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In the deconfined regime of a non-Abelian gauge theory at nonzero temperature, previously it was
argued that if a (gauge invariant) source is added to generate nonzero holonomy, that this source must be
linear for small holonomy. The simplest example of this is the second Bernoulli polynomial. However, then
there is a conundrum in computing the free energy to ∼g3 in the coupling constant g, as part of the free
energy is discontinuous as the holonomy vanishes. In this paper we investigate two ways of generating the
second Bernoulli polynomial dynamically; as a mass derivative of an auxiliary field, and from two-
dimensional ghosts embedded isotropically in four dimensions. Computing the holonomous hard-thermal
loop in the gluon self-energy, we find that the limit of small holonomy is only well behaved for two
dimensional ghosts, with a free energy which to ∼g3 is continuous as the holonomy vanishes.
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I. INTRODUCTION

The behavior of gauge theories is intrinsically of
fundamental interest, especially for understanding the
behavior of collisions of heavy ions at ultrarelativistic
energies. Coming down from high temperatures, resum-
mations of perturbation theory can be used down to several
times the transition temperature [1–4], and coming up from
low temperature, hadronic gas models are useful. This
leaves the most interesting region; from the transition
temperature to a few times that [5–51]. This has been
described as a semi-quark-gluon plasma [29–32], when the
deconfined phase exhibits nontrivial holonomy.
It is most direct to use an effective model, where the

nontrivial holonomy is generated by adding a term to the
action by hand. Given the wealth of results from numerical
simulations on the lattice [52], it is relatively straightfor-
ward to construct models which well fit the pressure and
related thermodynamic quantities [33,34].
Previous studies have suggested that in constructing

effective theories, that even at the classical level, one has to
ensure that there is not a transition between the strict
perturbative regime, where the holonomy vanishes, and that

with nonzero holonomy. While there is no strict-order
parameter between these two regimes, there can be a first-
order transition. For the theory in four-spacetime dimen-
sions at nonzero temperature, such a first order transition, in
the deconfined phase, appears generically [34,48].
The reason for this is easy to understand. There is no

potential for the holonomy classically, while a potential is
generated at one-loop order. The eigenvalues of the thermal
Wilson line are gauge invariant, and it is natural to consider
their logarithm, q. For a SUð2Þ gauge group there is a
single q, with more q’s for larger gauge groups. At lowest
order, q is proportional to the static component of the gauge
field A0, although the relation becomes more involved
at higher order [7]. As the logarithm of an exponential,
the q’s are periodic variables, defined properly in the Weyl
chamber for the Lie algebra of the gauge group.
Ignoring these technicalities, at leading order the poten-

tial for the holonomy q is elementary, proportional to the
fourth Bernoulli polynomial

VpertðqÞ ∼þT4B4ðqÞ ∼ T4q2ð1 − qÞ2; ð1Þ

where T is the temperature, and q is a periodic variable,
here defined over q∶ 0 → 1. This form is unchanged
at the two-loop order [7,11,12,24–26,37,41,44]. The term
∼þ q2 ∼ trA2

0 just represents Debye screening of static
electric fields. The term ∼q4 ∼ trA4

0 is also unexceptional, a
type of induced Higgs coupling for static electric fields,
familiar from a perturbative analysis [1]. What is striking is
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the cubic term; this is given by integrating over the mode
with zero energy, and enters with a negative sign. As is
typical of mean field theory, such a cubic term automati-
cally generates a first-order transition. This was first
suggested in Ref. [34], and analyzed in detail in Ref. [48].
We stress that this first-order transition would occur in

the deconfined phase, at temperatures above that for the
deconfining and/or chiral-symmetry transitions. There is
absolutely no hint of any such transition from numerical
simulations on the lattice [52]. The simplest way of
avoiding such an unwanted transition is to add a term
which is linear in q for small q [33,34,48], so that the
expectation value of q is always nonzero. The simplest
choice is the second Bernoulli polynomial,

Vnon−pertðqÞ ¼ CT2B2ðqÞ ∼ −CT2qð1 − qÞ: ð2Þ

On dimensional grounds C has dimensions of mass
squared. The simplest assumption is to take it as a constant
times T2

c, where Tc is the transition temperature for
deconfinement in the pure gauge theory [33,34,43].
The nonperturbative term in Eq. (2) contributes to the

pressure ∼T2. In the pure glue theory, that the leading
power-law correction to the pressure of an ideal gas is
proportional to T2 has been found to be valid, to a good
approximation, in both (2þ 1) [53–55] and (3þ 1)
dimensions [56–68]. Since it has dimensions of mass
(squared), this term is manifestly nonperturbative. At
high T, q ∼ C=T2, so that q ≠ 0 at any temperature.
Consequently, the quark gluon plasma is always holono-
mous, even if the holonomy is infinitesimally small at high
temperatures. In a pure gauge theory, that hqi ≠ 0 when
C ≠ 0 has been demonstrated carefully for both two and an
infinite number of colors [48], but because of the cubic term
in the perturbative potential, it almost certainly applies for
any gauge group.
[With dynamical quarks, it is no longer true that the

leading power-law correction to the pressure is ∼T2.
Nevertheless, an effective model, where dynamical quarks
are folded into an effective theory with a nonperturbative
term like Eq. (2), gives a reasonable description of the
pressure [43,46] without the introduction of new para-
meters. This is done by keeping Tc in the gluonic part of the
effective potential the same as in the pure glue theory, with
the temperature for the chiral phase transition, which is
≈Tc=2, arising by adjusting a Yukawa coupling in the
coupling between quarks and effective meson degrees of
freedom.]
A related problem is the behavior of the free energy in

the presence of gauge-invariant sources [47,48]. For any
source which is a sum over a finite number of Polyakov
loops, because of the term ∼ − q3 in VpertðqÞ, there is a
first-order transition between the phase with zero and
nonzero holonomy. A source proportional to the second
Bernoulli polynomial avoids this.

Doing so, however, creates a conundrum. Awell-defined
and gauge invariant quantity is the free energy computed
perturbatively. The free energy to ∼1 and ∼g2 is sensible,
but at weak holonomy, the term ∼g3 is discontinuous as the
holonomy vanishes. This discontinuity occurs for any
gauge invariant source, and follows directly from the
equation of motion in which the source must satisfy
[47,48]. This discontinuity is unexpected, and most unchar-
acteristic of ordinary theories in the presence of external
sources, whose effects smoothly vanish as the source does.
We contrast this with the behavior of gauge theories

when compactified in one spatial direction to a size where
the gauge coupling is small (“femto-torus”) [69–79]. This
often induces nonzero holonomy in the compactified
direction, as semiclassical configurations such as magnetic
monopoles and bions arise dynamically. For small spatial
directions, however, there is no sign that the associated free
energy exhibits any discontinuity. Unfortunately, it is not
possible to study the theory analytically as the size of the
compactified dimension becomes large.
The object of the present study is to see if the conundrum

in the presence of external sources [47,48] can be avoided
by generating B2ðqÞ dynamically, through the introduction
of auxiliary fields. The presence of these auxiliary fields
can be viewed as a caricature of nonperturbative physics
which generates a nontrivial holonomy at nonzero temper-
ature [69–79]. At high temperatures, when the holonomy is
infinitesimally small, it is then sensible to ask if the free
energy is smoothly behaved as T → ∞.
There are at least two ways of generating the second

Bernoulli polynomial by the introduction of an auxiliary
field, which is assumed to lie in the adjoint representation.
The first is to introduce a mass for additional field, and then
take the derivative with respect to the mass, (Sec. II; see,
e.g., Refs. [58,74,75]). The second way is to embed fields
in two spacetime dimensions isotropically in four dimen-
sions (see Sec. III). We consider hard thermal loops (HTLs)
[80] at nonzero holonomy [29–32], which we term hol-
onomous hard thermal loops (HHTLs). In Sec. IV we
compute the HHTL in the effective gluon propagator for
both fields in Euclidean theory. At zero holonomy this is
just the Debye mass squared, but in the static limit at
nonzero holonomy, the HHTLs are nontrivial functions of
the dimensionless ratio between the holonomy and the
spatial momentum, both of which must be soft, ∼gT.
Surprisingly, the HHTL propagator for the massive aux-
iliary field has terms which are not ∼g2 for a small
holonomy, as one would expect, but instead are ∼g. This
is not consistent with a smooth approach to the perturbative
limit. In contrast, the two-dimensional fields give a HHTL
propagator for which the leading corrections are ∼g2.
We then use this to compute the corrections to the free

energy to ∼g3 at nonzero holonomy in Sec. V, and show
that the contribution vanishes smoothly as the holonomy
vanishes. This solves the conundrum when the holonomy is
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generated by external sources [47,48], and agrees with the
results on a femto-torus [69–79].
Further, it is trivial to generalize the HHTL gluon

propagators to Minkowski spacetime. Thus, this effective
theory allows the computation of quantities such as
transport coefficients using the effective models of
Refs. [29–45,50], which are being carried out [50].

