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We investigate the properties of neutral and charged pions in a constant background magnetic field
mainly at zero temperature within the Nambu–Jona-Lasinio model. In the previous calculations, the Ritus
method involving Schwinger phases in a fixed gauge was employed within the momentum-space random
phase approximation (RPA) [M. Coppola et al., Phys. Lett. B 782, 155 (2018).]. However, gauge invariance
of the charged pion masses has not yet been examined. In this work, by adopting the linear response theory
based on the imaginary-time path integral formalism, we derive the correlation functions for pions in
coordinate space, where the corresponding Schwinger phases show up automatically. At sufficiently large
imaginary time τ, the meson correlation function approaches an exponential form ∼ expð−EGτÞ, where EG

is the ground-state energy of the one-meson state and hence determined as the meson mass. Furthermore,
we show that the mass of the charged pions is gauge independent, i.e., independent of the choice of the
vector potential for the magnetic field. Actually, we also find that the momentum-space RPA is equivalent
to the imaginary-time method used here.
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I. INTRODUCTION

The properties of quantum chromodynamics (QCD)
matter in a strong magnetic field have recently attracted
much attention in high energy nuclear physics [1–4]. The
significance of this topic is mainly relevant to strong
magnetic fields found in various real systems related to
QCD: the surface of magnetars [5,6], the inner core of
pulsars [7,8], and the fireballs produced in peripheral heavy
ion collisions [9–11]. The external magnetic field serves as
an extra dimension and enriches the QCD phase diagram
[2,3,12,13]. Meanwhile, magnetic-field-induced effects
have been proposed theoretically and can be probed in
recent or future experiments, such as the chiral magnetic
effect [14,15], neutral pion condensation [16], and disput-
able superconductivity in magnetized vacuum [17–19].
The chiral symmetry breaking or restoration is one of the

most important aspects of QCD under extreme circum-
stances. At zero temperature, it was proposed that an
external magnetic field enhances the chiral condensate
known as the magnetic catalysis effect [20,21]. However,
around the critical temperature, lattice QCD calculations
found that the external magnetic field reduces the chiral
condensate, which is now called the inverse magnetic
catalysis effect [22–24]. On the other hand, the meson

properties in a magnetized QCD system have been studied
extensively. In the massless limit, the SU(2) chiral sym-
metry of two-flavor QCD is explicitly broken down to a
U(1) subgroup by the external magnetic field, and thus,
only the neutral pion is the Goldstone boson associated
with the spontaneous breaking of the residual chiral
symmetry. The properties of both neutral and charged
pions in a constant magnetic field at zero and finite
temperature have been studied by utilizing lattice QCD
simulations [18,25–30], chiral perturbation theory [31,32],
chiral effective models including the linear sigma model
[33–35] and Nambu–Jona-Lasinio (NJL) model [36–46] as
well as its Polyakov-loop extension [47], and other effec-
tive models [48,49]. For the neutral pion, there is no
ambiguity on the definition of its pole mass as the
Schwinger phase [50] vanishes. It was found that the
neutral pion mass is reduced by a weak magnetic field,
whereas its tendency in stronger magnetic field is still
uncertain [18,25–30,36–46]. For charged pions, the non-
vanishing Schwinger phase makes it hard to perform a
complete momentum-space calculation. Nevertheless, in a
recent work [42], the Schwinger phases of charged pions
have been taken into account via the Ritus method, and a
monotonical increase of the charged pion mass with the
magnetic field strength was found. Recent lattice QCD
results [29,30], however, showed that the charged pion
mass starts to decrease at sufficiently large magnetic field.
So far, most of the investigations of the charged pion

properties were performed in a fixed gauge, i.e., the Landau
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gauge or the symmetric gauge. Before we seek a way to
understand the lattice results for the charged pions, the
gauge independence of the pion masses needs to be
examined preferentially. In this work, we investigate
the pion masses in a constant magnetic field and their
gauge independence within the NJL model. In the
framework of the NJL model, mesons are regarded as
collective excitations of quark-antiquark pairs and can be
constructed by using the random phase approximation,
which guarantees the Goldstone theorem [51–53]. In the
absence of external magnetic field, the RPA can be easily
performed in momentum space. However, in an external
magnetic field, momenta are no longer good quantum
numbers for charged mesons. In this case, the presence
of a nonvanishing Schwinger phase renders the RPA
impossible to be carried out in momentum space.
Modified schemes to apply the RPA include discarding
the Schwinger phase [19,40], local expansion of the
Schwinger phase [38], and the Ritus eigenfunction
method [42].
In this work, we perform the RPA directly in coordinate

space inspired by recent lattice QCD calculations
[26,29,30]. The two-point correlation function of a meson
in coordinate space can be derived by using the path
integral formulation of the linear response theory [54,55].
Applying the imaginary-time path integral and integrating
over the spatial coordinates, the correlation function
approaches an exponential form ∼ expð−EGτÞ at suffi-
ciently large τ. The ground-state energy EG of the one-
meson state thus determines the meson mass and is shown
to be gauge independent within the NJL model, regardless
of the choice of regularization scheme. We show numeri-
cally and analytically that the previously used momentum-
space RPA, which simply discarded the Schwinger phase
for charged pions and determined the pion masses as the
poles at zero momentum, is actually equivalent to the
imaginary-time method used in this work. Note that a
recent work in the linear sigma model showed that the
magnetic-field-induced vertex modification is also gauge
invariant even though additional Schwinger phase
dependence of the quark-meson coupling was taken into
account [56].
The paper is organized as follows. In Sec. II, we show

