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Expressions for the potentials appearing in the nonrelativistic effective field theory description of doubly
heavy baryons are known in terms of operator insertions in the Wilson loop. However, their evaluation
requires nonperturbative techniques, such as lattice QCD, and the relevant calculations are often not
available. We propose a parametrization of these potentials with a minimal model dependence based on an
interpolation of the short- and long-distance descriptions. The short-distance description is obtained from
weakly-coupled potential NRQCD and the long-distance one is computed using an effective string theory.
The effective string theory coincides with the one for pure gluodynamics with the addition of a fermion
field constrained to move on the string. We compute the hyperfine contributions to the doubly heavy baryon
spectrum. The unknown parameters are obtained from heavy quark-diquark symmetry or fitted to the
available lattice-QCD determinations of the hyperfine splittings. Using these parameters we compute the
double charm and bottom baryon spectrum including the hyperfine contributions. We compare our results
with those of other approaches and find that our results are closer to lattice-QCD determinations, in
particular for the excited states. Furthermore, we compute the vacuum energy in the effective string theory
and show that the fermion field contribution produces the running of the string tension and a change of sign
in the Lüscher term.
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I. INTRODUCTION

The discovery of more than two dozen exotic quarko-
nium states, as well as the more recent measurements of
pentaquarks and double charm baryons, has increased
interest in the wider class of hadrons containing two heavy
quarks. All doubly heavy hadrons have in common that the
constituent heavy quarks are nonrelativistic and that the
dynamics of the heavy quarks and the light degrees of
freedom, light quarks and gluons, can be factorized in an
adiabatic expansion. An effective field theory (EFT) for
doubly heavy hadrons built upon these two expansions was
presented in Ref. [1]. Since the EFT reproduces the Born-
Oppenheimer (BO) approximation at leading order we will
refer to it as BOEFT. In the construction of the EFT no
assumption is made about the heavy-quark distance and
hence the EFT is valid both for short and long distances

with respect toΛ−1
QCD, the inverse of the intrinsic scale of the

nonperturbative effects in QCD. Therefore, the EFT can be
seen as a generalization of strongly coupled potential
NRQCD (pNRQCD) [2,3] for quarkonium states to any
heavy-quark-pair state with nontrivial light degrees of
freedom. The matching coefficients of BOEFT depend
on the heavy-quark-pair distance and, therefore, correspond
to potential interactions. Expressions for these potentials in
terms of operator insertions in the Wilson loop can be
obtained by matching BOEFT to NRQCD [4–6], which can
also be found in Ref. [1]. Since the Wilson loops involve
nonperturbative dynamics, in principle they should be
evaluated with lattice QCD.
BOEFT has been applied to doubly heavy baryons in

Ref. [7]. In this case, the Wilson loop with light quark
operator insertions corresponding to the static potential, has
been obtained in the lattice [8,9] including several excited
states. This lattice data was used in Ref. [7] to obtain the
double charm and bottom baryon spectrum at leading
order in BOEFT. The leading-order spectrum is formed
by spin-symmetry multiplets of states with total angular
momentum j and parity ηp. The degeneracy of the states in
the multiplets is broken by 1=mQ suppressed operators in
BOEFT,wheremQ is the heavy-quarkmass. These operators
correspond to different couplings of the heavy-quark spin
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and angular momentum to the light-quark spin.
Unfortunately, at the moment there is no lattice data
available for the potentials of these heavy-quark spin and
angular-momentum dependent operators.
Themain aim of this paper is to develop a parametrization

for the subleading potentials for doubly heavy baryons. The
short-distance regime is defined as r ≪ 1=ΛQCD, which is
equivalent to assuming that there is an energy gap between
the relative momentum of the heavy quarksmQv, with v the
relative velocity, and ΛQCD. Therefore, in the short-distance
regime one can build BOEFT in two steps. First, the relative
momentum is integrated out perturbatively in order to build
weakly-coupled pNRQCD [10–12], and second, one inte-
grates out the ΛQCD modes. This procedure results in
multipole expanded expressions of the potentials in
BOEFT where the dependence on the heavy-quark-pair
distance is explicit and the nonperturbative dynamics is
encoded in some unknown constants. Examples of this two-
step matching can be found in Refs. [13,14] for the heavy-
quark spin dependent potentials of quarkonium hybrids and
in Refs. [15,16] for the hybrid to standard quarkonium
transitions.
In the long-distance regime, r ≫ 1=ΛQCD, it is known

that the heavy-quark-antiquark static potential obtained
from lattice QCD is well described in terms of an Effective
String Theory (EST) [17] modeling the flux tube formed
between the heavy-quark-antiquark pair at large separa-
tions. Corrections to the long-distance linear behavior of
the static potential can be calculated in a systematic manner
in the EST [18,19] (see also Refs. [20,21]), including the
contribution from the vacuum energy of the string which
has also been confirmed by lattice QCD [19,22,23]. The
long-distance behavior of the subleading potentials for
quarkonium can be computed in the EST given a mapping
of the Wilson loop with operator insertions into EST
correlation functions. This mapping was worked out in
Ref. [24] and some of the subleading potentials were
computed. This computation was later extended up to
next-to-leading order in the EST in Refs. [25,26]. The
parametrization given by these computations agree well
with the lattice determinations of Refs. [27,28]. The
excitations of the string produce a spectrum of excited
states, corresponding to quarkonium hybrid static poten-
tials, which accurately describe the lattice determinations at
long distances [22]. The mapping of operators to the EST to
compute subleading potentials for hybrid quarkonium was
introduced in Ref. [29].
In this paper we present an EST for two static heavy

quarks and one valence light quark, which is suitable to
compute the long-distance part of the potentials of BOEFT
for doubly heavy baryons. We obtain the mapping between
different operator insertions in the Wilson loop and corre-
lators in theESTand use it to compute the static potential and
the heavy-quark spin and angular-momentum dependent
potentials in the long-distance regime. A parametrization of

the potentials for any distance between the heavy-quark pair
is built by interpolating between the short- and long-distance
descriptions. The free parameters of the short- and long-
distance descriptions of the potentials are then fitted to a
broad set of lattice data on the hyperfine splittings of doubly
heavy baryons [30–39]. Using this parametrization of the
potentials we compute the hyperfine contributions to the
double charm and bottom baryons states of Ref. [7] corre-
sponding to spin 1=2 light-quark states. These include all the
states below threshold of double bottom baryons, for which
no lattice determination exists beyond the ground state spin
doublet. Finally, we compare our results with previous
model based determinations of the masses of doubly heavy
baryons.
We present the paper as follows. In Sec. II, we review the

general structure of the doubly heavy baryon potentials at
next-to-leading order in the 1=mQ expansion. We also
discuss the short-distance constraints for those potentials.
The leading-order parameters can be extracted from the
heavy-light meson spectrum using heavy quark-diquark
symmetry. In Sec. III, we propose an EST with fermionic
degrees of freedom in order to describe the long-distance
behavior of the potentials. Based on the D∞h group, we put
forward a mapping from the NRQCD operator insertions in
the Wilson loop to ESToperators, and use it to compute the
potentials. At leading order, they turn out to depend on two
parameters only. In Sec. IVAwe review the expressions of
the doubly heavy baryon hyperfine splittings. In Sec. IV B
we model the spin-dependent potentials using suitable
interpolations between the known short-distance behavior
and the just calculated long-distance one. Then, the
remaining unknown parameters of the parametrization of
the potentials are fitted to lattice data on the hyperfine
splittings of doubly heavy baryons. Using these parameters,
we predict the spectrum of doubly heavy baryons including
hyperfine contributions in Sec. IV C. We compare our
results with other approaches in Sec. V. We close the paper
with some conclusions in Sec VI. In Appendix A we
calculate the Casimir energy (Lüscher term) in the EST.
Finally, in Appendix B we give expressions for the short-
distance regime constants as correlators in weakly-coupled
pNRQCD.

II. DOUBLY HEAVY BARYON POTENTIALS

A. General expressions

A general EFT framework to describe any doubly heavy
hadron has been presented in Ref. [1]. The EFTwas worked
out up to 1=mQ including the terms that depend on the
heavy-quark spin and angular momentum. The matching
expressions of the potentials in terms of operator insertions
in the Wilson loop can also be found in Ref. [1]. This EFT
framework has been applied to doubly heavy baryons in
Ref. [7] where the spectrum associated to the four lowest
lying static energies was obtained. These static energies are
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characterized by the representation of D∞h and the quan-
tum numbers of the light-quark operator that interpolates
them, in particular the spin κ and parity p. In the present
work we will only consider the cases with light-quark
interpolating operator with κp ¼ ð1=2Þ�. These spin-1=2
cases only have one possible projection into the heavy-
quark axis and therefore each correspond to a single D∞h
representation. These are ð1=2Þg and ð1=2Þ0u for the κp ¼
ð1=2Þþ and κp ¼ ð1=2Þ− operators, respectively.
The Hamiltonian densities associated to the κp ¼ ð1=2Þ�

light-quark states [7] have the following expansion up to
1=mQ

hð1=2Þ� ¼
p2

mQ
þ P2

4mQ
þVð0Þ

ð1=2Þ�ðrÞþ
1

mQ
Vð1Þ
ð1=2Þ�ðr;pÞ: ð1Þ

At leading order we have just the static potential

Vð0Þ
ð1=2Þ�ðrÞ ¼ Vð0Þ

ð1=2Þ�ðrÞ: ð2Þ

The heavy-quark spin and angular-momentum dependent
operators appear at next-to-leading order, and read as

Vð1Þ
ð1=2Þ�SDðrÞ ¼ Vs1

ð1=2Þ�ðrÞSQQ · S1=2

þ Vs2
ð1=2Þ�ðrÞSQQ · ðT 2 · S1=2Þ

þ Vl
ð1=2Þ�ðrÞðLQQ · S1=2Þ; ð3Þ

with T ij
2 ¼ r̂ir̂j − δij=3, S1=2 ¼ σ=2, and 2SQQ ¼ σQQ ¼

σQ1
12Q2

þ 12Q1
σQ2

, where σ are the standard Pauli matrices
and 12 is an identity matrix in the heavy-quark spin space
for the heavy quark labeled in the subindex.
The matching expressions of the potentials in terms of

operator insertions in the Wilson loop can be found in
Ref. [1]. For the potentials in Eqs. (2) and (3) the
expressions in Ref. [1] reduce to

Vð0Þ
ð1=2Þ�ðrÞ ¼ lim

t→∞

i
t
logðTr½h1ið1=2Þ�

□
�Þ; ð4Þ

and

Vs1
ð1=2Þ�ðrÞ ¼ −cF lim

t→∞

4

3t

Z
t=2

−t=2
dt0

Tr½S1=2 · hgBðt0; x1Þið1=2Þ
�

□
�

Tr½h1ið1=2Þ�
□

�
; ð5Þ

Vs2
ð1=2Þ�ðrÞ ¼ −cF lim

t→∞

6

t

Z
t=2

−t=2
dt0

Tr½ðS1=2 · T 2Þ · hgBðt0; x1Þið1=2Þ
�

□
�

Tr½h1ið1=2Þ�
□

�
; ð6Þ

Vl
ð1=2Þ� ¼ − lim

t→∞
2

Z
1

0

dss
Tr½S1=2 · ð23 12 − T 2Þ · hgBðt=2; zðsÞÞið1=2Þ

�
□

�
Tr½h1ið1=2Þ�

□
�

; ð7Þ

where zðsÞ ¼ x1 þ sðR − x1Þ and we use the following notation for the Wilson loop averages

h…ið1=2Þ�
□

¼ hQð1=2Þ�ðt=2;RÞ…Q†
ð1=2Þ�ð−t=2;RÞPfe

−ig
R
C1þC2

dzμAμðzÞgi; ð8Þ

with C1 and C2 the upper and lower paths of a rectangular
Wilson loop. Note that, unlike the quark-antiquark case, the
flow is in the same direction for both paths. The interpolat-
ing operators are

Qα
ð1=2Þþðt; xÞ ¼ ½Pþqlðt; xÞ�αTl; ð9Þ

Qα
ð1=2Þ−ðt; xÞ ¼ ½Pþγ5qlðt; xÞ�αTl; ð10Þ

where α ¼ −1=2; 1=2, and we have used the following 3̄
tensor invariants

Tl
ij ¼

1ffiffiffi
2

p ϵlij; i; j; l ¼ 1; 2; 3: ð11Þ

B. Short-distance potentials

The short-distance regime is characterized by r ≪ Λ−1
QCD.