II. AUXILIARY MASSIVE FIELDS

We start with an auxiliary massive field in the adjoint
representation, and take the derivative with respect to the
mass squared,

Sm ¼ C
∂

∂m2
Tr logð−D2

μ þm2Þ
����
m2¼0

; ð3Þ

where Dμ ¼ ∂μ − igAμ is the covariant derivative with the
gluon field Aμ. C has dimensions of mass squared which
may depend on temperature, and the traces are over both
spacetime and color. We stress that taking a derivative with
respect to mass is nothing more than a mathematical device
to give us the desired result: an effective potential propor-
tional to the second Bernoulli polynomial.

A. Effective potential at nonzero holonomy

To compute the effective potential at nonzero holonomy,
we take a background gauge potential

Acl;ab
0 ¼ Qa

g
δab; Qa ¼ 2πTqa; ð4Þ

where from Qa we pull out factors to introduce the
dimensionless qa. The Qa’s are diagonal elements of a
SUðNÞ matrix, and so are traceless,

P
N
a¼1Q

a ¼ 0. We
write the adjoint representation as a two index tensor over
fundamental indices, and so the projector

Pab
dc ¼ δadδ

b
c −

1

N
δabδcd ð5Þ

often enters; Pab
dc ¼ Pab;cd [29–32].

For massless fields in two- and four-spacetime dimen-
sions the first four Bernoulli polynomials arise naturally at
one-loop order,

B1ðqÞ ¼ −
1

2
þ q;

B2ðqÞ ¼
1

6
− qð1 − qÞ;

B3ðqÞ ¼
1

2
qð1 − qÞð1 − 2qÞ;

B4ðqÞ ¼ −
1

30
þ q2ð1 − qÞ2: ð6Þ

These are valid only for 0 ≤ q ≤ 1, and satisfy

d
dq

BnðqÞ ¼ nBn−1ðqÞ: ð7Þ

The effective potential in Eq. (3) is proportional to
Z

d4K
ð2πÞ4

1

ðK þQÞ2 þm2
¼ T2

12
AðQ;m2Þ; ð8Þ

where we introduce the shorthand notation,
Z

d4K
ð2πÞ4 ¼ T

X∞
n¼−∞

Z
d3K
ð2πÞ3 ; ð9Þ

with Kμ ¼ ðk0; kÞ, Qμ ¼ ðQ; 0Þ. The integral is evalu-
ated as

AðQ;m2Þ ¼ 12

T2

Z
d3k
ð2πÞ3

1

2Ek
ðnðEk − iQÞ þ nðEk þ iQÞÞ;

ð10Þ

where Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. At nonzero holonomy the statis-

tical distribution functions are

nðEk ∓ iQÞ ¼ 1

eEk=T∓2πiq − 1
: ð11Þ

Thus AðQ;m2Þ is manifestly periodic under q → qþ 1. In
the massless limit,

AðQ; 0Þ ¼ 6B2ðjqjmod 1Þ: ð12Þ
From Eq. (10), AðQ;m2Þ is even in Q. Along with
periodicity, this implies that it is a function of the absolute
value of q modulo one, jqjmod 1.
The potential is

Vm ¼ C
XN
a;b¼1

Pab
ab

Z
d4K
ð2πÞ4

1

ðK þQabÞ2

¼ C
T2

12

XN
a;b¼1

Pab
abAðQab; 0Þ; ð13Þ

Qab ¼ Qa −Qb ¼ 2πTqab, and qab ¼ qa − qb. The diago-
nal elements of the projector, Pab

ab ¼ 1 − δab=N, enter to
ensure that the free energy is that for SUðNÞ and not UðNÞ.
To this we add the perturbative contribution to the

holonomous potential [33,34,36,37,41,44,45,47,48], so
the total effective potential is

VðqÞ ¼
XN
a;b¼1

Pab
ab

�
2π2T4

3
B4ðjqabjmod 1Þ

þ CT2

2
B2ðjqabjmod 1Þ

�
: ð14Þ
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The first term, proportional to B4, is the perturbative
contribution of gluons in Eq. (1); it arises from

Z
d4K
ð2πÞ4 log ðK þQabÞ2 ¼ 2π2T4

3
B4ðjqabjmod 1Þ: ð15Þ

By Eq. (7), the equations of motion involve B3 and B1. For
odd n, BnðqÞ is periodic for positive q, but odd under
q → −q. Thus the equation of motion is

XN
b¼1

signðqabÞ
�
8π2T2

3
B3ðjqabjmod 1Þ þ CB1ðjqabjmod 1Þ

�

¼ 0: ð16Þ

For two colors, the eigenvalues are q and −q, with
jq12j ¼ 2jqj. At small, positive q,

�
4Cþ 16π2T2

3

�
q − C ¼ 0: ð17Þ

Thus at high T ≫
ffiffiffiffi
C

p
, q ∼ C=T2, and the holonomy is

nonzero for any finite T.
For higher N, it is necessary to solve for the independent

qa’s, which are N=2 for even N, and ðN − 1Þ=2 for odd
N ≥ 3. This can be done in the limit of large N [34,36].
Nevertheless, it is clear that when C ≠ 0, that qa is always
nonzero because the second Bernoulli polynomial starts out
linear in qa.
We only consider qa’s which satisfy the equations of

motion, and find unexpected cancellations in the gluon self-
energy. The necessity of only looking at solutions
which satisfy the equations of motion was also found in
studies of the free energy in the presence of external
sources [47,48].

B. Holonomous color current

Consider the one-point function that contributes the
expectation value of the color current hJab;μi

Z
d4K
ð2πÞ4

k0 þQ
ðK þQÞ2 þm2

¼ πT3

3
A0ðQ;m2Þ: ð18Þ

At Q ¼ 0, the integral vanishes automatically, as then the
integrand is odd in k0. It is nonzero when Q ≠ 0,

A0ðQ;m2Þ ¼ 3

2iπT3

Z
d3k
ð2πÞ3 ðnðEk − iQÞ − nðEk þ iQÞÞ:

ð19Þ

For a massless field,

A0ðQ; 0Þ ¼ 2signðqÞB3ðjqjmod 1Þ: ð20Þ

From its definition in Eq. (19), A0ðQ;m2Þ is odd in Q,
which accounts for the overall factor of signðqÞ on the
right-hand side.
A simple trick can be used to evaluate the derivatives

of statistical distribution functions with respect to m2

at m2 ¼ 0. The mass only appears in the energy as
Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
, and so a derivative of Ek with respect

to m2 can be replaced by one with respect to k2. After that,
we integrate by parts. For example,

∂
∂m2

Z
d3k
ð2πÞ3 nðEk − iQÞ ¼

Z
d3k
ð2πÞ3

∂
∂k2 nðEk − iQÞ

¼ −
1

4π2

Z
∞

0

dk nðEk − iQÞ:

ð21Þ

In this way,

A0
0ðQÞ≡ ∂

∂m2
A0ðQ;m2Þ

����
m2¼0

¼ 3

ð2πTÞ2 signðqÞB1ðjqjmod 1Þ: ð22Þ

Like A0ðQÞ, A0
0ðQÞ is odd in Q.

The expectation value of the color current has two
contributions. One is perturbative [30],

hJab;μipt ¼ −2igfab;cd;efPcd;ef

Z
d4K
ð2πÞ4

ðKcdÞμ
ðKcdÞ2

¼ −uμδab
4πgT3

3
ffiffiffi
2

p
XN
c¼1

A0ðQacÞ; ð23Þ

where uμ ¼ δμ0.
The second contribution is from the auxiliary massive

field,

hJab;μim ¼ −2igfab;cd;efPcd;efC
∂

∂m2

×
Z

d4K
ð2πÞ4

ðKcdÞμ
ðKcdÞ2 þm2

����
m2¼0

¼ −uμδab
4πgT3

3
ffiffiffi
2

p C
XN
c¼1

A0
0ðQacÞ: ð24Þ

The sum of the two contributions is

hJab;μitotal¼hJab;μiptþhJab;μim

¼−uμδab
4πgT3

3
ffiffiffi
2

p
XN
c¼1

ðA0ðQacÞþCA0
0ðQacÞÞ¼0:

ð25Þ
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From Eqs. (20) and (22), this is equivalent to the equations
of motion in Eq. (16), and so it vanishes.
It is natural that the total color current vanishes in a

consistent theory. This also occurs when the holonomous
potential is computed in the presence of external, gauge-
invariant sources [47,48]. What is less obvious is the
computation of the gluon self-energies at nonzero holon-
omy, to which we now turn.

