ¼ 0; q⃗ ¼ −p⃗i; and p⃗f ¼ −p⃗i, q⃗ ¼ 2p⃗f are shown in the left, middle, and right panels, respectively. The top panels correspond to the
cases of one source at time slice 0. The lower panels correspond to the cases of a source at each of the time slices 0 and T=2. Each panel’s
gray band is for the fitted value of the ground state form factor fππðQ2Þ.

FIG. 6. Examples of the ratios on 32ID with various values of
source-sink separation tf and current position τ at the valence
pion mass mπ;v ¼ 174 MeV. The plots show the general jp⃗ij ≠
jp⃗f j case with square points p⃗i ¼ −q⃗; p⃗f ¼ 0 and dot points
pi ¼ 0; p⃗f ¼ q⃗. The data points agree well with the colored bands
predicted from the fit, and the gray band is for the ground state
form factor fππðQ2Þ.
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choice of the Gaussian prior can be investigated using the
vector meson dominance model with rho meson mass
mρ ¼ 775 MeV,

fππðQ2Þ ¼ 1

1þQ2=m2
ρ
: ð20Þ

A nonlinear least squares fit of this analytical function
with z-expansion fit at kmax ¼ 10 gives jak=a0jmax < 1.03,
in which we used tcut¼4m2

π;phys, topt0 ðQ2
maxÞ ¼ tcutð1 −ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þQ2
max=tcut

p
Þ and Q2

max ¼ 1.0 GeV2. Also, by inves-
tigating the z-expansion fits with kmax ¼ 3without priors of
our data, we find jak=a0jmax < 3.0. Thus we propose the
use of the conservative choice of Gaussian prior [46]
with jak=a0jmax ¼ 5 [use “ak=a0 ¼ 0ð5Þ” as a Gaussian
prior for all ak; k > 1, in the fits] for the pion
form factor. The z-expansion fitted pion form factors
up to Q2 ∼ 1.0 GeV2 for the seven lattices with the same
valence and sea pion mass are shown in Fig. 7 with
χ2=d:o:f: ∼ ½0.4; 0.9�.
Another way to reach higher kmax and control the model

dependence of fits is to use the fact that at theQ2 → ∞ limit
fππðQ2Þ falls as 1=Q2 up to logarithms [49,50]. Thus we
have QkfππðQ2Þ → 0 for k ¼ 0, 1 and follow the same
argument in [46], which implies

dn

dzn
fππ

����
z¼1

¼ 0; n ∈ f0; 1g; ð21Þ

with z ¼ 1 corresponding to the Q2 → ∞ limit. These
equations lead to the two sum rules for pion form factors as

X∞
k¼0

ak ¼ 0;
X∞
k¼1

kak ¼ 0: ð22Þ

We have explored this alternative results shown in Fig. 10.

C. Chiral extrapolation of pion radius

With the z-expansion fit of the form factor using
Eq. (19), the charge radius of pion can be obtained through

hr2πi≡ −6
dfππðQ2Þ

dQ2

����
Q2¼0

; ð23Þ

for all the valence masses of each lattice. Figure 8 shows the
results on 32ID and 32IDh as a function of valence pion
mass m2

π;v and mixed pion mass m2
π;mix in the left panel and

right panel, respectively. We see that there is a strong
dependence on the valence pion masses from the data
points on these two ensembles. Also, the disagreement in
the left panel evinces a strong dependence on the sea pion
mass. In contrast, the right panel shows an agreement of
32ID results and 32IDh results at similar m2

π;mix which
guides us to use m2

π;mix, as proposed by partially quenched
chiral perturbation theory [51], as a basic variable for the
chiral extrapolations.
The hr2πi on different lattices with different valence pion

masses are plotted in Fig. 9. The following fit form as a
function of m2

π;mix is used which includes an essential
divergent log term from the SUð2Þ NLO chiral pertubation
theory χPT [10,51],

hr2πi ¼
1

ð4πFπÞ2
�
l̄6 þ ln

M2
π

m2
π;phys

− 1

�

þbI=ID2 a2 þ b3e−MπL

ð4πFπÞ4ðMπLÞ3=2
; ð24Þ

where Fπ ¼ Fð1þ M2
π

16π2F2
π
ðl̄4 − ln M2

π

m2
π;phys

ÞÞ shows the pion

mass dependence of the pion decay constant from partially
quenched NLO SUð2Þ χPT [52] with M2