Since, in this regime the heavy-quark-pair distance and
Λ−1
QCD are well-separated scales the matching of NRQCD to

the BOEFT for doubly heavy baryons can be done in
two steps. First, one integrates out the heavy-quark-pair
distance, which can be done in perturbation theory.
This produces weakly-coupled potential NRQCD
(pNRQCD) for doubly heavy systems presented in
Ref. [12]. Then, integrating out the ΛQCD modes one
recovers BOEFT. This procedure delivers expressions of
the potentials in Eqs. (4)–(7) as an expansion in the heavy-
quark-pair distance. An analogous approach was used in
Refs. [13,14] to determine short-distance expansion of the
hybrid quarkonium potentials. All the potentials follow the

EFFECTIVE QCD STRING AND DOUBLY HEAVY BARYONS PHYS. REV. D 104, 074027 (2021)

074027-3



same general structure in the short-distance regime; a
possible nonanalytic term in r produced by integrating
out the heavy-quark-pair distance and an expansion in
powers of r2 with nonperturbative coefficients. These
nonperturbatice coefficients only depend on the ΛQCD scale
and can be expressed as weakly-coupled pNRQCD corre-
lators of light quark and gluon operators.
The expansion of the static potential in Eq. (4) is given

diagrammatically in Fig. 1 and corresponds to the follow-
ing form

Vð0Þ
ð1=2Þ�ðrÞ ¼ −

2

3

αs
r
þ Λ̄ð1=2Þ� þ Λ̄ð1Þ

ð1=2Þ�r
2 þ…; ð12Þ

with the nonperturbative constants given as pNRQCD
correlators in Appendix B.
For the heavy-quark spin and angular-momentum de-

pendent potentials the short-distance expansion of the
potentials is given diagrammatically in Fig. 2 and are as
follows:

Vs1
ð1=2Þ�ðrÞ ¼ cFðΔð0Þ

ð1=2Þ� þ Δð1;0Þ
ð1=2Þ�r

2 þ…Þ; ð13Þ

Vs2
ð1=2Þ�ðrÞ ¼ cFΔ

ð1;2Þ
ð1=2Þ�r

2 þ…; ð14Þ

Vl
ð1=2Þ� ¼

1

2

�
Δð0Þ

ð1=2Þ� þ
�
Δð1;0Þ

ð1=2Þ�−
1

3
Δð1;2Þ

ð1=2Þ�

�
r2
�
þ…; ð15Þ

with the nonperturbative constants given in Appendix B. At
leading order both Eqs. (13) and (15) depend on the same
correlator and the difference in the contribution to the
potential stems from different factors in the coupling of the
heavy-quark spin and angular momentum to the chromo-
magnetic field in the Lagrangian of Eq. (9) in Ref. [12]. The
potential of the spin-tensor coupling in the Lagrangian of
Eq. (3) vanishes at leading order since, to appear, it requires
the insertion in the pNRQCD correlator of operators
carrying the dependence on r which are suppressed in
the multipole expansion. This type of correlator is also
responsible for the next-to-leading order contributions to
Eqs. (13) and (15). It is interesting to note, that the next-to-
leading coefficient of Eq. (15) can be written as a
combination of the next-to-leading coefficients of
Eqs. (13) and (14).
In the static and r → 0 limits the heavy-quark pair

becomes indistinguishable from a single heavy antiquark.
This is the so-called heavy quark-diquark duality [40–43].
One can use this duality to relate the leading-order
coefficients of the expansions of the potentials in
Eqs. (12)–(15) to the heavy meson masses. The value of
Λ̄ð1=2Þþ is equal to the leading-nonperturbative contribution
to the lowest layingD- or B-meson masses, usually referred
to as just Λ̄.
The value of Λ̄ has been obtained in Refs. [44,45]

combining lattice determinations of the heavy-meson
masses and perturbative computations of the heavy-quark
masses. It is therefore necessary to use values of Λ̄ and the

++

=

+ perm.++ +

FIG. 2. Matching of the heavy-quark spin dependent potentials up to next-to-leading order in weakly-coupled pNRQCD. The legend
is as in Fig. 1 with the addition of the solid dot, a white-dotted square, and a white-dotted diamond representing the insertion of a
leading-order dipole, and quadrupole heavy-quark spin chromomagnetic couplings, respectively. Further next to leading diagrams can
be generated by changing the order of the different internal vertices, and by adding an extra transverse gluon emission to the heavy-quark
spin chromomagnetic couplings. The potential of the heavy-quark angular-momentum dependent operator is matched to an analogous
expansion.

FIG. 1. Matching of the Wilson loop for the static potential for doubly heavy baryons, with the expansion in weakly-coupled
pNRQCD up to next-to-leading order. The single lines represent the antitriplet fields, the double lines the sextet field, the dotted and the
curly lines the light-quark and transverse gluon fields respectively (emissions of longitudinal gluon fields from the triplet and sextet
fields and from the vertices are omitted). The crossed circles indicate the insertion of a Q operator and the square or diamond the
insertion of a chromoelectric dipole or quadrupole operator, respectively.
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heavy-quark masses computed in the same scheme. We use
the values of Ref. [44] in the minimal renormalon-sub-
tracted scheme

mc ¼ 1.392ð11Þ GeV; ð16Þ

mb ¼ 4.749ð18Þ GeV; ð17Þ

Λ̄ð1=2Þþ ¼ 0.555ð31Þ GeV: ð18Þ

Following from the heavy quark-diquark duality, the differ-
ence Λ̄ð1=2Þ− − Λ̄ð1=2Þþ is equal to the mass gap between the
ground and first excited heavy-light mesons, up to correc-
tions of order Λ2

QCD=mQ. The values for this difference are
collected in Table I. The values are compatible with the
short-distance energy gaps between the static energies
ð1=2Þg and ð1=2Þ0u of Refs. [8,9] associated to the light-
quark operators ð1=2Þþ and ð1=2Þ−, respectively.
Finally, the value of Δð0Þ

ð1=2Þ� can be related to the
hyperfine splittings in D or B mesons [12]

mP�
Q̄q
−mPQ̄q

¼ 2cFðmQÞ
mQ

Δð0Þ
ð1=2Þ� ; ð19Þ

with corrections expected to be of order Λ3
QCD=m

2
Q. The

values of Δð0Þ
ð1=2Þ� from Eq. (19) for various heavy-meson

masses are found in Table II.

III. EFFECTIVE STRING THEORY

A. Motivation

The QCD potentials for heavy quarks can be calculated
assuming the heavy quarks to be static color sources. For a
heavy-quark-antiquark system, the leading-order (static)
potential is the energy of a source in the fundamental
representation and a source in the complex conjugate
representation separated at a distance r. Since the system
must be a color singlet object, a certain gluon configuration
must exist between the two sources in order to achieve so.
When the distance is larger than the typical QCD scale

rΛQCD ≫ 1, a flux tube emerges [47], with a typical radius
∼Λ−1

QCD. Assuming a constant energy per unit length in the
flux tube leads to a linear potential. The flux-tube dynamics
can be described by an EST, which matches the lattice QCD
calculations very well for the static potential at long
distances in the absence of light quarks [19,22,23].
When light quarks are present, the flux-tube configuration
is still observed [48] even though it may break due to light
quark-antiquark pair creation, a phenomenon known as
string breaking [49,50]. Nevertheless a flux-tube like
configuration leading to a linear potential remains as an
excited state for r beyond the string-breaking scale.
For a baryon with two heavy quarks, we have an

analogous situation. The two sources are now in the
fundamental representation, and the gluon configuration
linking them must also contain a valence light quark. When
rΛQCD ≫ 1 we expect a flux tube to emerge from each
source and to joint at the point between them where the
valence light quark is at each time. Hence, the naive
expectation would be to have a potential with the same
string tension as in the quark-antiquark system plus a
constant contribution ∼ΛQCD due to the extra energy
provided by the link to the valence light quark. Lattice
QCD simulations indeed observe a linear potential [8,51].
Hence, we expect an EST to account for the long-distance
behavior of the potential as well. Locally, the EST should
be the same as the one for the quark-antiquark system, but it
must contain some additional degrees of freedom describ-
ing the link to the valence light quark. In particular it must
keep its transformation properties under D∞h and flavor.
We propose to add a fermion to the usual EST which
transforms like the light quark under flavor and the Lorentz
group. We write down a reparametrization invariant
Lagrangian, and expand it at the desired order in the
effective theory expansion.

TABLE I. Determination of Λ̄ð1=2Þ− − Λ̄ð1=2Þþ from D meson
mass differences. The masses are taken from the PDG [46]. The
uncertainty corresponds only to the experimental uncertainty of
the meson masses. The uncertainty in the determination of
ðΛ̄ð1=2Þ− − Λ̄ð1=2ÞþÞ due to neglected higher-order terms is ex-
pected to be about 30%.

Heavy mesons ðΛ̄ð1=2Þ− − Λ̄ð1=2ÞþÞ ½GeV�
mD�

0
ð2300Þ0 −mD0 0.435(19)

mD�
0
ð2300Þ� −mD� 0.465(7)

mD1ð2420Þ0 −mD�ð2007Þ0 0.41375(7)
mD1ð2420Þ� −mD�ð2010Þ� 0.4129(24)

TABLE II. Determination of Δð0Þ
ð1=2Þ� from the heavy meson

masses, taken from the PDG [46], using Eq. (19). We take the
renormalization group improved expression for cF at 1 GeV. The
uncertainty corresponds only to the experimental uncertainty of

the meson masses. The uncertainty in the determination ofΔð0Þ
ð1=2Þ�

due to neglected higher order terms is expected to be of ∼30% for
the charm mesons and ∼10% for the bottom mesons.