that the meson mass can be defined via the meson
correlation function at large imaginary time and establish
a theoretical framework to calculate the meson correlation
functions in a constant magnetic field in the two-flavor
NJL model. In Sec. III, we calculate the correlation
function of the neutral pion, from which the neutral pion
mass is extracted. In Sec. IV, the correlation function and
mass of the charged pions are studied. A general proof of
the gauge independence of charged meson masses and the
equivalence between the momentum-space RPA and the
imaginary-time method is also presented. We summarize
in Sec. V.

II. PION CORRELATION FUNCTIONS

We start from the imaginary-time correlation function for
a mesonic state in a magnetized QCD vacuum,

DMðτ; r; τ0; r0Þ≡ hvacjTτϕ̂ðτ; rÞϕ̂†ðτ0; r0Þjvaci; ð1Þ

with jvaci being the vacuum state of the system, τ being the
imaginary time, and Tτ denoting the imaginary-time order.
The composite field operator for the mesonic state ϕ̂ðτ; rÞ is
constructed by using the quark field operator ψ̂,

ϕ̂ðτ; rÞ ¼ ˆ̄ψðτ; rÞΓMψ̂ðτ; rÞ; ð2Þ

where the matrix ΓM characterizing the mesonic state can
be decomposed as ΓM ¼ ΓD ⊗ ΓF, with ΓD and ΓF being
matrices in the spin and flavor spaces, respectively. In this
work, we are interested in the pions and hence, ΓD ¼ iγ5.
Because of the translational invariance in the temporal

dimension, we set τ0 ¼ 0 without loss of generality. Since
we are interested in the limit τ → ∞, we focus on the case
τ > 0. In this case, we have

DMðτ; r; r0Þ≡DMðτ; r; 0; r0Þ
¼ hvacjeτĤϕ̂SðrÞe−τĤϕ̂†

Sðr0Þjvaci; ð3Þ

where Ĥ is the Hamiltonian of the system, ϕ̂SðrÞ≡ ϕ̂ð0; rÞ
is the composite field operator in the Schröedinger
picture, and we have used the time evolution ϕ̂ðτ; rÞ ¼
eτĤϕ̂ð0; rÞe−τĤ. The vacuum state is the ground state of the
Hamiltonian Ĥ, with the eigenenergy being the vacuum
energy Evac, i.e., eτĤjvaci ¼ eτEvac jvaci. Since the follow-
ing derivations are only related to the one-meson states, we
can set Evac ¼ 0 without loss of generality.
Now the correlation function becomes

DMðτ; r; r0Þ ¼ hvacjϕ̂SðrÞe−τĤϕ̂†
Sðr0Þjvaci: ð4Þ

The composite field operator ϕ̂†
SðrÞ acting on the vacuum

state is only related to the one-meson states. Denoting the
one-meson states as jMli, with l being the collection of
quantum numbers, we can write

ϕ̂†
SðrÞjvaci ¼

X
l

flðrÞjMli; hvacjϕ̂SðrÞ ¼
X
l

f�l ðrÞhMlj:

ð5Þ

The expansion coefficients flðrÞ are not important for
the determination of the meson mass. The one-meson
states jMli are also the eigenstates of the Hamiltonian,
with eigenenergies El. Therefore, the meson correlation
function can be expressed as
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DMðτ; r; r0Þ ¼
X
l;l0

f�l ðrÞfl0 ðr0ÞhMljMl0 ie−τEl0

¼
X
l

f�l ðrÞflðr0Þe−τEl ; ð6Þ

where we have used the fact hMljMl0 i ¼ δll0 .
The meson mass mM is defined as the lowest eigene-

nergy of the one-meson state, i.e.,

mM ¼ EG ≡min
l
fElg: ð7Þ

Equation (6) shows that at large positive τ (τ → ∞), only
the term with the lowest energy EG survives, that is

DMðτ; r; r0Þ → f�GðrÞfGðr0Þe−τEG : ð8Þ

Therefore, we can utilize the exponential form expð−EGτÞ
at large positive τ to extract the meson mass mM. For a
system with translational invariance, the correlation func-
tion is only a function of the relative coordinate r − r0. We
can set r0 ¼ 0 and define

PMðτÞ≡
Z

d3rDMðτ; r; 0Þ: ð9Þ

Since the exponential form expð−EGτÞ at large positive τ is
not related to the translational invariance, for a system
without translational invariance, we can still set r0 ¼ 0 and
define PMðτÞ in the same way. In any case, we can extract
the meson mass mM ¼ EG from the large-τ behav-
ior PMðτÞ ∼ expð−EGτÞ.
On the other hand, the correlation function can also be

defined and computed from the imaginary-time path
integral formalism. To this end, we define the partition
function in the presence of external sources,