π ≡m2
π;mix, F and

l̄6 are free parameters for fitting, mπ;phys ¼ 139.57 MeV is

FIG. 7. z-expansion fit of the pion form factors on seven gauge ensembles at their unitary pion mass with kmax ¼ 3 and
jak=a0jmax ¼ 5. The left panel is for the ensembles using the Iwasaki gauge action and the Iwasakiþ DSDR cases are shown in the
right panel.
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the physical pion mass, L is the spatial size of the lattice,
the bI=ID2 terms reflect the lattice spacing dependence for
the two sets of ensembles with different gauge actions
(Iwasaki and Iwasaki plus DSDR), and the b3 term
accounts for the finite-volume effect [17,53–55]. Instead
of fitting both the low-energy constants l̄4 and F as free
parameters, which leads to unstable fits, we use
l̄4 ¼ 4.40ð28Þ, as given by its Flavour Lattice Averaging
Group (FLAG) average [56], as a prior and treat F as free
parameter.
The results of the fits are shown in Fig. 9. The colored

bands show our prediction based on the global fit of hr2πi
with χ2=d:o:f: ¼ 0.85; the inner gray band shows our
prediction for the unitary case of equal pion mass in the
valence and the sea in the continuum and infinite volume
limits and the outer band includes the systematic uncer-
tainties from excited-state contamination, z-expansion fit,
chiral extrapolation, lattice spacing, and finite-volume
dependence. Since the kaon mass only varies a little in
the current pion mass range, we do not include the kaon log
term in the fit. The discretization errors across the Iwasaki
gauge ensembles are small, while those across the Iwasaki
plus DSDR gauge ensembles are obvious; this is consistent
with what was found in the previous work with the DWF
valence quark on similar RBC ensembles [23]. The fit gives
Fπ ¼ 96.2ð4.3Þ MeV, which is consistent with 92.2(1)
MeV, and l̄6 ¼ 17.1ð1.4Þ, which is also consistent with
the FLAG average [56] value l̄6 ¼ 15.1ð1.2Þ. The system-
atic uncertainties considered are listed as follows:

(i) Fit results for the radius from different z-expansion
fits using Eq. (24) are shown in Fig. 10. Since bI2 and
b3 have no statistical significance, we use only three
free parameters F, l̄6, and bID2 in these fits and treat
the low-energy constant l̄4 ¼ 4.40ð28Þ appearing in
Fπ as a prior. All the fits have good χ2=d:o:f: ∼ 0.85
with the central values and error values varying a
little. Thus we take the result shown in black,

FIG. 8. The left panel shows the pion radius on 32ID and 32IDh as a function of valence pion mass m2
π;v and the right panel shows the

same data as a function of mixed pion mass m2
π;mix.

FIG. 9. Pion radius squared hr2πi as a function of m2
π;mix. Data

points with different colors correspond to the results on the seven
ensembles with different sea pion masses.

FIG. 10. Comparison of extrapolated hr2πi with z-expansion fits
with different kmax. The first and second sets are the fits with
priors jak=a0jmax ¼ 5 and jak=a0jmax ¼ 10, respectively. The
third and fourth sets are the similar fits constrained with the
sum rules in Eq. (22).
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namely hr2πi ¼ 0.4298ð45Þ fm2, which corresponds
to kmax ¼ 3 and jak=a0jmax ¼ 5 as our fit result. The
central values and correlations of the fit parameters
F, l̄6, bID2 , and l̄4 are listed in Table III. The
maximum difference between the result shown in
black in Fig. 10 and those of the other fitted cases is
treated as the systematic uncertainty from the z-
expansion fit.