Heavy mesons Δð0Þ
ð1=2Þþ ½GeV2�

mD�ð2007Þ0 −mD0 0.08819(2)
mD�ð2010Þ� −mD� 0.087317(9)
mB0� −mB0 0.1222(6)
mB�� −mB� 0.1226(6)

Heavy mesons Δð0Þ
ð1=2Þ− ½GeV2�

mD1ð2420Þ0 −mD�
0
ð2300Þ0 0.075(11)

mD1ð2420Þ� −mD�
0
ð2300Þ� 0.0461(3)
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B. Construction

A string has one spatial dimension and its motion
through spacetime defines a world sheet. The world sheet
can be parametrized with two variables, which we will
denote by x ¼ ðτ; λÞ. The embedding of the world sheet in
Minkowsky space is given by

ξ ¼ ðξ0ðτ; λÞ; ξ1ðτ; λÞ; ξ2ðτ; λÞ; ξ3ðτ; λÞÞ: ð20Þ

The metric gab induced on the string reads

gab ¼ ηαβeαae
β
b; ð21Þ

with ηαβ the Minkowsky metric, and eαa ≡ ∂ξα=∂xa the
Zweibein. The action of the gluonic string is just propor-
tional to the area of the string world sheet

Sg ¼ −σ
Z

d2x
ffiffiffi
g

p
; ð22Þ

with σ the string tension and g ¼ j det gabj.
The action of a four-dimensional Dirac field constrained

on a string is given by

Sl:q ¼
Z

d2x
ffiffiffi
g

p
ψ̄ðxÞðiρa∂↔a −ml:q:ÞψðxÞ;

ψ̄ρa∂↔aψ ≡ ðψ̄ðρa∂aψÞ − ð∂aψ̄ÞρaψÞ=2; ð23Þ

with ρa ≡ γμeaμ. The antisymmetrization of the partial
derivative is required by Hermiticity. Note that the action
in Eq. (23) is invariant under reparametrizations of the
string if we choose ψðxÞ to transform like a scalar, and
under Lorentz symmetry if we choose ψðxÞ to transform
like a four-dimensional Dirac field but keeping x invariant.
Let us choose the Gauge or string parametrization

ξ0 ¼ τ ¼ t; ð24Þ

ξ3 ¼ λ ¼ z: ð25Þ

Expanding the action in Eq. (22) for small string fluctua-
tions we arrive at

Sg ¼ −σ
Z

dtdz

�
1 −

1

2
∂aξl∂aξ

l þ…

�
; ð26Þ

and for the case of the fermionic action in Eq. (23) we find

Sl:q ¼
Z

dtdzðψ̄ðt; zÞiγa∂↔aψðt; zÞ −ml:q:ψ̄ðt; zÞψðt; zÞ

− ∂aξlψ̄ðt; zÞiγl∂↔aψðt; zÞ þ…Þ; ð27Þ

with l ¼ 1, 2, and a ¼ 0, 3.

The fermion field mode expansion is

ψðt; zÞ ¼
X∞
n¼−∞

X
s

1ffiffiffiffiffiffiffiffiffiffi
2rEn

p ðusþðnÞasneipnze−iEnt

þ us−ðnÞbs†n e−ipnzeiEntÞ; ð28Þ

where En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
n þm2

l:q:

q
. If we consider both periodic and

antiperiodic solutions pn ¼ nπ=r, n ∈ Z. The spinors are
defined as

usþðE; pÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eþml:q:
p �

Eþml:q:

pσ3

�
χs; ð29Þ

us−ðE; pÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eþml:q:
p �

pσ3
Eþml:q:

�
χ̃s; ð30Þ

with χþ1=2 ¼ ð1; 0Þ, χ−1=2 ¼ ð0; 1Þ, and χ̃s ¼ −iσ2χ�s . The
commutation relations for the creation and annihilation
operators are

fasn; as
0†
n0 g ¼ δsrδnn0 ; ð31Þ

fbsn; bs
0†
n0 g ¼ δsrδnn0 ; ð32Þ

all the other anticommutators vanish.
The field mode expansion in Eq. (28) contains both

positive- and negative-parity modes. Since the spinors
fulfill the relation u�ðE;−pÞ ¼ �γ0u�ðE; pÞ a convenient
choice for the transformation of the creation and annihi-
lation operators under parity is

PasnP ¼ as−n; PbsnP ¼ −bs−n: ð33Þ

One can split the field mode expansion into two compo-
nents of well-defined parity with the following definitions

ψnηPðt; zÞ ¼
X
s

1ffiffiffiffiffiffiffiffi
2En

p ½φs
ηPþðz; nÞasnηPe−iEnt

þ φs
ηP−ðz; nÞbs†nηPeiEnt�; ð34Þ

with

asnηP ¼ asn þ ηPas−nffiffiffi
2

p ; bsnηP ¼ bsn þ ηPbs−nffiffiffi
2

p ; ð35Þ

φs
ηP�ðz; nÞ ¼

1ffiffiffiffiffi
2r

p ðus�ðnÞei
nπ
r z þ ηPus�ð−nÞe−i

nπ
r zÞ; ð36Þ

with ηP the parity eigenvalue

PψnηPðt; zÞP ¼ ηPγ
0ψnηPðt;−zÞ: ð37Þ
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The field mode expansion in Eq. (28) can be rewritten in
term of the two components of well-defined parity as

ψðt; zÞ ¼
X∞
n¼1

ðψnþðt; zÞ þ ψn−ðt; zÞÞ: ð38Þ

C. Mapping

Our aim is to use the EST introduced in Sec. III B to
compute the Wilson loops with operator insertions in
Eqs. (4)–(7) which correspond to the potentials in the
BOEFT. In order to do so we need a correspondence
between NRQCD and EST correlators. This correspon-
dence is defined by a mapping of NRQCD operators to the
EST ones with matching symmetry properties. The sym-
metry transformations which leave a system of two static
particles invariant form the group D∞h, which is the
symmetry group of a cylinder. The basic transformations
are rotations around the cylinder axis, reflections across a
plane including the cylinder axis and parity. The conven-
tional notation for the representations ofD∞h isΛσ

η .Λ is the
rotational quantum number, which for integer values is
customarily labeled with capital Greek letters, Σ;Π;Δ…
for 0; 1; 2…. The parity eigenvalue is given as the index η
which is labeled as g or u for positive and negative parity,
respectively. Finally, σ gives the sign under reflections asþ
or −; however, it is only written explicitly for the Σ states,
because for Λ > 0 rotations around the cylinder axis mix
states in this quantum number. An operator belonging to
SOð3Þ ⊗ P representation κp can be projected into D∞h
representations: the rotational quantum number can take
values corresponding to the absolute value of the projec-
tions of the spin of the operator into the heavy-quark axis
0 ≤ Λ ≤ jκj and the reflection eigenvalue corresponds to
σ ¼ ηð−1Þκ. To simplify, we align the heavy-quark-pair
axis with the z-axis, i.e., r ¼ ð0; 0; zÞ, set the heavy-quark
positions at z ¼ �r=2 and the center of mass at R ¼ 0.
Both Dirac and string fermions are spin-1=2 fields and

have the same properties under rotations and reflections.
Moreover they can only be projected to Λ ¼ 1=2.
Therefore, to find the mapping of NRQCD to the EST
operators we just need to make sure that the parities
coincide

Qð1=2Þþðt; 0Þ ↦ Pþψ1þðt; 0Þ; ð39Þ

Qð1=2Þ−ðt; 0Þ ↦ P−ψ1−ðt; 0Þ; ð40Þ

with P� ¼ ð1� γ0Þ=2. Now, let us focus on the mapping
for the chromomagnetic field B, which can be projected
into Σ−

u and Πu representations. Since we have chosen to
align the heavy-quark-pair axis with the z-axis, then Bl,
l ¼ 1, 2 and B3 correspond to the Πu and Σ−

u representa-
tions, respectively. The mapping of the chromomagnetic
field into string fluctuations can be found in Ref. [24].

Blðt; zÞ ↦ Λ0ϵlm∂t∂zξ
mðt; zÞ; ð41Þ

B3ðt; zÞ ↦ Λ000ϵlm∂t∂zξ
lðt; zÞ∂zξ

mðt; zÞ: ð42Þ

This implies that Bl, l ¼ 1, 2 is Oð1=r2Þ and B3 is
Oð1=ΛQCDr3Þ. However, mappings into string fermion
operators are now possible and in fact provide the leading
order contribution to the potentials in Eqs. (5)–(7). This
mapping is as follows:

Blðt; zÞ ↦ Λfψ̄ðt; zÞ
Σl

2
ψðt; zÞ; ð43Þ

B3ðt; zÞ ↦ Λ0
fψ̄ðt; zÞ

Σ3

2
ψðt; zÞ; ð44Þ

with Σ ¼ diagðσ; σÞ. Note that here both Bl, l ¼ 1, 2 and
B3 are OðΛQCD=rÞ, and hence are more important than the
corresponding bosonic operators in Eqs. (41) and (42).
Finally, to convert the two-dimensional spin operators in
Eqs. (5) and (6) into four-dimensional spin operators, we
will use the following prescription

S1=2 ↦
1

2
Σ: ð45Þ

D. Long-distance potentials

Using the mapping of NRQCD operators in the Wilson
loop to EST operators defined by Eqs. (39)–(45) we
compute the potentials in Eqs. (4)–(7) as correlators in
the EST. For example, let us apply the mapping to the
Wilson loop with the insertion of just the light-quark
operators in the spatial sides of the loop

h1ið1=2Þ�
□

↦ P�hψ1�ðt=2; 0Þψ†
1�ð−t=2; 0ÞiP�

¼ e−iðσrþE1Þt

rE1

ðE1 �mÞP�; ð46Þ

then the static potential is just

Vð0Þ
ð1=2Þ�ðrÞ ¼ σrþ E1: ð47Þ

Similarly, one can apply the mapping to compute the
heavy-quark spin and angular-momentum dependent
potentials

Vs1
ð1=2Þ�ðrÞ ¼

cF
3r

�
1 ∓ ml:q:

E1

�
ðΛ0

f − 2ΛfÞ; ð48Þ

Vs2
ð1=2Þ�ðrÞ ¼

cF
r

�
1 ∓ ml:q:

E1

�
ðΛ0

f þ ΛfÞ; ð49Þ
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Vl
ð1=2Þ�ðrÞ ¼ −

1

2r

�
1 ∓ 4

π2
ml:q:

E1

�
Λf: ð50Þ

IV. DOUBLY HEAVY BARYON
HYPERFINE SPLITTINGS

A. Hyperfine contributions

The hyperfine contributions to the masses of doubly
heavy baryons have been computed in Ref. [7] for the states
associated to the static energies ð1=2Þg and ð1=2Þ0u. These
two static energies are interpolated by ð1=2Þþ and ð1=2Þ−
light-quark operators, respectively. We summarize the
quantum numbers available for the states associated to
these static energies in Table III. Since the results of this
section are equivalent for both κp ¼ ð1=2Þ� we will not
display these labels. Let us label the mass of the states as

Mnjll ¼ Mð0Þ
nl þMð1Þ

njll þ � � � withMð0Þ
nl the mass solution of

the Schrödinger equation with the static potential andMð1Þ
njll

the hyperfine contribution. Recall that due to the Pauli
principle the heavy-quark spin is sQQ ¼ 0 for l odd and
sQQ ¼ 1 for l even. Let us denote the expectation values of
the potentials between the radial wave functions as

Vi
nl ¼

Z
∞

0

drr2ψnl†ðrÞViðrÞψnlðrÞ; i¼ s1; s2; l: ð51Þ

The hyperfine contributions for l ¼ 0 are given by

Mð1Þ
nj01

2

¼ 1

2

�
jðjþ 1Þ − 11

4

�
Vs1
n0

mQ
; ð52Þ

and the splitting is

Mn3
2
01
2
−Mn1

2
01
2
¼ 3

2

Vs1
n0

mQ
: ð53Þ

In the case l is an odd number the hyperfine contribution is
as follows:

Mð1Þ
njlj ¼

1

2

�
jðjþ 1Þ − 3

4
− lðlþ 1Þ

�
Vl
nl

mQ
; ð54Þ

which for the cases l ¼ 1, 3 leads to the following splittings

Mn3
2
13
2
−Mn1

2
11
2
¼ 3

2

Vl
n1

mQ
; ð55Þ

Mn7
2
37
2
−Mn5

2
35
2
¼ 7

2

Vl
n3

mQ
: ð56Þ

For l ¼ 2 the hyperfine contributions are more complicated
since they depend on all three potentials in Eq. (3) and the
states j ¼ 3=2; 5=2 with l ¼ 3=2 and l ¼ 5=2 are mixed.
For j ¼ 1=2 and 7=2 the contributions are

Mð1Þ
n1
2
23
2

¼ 1

2

Vs1
n2

mQ
−
1

3

Vs2
n2

mQ
−
3

2

Vl
n2

mQ
; ð57Þ

Mð1Þ
n7
2
25
2

¼ 1

2

Vs1
n2

mQ
−

2

21

Vs2
n2

mQ
þ Vl

n2

mQ
: ð58Þ

For j ¼ 3=2; 5=2 we have the mixing matrices for l ¼ 3=2
and l ¼ 5=2 states1

Mð1Þ
n3
2
2
¼ 1

mQ

� 1
5
Vs1
n2 −

2
15
Vs2
n2 −

3
2
Vl
n2

3
5
Vs1
n2 þ 1

10
Vs2
n2

3
5
Vs1
n2 þ 1

10
Vs2
n2 − 7

10
Vs1
n2 þ 2

15
Vs2
n2 þ Vl

n2

�
; ð59Þ

TABLE III. Quantum numbers of doubly heavy baryons associated with the ð1=2Þg and ð1=2Þ0u static energies.
The quantum numbers are as follows: lðlþ 1Þ is the eigenvalue of L2

QQ, lðlþ 1Þ is the eigenvalue of
L2 ¼ ðLQQ þ S1=2Þ2, sQQðsQQ þ 1Þ is the eigenvalue of S2QQ. Note that the Pauli exclusion principle constrains
sQQ ¼ 0 for odd l and sQQ ¼ 1 for even l. The total angular momentum J2 ¼ ðLþ SQQÞ2 has eigenvalue jðjþ 1Þ.
Finally, ηP stands for the parity eigenvalue. Numbers in parentheses correspond to degenerate multiplets at leading
order. Notice that � in the parity column does not indicate degeneracy in that quantum number but correlates to the
� parity of the light-quark operator in the first column.

κp Λη l l sQQ j ηP

ð1=2Þ� ð1=2Þg=u0 0 1=2 1 ð1=2; 3=2Þ �
1 ð1=2; 3=2Þ 0 ð1=2; 3=2Þ ∓
2 ð3=2; 5=2Þ 1 ðð1=2; 3=2; 5=2Þ; ð3=2; 5=2; 7=2ÞÞ �
3 ð5=2; 7=2Þ 0 ð5=2; 7=2Þ ∓

1The off-diagonal terms were initially overlooked in Ref. [7]. They have been included in an Erratum.
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Mð1Þ
n5
2
2
¼ 1

mQ

0
B@− 3

10
Vs1
n2 þ 1

5
Vs2
n2 − 3

2
Vl
n2

ffiffiffiffi
14

p
5
Vs1
n2 þ 1

15

ffiffi
7
2

q
Vs2
n2ffiffiffiffi

14
p
5
Vs1
n2 þ 1

15

ffiffi
7
2

q
Vs2
n2 − 1

5
Vs1
n2 þ 4

105
Vs2
n2 þ Vl

n2

1
CA: ð60Þ

We diagonalize to obtain the physical states

Mð1Þ
n3
2
2� ¼ −

1

4mQ

�
Vs1
n2 þ Vl

n2 �
1

3
½81ðVs1

n2Þ2 þ 4ðVs2
n2Þ2 þ 225ðVl

n2Þ2 − 6Vl
n2ð27Vs1

n2 − 8Vs2
n2Þ�1=2

�
; ð61Þ

Mð1Þ
n5
2
2� ¼ −

1

84mQ
f21Vs1

n2 − 10Vs2
n2 þ 21Vl

n2 � ½3969ðVs1
n2Þ2 þ 156ðVs2

n2Þ2 þ 11025ðVl
n2Þ2 þ 126Vs1

n2ð10Vs2
n2 þ 7Vl

n2Þ

−1428Vs2
n2V

l
n2�1=2g: ð62Þ

For simplicity we consider the following hyperfine splittings among l ¼ 2 which are linear in the expectation values of the
potentials

Mn5
2
2þ þMn5

2
2− −Mn3

2
2þ −Mn3

2
2− ¼ 5

21mQ
Vs2
n2; ð63Þ

Mn1
2
23
2
−
1

2
ðMn3

2
2þ þMn3

2
2−Þ ¼

1

12mQ
ð9Vs1

n2 − 4Vs2
n2 − 15Vl

n2Þ; ð64Þ

Mn7
2
25
2
−
1

2
ðMn3

2
2þ þMn3

2
2−Þ ¼

1

mQ

�
3

4
Vs1
n2 −

2

21
Vs2
n2 þ

5

4
Vl
n2

�
: ð65Þ

These formulas fix Vs1
n2, V

s2
n2, and Vl

n2 in terms of physical masses. Then, we have the following model-independent
predictions

Mð1Þ
n3
2
2þ −Mð1Þ

n3
2
2− ¼ −

1

6mQ
½81ðVs1

n2Þ2 þ 4ðVs2
n2Þ2 þ 225ðVl

n2Þ2 − 6Vl
n2ð27Vs1

n2 − 8Vs2
n2Þ�1=2; ð66Þ

Mð1Þ
n5
2
2þ −Mð1Þ

n5
2
2− ¼ −

1

42mQ
½3969ðVs1

n2Þ2 þ 156ðVs2
n2Þ2 þ 11025ðVl

n2Þ2 þ 126Vs1
n2ð10Vs2

n2 þ 7Vl
n2Þ − 1428Vs2

n2V
l
n2�1=2: ð67Þ

B. Interpolation of the full potentials

We have obtained descriptions of the potentials of the
spin and angular-momentum dependent operators in the
short- and long-distance regimes in Eqs. (13)–(15) and
(48)–(50), respectively. In this section we propose an
interpolation between the descriptions of the potentials
in these two regions to model the potential in the inter-
mediate distance regime r ∼ 1=ΛQCD. Using this interpo-
lation and the wave functions obtained in Ref. [7], we
compute the hyperfine splittings of Sec. IVA in terms of the
parameters of the short- and long-distance descriptions.
These parameters are then determined by fitting the hyper-
fine splittings of lattice determinations [30–38] of the
double charm and bottom baryon spectrum and in the case

of the short-distance parameters using heavy quark-diquark
symmetry.
The interpolation we propose is constructed by summing

the short- and long-distance descriptions multiplied by
weight functions depending of r and a new r0 parameter.
The weight functions are ws ¼ rn0=ðrn þ rn0Þ and wl¼
rn=ðrnþrn0Þ for the short- and long-distance pieces, respec-
tively. The sum of the weight functions is ws þ wl ¼ 1 and
the r0 parameter determines the value of r where both
weights are equal. The value of the exponent n is chosen as
the minimal value that ensures that the product of the short-
and long-distance potentials and the respective weight
functions vanishes in the long- and short-distance limits,
respectively. For the short-distance potentials we consider
the contributions up to next-to-leading order. The resulting
interpolated potentials are as follows:
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Vs1int
ð1=2Þ� ¼ cF

ðΔð0Þ
ð1=2Þ� þΔð1;0Þ

ð1=2Þ�r
2Þr60þ

ðΛ0
f−2ΛfÞ
3

ð1∓ ml:q:

E1
Þr5

r6þ r60
;

ð68Þ

Vs2int
ð1=2Þ� ¼ cF

Δð1;2Þ
ð1=2Þ�r

2r60 þ ðΛ0
f þ ΛfÞð1 ∓ ml:q:

E1
Þr5

r6 þ r60
; ð69Þ

Vlint
ð1=2Þ�

¼1

2

½Δð0Þ
ð1=2Þ� þðΔð1;0Þ

ð1=2Þ� −
1
3
Δð1;2Þ

ð1=2Þ�Þr2�r60−Λfð1∓ 4
π2

ml:q:

E1
Þr5

r6þr60
;

ð70Þ

with E1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðπ=rÞ2þm2

l:q:

q
. Note that for r0 ¼ 0 we recover

the long-distance potentials and for r0 → ∞ we recover the
short-distance potentials.
An accurate determination of ml:q: would require lattice

data for the static energies at longer distances than the one
currently available. Nevertheless, fitting the long-distance
part of the static potential to the lattice data of Refs. [8,9],
we find the value

ml:q: ¼ 0.226 GeV; ð71Þ

TABLE IV. Assignments of quantum numbers of the lattice
states of Ref. [35] used in the fits of Sec. IV B.

l n j M −Mηc ½GeV�
0 1 1=2 0.6532(80)

3=2 0.7474(88)
2 1=2 1.3163(216)

3=2 1.3297(332)
3 1=2 1.5427(142)

3=2 1.5435(291)

1 1 1=2 1.0243(114)
3=2 1.0733(113)

2 1=2 1.5829(296)
3=2 1.6315(353)

2 1 1=2 1.3114(213)
3=2þ 1.2653(232)
3=2− 1.3697(131)
5=2þ 1.3075(130)
5=2− 1.3542(141)
7=2 1.3715(97)

2 1=2 1.5044(181)
3=2þ 1.4243(296)
3=2− 1.5331(222)
5=2þ 1.5017(193)
5=2− 1.5127(157)
7=2 1.5366(154)

3 1 5=2 1.5502(221)
7=2 1.5618(678)

TABLE V. Global fit of κp ¼ ð1=2Þþ l ¼ 0, 1, 2, 3 multiplets hyperfine splittings for all the lattice data available for various
values of r0.

r0 [fm] Δð0Þ
ð1=2Þþ ½GeV2� Δð1;0Þ

ð1=2Þþ ½GeV4� Δð1;2Þ
ð1=2Þþ ½GeV4� Λf [GeV] Λ0

f [GeV] χ2d:o:f:

0.0 −0.341ð8Þ −0.268ð16Þ 0.62
0.1 −3.13ð12Þ 15.17(37) 19(77) −0.231ð10Þ −0.282ð19Þ 0.67
0.2 −0.076ð22Þ 0.514(22) 0.35(1.76) −0.196ð13Þ −0.274ð23Þ 0.64
0.3 0.135(10) 0.047(5) −0.045ð203Þ −0.169ð18Þ −0.264ð32Þ 0.63
0.4 0.163(6) −0.006ð2Þ −0.041ð64Þ −0.154ð27Þ −0.272ð45Þ 0.63
0.5 0.165(5) −0.016ð1Þ −0.023ð26Þ −0.176ð43Þ −0.322ð64Þ 0.64
0.6 0.159(4) −0.016ð1Þ −0.012ð14Þ −0.256ð67Þ −0.427ð90Þ 0.66
∞ 0.086(3) −0.002ð1Þ −0.002ð2Þ 0.94