C. HHTL in the gluon self-energy

We compute the gluon self-energy in the hard thermal
loop (HTL) approximation [29–32,80]. We note that while
we include the effect of the auxiliary massive field on the
gluon propagator to ∼g2, we do not include the effect of
the self-energy for the massive field. As we discuss in
Sec. V C, the self-energy for the favored solution, with two-
dimensional ghosts, appears to be gauge dependent. Thus
our analysis should only be taken as a preliminary step
towards a fully consistent effective theory.
Nevertheless, we show in Sec. IV that the effective gluon

propagator with an auxiliary massive field, or the two-
dimensional ghost of Sec. III, solves an important con-
sistency check for the free energy of a holonomous plasma,
computed to ∼g3 [47,48].
In Euclidean theory, the external momentum is

P12
μ ¼ ðp12

0 ; pÞ, where p12
0 ¼ p0 þQ1 þQ2 ¼ 2πTðmþ

q1 þ q2Þ, for an integer m. The HTL approximation
requires that the external momenta are ∼gT, small relative
to the temperature,

jpj ∼ gT ≪ T; jp12
0 j ∼ gT ≪ T: ð26Þ

This is straightforward to require for the spatial momentum,
but less so for the energy. At zero holonomy, q1 ¼ q2 ¼ 0,
the Euclidean energy p0 ¼ 2πTm, so the only soft energy is
in the static limit, p0 ¼ 2πTm ¼ 0. The gluon self-energies
are only functions of p, so for p0 ¼ 0 and soft p, are just a
constant times g2T2. This is the usual Debye mass for static
electric fields, which is the only Euclidean HTL at zero
holonomy.
A nontrivial hard thermal loop arises at zero holonomy

after analytic continuation to Minkowski energies,
p0 → iω. Since ω is then a continuous variable, we can
require that ω is soft; ω ∼ gT. The Minkowski HTLs which
result are then nontrivial functions of ω=p (time factors
of p̂i).
At nonzero holonomy, however, even in Euclidean

theory we can obtain a nontrivial hard thermal loop by
taking the static limit, p0 ¼ 2πTm ¼ 0, if we require that
the holonomies, Q1 and Q2, are also soft, Q ∼ gT. These
are g2T2 time functions of the dimensionless variable, Q=p
(time factors of p̂i). We term these Euclidean holonomous
hard thermal loops, or Euclidean HHTL’s.

There are also Minkowski HHTL’s, which arise for
arbitrary Q1 and Q2, given by continuing p12

0 → iω, and
requiring that ω is soft. These were computed by the
authors previously, and are not elementary generalizations
of the Minkowski HTLs at zero holonomy [30]. That there
are also Euclidean HHTLs (in the static limit for soft
holonomy) is novel here.
For either Euclidean or Minkowski momenta, the HHTL

is important because for soft momenta the inverse propa-
gator is ∼P2 ∼ g2T2 (modulo singularities), and the HHTL
is as large as the term at tree level. Thus the HHTL must be
included in order to compute self-consistently.
The computation of the contribution of the massive field

to the HHTL in the gluon self-energy directly generalizes
the usual perturbative computation [30]. For a light but
massive field, the HHTL is g2 times the loop integral [30]

∂
∂m2

J̃ μνðP12; Q1; Q2; m2Þ
����
m2¼0

; ð27Þ

where

J̃ μνðP12;Q1;Q2;m2Þ ¼J μνðP12;Q1;Q2;m2Þ

−
δμν

4

T2

12
ðAðQ1;m2ÞþAðQ2;m2ÞÞ;

ð28Þ

and

J μνðP12; Q1; Q2; m2Þ

¼ 1

8
T

Xþ∞

n¼−∞

Z
d3k
ð2πÞ3

ð2K1 − P12Þμð2K1 − P12Þν
ððK1Þ2 þm2ÞððP12 − K1Þ2 þm2Þ

þ ðQ1 ↔ Q2Þ: ð29Þ

The loop k0 ¼ 2πTn for integral n, while K1 ¼ K þQ1,
with k10 ¼ k0 þQ1 ¼ 2πTðnþ q1Þ.
The sum over the Matsubara frequency n can be done

by going to a coordinate representation in the Euclidean
time, τ [30]. The result is simplest for the spatial compo-
nents of J μν,

J ijðP12; Q1; Q2; m2Þ

¼ 1

8

Z
d3k
ð2πÞ3

ð2k − pÞið2k − pÞj
ð2EkÞð2Ep−kÞ

ðI1 þ I2 þ I3 þ I4Þ

þ ðQ1 ↔ Q2Þ; ð30Þ

where

I1¼
−1

ip12
0 −Ek−Ep−k

ð1þnðEk− iQ1ÞþnðEp−k− iQ2ÞÞ;

ð31Þ
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I2 ¼
1

ip12
0 − Ek þ Ep−k

ðnðEk − iQ1Þ − nðEp−k þ iQ2ÞÞ;

ð32Þ

I3 ¼
−1

ip12
0 þ Ek − Ep−k

ðnðEk þ iQ1Þ − nðEp−k − iQ2ÞÞ;

ð33Þ

I4¼
1

ip12
0 þEkþEp−k

ð1þnðEkþ iQ1ÞþnðEp−kþ iQ2ÞÞ:

ð34Þ
The easiest terms to evaluate are those ∼I1 and ∼I4, as
they do not involve Landau damping. In this case, the
external momentum P12 can be neglected, and these terms
reduce to

1

8

Z
d3k
ð2πÞ3

ð2k − pÞið2k − pÞj
ð2EkÞð2Ep−kÞ

ðI1 þ I4Þ þ ðQ1 ↔ Q2Þ

≈
HTL δij

12

Z
d3k
ð2πÞ3

v2k
2Ek

ðnðEk − iQ1Þ þ nðEk þ iQ1Þ þ nðEk − iQ2Þ þ nðEk þ iQ2ÞÞ; ð35Þ

where we introduce the vectors vk ¼ k=Ek.
More care must be taken with the terms ∼I2 and ∼I3, as

they involve Landau damping, and diverge as P → 0.
Expanding to terms linear in P,

Ep−k ≅ Ek − vk · p;

nðEp−k − iQÞ ≅ nðEk − iQÞ − ðvk · pÞn0ðEk − iQÞ;
ip12

0 þ Ek − Ep−k ≅ ip12
0 þ vk · p ¼ P12 · K̃; ð36Þ

where

n0ðEk − iQÞ ¼ ∂
∂Ek

nðEk − iQÞ; ð37Þ

and K̃ ¼ ði; vkÞ. For future reference, we note that for
massless fields Ek → jkj ¼ k, and these vectors become

vk → k̂; K̃ → K̂ ¼ ði; k̂Þ: ð38Þ

For massive fields, K̃2 ¼ −m2=E2
k, while K̂μ is null,

K̂2 ¼ 0.
In the HTL approximation, I2 and I3 become

1

8

Z
d3k
ð2πÞ3

ð2k − pÞið2k − pÞj
ð2EkÞð2Ep−kÞ

ðI2 þ I3Þ þ ðQ1 ↔ Q2Þ

≈
HTL 1

4

Z
d3k
ð2πÞ3 v

i
kv

j
k

�
1

P12 · K̃
ðnðEk − iQ1Þ − nðEk þ iQ1Þ þ nðEk − iQ2Þ − nðEk þ iQ2ÞÞ

−
1

2

vk · p

P12 · K̃
ðn0ðEk − iQ1Þ þ n0ðEk þ iQ1Þ þ n0ðEk − iQ2Þ þ n0ðEk þ iQ2ÞÞ

�
: ð39Þ

The second line can be rewritten as

−
1

8

Z
d3k
ð2πÞ3 v

i
kv

j
k
vk · p

P12 · K̃
ðn0ðEk − iQ1Þ þ n0ðEk þ iQ1Þ þ n0ðEk − iQ2Þ þ n0ðEk þ iQ2ÞÞ

¼ 1

8

Z
d3k
ð2πÞ3

�
ip12

0

vikv
j
k

P12 · K̃
ðn0ðEk − iQ1Þ þ n0ðEk þ iQ1Þ þ n0ðEk − iQ2Þ þ n0ðEk þ iQ2ÞÞ

− vikv
j
kðn0ðEk − iQ1Þ þ n0ðEk þ iQ1Þ þ n0ðEk − iQ2Þ þ n0ðEk þ iQ2ÞÞ

�

¼ 1

8

Z
d3k
ð2πÞ3

�
ip12

0

vikv
j
k

P12 · K̃
ðn0ðEk − iQ1Þ þ n0ðEk þ iQ1Þ þ n0ðEk − iQ2Þ þ n0ðEk þ iQ2ÞÞ

þ δij
�
1

Ek
−

v2k
3Ek

�
ðnðEk − iQ1Þ þ nðEk þ iQ1Þ þ nðEk − iQ2Þ þ nðEk þ iQ2ÞÞ

�
: ð40Þ

In the last line, we replaced vikv
j
k → δijv2k=3 and then integrated by parts. Collecting these results, we find
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J̃ ijðP12; Q1; Q2; m2Þ ¼ 1