(ii) The systematic uncertainty from the excited-
tate contamination is estimated by changing the fit
ranges of 2pt and 3pt on 32ID with pion mass
174 MeV at the smallest momentum transfer which
results in fππðQ2¼0.051GeV2Þ¼0.9158ð14Þð13Þ;
the second error corresponds to the systematic un-
certainty from excited-state contamination. This case
is chosen because of its good signal to noise ratio
which has the most control of the final result at close
to the physical pion mass, and the smallest momen-
tum transfer is chosen due to its largest influence on
the radius. In order to estimate the systematic
uncertainty of the radius from the form factor at only
one small momentum transfer, we solve the vector
meson dominance model in Eq. (20),

1

1þ ð0.051 GeV2Þ=m2
¼ 0.9158ð14Þð13Þ ð25Þ

with m as a free parameter. The predicted radius is
hr2πi ¼ 6.0=m2 ¼ 0.4190ð74Þð68Þ fm2. The second
error 0.0068 fm2, which propagates from the sys-
tematic uncertainty of the form factor, is treated as the
systematic uncertainty from the change of fit ranges
for the extrapolated charge radius.

(iii) We added a linear dependence term between the
charge radius of the pion and the pion mass squared
as b4M2

π to Eq. (24) proposed by SUð2Þ NNLO
χPT [9] and repeated the fit with four free para-
meters hr2πiphys, b1, bID2 and b4. The coefficient b4 is
consistent with zero and the prediction changes by
0.0017 fm2, which is treated as a chiral extra-
polation systematic uncertainty.
Another source of the chiral extrapolation sys-

tematic uncertainty is the lack of a kaon log term in
Eq. (24). On 24I, the valence pion masses ranging

from 323 to 391 MeV give a range of kaon mass
from 532 to 554 MeV. Thus we estimate the
maximum kaon mass for the pion mass range in
consideration to be MK;max ¼ 554 MeV. With the
use of SUð3Þ NLO χPT [10], the systematic
uncertainty from the kaon log term can be

given by 1
32π2F2

π
ln

M2
K;max

m2
K;phys

¼ 0.0034 fm2, in which

Fπ ¼ 92.2 MeV and mK;phys ¼ 493 MeV is the
physical kaon mass.

(iv) We repeated the fit with four free parameters F, l̄6,
bID2 , and bI2, which includes the discretization error
from the Iwasaki gauge action and the prediction
changes by 0.0052 fm2. With this fit, we get a
difference between the fit predictions in the con-
tinuum limit with those from the smallest lattice
spacing (32I) to be 0.0017 fm2. We combined these
two as the systematic uncertainty of finite lattice
spacing.

(v) We repeated the fit with four free parameters F, l̄6,
bID2 , and b4, which includes the finite-volume term
and the prediction changes by 0.00019 fm2. With the
inclusion of the finite-volume term, the difference of
the predictions for 24IDc (which has the smallest
mπL) and 32IDc is 0.005 fm2. We combined these
two as the systematic uncertainty of finite-volume
effects.

Thus, the final result of the mean square charge radius of
the pion at the physical pion mass in the physical limit reads

hr2πi ¼ 0.4298ð45Þstatð66Þz-expð68Þfit-rangeð37Þχð55Það50ÞV
¼ 0.4298ð45Þð126Þ fm2;

with statistical error (stat) and systematic uncertainty from
z-expansion fit ðz-expÞ, fit-range dependence ðfit − rangeÞ,
chiral extrapolation (χ), finite lattice spacing (a), and finite-
volume (V). The total uncertainties at heavier pion masses
are estimated from the scale of the total/statistical ratio at
the physical pion mass.

D. Chiral extrapolation of the pion form factor

In order to make a prediction of the form factor at the
continuum and infinite volume limits, we fit the inverse of

TABLE III. The central values and correlations of the fit parameters F, l̄6, bID2 , and l̄4 in Eq. (24).