TABLE VI. Global fit of κp ¼ ð1=2Þþ l ¼ 0, 1, 2, 3 multiplets hyperfine splittings for all the lattice data available for various values of

r0 with Δð0Þ
ð1=2Þþ ¼ 0.122 GeV2 from the B-meson splittings in Table II.

r0 [fm] Δð1;0Þ
ð1=2Þþ ½GeV4� Δð1;2Þ

ð1=2Þþ ½GeV4� Λf [GeV] Λ0
f [GeV] χ2d:o:f:

0.1 1.89(37) −8.5ð77.2Þ −0.308ð10Þ −0.267ð19Þ 0.66
0.2 0.231(22) 0.39(1.72) −0.249ð12Þ −0.283ð23Þ 0.62
0.3 0.056(5) −0.055ð226Þ −0.158ð18Þ −0.258ð31Þ 0.59
0.4 0.013(2) −0.061ð63Þ −0.086ð27Þ −0.223ð44Þ 0.61
0.5 −0.0006ð14Þ −0.036ð26Þ −0.048ð43Þ −0.216ð64Þ 0.64
0.6 −0.005ð1Þ −0.019ð14Þ −0.061ð67Þ −0.262ð91Þ 0.66
∞ −0.0054ð5Þ −0.0089ð29Þ 2.67

JOAN SOTO and JAUME TARRÚS CASTELLÀ PHYS. REV. D 104, 074027 (2021)
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for which the contribution to the potentials of the terms
proportional to ml:q: is small.
To obtain the unknown parameters in the interpolated

potentials in Eqs. (68)–(70) for the case κp ¼ ð1=2Þþ we
minimize χ2 function constructed as the sum of the
hyperfine splittings of Sec. IVA taking the masses of
the doubly heavy baryons from lattice determinations. The

list of contributions to the χ2 function is as follows: For the
double charm baryons 1S splitting in Eq. (53) there are six
data points corresponding to Refs. [30–36]. For the double
bottom baryons 1S splitting there are three data points
corresponding to Refs. [32,37,38]. The rest are single data
points for double charm baryons from Ref. [35] corre-
sponding to the splittings for 2S and 3S from Eq. (53), 1P
and 2P from Eq. (55), 1D and 2D from Eqs. (63)–(65), and
finally, 1F from Eq. (56). The concrete assignments of
quantum numbers to the states of Ref. [35] that we have
used are specified in Table IV. We performed several sets of
fits varying the value of r0; in Table V we present the results

with all parameters free, in Table VI we fix Δð0Þ
ð1=2Þþ ¼

0.122 GeV2 from the B-meson splittings in Table II and in

Table VII we fix Δð0Þ
ð1=2Þþ ¼ 0.122 GeV2 and set Δð1;0Þ

ð1=2Þþ ¼
Δð1;2Þ

ð1=2Þþ ¼ 0 GeV4.

Several conclusions can be extracted from the fits. First
of all, when we restrict the fit to either the short-distance
form of potential (r0 ¼ ∞) or the long-distance form of it

TABLE VII. Global fit of κp ¼ ð1=2Þþ l ¼ 0, 1, 2, 3 multiplets
hyperfine splittings for all the lattice data available for various

values of r0 with Δð0Þ
ð1=2Þþ ¼ 0.122 GeV2 from the B-meson

splittings in Table II and Δð1;0Þ
ð1=2Þþ ¼ Δð1;2Þ

ð1=2Þþ ¼ 0.

r0 [fm] Λf [GeV] Λ0
f [GeV] χ2d:o:f:

0.1 −0.355ð10Þ −0.265ð19Þ 0.66
0.2 −0.368ð13Þ −0.264ð25Þ 0.72
0.3 −0.348ð19Þ −0.270ð33Þ 0.69
0.4 −0.266ð27Þ −0.286ð44Þ 0.60
0.5 −0.085ð41Þ −0.314ð61Þ 0.58
0.6 0.224(75) −0.353ð102Þ 0.83

r0=0.3 Table V

r0=0.5 Table VII

0.5 1.0 1.5 2.0
r[fm]

0.05

0.10

0.15

0.20
V(1/2)+
s1 (r)[GeV]

r0=0.3 Table V
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FIG. 3. Plot of the potentials in Eqs. (68)–(70) for the values of the parameters of r0 ¼ 0.5 fm in Table VII and r0 ¼ 0.3 fm in Table V.

In the case of κp ¼ ð1=2Þ− we take Δð0Þ
ð1=2Þ− ¼ 0.075 GeV2 andΔð1;2Þ

ð1=2Þ− ¼ 0 GeV4 and the values of Λf and Λ0
f indicated in the legend. In

the potentials Vs1 and Vs2 we use the two-loop, RG improved expression of cF ¼ cFð1 GeV; mcÞ.
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(r0 ¼ 0), we see from Table V that the latter produces a
much better fit than the former. This indicates both that the
long distance form is important and that the EST provides a

good description of it. We observe that the value of Δð1;2Þ
ð1=2Þþ

changes significantly, carries large uncertainty, and in the

best fits it is compatible with 0. In the case of Δð1;0Þ
ð1=2Þþ its

value also shows variation, however it is significantly
different from zero. Nevertheless, the inclusion of the
next-to-leading order terms in the short-distance potentials
does not improve the overall quality of the fits. Therefore, it
seems that with the current lattice data it is not possible to
constrain these next-to-leading order terms in the multipole
expansion. The values of Λf and Λ0

f stay consistent across
the different sets of fits, with Λ0

f being very stable while Λf

decreasing in absolute value as r0 gets larger and even
changing sign. Our preferred fit is the one with minimal
χ2d:o:f in Table VII corresponding to r0 ¼ 0.5 fm. In Fig. 3
we plot the interpolated expressions of the potentials in
Eqs. (68)–(70) for the parameter set in the entry for
r0 ¼ 0.5 fm in Table VII and r0 ¼ 0.3 fm in Table V. In
the case of the potentials for κp ¼ ð1=2Þ−, we plot the

potentials with Δð0Þ
ð1=2Þ− ¼ 0.075 GeV2 from the neutral

D-meson entry in Table II, Δð1;0Þ
ð1=2Þ− ¼ Δð1;2Þ

ð1=2Þ− ¼ 0 GeV4

and the values of Λf and Λ0
f from the entries for r0 ¼

0.5 fm in Table VII and r0 ¼ 0.3 fm in Table V. Although
in some cases the potentials in Fig. 3 show significant
variation depending on the parameter set used, we will
show in the following section that this is not the case for the
values of the hyperfine splittings.

C. Doubly heavy baryon spectra

Now we compute the spectrum of double charm and
bottom baryons including the hyperfine contributions using
the interpolated potentials in Eqs. (68)–(70). For the states
associated to the ð1=2Þg static energy, we take values of the
parameters from the entry r0 ¼ 0.5 fm in Table VII and for
comparison the entry r0 ¼ 0.3 fm in Table V. The results
can be found in Tables VIII and IX for double charm
and double bottom baryons, respectively. For the states

associated to the ð1=2Þ0u static energy we set Δð0Þ
ð1=2Þ− ¼

0.075 GeV2 and Δð1;0Þ
ð1=2Þ− ¼ Δð1;2Þ

ð1=2Þ− ¼ 0 GeV4 and take the

values of Λf and Λ0
f from the r0 ¼ 0.5 fm entry in

Table VII and for comparison the entry r0 ¼ 0.3 fm in
Table V. The results can be found in Tables X and XI for
double charm and bottom baryons respectively. The results
for the spectra for the two sets of parameters are very close.

TABLE VIII. Hyperfine contributions to the double charm baryons for the ð1=2Þg static energy for two sets of parameters of the
hyperfine potentials. All masses in GeV units.

l n Mð0Þ j

r0 ¼ 0.5 fm Table VII r0 ¼ 0.3 fm Table V

Mð1Þ M Mð1Þ M

0 1 3.712 1=2 −0.059ð2Þ 3.653 −0.058ð5Þ 3.654
3=2 0.029(1) 3.741 0.029(2) 3.741

2 4.286 1=2 −0.020ð2Þ 4.266 −0.029ð3Þ 4.257
3=2 0.010(1) 4.296 0.015(1) 4.301

3 4.748 1=2 −0.013ð2Þ 4.735 −0.020ð2Þ 4.728
3=2 0.007(1) 4.755 0.010(1) 4.758

1 1 4.062 1=2 −0.034ð4Þ 4.028 −0.035ð8Þ 4.027
3=2 0.017(2) 4.079 0.017(4) 4.079

2 4.552 1=2 −0.024ð3Þ 4.528 −0.026ð6Þ 4.526
3=2 0.012(1) 4.564 0.013(3) 4.565

2 1 4.353 1=2 −0.020ð7Þ 4.333 −0.009ð8Þ 4.344
3=2 −0.032ð6Þ 4.321 −0.026ð6Þ 4.327
3=2 0.015(4) 4.368 0.009(5) 4.362
5=2 −0.052ð6Þ 4.301 −0.053ð5Þ 4.300
5=2 0.023(3) 4.376 0.020(4) 4.373
7=2 0.035(4) 4.388 0.035(4) 4.388

2 4.794 1=2 −0.017ð5Þ 4.777 −0.008ð8Þ 4.786
3=2 −0.026ð4Þ 4.768 −0.022ð6Þ 4.772
3=2 0.011(3) 4.805 0.007(4) 4.801
5=2 −0.042ð4Þ 4.752 −0.044ð4Þ 4.750
5=2 0.019(3) 4.813 0.017(4) 4.811
7=2 0.029(3) 4.823 0.030(4) 4.824

3 1 4.612 5=2 −0.043ð8Þ 4.569 −0.037ð5Þ 4.575
7=2 0.032(6) 4.644 0.028(4) 4.640
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We plot the spectra for double charm and bottom baryons
in Figs. 4 and 5, respectively, for the parameters of the entry
r0 ¼ 0.5 fm in Table VII.
Let us discuss the uncertainties of our results. The

leading order masses, Mð0Þ, have uncertainties associated
to the values of the heavy-quark masses and Λ̄ð1=2Þþ , in
Eqs. (16)–(18), as well as the uncertainty in the para-
metrization of the static potentials which was estimated as
10 MeV in Ref. [7]. Adding these uncertainties in quad-

rature we obtain δMð0Þ
ccq ¼ 39 MeV and δMð0Þ

bbq ¼ 48 MeV.
Furthermore, there is in principle an uncertainty related to
the use of an unphysical light-quark mass in the lattice
determinations of the static potentials of Refs. [8,9] that we
used to obtain Mð0Þ in Ref. [7]. We expect the contribution

due to the unphysical light-quark mass to be almost
independent of r. This is supported by the calculations
of the charmonium spectrum (with respect to the ηc mass)
at mπ ∼ 400 MeV [52] and mπ ∼ 240 MeV [53], in which
almost no difference is observed for the masses of the states
below threshold.2 Hence, it will just produce an overall shift
to the static energies computed on the lattice. However, in

TABLE IX. Hyperfine contributions to the double bottom baryons for the ð1=2Þg static energy for two sets of parameters of the
hyperfine potentials. All masses in GeV units.

l n Mð0Þ j

r0 ¼ 0.5 fm Table VII r0 ¼ 0.3 fm Table V

Mð1Þ M Mð1Þ M

0 1 10.140 1=2 −0.020ð1Þ 10.120 −0.023ð1Þ 10.117
3=2 0.010(0) 10.150 0.011(1) 10.151