4

Z
d3k
ð2πÞ3

�
vikv

j
k

P12 · K̃
ðnðEk − iQ1Þ − nðEk þ iQ1Þ þ nðEk − iQ2Þ − nðEk þ iQ2ÞÞ

þ ip12
0

vikv
j
k

P12 · K̃

1

2
ðn0ðEk − iQ1Þ þ n0ðEk þ iQ1Þ þ n0ðEk − iQ2Þ þ n0ðEk þ iQ2ÞÞ

�
: ð41Þ

J̃ 0j and J̃ 00 follow from the relation

P12
μ J̃ μνðP12; Q1; Q2; m2Þ ¼ −

1

2

Z
d4K
ð2πÞ4

ðK2Þν
ðK2Þ2 þm2

−
1

2

Z
d4K
ð2πÞ4

ðK1Þν
ðK1Þ2 þm2

¼ −
uν

2

πT3

3
ðA0ðQ1; m2Þ þA0ðQ2; m2ÞÞ:

ð42Þ

The final result for J̃ μνðP12; Q1; Q2; m2Þ is

J̃ μνðP12; Q1; Q2; m2Þ ¼ 1

4

Z
d3k
ð2πÞ3

�
K̃μK̃ν

P12 · K̃
ðnðEk − iQ1Þ − nðEk þ iQ1Þ þ nðEk − iQ2Þ − nðEk þ iQ2ÞÞ

þ
�
uμuν þ ip12

0

K̃μK̃ν

P12 · K̃

�
1

2
ðn0ðEk − iQ1Þ þ n0ðEk þ iQ1Þ þ n0ðEk − iQ2Þ þ n0ðEk þ iQ2ÞÞ

�
:

ð43Þ

This is the HTL approximation for a massive particle at
nonzero holonomy, Q ≠ 0. Notice that the terms ∼δij have
canceled between Eqs. (28) and (35).
In the massless limit this reduces to the usual HHTL

loops [30]

J̃ μνðP12;Q1;Q2;0Þ ≈HTL
iπT3

6
ðA0ðQ1Þ þA0ðQ2ÞÞδΓμνðP12Þ

þ T2

24
ðAðQ1Þ þAðQ2ÞÞδΠμνðP12Þ;

ð44Þ

where

δΓμνðPÞ ¼
Z

dΩ
4π

K̂μK̂ν

P · K̂
; ð45Þ

δΠμνðPÞ ¼ −uμuν − ip0

Z
dΩ
4π

K̂μK̂ν

P · K̂
; ð46Þ

dΩ ¼ d cos θdϕ with the polar angle θ and the azimuthal
angle ϕ, and K̂ is defined in Eq. (38).
These functions satisfy

PμδΓμνðPÞ ¼ iuν; PμδΠμνðPÞ ¼ 0: ð47Þ

Because ΓμνðPÞ is not transverse, neither is this part of the
gluon self-energy. We discuss at the end of this section how
transversity is restored when all contributions are included.
For the massive field, we need the derivative of J̃ μν with

respect to m2, evaluated at m2 ¼ 0. The mass appears only

through the energy Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
, which appears in

terms involving K̃i ¼ ki=Ek and the statistical distribution
functions, such as nðEk −Q1Þ. Note that K̃0 ¼ i is inde-
pendent of the energy and so is the mass.
We require

∂
∂m2

K̃μK̃ν

P12 · K̃
¼ 1

P12 · K̃

∂
∂m2

K̃μK̃ν −
K̃μK̃ν

ðP12 · K̃Þ2
∂

∂m2
P12 · K̃:

ð48Þ

As

∂
∂m2

P12 · K̃ ¼ −p · vk
1

2E2
k

¼ 1

2E2
k

ðip12
0 − P12 · K̃Þ; ð49Þ

∂
∂m2

K̃μK̃ν ¼ −
1

2E2
k

ð2K̃μK̃ν − iuμK̃ν − iuνK̃μÞ; ð50Þ

we find

∂
∂m2

K̃μK̃ν

P12 · K̃

����
m2¼0

¼ −1
2k2

�
1

P12 · K̂
ðK̂μK̂ν − iuμK̂ν − iuνK̂μÞ

þ K̂μK̂ν

ðP12 · K̂Þ2 ip
12
0

�
: ð51Þ

For the massive fields, the momentum integrals which
arise include those of Eq. (22). Similarly, using the trick
of Eq. (21),

EFFECTIVE MODELS OF A SEMI-QUARK-GLUON PLASMA PHYS. REV. D 104, 074036 (2021)

074036-7



∂
∂m2

Z
d3k
ð2πÞ3

1

2
ðn0ðEk − iQ1Þ þ n0ðEk þ iQ1Þ þ n0ðEk − iQ2Þ þ n0ðEk þ iQ2ÞÞ

����
m2¼0

¼ −
1

8π2

Z
∞

0

dkðn0ðk − iQ1Þ þ n0ðkþ iQ1Þ þ n0ðk − iQ2Þ þ n0ðkþ iQ2ÞÞ ¼ −
1

4π2
: ð52Þ

Here we have used a peculiar identity at zero energy and
nonzero holonomy,

nðiQÞ þ nð−iQÞ ¼ 1

eþiQ=T − 1
þ 1

e−iQ=T − 1
¼ −1: ð53Þ

Substituting Eqs. (22), (51), and (52) into ∂=∂m2 of
Eq. (43), at m2 ¼ 0 we obtain

∂
∂m2

J̃ μνðP12;Q1;Q2;m2Þjm2¼0

≈
HTL iπT3

6
ðA0

0ðQ1Þ þA0
0ðQ2ÞÞδΓμνðP12Þ þ 1

16π2
δΠμνðP12Þ

−
1

16π2

�
p12
0 −

8π3T3

3
ðA0

0ðQ1Þ þA0
0ðQ2ÞÞ

�
δΠ̃μνðP12Þ;

ð54Þ

where

δΠ̃μνðPÞ ¼
Z

dΩ
4π

i

P · K̂

�
ðK̂μ − iuμÞðK̂ν − iuνÞ

þ
�
uμuν þ ip0

K̂μK̂ν

P · K̂

��
: ð55Þ

This tensor is transverse in the external momentum,

PμδΠ̃μνðPÞ ¼
Z

dΩ
4π

ðiK̂ν þ uνÞ ¼
Z

dΩ
4π

δνik̂i ¼ 0; ð56Þ

after performing the angular integral.
The perturbative contribution to the gluon self-energy

was computed in Ref. [30],

Πab;cd;μν
pt ðPabÞ ≈HTL − 4g2fðab;ef;ghÞfðcd;fe;hgÞ

× J̃ μνðPab;Qfe; Qhg; 0Þ: ð57Þ

The analogous contribution of the massive field is

Πab;cd;μν
m ðPabÞ ≈HTL−4g2Cfðab;ef;ghÞfðcd;fe;hgÞ

×
∂

∂m2
J̃ μνðPab;Qfe;Qhg;m2Þjm2¼0: ð58Þ

The product of the structure functions simplifies in the
double line notation, as illustrated in Fig. (1). The result is