F l̄6 bID2 l̄4

Central value 0.0908(43) 17.1(1.4) 0.0510(27) 4.44(26)

Correlation F l̄6 bID2 l̄4

F 1.86 × 10−05 5.90 × 10−03 −4.11 × 10−07 9.19 × 10−04

l̄6 5.90 × 10−03 1.91 × 10þ00 −3.98 × 10−04 3.16 × 10−01

bID2 −4.11 × 10−07 −3.98 × 10−04 7.55 × 10−06 −6.91 × 10−05

l̄4 9.19 × 10−04 3.16 × 10−01 −6.91 × 10−0 6.91 × 10−02
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the fππðQ2Þ data on different lattices with different valence
pion masses, as inspired from the NLO SUð2Þ χPT
expansion [9,10],

1

fππðQ2Þ¼1þ Q2

6ð4πFπÞ2
�
l̄6− ln

M2
π

m2
π;phys

−1þRðsÞ
�

þQ2M2
π

F4
π

�
c1þc2

Q2

M2
π

�
þcI=ID3 a2Q2þcI=ID4 a2Q4

þ Q2

F4
πðMπLÞ3=2

�
c5þc6

Q2

M2
π

�
e−MπL; ð26Þ

in which F and l̄6 are free parameters for fitting, c1 and c2
account for possible NNLO effects, cI=ID3 and cI=ID4 reflect
the lattice spacing dependence terms, c5 and c6 account
for the finite-volume effect, and RðsÞ ¼ 2

3
þ ð1þ 4

sÞ
½

ffiffiffiffiffiffiffiffiffiffi
1þ 4

s

q
ln

ffiffiffiffiffiffi
1þ4

s

p
−1ffiffiffiffiffiffi

1þ4
s

p
þ1

þ 2�. Fπ was defined previously with

l̄4 ¼ 4.40ð28Þ treated as a prior here as well. Since the
inverse of fππðQ2Þ is mainly dominated by the NLO
contributions considering the vector dominance of the pion
form factor, fitting the inverse helps avoid the need of too
many low-energy constants from NNLO corrections [17].
The fit result is shown in Figs. 11 and 12 with the central
values, and correlations of the fit parameters are listed in
Table IV. This fit (with χ2=d:o:f: ¼ 1.0) gives
hr2πi ¼ 0.433ð6Þ fm2, Fπ ¼ 92.1ð6.2Þ MeV, and
l̄6 ¼ 16.0ð1.9Þ, which are consistent with the above analy-
sis. Our extrapolated result at the physical pion mass and
continuum and infinite volume limits for the curve
fππðQ2Þ, including the systematic uncertainties from
excited-state contamination, NNLO corrections, chiral

extrapolation, lattice spacing, and finite-volume depend-
ence, is shown and compared with experiments in Fig. 13;
it goes through basically all the experimental data points up
toQ2 ¼ 1.0 GeV2. Also, our results are consistent with the
previous experimental analysis [5] and phenomenological
prediction [57].
The following systematic uncertainties are included in

the analysis:
(i) With a variation of the fit ranges of 2pt and

3pt on 32I with pion mass 312 MeV we got the
form factor at large momentum transfer fππðQ2 ¼
0.865 GeV2Þ ¼ 0.4347ð87Þð98Þ. Along with pre-
vious analysis on 32ID at small momentum transfer
fππðQ2 ¼ 0.051 GeV2Þ ¼ 0.9158ð14Þð13Þ, we esti-
mate the systematic uncertainty from the excited-
state contamination to be equal to the statistical
uncertainty of the fitted pion form factors for
all Q2 < 1.0 GeV2.

(ii) Since the c1 and c2 terms are just an estimation of
the possible NNLO effects, we estimate the NNLO
systematic uncertainty by setting c1 and c2 in
Eq. (26) to be zero and treat the changes as the
systematic uncertainty from NNLO corrections.

(iii) The systematic uncertainty from the lack of a kaon log
term proposed by SUð3ÞNLO χPT is calculated with

Q2

12ð4πF0Þ2
�
ln
M2

K;max

m2
K;phys

�
; ð27Þ

which is the difference between using MK;max and
mK;phys in the χPT formula. This is treated as the
systematic uncertainty from chiral extrapolation.