2 10.542 1=2 −0.009ð1Þ 10.533 −0.009ð1Þ 10.533
3=2 0.004(0) 10.546 0.005(0) 10.547

3 10.856 1=2 −0.006ð1Þ 10.850 −0.006ð0Þ 10.850
3=2 0.003(0) 10.859 0.003(0) 10.859

4 11.131 1=2 −0.004ð0Þ 11.127 −0.005ð1Þ 11.126
3=2 0.002(0) 11.133 0.003(0) 11.134

1 1 10.398 1=2 −0.012ð1Þ 10.386 −0.016ð5Þ 10.382
3=2 0.006(0) 10.404 0.008(3) 10.406

2 10.731 1=2 −0.010ð1Þ 10.721 −0.011ð3Þ 10.720
3=2 0.005(1) 10.736 0.006(1) 10.737

3 11.016 1=2 −0.008ð1Þ 11.008 −0.009ð2Þ 11.007
3=2 0.004(0) 11.020 0.004(1) 11.020

2 1 10.600 1=2 −0.009ð2Þ 10.591 −0.007ð7Þ 10.593
3=2 −0.015ð2Þ 10.585 −0.014ð5Þ 10.586
3=2 0.005(1) 10.605 0.004(4) 10.604
5=2 −0.023ð2Þ 10.577 −0.026ð4Þ 10.574
5=2 0.010(1) 10.610 0.010(3) 10.610
7=2 0.017(1) 10.617 0.018(3) 10.618

2 10.897 1=2 −0.007ð2Þ 10.890 −0.006ð5Þ 10.891
3=2 −0.011ð1Þ 10.886 −0.011ð4Þ 10.886
3=2 0.004(1) 10.901 0.003(3) 10.900
5=2 −0.017ð1Þ 10.880 −0.020ð3Þ 10.877
5=2 0.008(1) 10.905 0.008(2) 10.905
7=2 0.012(1) 10.909 0.015(3) 10.912

3 11.162 1=2 −0.006ð1Þ 11.156 −0.005ð4Þ 11.157
3=2 −0.009ð1Þ 11.153 −0.010ð3Þ 11.152
3=2 0.004(1) 11.166 0.003(2) 11.165
5=2 −0.014ð1Þ 11.148 −0.017ð2Þ 11.145
5=2 0.007(1) 11.169 0.007(2) 11.169
7=2 0.010(1) 11.172 0.012(2) 11.174

3 1 10.777 5=2 −0.020ð3Þ 10.757 −0.019ð4Þ 10.758
7=2 0.015(2) 10.792 0.014(3) 10.791

2 11.051 5=2 −0.016ð2Þ 11.035 −0.017ð3Þ 11.034
7=2 0.012(2) 11.063 0.012(2) 11.063

2An increase of the charmonium masses when the light-quark
mass decreases is observed for states about 1 GeV higher than the
ηc mass or beyond. If this is interpreted as due to an increase of
the string tension with decreasing light-quark masses, then it is
consistent with our findings in Appendix A, provided the mass of
our fermion on the string is an increasing function of the light-
quark mass.
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the computation of Ref. [7] the static energies were rescaled
in order for the ground state static energy to be given in the
short distance by the expression in Eq. (12). Therefore any
additive constant contribution to the static energies pro-
duces no change in our results.
The hyperfine contribution, Mð1Þ, has uncertainties

associated to the statistical errors of the values of the
parameters and interpolation of the potentials. The former
ones are displayed in parentheses in Tables VIII–XI and are
about a few MeV for most cases, although in some
instances larger values up to 9 MeV can also be found.

To assess the uncertainty associated to the choice of
interpolation of the potentials in Eqs. (68)–(70) we take
the difference of the hyperfine contributions computed
with the parameter sets for r0 ¼ 0.5 fm of Table VII and
r0 ¼ 0.3 fm of Table V. This uncertainty of the hyperfine
contribution amounts to 1–6 MeV for double charm
baryons and 1–4 MeV for double bottom baryons except
for a few cases in Tables VIII and X for double charm states
where the difference is larger. Finally, one should consider
the size of higher-order contributions to the doubly heavy
baryon masses. The most important is the contribution form

TABLE X. Hyperfine contributions to the double charm baryons for the ð1=2Þ0u static energy for two sets of parameters Λf, Λ0
f of the

hyperfine potentials (Δð0Þ
ð1=2Þ− ¼ 0.075 GeV2, Δð1;0Þ

ð1=2Þ− ¼ Δð1;2Þ
ð1=2Þ− ¼ 0 GeV4). All masses in GeV units.

l n Mð0Þ j

r0 ¼ 0.5 fm Table VII r0 ¼ 0.3 fm Table V

Mð1Þ M Mð1Þ M

0 1 4.095 1=2 −0.033ð9Þ 4.062 −0.025ð6Þ 4.070
3=2 0.016(4) 4.111 0.012(3) 4.107

2 4.667 1=2 −0.07ð5Þ 4.660 −0.015ð4Þ 4.652
3=2 0.003(2) 4.670 0.008(2) 4.675

1 1 4.443 1=2 −0.033ð5Þ 4.410 −0.033ð4Þ 4.410
3=2 0.016(3) 4.459 0.016(2) 4.459

2 1 4.732 1=2 −0.017ð9Þ 4.715 0.000(6) 4.732
3=2 −0.035ð7Þ 4.697 −0.025ð4Þ 4.707
3=2 0.022(5) 4.754 0.008(3) 4.740
5=2 −0.063ð7Þ 4.669 −0.066ð5Þ 4.666
5=2 0.029(4) 4.761 0.022(3) 4.754
7=2 0.037(6) 4.769 0.041(4) 4.773

TABLE XI. Hyperfine contributions to the double bottom baryons for the ð1=2Þ0u static energy for two sets of parameters Λf, Λ0
f of the

hyperfine potentials (Δð0Þ
ð1=2Þ− ¼ 0.075 GeV2, Δð1;0Þ

ð1=2Þ− ¼ Δð1;2Þ
ð1=2Þ− ¼ 0 GeV4). All masses in GeV units.

l n Mð0Þ j

r0 ¼ 0.5 fm Table VII r0 ¼ 0.3 fm Table V

Mð1Þ M Mð1Þ M

0 1 10.527 1=2 −0.012ð2Þ 10.515 −0.010ð2Þ 10.517
3=2 0.006(1) 10.533 0.005(1) 10.532

2 10.924 1=2 −0.004ð1Þ 10.920 −0.005ð1Þ 10.919
3=2 0.002(1) 10.926 0.002(1) 10.926

1 1 10.781 1=2 −0.010ð1Þ 10.771 −0.012ð1Þ 10.769
3=2 0.005(1) 10.786 0.006(1) 10.787

2 11.112 1=2 −0.009ð1Þ 11.103 −0.009ð1Þ 11.103
3=2 0.005(1) 11.117 0.005(0) 11.117

2 1 10.981 1=2 −0.008ð2Þ 10.973 −0.004ð2Þ 10.977
3=2 −0.012ð2Þ 10.969 −0.011ð2Þ 10.970
3=2 0.005(1) 10.986 0.004(1) 10.985
5=2 −0.020ð2Þ 10.961 −0.024ð2Þ 10.957
5=2 0.009(1) 10.990 0.009(1) 10.990
7=2 0.014(2) 10.995 0.016(1) 10.997

3 1 11.157 5=2 −0.020ð3Þ 11.137 −0.019ð2Þ 11.138
7=2 0.015(2) 11.172 0.014(2) 11.171
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heavy-quark-spin and angular-momentum independent
1=mQ suppressed potential of OðΛ2

QCD=mQÞ, which we
estimate as ∼64 MeV and ∼19 MeV for double charm and
double bottom baryons, respectively. However, in the case
of the hyperfine splittings the previous contribution cancels
out and the higher-order corrections correspond to the
1=m2

Q suppressed potentials of OðΛ3
QCD=m

2
QÞ, which we

take as ∼14 MeV and ∼1 MeV for double charm and
double bottom baryons, respectively.
As an example, in the following we show the value of the

masses for the double charm ground state doublet, often
refereed as Ξcc½ð1=2Þþ� and Ξ�

cc½ð3=2Þþ�, adding the differ-
ent uncertainties in quadrature,

mΞcc
¼ 3.653ð75Þ GeV; ð72Þ

mΞ�
cc
¼ 3.741ð75Þ GeV; ð73Þ

and for the double bottom ground state doublet

mΞbb
¼ 10.120ð52Þ GeV; ð74Þ

mΞ�
bb
¼ 10.150ð52Þ GeV: ð75Þ

In the hyperfine splittings most of the uncertainties cancel
out and hence our results have higher precision

mΞ�
cc
−mΞcc

¼ 88ð14Þ MeV; ð76Þ

mΞ�
bb
−mΞbb

¼ 30ð5Þ MeV: ð77Þ

The figures above are compatible with all lattice determi-
nations we are aware of, see Table VI of Ref. [7] and
Table XII for doubly charmed and doubly bottom baryons
respectively.
Let us finally note that the hyperfine splittings of the

ð1=2Þ0u states are entirely predicted from the long-distance
parameters Λf and Λ0

f, obtained from fits to the hyperfine
splittings of the ð1=2Þg states, and the only short-distance

parameter,Δð0Þ
ð1=2Þ− , obtained from theD-meson spectrum. It

is then interesting to compare them with the lattice results
of Ref. [35]. For the ð1=2Þ0u ground state doublet

Λc
0D0 Threshold

(1/2)g

(1/2)u

(3/2)u\(1/2)u

(1/2)+ (3/2)+ (5/2)+ (7/2)+ (1/2)– (3/2)– (5/2)– (7/2)– (9/2)–
3.6

3.8

4.0

4.2

4.4

4.6

4.8

Mass(GeV)

FIG. 4. Spectrum of double charm baryons in terms of jηP
states. Each line represents a state. The spectrum corresponds to
the results of Tables VIII and X for states associated to the ð1=2Þg
and ð1=2Þ0u static energies and the results for Ref. [7] for the
mixed ð3=2Þunð1=2Þu static energies, which do not include
hyperfine contributions. The color indicates the static energies
that generate each state.

b
0B0 Threshold

(1/2)g

(1/2)u

(3/2)u\(1/2)u
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FIG. 5. Spectrum of double bottom baryons in terms of jηP
states. Each line represents a state. The spectrum corresponds to
the results of Tables IX and XI for states associated to the ð1=2Þg
and ð1=2Þ0u static energies and the results for Ref. [7] for the
mixed ð3=2Þunð1=2Þu static energies, which do not include
hyperfine contributions. The color indicates the static energies
that generate each state.
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ð1=2−; 3=2−Þ, we obtain from Table X 49(21) MeV for the
hyperfine splitting, which agrees well with the 41(21) MeV
of [35]. This is a nontrivial test of the ESTwe use, since the
ð1=2Þþ potentials differ from the ð1=2Þ− at long distances
in a very particular way [see Eqs. (48)–(50)]. For the
ð1=2þ; 3=2þÞ first angular excitation, we obtain 49
(15) MeV, whereas there are two possible values from
[35] depending on how the state identifications are made,
25(58) or 85(35) MeV, both of them compatible with our
number within errors. State identification is plagued with
ambiguities for higher excitations, which prevent us from
making further comparisons.