Πab;cd;μν
total ðPabÞ ¼ Πab;cd;μν

pt ðPabÞ þ Πab;cd;μν
m ðPabÞ

≈
HTL

−Kab;cdδΓμνðPabÞ − ðm2
glÞab;cdδΠμνðPabÞ − ðm̃3

glÞab;cdδΠ̃μνðPabÞ; ð59Þ

where

Kab;cdðQÞ ¼ 2iπg2T3

3
δadδbc

XN
e¼1

ðA0ðQaeÞ þA0ðQebÞ þ CðA0
0ðQaeÞ þA0

0ðQebÞÞÞ ¼ 0; ð60Þ

ðm2
glÞab;cdðQÞ ¼ g2T2

6

�
δadδbc

XN
e¼1

ðAðQaeÞ þAðQebÞÞ − 2δabδcdAðQacÞ
�
þ g2

CN
4π2

Pab;cd; ð61Þ

FIG. 1. Product of the structure functions, times 2, which enter into the gluon self-energy at one-loop order.
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ðm̃3
glÞab;cdðp0; QÞ ¼ −

g2CN
4π2

Pab;cd

�
pab
0 −

8π3T3

3N

XN
e¼1

ðA0
0ðQaeÞ þA0

0ðQebÞÞ
�
: ð62Þ

The first term, ∼Kab;cd, vanishes by the equations of
motion, Eq. (25). We originally conjectured in Ref. [30] that
terms which contribute to ∼Kab;cd must cancel. It is natural
that they do so, because by Eq. (25) the equations of motion
are proportional to the color current, and for any consistent
theory nonzero holonomy should not induce a net color
current.Nevertheless, it is gratifying to see it emergenaturally.
This leaves the terms∼δΠμνðPabÞ and∼δΠ̃μνðPabÞ. These

two are both transverse in the external momentum, which
is necessary to ensure gauge invariance. The termm2

gl is just
the generalization of the Debye masses to nonzero holon-
omy, as δΠμν is the standard hard thermal loop. The term m̃3

gl

is special to taking a massive auxiliary field, and does not
arise for two-dimensional ghosts. SinceC has dimensions of
mass squared, m̃3

gl has dimensions of mass cubed.
It is useful to contrast these results with the introduction

of an external source. Consider first a scalar field χ. To
induce hχi ≠ 0, one adds to the action a source linear in χ,
such as ∼

R
d4xJðxÞχðxÞ. This shifts the expectation value

of χ, but obviously doesn’t affect any higher-point function.
To induce nonzero holonomy for the gauge field,

however, it is best to use a gauge invariant source, which
at nonzero temperature are sums over Polyakov loops; for
analyses with sources linear in A0, see Refs. [15–23]. For
example, we can add a source term which is a sum over
squares of Polyakov loops, as in Eq. (71) of Ref. [48]

Sϵ ¼ ϵ

Z
d3x
V

Xr0
r¼1

crjtrLrðxÞj2;

LðxÞ ¼ P exp
�
ig
Z

1=T

0

A0ðx; τÞdτ
�
: ð63Þ

LðxÞ is the thermal Wilson line in the imaginary time τ and
the cr are arbitrary coefficients. It is also possible to take a
sum over linear powers of Polyakov loops; Eq. (20) of
Ref. [47], as the gluon self-energy in Eq. (64) is unchanged.
The source term Sϵ induces nonzero holonomy when
expanded to first order in quantum fluctuations, Eq. (72)
of Ref. [48]. As a series of exponentials in A0, though, Sϵ

induces an infinite series of higher-point functions for
quantum fluctuations. For the two-point function and
Euclidean momenta, the source contributes to the gluon
self-energy as

Π00;ab;cd
ϵ ðPabÞ ¼ −

2πg2T3

3
δadδbc

×
1

pab
0

XN
e¼1

ðA0ðQa −QeÞ þA0ðQe −QbÞÞ;

ð64Þ

Equation (35) of Ref. [47] and Eqs. (51) and (74) of
Ref. [48]. This is derived by using the equations of motion
for theQa’s, which eliminates any dependence on ϵ and the
coefficients cr.
Computing only the perturbative contributions to the

gluon self-energy, the gluon self-energy is not transverse. In
the presence of an external source, the total gluon self-
energy is a sum of the perturbative and source terms,
Πμν

total;ϵ ¼ Πμν
pt þ Πμν

ϵ . Then for all values of the gauge fixing
parameter this total gluon self-energy satisfies

QabΠ0ν;ab;cd
total;ϵ ðQab; 0Þ ¼ 0; Pab

μ Pcd
ν Πμν;ab;cd

total;ϵ ðPabÞ ¼ 0;

ð65Þ

Equations (68) and (70) of Ref. [48]. The former holds for
p0 ¼ p ¼ 0 and Qab ≠ 0, the latter for all Pab

μ . The latter is
necessary to establish gauge invariance in computing the
free energy to ∼g3 at soft holonomy, and to ∼g4 and beyond
for any Q [48,49].
In Ref. [48] it was also argued that in order to have a

source for which the holonomy turns on smoothly as ϵ
increases, that one must sum over an infinite number of
loops, r0 ¼ ∞. This was established carefully for N ¼ 2
and ∞, and is very reasonable for any N. Indeed, it is very
natural to take cr ¼ 1=r2 and r0 ¼ ∞, so that Sϵ is
proportional to the second Bernoulli polynomial, B2ðqÞ.
As discussed in the Introduction and Sec. I, an infinitesimal
value of the source generates a corresponding holonomy
which is also infinitesimal. For a scalar field with source
∼Jχ, this is trivial, but with a source of Polyakov loops, it is
not trivial to ensure [48].
There is one important difference between the gluon self-

energy computed in the presence of external sources of
Polyakov loops; Eq. (64), and those here, Eq. (59). External
sources of Polyakov loops carry zero spatial momentum,
and so Π00

ϵ , while a function of p12
0 , is independent of the

spatial momentum, p.
In contrast, dynamical fields carry nonzero spatial

momentum, and so produce holonomous hard thermal
loops, δΠμνðPÞ and δΠ̃μνðPÞ. When Q and p are soft, up
to trivial factors of p̂i the dimensionless function δΠμνðPÞ is
a function ofp=Q; δΠ̃μνðPÞ is 1=Q times a function ofp=Q.
We compute these functions shortly and show that all of
these functions are nontrivial [see Eqs. (78)–(81)].
Because the self-energy in Eq. (64) is independent of the

spatial momentum, it is just 1=pab
0 times a function

of theQ’s. In the static limit, p0 ¼ 0, it reduces to a function
of the Q’s, independent of p. Further, to leading order in g2

when Q is soft we can just set Q ¼ 0, since any Q ∼ gT
represents a contribution to higher-loop order. Explicit
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computation demonstrates that whenQ¼0,Π00;ab;cd
ϵ ðQa; 0Þ

reduces to g2T2 times a constant, which cancels exactly
against the usual Debye mass squared [47,48]. This cancel-
lation follows because the total gluon self-energy is trans-
verse; at zero spatial momentum,Π0i

total;ϵ ¼ 0, and so the first
condition in Eq. (65) implies that Π00

total;ϵðQab; 0Þ ¼ 0 when
Qab ≠ 0. This contrasts with p0 ¼ p ¼ Q ¼ 0, where
Π00 ≠ 0, equal to the Debye mass squared, is consistent
with transversity when p0 ¼ 0. This cancellation for softQa

is the origin of the conundrum for the free energy ∼g3 in the
presence of an external source; there is no∼g3 term from off-
diagonal gluons, where Qab ≠ 0, since the source terms
completely cancel the usual contributions to theDebyemass.
In this way, the addition of new dynamical fields may

solve this conundrum, since then the gluon self-energy is a
function of the spatial momentum. As we show, however,
the condition that the ∼g3 term in the free energy is
smoothly behaved as Q → 0 is nevertheless a nontrivial
constraint on the auxiliary fields.

III. TWO DIMENSIONAL GHOSTS

A. Embedding two into four dimensions

In the Introduction and Sec. I, we argued that inducing
nontrivial holonomy through the second Bernoulli poly-
nomial is very natural. Besides using massive fields as in
the previous section, there is another way to generate a
B2ðqÞ. Consider a fermionic field in the adjoint represen-
tation of a gauge group; their contribution to the free energy
in d spacetime dimensions, at nonzero holonomy and
temperature, involves the polylogarithm of order d [45].
For even d this polylogarithm reduces to a constant times
the Bernoulli polynomial, BdðqÞ.
Thus, one way to generate B2 is to embed a two-

dimensional field isotropically in four dimensions. To
generate a free energy which is proportional to B2ðqÞ at
nonzero holonomy and temperature, we cannot change the
time direction. That implies we have to single out one
spatial direction. Thus, we introduce a unit vector n̂ in the
three spatial directions, and so as not to disturb rotational
symmetry, integrate over all directions of n̂. The longi-
tudinal and transverse coordinates with respect to n̂ are

xi ¼ ðx̂; x⊥Þ; x̂ ¼ x · n̂; x⊥ · n̂ ¼ 0: ð66Þ

We then introduce gauge covariant derivatives for the
fermionic field, ϕ,

S2D ¼
Z

1=T

0

dτ
Z

dΩn̂

4π

Z
∞

−∞
dx̂

Z
jx2⊥j>1=C

d2x⊥

× trððD̂ ϕ̄ÞðD̂ϕÞ þ ðD⊥ϕ̄ÞðD⊥ϕÞÞ: ð67Þ

As for the massive field, ϕ and ϕ̄ are necessarily in
the adjoint representation. We choose periodic boundary

conditions for ϕ and ϕ̄ in the imaginary time direction, so
that this is necessarily a ghost field. While peculiar, perhaps
it is not so objectionable for an effective theory.
That these fields are ghosts is necessary so that the two-