FIG. 11. Summary of the pion radius results at the physical
point. The lattice QCD results with different sea flavors are
collected in different blocks, while all the results are consistent
with each other within uncertainties. Numbers are from QCDSF/
UKQCD [13], ETM [14], JLQCD/TWQCD [15], Brandt et al.
[16], ETM [17], JLQCD [21,22], Feng et al. [23], HPQCD [24],
and PDG [6].

FIG. 12. Pion form factor fππðQ2Þ on seven gauge ensembles at
their unitary pion mass with the colored bands from the chiral
extrapolation fit. The inner gray error band shows the fit result
and statistical error extrapolated to the physical limit and the outer
lighter gray band corresponds to the inclusion of the systematic
uncertainties from excited-state contamination, NNLO correc-
tions, chiral extrapolation, lattice spacing, and finite-volume
dependence.
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(iv) We use the difference between the fit predictions in
the continuum limit with those from the smallest
lattice spacing (32I) as the systematic uncertainty of
finite lattice spacing.

(v) The systematic uncertainty from finite-volume effects
is estimated by the difference between the fit predic-
tions for 24IDc with mπL ∼ 3.33 and 32IDc mπL ∼
4.45 with both ensembles at the physical pion mass.

IV. SUMMARY

We have presented a calculation of the pion form factor
using overlap fermions with a range of valence pion masses
on seven RBC/UKQCD domain-wall ensembles including
two that have the physical pion mass. The lattice results for
hr2πi in the continuum and infinite volume limits are
compiled together with that of the Particle Data Group
experimental average. Our globally fitted pion mean square
charge radius is hr2πi ¼ 0.430ð5Þð13Þ fm2, which includes
systematic errors from chiral extrapolation, finite lattice
spacing, finite volume, and others; it agrees with exper-
imental value of hr2πi ¼ 0.434ð5Þ fm2 within one sigma.
We find that hr2πi has a strong dependence on both the

valence and sea pion masses. More precisely, it depends
majorly on the mass of the pion with one valence quark
and one sea quark. A good fit of the chiral log term confirms
that the pion radius diverges in the chiral limit.We also give the
extrapolated form factor fππðQ2Þ, and the result agrees well
with the experimental data points (up to Q2 ¼ 1.0 GeV2).
Thus this work shows that the hadron form factor and the

corresponding radius can be studied accurately and effi-
ciently by combining LMS with the multimass algorithm of
overlap fermions and FFT on the stochastic-sandwich
method. This raises the expectation of an efficacious
investigation of the form factor of the nucleon and itsTA
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FIG. 13. Comparison of the pion form factor fππðQ2Þ at the
physical pion mass with the CERN experiment at Q2 <
0.25 GeV2 [2] and the JLab and DESY experiment data at larger

Q2]58–62 ]. The inner gray band is the statistical error and the
outer band includes the systematic uncertainties.
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pion-mass dependence with relatively small overhead on
multiple quark masses and momentum transfers. Note that
for an accurate prediction of the charge radius and form
factor with 1% overall uncertainty, calculations at smaller
lattice spacing and larger source-sink separation will be
essential, together with the QED and isospin breaking
corrections.
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APPENDIX A: AUTOCORRELATION OF
MEASUREMENTS

We have chosen a set of evenly separated configurations
for measurement from the full Monte Carlo evolutions
available for each ensemble. The separations are 40, 32, 10,
8, 8, 10, 32 for 24I, 32I, 48I, 24IDc, 32IDc, 32ID, 32IDh,
respectively. For the error analysis, we treat measurements
from different configurations as independent and average
the measurements over each configuration before analysis.
In the left panels of Fig. 16, we have plotted the integrated

autocorrelation time on 24IDc and 48I, defined as

τintðΔcutÞ ¼
1

2
þ
XΔcut

Δ¼1

CðΔÞ;