V. COMPARISON WITH MODELS

There is a substantial amount of literature regarding
doubly heavy baryons in different approaches; various quark
models [54–67], Bethe-Salpeter equations [68–70], Born-
Oppenheimer approximation with model potential [71,72],
semiempirical mass formulas [73–75], QCD sum rules
[76,77], Faddeev equations [78], and bag models [79]. In
this section we compare our results with a selected
set of model computations and other approaches (see
Refs. [65,80,81] for further comparisons). In Table XIII
we have collected the masses of the ground state doublet in
the double charm baryon sector from different approaches.
The values of the Ξcc mass are in good agreement for
about 3=4 of the references, including our own value.
Considering the uncertainties only a few works show very
significant differences. The values for Ξ�

cc show more
dispersion with only half of the references being compatible
with our own value. On the other hand, the splitting between
the two masses is compatible with our value for only 1=4 of
the references. This is in contrast with lattice QCD calcu-
lations, which are compatible with our current result for the
hyperfine splitting (76) (see Table VI of ref. [7]).
The masses of the ground state doublet in the double

bottom baryon sector are shown in Table XIV. In this case
the differences are a lot more significant. For both the Ξbb
and Ξ�

bb only Refs. [58,62,74,79] are compatible with our
results and in general there is more dispersion among the
values of the different model approaches. Although the
values of the hyperfine splittings present less variation in
absolute values, in relative terms the variation is also larger
than in the double charm baryon sector. Moreover, very few
values are compatible with ours. This is due to our small

TABLE XII. Lattice results for the hyperfine splitting δhf ¼
MΞ�

bb
−MΞbb

.

References δhf [MeV]

Our value 30(5)
[32] 34.6(7.8)
[37] 26(8)
[38] 32(5)

TABLE XIII. Masses of double charm baryons from model
computations in GeV units.

References Ξcc½ð1=2Þþ� Ξ�
cc½ð3=2Þþ�

Our results 3.653(75) 3.741(75)
[54] 3.550–3.760 3.620–3.830
[71] 3.613 3.741
[73] 3.66(7) 3.74(7)
[75] 3.676 3.746
[55] 3.660 3.810
[78] 3.608 3.701
[56] 3.527 3.597
[57] 3.649(10) 3.734(10)
[59] 3.620 3.727
[79] 3.550 3.590
[68] 3.642 3.723
[60] 3.612þð17Þ 3.706þð23Þ
[61] 3.676 4.029
[62] 3.510 3.548
[76] 4.26(19) 3.9(1)
[74] 3.627(12) 3.690(12)
[63] 3.685 3.754
[64] 3.615(55) 3.747(55)
[65] 3.511 3.687
[67] 3.606 3.675
[66] 3.633 3.696
[77] 3.630þð80Þ

−ð70Þ
3.750(70)

[70] 3.601 3.703
[72] 3.621þð17Þ

−ð7Þ
� � �

Exp. [82] 3.6216(4) � � �

TABLE XIV. Masses of double bottom baryons from model
computations in GeV units.

References Ξbb½ð1=2Þþ� Ξ�
bb½ð3=2Þþ�

Our results 10.120(52) 10.150(52)
[73] 10.34(10) 10.37(10)
[55] 10.23 10.28
[78] 10.198 10.236
[58] 10.093 10.133
[59] 10.202 10.237
[79] 10.10 10.11
[60] 10.197þð10Þ

−ð17Þ 10.236þð9Þ
−ð17Þ

[61] 10.340 10.367
[62] 10.130 10.144
[76] 9.78(7) 10.28(5)
[74] 10.162(12) 10.184(12)
[63] 10.314 10.339
[65] 10.312 10.335
[70] 10.182 10.214
[66] 10.169 10.189
[67] 10.138 10.169
[77] 10.220(70) 10.270(70)
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uncertainty for the splitting produced by the cancellation of
uncertainties associated to various parameters remaining
only the uncertainty on higher order contributions, which
are small for double bottom baryons. We note that no
reference has compatible results with ours for both for the
Ξbb and Ξ�

bb masses and the hyperfine splitting. This is in
contrast with the good agreement we get with the available
lattice results (see Table XII).
The spectrum of doubly heavy baryons beyond

the ground state doublet has also been studied in
Refs. [58,59,63,65,67,70]. In Fig. 6 we compare our
spectra with the ones in Refs. [59,63,67] obtained with a
quark model with a relativistic light quark, a nonrelativistic
quark model, and a relativistic quark model with a diquark
core respectively. The spectra of Ref. [58] is derived from a
similar quark model as in Ref. [59], but the values are
shifted down by about a 100 MeV. Reference [70] uses the
Bethe-Salpeter equation in a diquark picture and presents a
limited number of states in the spin-symmetry limit. The
results of Ref. [65] do not include the Pauli principle for the
heavy-quark wave functions and we do not consider it
beyond the ground state. From Fig. 6(a) we can see that for
double charm baryons the pattern of states beyond the
ground state doublet does not agree with ours in none of the

cases or among the quark model approaches themselves.
For all displayed model spectra the excited states lie (much)
lower than ours. This is in contrast to the overall agreement
found with lattice calculations in Ref. [1]. For double
bottom baryons [see Fig. 6(b)] the discrepancies reach the
ground state doublet, as the results of Ref. [59], and to a
lesser extend the ones of Ref. [63], lie higher than ours.
However, there is agreement for the first excited (odd-
parity) doublet, except for Ref. [59]. For higher states the
discrepancies persist, except for the odd-parity states of
Ref. [67], which are compatible with ours.

VI. CONCLUSIONS

An EFT describing doubly heavy hadrons was put
forward in Ref. [1]. It is built upon the nonrelativistic
expansion of the heavy quarks and the adiabatic expansion
between the dynamics of the heavy quarks and the light
degrees of freedom corresponding to the gluons and
light quarks. The EFTwas constructed in the single hadron
sector up to the heavy-quark spin and angular momentum
terms suppressed by 1=mQ. Expressions of the potentials as
operator insertions in the Wilson loop were obtained by
matching the EFT to NRQCD. The computation of the
Wilson loop with operator insertions cannot be done

Λc
0D0 Threshold

Our results

Ref. [59]

Ref. [63]

Ref. [67]

(1/2)+ (3/2)+ (5/2)+ (7/2)+ (1/2)– (3/2)– (5/2)–
3.6

3.8

4.0

4.2

4.4

4.6
Mass(GeV)

Λb
0B0 Threshold

Our results

Ref. [59]

Ref. [63]

Ref. [67]

(1/2)+ (3/2)+ (5/2)+ (7/2)+ (1/2)– (3/2)– (5/2)– (7/2)– (9/2)–

10.2

10.4

10.6

10.8

11.0
Mass(GeV)

(b)(a)

FIG. 6. Comparison of our results with those of Refs. [59,63,67] (green, red, orange) for double charm and bottom baryons in (a) and
(b), respectively. Our results (blue) correspond to the entries r0 ¼ 0.5 fm in Tables VIII–XI.
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using perturbative techniques and should be carried
out (ideally) in lattice QCD or other nonperturbative
approaches (see for instance Ref. [83] for an AdS=CFT
inspired proposal).
In Ref. [7] this EFT framework was applied to doubly

heavy baryons. Using the lattice data of Refs. [8,9] for the
static energies the leading-order spectrum of doubly charm
and bottom baryons was computed for the four lowest lying
static states. However, since there are no available lattice
determinations of the potentials of the heavy-quark spin
and angular-momentum operators, the computation of the
hyperfine contributions to the doubly heavy baryon masses
was not possible.
In this paper we presented a parametrization of the 1=mQ

suppressed heavy-quark spin and angular-momentum oper-
ators with a minimal amount of modeling, the general idea
of which can be extended to other potentials for doubly
heavy hadrons, such as double charm tetraquark, Tþ

cc,
recently discovered by the LHCb Collaboration [84].
This parametrization of the potentials is based in their
description in short- and long-distance regimes. In the
short-distance regime, defined as r ≪ 1=ΛQCD, the Wilson-
loop expressions of the potentials can be expanded in the
multipole expansion. This can be done using weakly-
coupled pNRQCD, which is the EFT that incorporates
the multipole expansion systematically, for two heavy
quarks [12]. This produces short-distance expressions of
the potentials as an expansion in powers of r2 with
coefficients that encode the nonperturbative dynamics of
the light degrees of freedom,3 which we show in Sec. II B
and Appendix B. At leading order in the multipole
expansion only one coefficient is necessary and it can be
determined in a model-independent way using the heavy
quark-diquark duality from the heavy-meson masses.
The long-distance regime is characterized by

r ≫ 1=ΛQCD. In the case of a heavy-quark-antiquark pair
it is known from lattice QCD that in this regime a gluonic
flux tube connecting the two heavy quarks emerges. It is
well-known that an Effective String Theory (EST) [17–19]
reproduces accurately the lattice determinations [24,26]. In
Sec. III we propose an extension of the EST to include the
presence of a fermion constrained to move on the string. We
obtain a mapping of the NRQCD operators inserted in the
Wilson loop to operators in the EST based on imposing the
same transformation properties under D∞h and flavor.
Using this mapping we can translate the Wilson-loop
expressions for the potentials to EST correlators and
evaluate them. This procedure yields long-distance

expressions of the potentials depending on two unknown
coefficients of the EST. Additionally, we compute the
vacuum energy in the EST with fermions in Appendix A
and show that (i) the string tension runs with the square of
the mass of the fermion and (ii) the sign of the Lüscher term
changes. These features can in principle be checked by
lattice calculations of the ground state energy of two static
quarks separated at a large distance with an additional light
quark.4

The final parametrization of the potentials is obtained by
interpolating between the short- and long-distance descrip-
tions. We choose the most simple interpolation that ensures
that the correct short- and long-distance behavior are
recovered in the corresponding limits. Nevertheless, an
extra parameter is introduced in the definition of the
interpolation. The hyperfine contributions to doubly heavy
baryons can be computed using these parametrizations of
the heavy-quark spin and angular-momentum dependent
potentials. The values of the remaining unknown param-
eters are determined by fitting the hyperfine splittings
obtained in lattice QCD in Refs. [30–38] for several S-,
P- and, D-wave multiplets. This guarantees that all our
inputs are from QCD, and the modeling is reduced to the
choice of interpolation, provided that the EST we use is
the correct effective theory at long distances. Using the
parameters thus determined, we make predictions for the
spectrum of double charm and bottom baryons including
the hyperfine contributions. Our results are summarized in
Tables VIII–XI and in Figs. 4 and 5.
Finally in Sec. V we compared our results with previous

model approaches and sum rules determinations. We
observe a huge dispersion of results. In the absence of
lattice calculations for many states, specially for double
bottom baryons, our EFT approach offers a framework in
which modeling is minimal and errors can be reliably
quantified, unlike in most models. Since lattice determi-
nations of the potentials for doubly heavy hadrons are
difficult, in particular when unquenched simulations are
required, the procedure outlined in the paper and in
Ref. [29], to obtain reliable parametrizations of the poten-
tials can be of significant utility in future studies of doubly
heavy hadrons. In turn, this motivates further development
of the EST to cases with multiple light quarks.
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APPENDIX A: THE CASIMIR ENERGY

The Hamiltonian associated to the leading-order string
action with fermionic degrees of freedom in Eqs. (27) and
(26) is

H ¼
Z

r=2

−r=2
dz

�
σ

2
ð∂0ξ

l∂0ξ
l þ ∂3ξ

l∂3ξ
lÞ þ iψ†∂↔0ψ

�
; ðA1Þ

where we have used the equation of motion of the fermion
field to simplify the fermionic term.
Now, let us compute the expected value of the