dimensional fields decrease the pressure. In contrast, the
massive fields in the previous section are physical, but by
taking a derivativewith respect to the mass squared, Eq. (3),
the net pressure decreases. This can be understood as
follows. The pressure for a massless gas is, of course,
positive, ∼þ T4. For a gas whose mass is much less
than the temperature, there is a correction to the pressure,
∼ −m2T2; this coefficient is negative, as the mass decreases
the pressure. By taking the derivative with respect to the
mass squared, one picks out this correction, which is then
negative.
For the transverse directions, we only integrate over a

sphere about the origin, where x2⊥ > 1=C. As usual, the
imaginary time τ runs from 0 → 1=T, and the longitudinal
direction x̂ from −∞ to þ∞. That is, the ghost field is two
dimensional at short distances, and four dimensional at
large distances.
While we differentiate between the covariant derivatives

in the longitudinal and transverse directions, in and of itself
this does not conflict with gauge invariance. Introducing
the cutoff scaleC certainly does, as we discuss below and in
Sec. V C. Thus this model can only be considered as an
illustration of a more complete, self-consistent, theory. We
shall be careful, however, to compute only in limits which
manifestly respect gauge invariance.
There is a natural physical motivation for the behavior of

these fields. At high temperatures, the relevant degrees of
freedom are quarks and gluons; at low temperatures, there
are only confined states. As the temperature is raised above
the critical temperature, a range of temperature confined
states should persist in the deconfined (or chirally sym-
metric) phase. We suggest that this remains true in a pure
gauge theory, even if the deconfining phase transition is of
first order.
In a pure gauge theory, the confined states are glueballs,

which can be modeled by an effective theory of strings. In
the absence of dynamical quarks, the strings must be closed,
and sweep out two-dimensional surfaces in spacetime.
How then could closed strings persist in the deconfined

phase? Since it is deconfined, the breaking of a flux sheet
only costs a finite amount of energy. Thus closed strings
form a two-dimensional sheet over short distances, but over
distances related to the scale of confinement, break, and
then are fully four-dimensional fields.
It is easy to see how this action generates the second

Bernoulli polynomial. To one-loop order, the potential is
proportional to

Vghost ¼ ð−ÞTr log ð−D̂2 −D2⊥Þ: ð68Þ
This is the free energy of the ghost field, with the overall
minus sign because it is a ghost. In Eq. (67), the imaginary
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time τ runs from 0 → 1=T. In momentum space, the
energies are then, as usual, p0 ¼ 2πmT. Doing the sum
over m we obtain the logarithm of the (inverse) statistical
distribution function at nonzero holonomy,

Vghost¼ð−ÞT
Z

∞

−∞

dk̂
2π

Z
jk⊥j<

ffiffiffi
C

p
d2k⊥
ð2πÞ2

×
XN
a;b¼1

Pab
abðlogð1−e−

ffiffiffiffiffiffiffiffiffiffi
k̂2þk2⊥

p
=T−2πiqabÞþc:c:Þ: ð69Þ

Since in Eq. (67) the coordinate x̂∶ −∞ → þ∞, the
integral for the corresponding momentum is unbounded,
k̂∶ −∞ → þ∞. In contrast, as jx⊥j > 1=

ffiffiffiffi
C

p
, the range of

the corresponding momentum jk⊥j is limited to soft
momenta, jk⊥j <

ffiffiffiffi
C

p
.

The integral over k̂ is dominated by momenta ∼T; and
over k⊥, by those ∼

ffiffiffiffi
C

p
. We assume for simplicity that

T ≫
ffiffiffiffi
C

p
, so that we can neglect k⊥ in the energy. The

integral over k⊥ just gives an overall factor of C, with

Vghost ¼
CT2

4π2
XN
a;b¼1

X∞
n¼1

1

n2
Pab

abðe−2πinq
ab þ c:c:Þ

¼ CT2

2

XN
a;b¼1

Pab
abB2ðjqabjmod 1Þ: ð70Þ

The cutoff was chosen to agree with the result from a
massive ghost, Eq. (13).
At the outset, we comment that it is possible that two-

dimensional massless fields give rise to infrared divergen-
ces at nonzero temperature. Consider the tadpole diagram
in the presence of nonzero A0 ∼Q in two spacetime
dimensions

Z
d2K
ð2πÞ2

1

ðK þQÞ2

∼
Z

dk
k

�
1þ 1

eðkþiQÞ=T − 1
þ 1

eðk−iQÞ=T − 1

�
: ð71Þ

This has a logarithmic divergence at zero temperature. At
nonzero temperature, one would expect this to turn into a
linear power divergence. However, in a holonomous
plasma there is no infrared divergence due to the peculiar
identity of Eq. (53).
Nevertheless, this tadpole diagram does not contribute to

the holonomous hard thermal loop in the gluon self-energy.
In four dimensions, it appears that the contributions to
HTLs are of two types: tadpole diagrams, analogous to
Eq. (71), and those which contribute to Landau damping in
Minkowski spacetime, such as I2 and I3 in Eqs. (32) and
(33). At one-loop order, the diagram with two three-gluon
vertices produces both terms; the diagram with one four-
gluon vertex, only a tadpole diagram. However,

computation shows that the tadpole diagrams cancel
between these two diagrams, leaving only the contributions
from Landau damping; this is the reason for the cancella-
tion of the terms ∼δij between Eqs. (28) and (35) in
Eq. (43). Of course, there is a logarithmic infrared
divergence at zero temperature from two-dimensional
fields, but as an effective theory at nonzero temperature,
we ignore this.
The computation of two-dimensional ghosts to the

HHTL to the gluon self-energy follows immediately from
previous computations. Because of our choice of the
constant C, the result for Kab;cd in Eq. (60) and
ðm2

glÞab;cd in Eq. (61) are identical. Since the two-
dimensional field is massless, there is no additional con-
tribution to the Debye mass, ðm̃3

glÞab;cd in Eq. (62).

IV. HOLONOMOUS HARD THERMAL LOOPS
AND THE FREE ENERGY

A. Computing HHTLs

We begin by computing the holonomous hard thermal
loops of Eqs. (46) and (55). While our formulas can be used
to compute after analytic continuation to Minkowski
energies, we apply our results to the computation of the
free energy to ∼g3. We then consider zero energy in
Euclidean theory, p0 ¼ 0 for soft holonomy, where all
Qa are soft, ∼gT. For simplicity, we compute a function of
a single Q, where the external momentum is

Pμ ¼ðQ;pÞ; P · K̂¼ iQþp · k̂¼ iQþpcosθ; ð72Þ
the generalization to arbitrary Qa is immediate.
We need to compute two self-energies, δΠμν and δΠ̃μν.

From Eqs. (47) and (56), these are both transverse in a
single momentum. This allows us to decompose each
function into two scalar functions. For δΠμν, the longi-
tudinal, δΠlg and transverse, δΠtr functions are defined as

δΠ00ðPÞ ¼ δΠlgðPÞ; δΠ0iðPÞ ¼ −p̂i Q
p
δΠlgðPÞ;

δΠijðPÞ ¼ ðδij − p̂ip̂jÞδΠtrðPÞ þ p̂ip̂j Q
2

p2
δΠlgðPÞ: ð73Þ

Similarly, from δΠ̃μνðPÞ we define the longitudinal and
transverse self-energies, δΠ̃lgðPÞ and δΠ̃trðPÞ.
To compute these functions,we need the angular integrals,

Z
dΩ
4π

1

P · K
¼ −

i
p
arctan

�
p
Q

�
; ð74Þ

Z
dΩ
4π

cos2 θ
P · K

¼ −
iQ
p2

�
1 −

Q
p
arctan

�
p
Q

��
; ð75Þ

Z
dΩ
4π

1

ðP · KÞ2 ¼ −
1

p2 þQ2
; ð76Þ
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Z
dΩ
4π

cos2 θ
ðP · KÞ2 ¼

1

p2

�
1þ Q2

p2 þQ2
− 2

Q
p
arctan

�
p
Q

��
:

ð77Þ
Using these integrals, we find

δΠlgðPÞ ¼ −1þQ
p
arctan

�
p
Q

�
; ð78Þ

δΠtrðPÞ ¼
Q
2p

�
Q
p
−
�
1þQ2

p2

�
arctan

�
p
Q

��
; ð79Þ

δΠ̃lgðPÞ ¼ −
1

Q

�
Q2

p2 þQ2
−
Q
p
arctan

�
p
Q

��
; ð80Þ

δΠ̃trðPÞ ¼
1

2p

�
Q
p
þ
�
1 −

Q2

p2

�
arctan

�
p
Q

��
: ð81Þ

For the known HTLs, δΠlg and δΠtr, we could have
read off the above simply by taking the known results
for Minkowski energy, p0 ¼ iω [80], and analytically con-
tinuing back to Euclidean momenta, taking ω ¼ −iQ.
Doing so, the function arctanðp=QÞ above is related to
logððω − pÞ=ðωþ pÞÞ. Of course, this would not yield the
new function for an auxiliary massive field, Π̃μνðPÞ.
For the next section, we also need the limits of these self-

energies for small and large momenta

δΠlgðPÞ ≈ −
1

3

p2

Q2
þ 1

5

p4

Q4
þ… for p ≪ Q; ð82Þ

≈ − 1þ π

2

jQj
p

þ… for p ≫ Q; ð83Þ

δΠtrðPÞ ≈ −
1

3
þ 1

15

p2

Q2
þ… for p ≪ Q; ð84Þ

≈ −
π

4

jQj
p

þQ2

p2
þ… for p ≫ Q: ð85Þ

For the new HHTL,

δΠ̃lgðPÞ ≈
1

Q

�
2

3

p2

Q2
−
4

5

p4

Q4
þ…

�
for p ≪ Q; ð86Þ

≈
1

p

�
signðQÞ π

2
−
Q
p
þ…

�
for p ≫ Q; ð87Þ

δΠ̃trðPÞ ≈
2

3Q

�
1 −

2

5

p2

Q2
þ…

�
for p ≪ Q; ð88Þ

≈signðQÞ π

4p

�
1−

Q2

p2
þ…

�
forp≫Q: ð89Þ

For soft Q ∼ gT, we can compute the coefficients at
Q ¼ 0, which gives

ðm2
glÞab;cdð0Þ ¼ m2

DP
ab;cd; m2

D ¼ g2N

�
T2

3
þ C
4π2

�
;

ð90Þ

where mD is the usual Debye mass for static electric fields,
generalized to C ≠ 0. The mass scale associated with the
auxiliary massive field is

ðm̃3
glÞab;cdð0; 0Þ ¼ −

g2NCT
32π

Pab;cd: ð91Þ

There is no simple understanding for m̃3
gl, which has

dimensions of mass cubed (remember C has dimensions
of mass squared).

V. FREE ENERGY TO CUBIC ORDER

A. General expressions

At nonzero holonomy, the computation of the free
energy to ∼1 [5,6] and ∼g2 [7–26,37,41,44] is straightfor-
ward. This is because the dominant momenta are on the
order of the temperature, and so these are well behaved for
any value of the holonomy.
At zero holonomy, there are infrared divergences from

the static modes, with p0 ¼ 0, which first appear at ∼g4.
These infrared divergences are cut off by a nonzero value
for the Debye mass, and after resummation, generate a term
which is ∼g3 (as computed first by Kapusta [81]). When the
holonomy is nonzero but soft, Q ∼ gT, the holonomy is as
large as the Debye mass and a nontrivial function results.
The purpose of this section is to see under which conditions
the terms ∼g3 are well behaved as the holonomy vanishes.
Our purpose is to see if the cubic term in the free energy

behaves smoothly as Q → 0, and so we consider only the
contribution from a single mode with holonomy Q. This is
the contribution of off-diagonal gluons to the free energy
for two colors. The generalization to a higher number of
colors is immediate, and so we suppress the color indices.
We comment that the result will be proportional to the
Debye mass cubed, and so survives as the number of colors
N → ∞. We also concentrate on the contribution only from
the terms involving the Debye mass, ∼δΠμν, and comment
later on that from the new piece from the auxiliary massive
mode, ∼δΠ̃μν.
The free energy to ∼g3 is gauge invariant because the

HHTL is transverse in the external momentum; Eq. (47)
and (56). We choose to work in Feynman gauge.
The contribution from transverse gluons is
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F tr
3 ðQ=mDÞ ¼ T

Xþ∞

n¼−∞

Z
d3p
ð2πÞ3

�
log ððp0 þQÞ2 þ p2 −m2

DδΠtrðp0 þQ;pÞÞ

− log ððp0 þQÞ2 þ p2Þ þ m2
D

ðp0 þQÞ2 þ p2
δΠtrðp0 þQ;pÞ

�
; ð92Þ

where m2
D is that of Eq. (90). The overall coefficient is one,

from two transverse modes times 1=2 for a bosonic field. In
covariant gauges, the four gluon modes minus two ghosts,
times 1=2, again gives one.
To obtain a term ∼g3, it is necessary to first subtract the

terms which arise at lower order. There are two such
terms. The first arises at one-loop order, ∼1, which is the
second term on the right-hand side of Eq. (92),
∼tr logððp0 þQÞ2 þ p2Þ. Next is the term at two-loop
order, ∼m2

DδΠtr ∼ g2, which is the last term in Eq. (92).
The term ∼g3 arises from the static mode of the inverse

propagator, taking p0 ¼ 0 in Eq. (92), and thus is

F tr
3 ðQ=mDÞ ¼ T

Z
d3p
ð2πÞ3

�
log

�
1 −

m2
D

Q2 þ p2
δΠtrðQ;pÞ

�

þ m2
D

Q2 þ p2
δΠtrðQ;pÞ

�
: ð93Þ

For the longitudinal propagator the time and spatial
components of the propagators mix. For simplicity, assume
that pi is along the z direction. Anticipating our results, we
work in the static limit, p0 ¼ 0. The inverse propagator is a
two by two matrix,

Δ−1 ¼
�
Q2 þp2 −m2

DδΠlg m2
DδΠlgQ=p

m2
DδΠlgQ=p Q2 þp2 −m2

DδΠlgQ2=p2

�
:

ð94Þ

The determinant of this matrix is

detΔ−1 ¼ ðQ2 þ p2Þ2
�
1 −

m2
D

p2
δΠlg

�
: ð95Þ

Consequently, the contribution of the longitudinal modes to
the free energy at cubic order is

F lg
3 ðQ=mDÞ ¼ T

Z
d3p
ð2πÞ3

�
log

�
1 −

m2
D

p2
δΠlgðQ;pÞ

�

þm2
D

p2
δΠlgðQ;pÞ

�
: ð96Þ

The functions in Eqs. (93) and (96) are ∼Tm3
D times a

dimensionless function of Q=mD. The integrals are well
defined and convergent in both the ultraviolet and infrared
limits, and so can be determined numerically. First we
determine their values in the limit of small and large
holonomy.

B. Limits

For zero holonomy, using the integral

Z
∞

0

dp

�
p2 log

�
1þ 1

p2

�
− 1

�
¼ −

π

3
; ð97Þ

we find the standard result [81],

F lg
3 ð0Þ ¼ −

1

6π
m3

DT; F tr
3 ð0Þ ¼ 0: ð98Þ

We begin with small holonomy, where Q ≪ mD. The
dominant momenta are then

Q ≪ p ≪ mD: ð99Þ

That is, and somewhat counterintuitively, in order to obtain
the behavior for small Q, we need the behavior of the self-
energies in the limit of large spatial momentum, p ≫ Q.
Thus the usual result for the Debye mass squared at zero
holonomy is given by δΠlg ∼ −1 at large p, Eq. (83), which
gives Eq. (98).
To compute corrections to this result, we need to expand

δΠlg in Eq. (83) to linear order in Q. Substituting this into
Eq. (96), to ∼Q

F lg
3 ðQ=mDÞ − F lg

3 ð0Þ ≈
m2

DT
2π2

Z
dpp2

�
πQ
2p

��
1

p2
−

1

p2 þm2
D

�

≈
m2

DT
4π

Q
�
log

�
mD

Q

�
þOð1Þ

�
þOðQ2Þ for Q ≪ mD: ð100Þ
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This is valid for Q ≪ gT, and so overall is ∼m2
DQT ≪

g3T4 in magnitude.
For the transverse modes, the self-energy at high

momentum is given by Eq. (85). Because this vanishes
at high momentum, the terms of ∼Q are given by expand-
ing the self-energy to linear order, and cancel identically.
There are contributions from the transverse modes to ∼Q2.
For large holonomy, Q ≫ mD, consider first the con-

tribution of the transverse modes. Because the transverse
self-energy δΠtr in Eq. (92) is accompanied by a factor of
1=ðQ2 þ p2Þ, for large Q we can expand to quadratic order
in δΠtr=ðQ2 þ p2Þ. This factor of 1=ðQ2 þ p2Þ ensures that
the dominant momenta for the transverse free energy are
mD ≪ p ≪ Q, and so we can expand the transverse self-
energy for small momenta, Eq. (84). We only need the
leading term, δΠtrðp=QÞ ≈ −1=3, which gives