CðΔÞ ¼
�ðYðtÞ − ȲÞðYðtþ ΔÞ − ȲÞ

σ2

�
t
: ðA1Þ

The error of CðΔÞ is estimated by jackknife resampling of
the average on t and the error of the integrated autocorre-
lation time is estimated with simple error propagation. The
plot shows the three-point functions with current position
τ ¼ tf=2 for the valence pion mass 137 and 148 MeVat the
smallest separation C3ptðtf=2; tf ; p⃗i ¼ 0; p⃗f ¼ 0Þ on 24IDc
and 48I, respectively. The integrated autocorrelation times
are less than 1 within uncertainty for both ensembles which
confirms the independence of the measurements on each of
the configurations.
In the right panels of Fig. 16, we plot the central values

and errors ofC3ptðtf=2; tf ; p⃗i ¼ 0; p⃗f ¼ 0Þ on 24IDc and 48I
as a function of binning size tbin. The statistical errors change
very little as the bin size is increased for both ensembles
which again confirms the measurements’ independence.

APPENDIX B: DISPERSION RELATIONS

In Fig. 14, we compare the pion energy Eðp⃗Þ obtained
from the fitting of 2pts to the lattice dispersion relation

Ê2 ¼ m̂2 þ
X
i

p̂2
i ; ðB1Þ

where aÊ ¼ 2 sinhðaE=2Þ, am̂ ¼ 2 sinhðam=2Þ and
ap̂i ¼ 2 sinðapi=2Þ. As can be seen, the dispersion relation
is well satisfied under the 1% level for the momenta
considered in this paper.
In Fig. 15, we have plotted the pion form factors on 48I

with different p⃗i and p⃗f cases marked with different colors.
The values for different cases overlap with each other quite
well at similar Q2 at the 1% level. This confirms that the
combination of p⃗i and p⃗f considered in this paper are
consistent with each other, which will lead to a well-defined
physical limit.

FIG. 14. Example plot of the pion energies as a function of p⃗2

on 48I with pion mass 148 MeV. The blue points correspond to
the pion energies Eπðp⃗Þ from 2pt function fits and the red points
are calculated with Eq. (B1) using Eπð0⃗Þ. Their percentage
differences are also shown with cyan points with the scale on
the right.
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APPENDIX C: NORMALIZATION OF THE
LOCAL VECTOR CURRENT FOR OVERLAP

FERMIONS

The left panel of Fig. 17 shows the determination of the
normalization constant ZV on 32ID by fitting the inverse of
the forward matrix element as 2E

hπðpÞjV4jπðpÞi with p⃗ ¼ 0. The

data points from different source-sink separations overlap
well with each other under the 0.1% level, so we have done
a simple linear fit with χ2=d:o:f: ∼ 0.7.
As we are using overlap fermions which have exact

chiral symmetry on the lattice, the axial normalization
(finite renormalization) constant is equal to the local vector
current normalization constant, as confirmed in [63]. The
axial normalization constant on 32ID was calculated in [45]
from the Ward identity: ZA ¼ 2mqh0jPjπi

mπh0jA4jπi with P and A4 the
pseudoscalar quark bilinear operator and the temporal
component of the axial-vector operator, respectively. As
shown in the right panel of Fig. 17, the axial normalization
constant agrees well with the local vector current normali-
zation constant used in this paper very well at the mass-
less limit.

FIG. 15. Example plot of the pion form factor on 48I with pion
mass 148 MeV. The cyan, green, and blue points correspond to
the fππðQ2Þ from different p⃗i and p⃗f combinations. The gray
band is the z-expansion fit result. The percentage differences
between the data and corresponding fit results are also plotted
with red, magenta, and lime colors with the scale on the right. As
a reference, the inverse of signal-to-noise ratio of the fit result is
displayed as percentage with the coral region.

FIG. 16. Plots in the left panels show the integrated autocorrelation of C3ptðtf=2; tf ; p⃗i ¼ 0; p⃗f ¼ 0Þ on 24IDc (top) and 48I (bottom).
Plots in the right panels show the binning tests for the same quantity.
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