Hamiltonian in the vacuum

h0jHj0i ¼ π

r
ζð−1Þ − 2nf

X∞
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
nπ
r

�
2

þm2
l:q:

s
: ðA2Þ

We have obtained the standard Lüscher term for the bosonic
string plus a new contribution from the fermion field.
The new contribution is ill defined in an analogous way as
the Lüscher term is. The latter can easily be defined
through the analytic continuation of the Riemann zeta
function but the nonvanishing ml:q: in the former requires
extra care.
In the nonrelativistic case (which implies a cutoff

in the sum so that nπ
r ≪ ml:q:) there are no quantum

fluctuation contributions of the fermion to the vacuum
energy,

−
1

2
h0jHj0ifermion≡

X∞
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
nπ
r

�
2

þm2
l:q:

s
¼ml:q:

�
ζð0Þþ1

2

�
π

ml:q:r

�
2

ζð−2Þ−1

8

�
π

ml:q:r

�
4

ζð−4Þþ…

�
¼−

1

2
ml:q:: ðA3Þ

In the general case, we will use dimensional regularization. Let us first write

−
1

2
h0jHj0ifermion ¼ −

1

2
h0jHj0idivfermion −

1

2
h0jHj0ifinitefermion; ðA4Þ

−
1

2
h0jHj0idivfermion ¼

X∞
n¼1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
nπ
r

�
2

s
þ m2

l:q:

2
ffiffiffiffiffiffiffiffiffiffi
ðnπr Þ2

q �
; ðA5Þ

−
1

2
h0jHj0ifinitefermion ¼ −

X∞
n¼1

m2
l:q:r

2nπ
1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð nπ

ml:q:r
Þ2

q
þ nπ

ml:q:r
Þ2
: ðA6Þ

We regulate the divergent terms in dimensional regularization as follows: (d ¼ 1þ 2ϵ, ϵ → 0)

−
1

2
h0jHj0idivfermion → μ1−d

Z
dd−1k
ð2πÞd−1

X∞
n¼1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ

�
nπ
r

�
2

s
þ m2

l:q:

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðnπr Þ2

q �

¼ 2

ð4πμ2ÞϵΓðϵÞ
Z

∞

0

dkk−1þ2ϵ
X∞
n¼1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ

�
nπ
r

�
2

s
þ m2

l:q:

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðnπr Þ2

q �

¼ 1ffiffiffi
π

p
�

π

4μ2r2

�
ϵ
�
−

π

2r
ζð−1 − 2ϵÞΓ

�
−
1

2
− ϵ

�
þm2

l:q:r

2π
ζð1 − 2ϵÞΓ

�
1

2
− ϵ

��

¼ −
π

12r
þm2

l:q:r

4π

�
−
1

ϵ
þ log

ðμrÞ2
π

þ γE

�
: ðA7Þ

EFFECTIVE QCD STRING AND DOUBLY HEAVY BARYONS PHYS. REV. D 104, 074027 (2021)

074027-19



Note that the 1=ϵ pole can be absorbed in a redefinition
of the string tension

σ → σðμÞ − nf
2πϵ

m2
l:q:: ðA8Þ

μ-independence leads to

μ
dσðμÞ
dμ

¼ nf
π
m2

l:q:; ðA9Þ

which implies that the string tension runs in such away that it
decreases at large distances. For this to be consistent within
an EFT framework, we need m2

l:q: ≪ σðμÞ, so that the
replacement in Eq. (A8) generates higher-order terms else-
where. Since σðμÞ ∼ Λ2

QCD, we need ml:q: ≪ ΛQCD, which

may be achieved by implementing chiral symmetry linearly
in the fermion fields on the world sheet. Numerically, we
find m2

l:q: ∼ 0.051 GeV2 whereas σðμÞ ∼ 0.21 GeV2.
Note that the first term in Eq. (A7) is the Lüscher term.

When the fermionic contribution is added to the bosonic
one, the sign of the (total) Lüscher term is reversed with
respect to the purely bosonic contribution.
The finite piece in Eq. (A6) can be evaluated numeri-

cally. In the ml:q:r → 0 limit it reads as

−
1

2
h0jHj0ifinitefermion ¼ −

ml:q:

4

�
ml:q:r

π

�
3

ζð3Þ þ…: ðA10Þ

In the large ml:q:r limit the sum Eq. (A6) tends to an
integral

−
1

2
h0jHj0ifinitefermion ¼ −

X∞
n¼1

m2
l:q:r

2nπ
1	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð nπ
ml:q:r

Þ2
q

þ nπ
ml:q:r



2

⟶
ml:q:r→∞

−
m2r
2π

Z
∞

π
ml:q:r

dx
1

x
1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
þ xÞ2

¼ −
m2

l:q:r

2π

�
−
1

2
þ log

�
ml:q:r

2π

�
þ π

ml:q:r
−
1

6

�
π

ml:q:r

�
3

þ…

�
: ðA11Þ

Adding up all the contributions

−
1

2
h0jHj0ifermion ⟶

ml:q:r→∞
−

1

12

π

r
−
ml:q:

2
þm2

l:q:r

4π

�
1þ γE − log

�
m2

l:q:

4πμ2

��
þ 1

12

π2

ml:q:r2
þ…; ðA12Þ

where we have minimally subtracted the 1=ϵ pole. We see
that in this limit we get additional contributions to the string
tension, a constant term, and 1=r corrections to the Lüscher
term, the leading one being Oð1=r2Þ rather than Oð1=r3Þ
like in the bosonic part. The additional contribution to the
string tension is particularly interesting. If we identify
the standard string tension σ ¼ σðμ ∼ ΛQCDÞ, then for
ml:q: < ΛQCD, this additional contribution makes the string
tension diminish with m2

l:q:.

APPENDIX B: SHORT-DISTANCE
EXPANSION COEFFICIENTS

In this appendix we provide the expressions of the short-
distance expansion of the potentials in terms of weakly-
coupled pNRQCD correlators. Let us define 3̄ and 6 tensor
invariants as in Ref. [12]

Tl
ij ¼

1ffiffiffi
2

p ϵlij; i; j; l ¼ 1; 2; 3 ðB1Þ

Σσ
ij i; j ¼ 1; 2; 3 σ ¼ 1;…; 6

Σ1
11 ¼ Σ4

22 ¼ Σ6
33 ¼ 1;

Σ2
12 ¼ Σ2

21 ¼ Σ3
13 ¼ Σ3

31 ¼ Σ5
23 ¼ Σ5

32 ¼
1ffiffiffi
2

p ; ðB2Þ

where all other entries are zero. Both Tl
ij and Σσ

ij are real;
Tl
ij is totally antisymmetric and Σσ

ij symmetric in the i and j
indices. They satisfy the orthogonality and normalization
relations

X3
ij¼1

Tl
ijT

l0
ij¼δll

0
;

X3
ij¼1

Σσ
ijΣσ0

ij¼δσσ
0
;

X3
ij¼1

Tl
ijΣσ

ij¼0: ðB3Þ

The Wilson lines associated to the propagation of the
heavy-quark pair in an antitriplet and sextet color states are

ϕlk
T ðt2; t1Þ ¼ e

−ig
R

t2
t1

dt02Tr½TlA0ðt0;RÞTk�
; ðB4Þ

ϕσσ0
Σ ðt2; t1Þ ¼ e

−ig
R

t2
t1

dt02Tr½ΣσA0ðt0;RÞΣσ0 �
: ðB5Þ

Notice that the antitriplet and sextet representation gen-
erators can be written as Ta

3̄
¼ −2Tr½TTaT� ¼ ðTaÞ� and

Ta
6 ¼ 2Tr½ΣTaΣ�. Let us also define

Xkσ
TΣðtÞ ¼ gTr½TkXðtÞΣσ�; ðB6Þ

Xσk
ΣTðtÞ ¼ gTr½ΣσXðtÞTk�; ðB7Þ
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Xlk
T ðtÞ ¼ gTr½TlXðtÞTk�; ðB8Þ

Xσσ0
Σ ðtÞ ¼ gTr½ΣσXðtÞΣσ0 �; ðB9Þ

with X ¼ E;B and

Ql
ð1=2Þ�ðt; xÞ ¼ Tr½TlQð1=2Þ�ðt; xÞ�: ðB10Þ

The nonperturbative constants up to next-to-leading
order in the multipole expansion for the static potential are

Λ̄ð1=2Þ� ¼ lim
t→∞

i
t
log Tr½h0jQð1=2Þ�ðt=2ÞϕTQ

†
ð1=2Þ�ð−t=2Þj0i�; ðB11Þ

Λ̄ð1Þ
ð1=2Þ� ¼ lim

t→∞

eiΛ̄ð1=2Þ� t

6it
Tr

�
h0jQð1=2Þ�ðt=2Þ

�Z
t=2

−t=2
dt1ϕT

�
−
1

4

�
D · EΣðt1ÞϕT þ

Z
t=2

−t=2
dt2

Z
t2

−t=2
dt1ϕTETΣðt2ÞϕΣEΣTðt1ÞϕT

�

×Q†
ð1=2Þ�ð−t=2Þj0i

�
: ðB12Þ

The Wilson lines should be understood as starting on the time of the operator immediately on the right and ending on the
time of the operator immediately on the left.
For the heavy-quark spin or angular-momentum dependent potentials the nonperturbative constants correspond to the

following correlators

Δð0Þ
ð1=2Þ� ¼ lim

t→∞

2eiΛ̄ð1=2Þ� t

3it

Z
t=2

−t=2
dt0Tr½S1=2 · h0jQð1=2Þ�ðt=2ÞϕTBTðt0ÞϕTQ

†
ð1=2Þ�ð−t=2Þj0i�; ðB13Þ

Δð1;0Þ
ð1=2Þ� ¼ lim

t→∞

2ieiΛ̄ð1=2Þ� t

3t
Tr½S1=2 · Δ�; ðB14Þ

Δð1;2Þ
ð1=2Þ� ¼ lim

t→∞

3ieiΛ̄ð1=2Þ� t

t
Tr½ðS1=2 · T 2Þ · Δ�; ðB15Þ

with

Δi ¼ h0jQð1=2Þ�ðt=2Þ
�Z

t=2

−t=2
dt3

Z
t3

−t=2
dt2

Z
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−t=2
dt1ϕT ½Bi

Tðt3ÞϕT r̂ · ETΣðt2ÞϕΣr̂ ·EΣTðt1Þ þ r̂ · ETΣðt3ÞϕΣr̂ ·EΣTðt2ÞϕTBi
Tðt1Þ

þ r̂ ·ETΣðt3ÞϕΣBi
Σðt2ÞϕΣr̂ ·EΣTðt1Þ�ϕT þ

Z
t=2
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dt2
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1
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ðr̂ ·DBi

TΣðt2ÞϕΣr̂ ·EΣTðt1Þ þ r̂ · ETΣðt2ÞϕΣr̂ ·DBi
ΣTðt1ÞÞ
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ϕT

þ
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dt1ϕT
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−
1
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r̂jr̂kDjDkBi

Tðt1Þ
�
ϕT

�
Q†

ð1=2Þ�ð−t=2Þj0i: ðB16Þ

Notice that we have omitted the dependence of all the operators on R and that the traces in Eqs. (B11)–(B15) act both on
the light-quark spin and color indices.
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