F tr
3 ðQ=mDÞ ≈

T
2π2

Z
dpp2

�
−
1

2

��
1

Q2 þ p2

ð−Þm2
D

3

�
2

¼ −
T

144π

m4
D

Q
þ… for Q ≫ mD: ð101Þ

We comment that the limit of small p ≪ Q corresponds
to the limit of nonzero frequency and zero spatial momen-
tum at zero holonomy. This explains why the leading term
in Eq. (84) is 1=3 the value in Eq. (83), as the trace of the
gluon self-energy, Πμμð0; 0Þ, is the same for the two
possible limits: either first setting p0 ¼ 0 and then taking
p → 0 or, setting p ¼ 0, and then taking ω → 0 after
analytic continuation to p0 ¼ iω.
For the longitudinal modes the analysis is slightly more

subtle. In this case, the longitudinal self-energy is multi-
plied by 1=p2, not 1=ðQ2 þ p2Þ, as for the transverse case.
For large Q, we can still expand to quadratic order in
δΠlg=p2:

F lg
3 ðQ=mDÞ ≈

T
2π2

Z
dpp2

�
−
1

2

�

×
�
m2

D

p2
δΠlgðQ;pÞ

�
2

þ… for Q ≫ mD:

ð102Þ

In this expression the Debye mass only enters through an
overall factor of ∼m4

D, leaving an integral,

F lg
3 ðQ=mDÞ≈−

m4
DT
4π2

Z
∞

0

dp
1

p2
ðδΠlgðQ;pÞÞ2

¼ T
12π

m4
D

Q
ðlogð2Þ− 1Þ for Q≫mD: ð103Þ

The dominant momenta in the integral are p ∼Q and so we
need the complete expression for δΠlg in Eq. (79).
Nevertheless, the coefficient of the term ∼1=Q is just an

integral over the longitudinal self-energy, which can be
done exactly.
That the contributions at large holonomy vanish as

∼1=Q for the both the transverse and longitudinal modes
is hardly surprising. There are no infrared divergences
whenQ is large, and so the contributions in both Eqs. (101)
and (103) are simple to determine, given directly by
expanding the expression for the free energy to quadratic
order in the δΠ’s. As such, they are just part of the usual,
perturbative contribution to the free energy, with terms
∼m4

D just part of those ∼g4, at three-loop order.
Having derived the results for two-dimensional ghosts, it

is immediate to include the results for an auxiliary massive
field. Consider the form of the longitudinal self-energy at
large momenta, which we argued above is relevant for
small Q, Eq. (100). For p ≫ Q, the total longitudinal self-
energy for a massive auxiliary field is

Πtotal;lg ≈m2
D −

π

2p
ðm2

DQþ m̃3
DÞ þ…: ð104Þ

As p → ∞, this equals the Debye mass squared, as
expected. However, consider the behavior of the leading
correction, when both p and Q are soft, ∼gT. Then the first
term is m2

DQ=p ∼ g2T2, which is of the same order as the
leading term. However, the second term is m̃3

D=p ∼
g2CT=p ∼ gC when the spatial momentum is soft,
p ∼ gT. This violates the usual power counting of HTLs,
where the self-energy is as large as the terms at tree level.
For example, the correction to the free energy in Eq. (100)
becomes

F lg
3 ðQÞ − F lg

3 ð0Þ ≈
T
4π

log

�
mD

Q

�
ðm2

DQþ m̃3
DÞ

þ… for Q ≪ mD: ð105Þ

Thus, the correction to the free energy from the longitudinal
mode does not vanish smoothly as Q → 0 when m̃D ≠ 0.

C. Qualifications

Clearly we have only computed part of the free energy to
∼g3. In particular, any boson field which is originally
massless will acquire a thermal mass squared ∼g2T2; the
associated mode with zero energy, p0 ¼ 0, then contributes
to the free energy at ∼g3. Why, then, do we concentrate
only upon the gluon contribution? The example of massless
quarks at nonzero holonomy shows that their contribution
has no anomalous terms as arise for gluons [30], and surely
the same is true for additional scalar fields. Uniquely, the
only place where the one-point function enters is for the
gluon self-energy—as a measure of the total color current.
Consequently, we expect that it is only for gluon fields that
there is a problem with the self-energy as Q → 0. This
problem is not special to the hard thermal loop limit for
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Euclidean momenta. If one analytically continues the self-
energies to Minkowski momenta, p0 → iω for soft ω ∼ gT,
the new HHTL δΠ̃ has terms ∼gT2, instead of the
expected ∼g2T2.
Our effective theories are manifestly incomplete. For

either the theory with auxiliary massive fields, or embedded
two-dimensional fields, the self-energies of their additional
fields are gauge variant. This is easiest to see for the latter.
The thermal mass of a scalar field is due to two contribu-
tions; from a tadpole diagram, involving a gluon loop, and a
second diagram, with a discontinuity from a virtual scalar-
gluon intermediate state. In four dimensions, each diagram
has a piece which depends upon the gauge-fixing param-
eter, and they cancel between the two. For the effective two-
dimensional theory, however, the tadpole diagram is
unchanged, as it only involves a gluon loop, while for
the second diagram the momentum for the scalar is
modified, and so the cancellation fails. Thus there are
additional contributions to ensure that the total free energy
is gauge invariant. For the reasons discussed above,
however, we do not expect this to change the behavior
as the holonomy Q → 0.
We also acknowledge that the favored solution of two-

dimensional ghosts was computed only in the limit when
T ≫

ffiffiffiffi
C

p
∼ Tc. This was done to ease the computation, and

to limit the terms which arise in the potential only as the
second Bernoulli polynomial, B2 in Eqs. (2) and (14).
Nevertheless, in future work we intend to apply this to
compute the properties of the theory near Tc. We admit this
is done simply to have a well defined approximation in
which we can consistently compute.

VI. CONCLUSIONS

As discussed in the Introduction, to avoid an unwanted
first-order phase transition in the deconfined phase, the
quark-gluon plasma must always be holonomous at any
finite temperature [34,48]. The simplest way to do this is if
effective fields generate the second Bernoulli polynomial,
as that is linear in the holonomy for small values, Eq. (2).
We investigated two ways of generating such a term:

through auxiliary massive fields, and the isotropic embed-
ding of two-dimensional fields into four dimensions. In
each case, the computation of the gluon self-energy is well
defined. We computed the behavior when the spatial
momenta and the holonomy are both soft, ∼gT. The
self-energy for auxiliary massive fields acquires a new
term whose behavior is ∼g2T3=p, where p ∼ gT is a soft
momentum. This term is not ∼g2T2, as expected for a
consistent effective theory, but is ∼gT2.

This term does not arise for the two-dimensional ghosts.
Indeed, computing with these two dimensional fields is
extremely simple; one uses the usual holonomous hard
thermal loops, but with a propagator whose Debye mass
squared includes the effect of the ghosts, Eq. (90). It is very
direct to compute with this effective propagator. Previously,
we computed the shear viscosity in Refs. [29,32]. This used
a HHTL propagator, where the term from the equations of
motion, ∼Kab;cdδΓμνðPabÞ, Eqs. (46), (59), and (60), was
simply dropped by hand. The present models demonstrate
that this is consistent. Notably, the shear viscosity does
decrease as T → Tc, due to the decrease in the effective
number of degrees of freedom as one approaches the
confined phase [29,32].
Thus, improving this result is simply a matter of using

the Debye mass squared of Eq. (90). In particular, comput-
ing the ratio of the bulk to the shear viscosity is straightfor-
ward. As a ratio, this should be less sensitive to the various
limitations of our approximations. This computation will be
presented separately [50].
These calculations are clearly of use for phenomenology.

We conclude by noting a point of principle. We argue that
the quark-gluon plasma is always holonomous, so that over
large distances, the self-energy of the longitudinal fields are
unscreened. This can be seen from Eq. (82), which vanishes
as ∼p2=Q2. Taken at face value, then, it appears as if static
electric fields are not screened over large distances. Since
this distance is 1=Q ∼ T=T2

c, this may be a very large
distance indeed, and extremely difficult to measure through
numerical simulations on the lattice. Certainly, it is neces-
sary to look at the T-odd part of Polyakov loops, such as the
imaginary part for three or more colors, as noted by Arnold
and Yaffe [82]. While suggested by the perturbative
analysis, however, we suggest that nonperturbative effects
may generate a finite correlation for static electric fields at
nonzero holonomy, by interacting with the dynamics
responsible for the holonomy in the first place. This is
speculative, but it demonstrates that careful analysis of
correlation lengths even in the static Euclidean theory may
yield insight into both the perturbative and nonperturbative
effects in a holonomous quark-gluon plasma.
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