Z½J� ¼
Z

D½ψ̄ ;ψ ; � � �� exp
�Z

d4XðLþ Jϕþ J†ϕ†Þ
�
;

ð10Þ

where ϕ ¼ ψ̄ΓMψ and
R
d4X ≡ R

dτ
R
d3r. We will also

use the notation X ¼ ðτ; rÞ in the following. While
the explicit form of the partition function replies on the
effective model we adopt, the meson correlation function
can be calculated through the generating functional
W½J� ¼ lnZ½J�. We have

DMðX;X0Þ ¼ δW½J�
δJðXÞδJ†ðX0Þ

����
J¼J†¼0

: ð11Þ

The above formalism is valid for charged mesons (complex
scalar bosons). For a neutral meson, i.e., ϕ† ¼ ϕ, only the
source term Jϕ is needed, and we have

DMðX;X0Þ ¼ δW½J�
δJðXÞδJðX0Þ

����
J¼0

: ð12Þ

Now we adopt a chiral effective model of QCD, the NJL
model. To study the pion properties, it is sufficient to
consider the two-flavor case. The Lagrangian density of the
two-flavor NJL model is given by

LNJL ¼ ψ̄ði=∂ −m0Þψ þ g½ðψ̄ψÞ2 þ ðψ̄iγ5τψÞ2�; ð13Þ

where ψ ¼ ðu; dÞT represents the two-flavor quark field,m0

is the current quark mass, g is the coupling constant of the
four-fermion interaction, and τi ði ¼ 1; 2; 3Þ are the Pauli
matrices in flavor space. In the presence of an external
electromagnetic field, the normal derivative ∂μ is replaced
by the covariant one Dμ ¼ ∂μ − iQAμ, where the quark
charge matrix readsQ ¼ diagðQu; QdÞ in flavor space, with
Qu ¼ 2e=3, Qd ¼ −e=3, and e being the elementary
charge. In this work, we consider a constant magnetic
field with strength B along the z direction. Thus, we choose
A0 ¼ 0 and the vector potential A satisfies the equation
∇ ×A ¼ Bẑ. The general solution for the vector potential
can be expressed as A ¼ A⊥ þA0, where A0 has a curl of
zero, ∇ ×A0 ¼ 0. The rotational part A⊥ is chosen as

A⊥ ¼ −ð1þ ξÞBy
2
x̂þ ð1 − ξÞBx

2
ŷ: ð14Þ

Here the parameter ξ is an arbitrary real number. The
symmetric gauge and the Landau gauge correspond to ξ ¼
0 and ξ ¼ �1, respectively.
The partition function of the NJL model is given by (10)

with L → LNJL. To study charged pions, we introduce the
source term Jþϕþ J−ϕ†, where

ϕ ¼ ψ̄Γþψ ¼
ffiffiffi
2

p
ūiγ5d; ϕ† ¼ ψ̄Γ−ψ ¼

ffiffiffi
2

p
d̄iγ5u;

ð15Þ

with

Γ� ≡ iγ5
τ1 � iτ2ffiffiffi

2
p : ð16Þ

For the neutral pion, the source term is Jϕ, with ϕ ¼ ψ̄Γ3ψ
and Γ3 ¼ iγ5τ3. The four-fermion interaction can be
decoupled by applying the Hubbard-Stratonovich trans-
formation which also introduces auxiliary meson fields
σðXÞ and πðXÞ. Integrating out the quark fields, we obtain

Z½J� ¼
Z

DσDπ expf−SJ½σ; π�g; ð17Þ

where the action reads
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SJ½σ;π� ¼
Z

d4X
σ2ðXÞ þ π2ðXÞ

4g
− T̃r lnG−1

J ðX;X0Þ: ð18Þ

Here the trace T̃r is taken over the coordinate, color, flavor,
and spin spaces. To study charged pions, we introduce the
sources Jþ and J−. The inverse of the quark propagator is
given by

G−1
J ðX;X0Þ ¼ ½i=D −m0 − σðXÞ − iγ5τ · πðXÞ

þ JþðXÞΓþ þ J−ðXÞΓ−�δð4ÞðX − X0Þ: ð19Þ

Assuming that the external sources are small, we can
expand the generating functional W½J� ¼ lnZ½J� in
powers of the external sources, W½J� ¼ Wð0Þ þWð1Þ½J� þ
Wð2Þ½J� þ � � �. The correlation function for charged pions
DcðX;X0Þ is related to the second-order term Wð2Þ½J�.
We have

Wð2Þ½J� ¼
Z

d4X
Z

d4X0JþðXÞDcðX;X0ÞJ−ðX0Þ: ð20Þ

To study the neutral pion, we introduce a single source J.
The inverse of the quark propagator is given by

G−1
J ðX;X0Þ ¼ ½i=D −m0 − σðXÞ − iγ5τ · πðXÞ

þ JðXÞΓ3�δð4ÞðX − X0Þ: ð21Þ

The correlation function for the neutral pion DnðX;X0Þ is
related to the second-order expansion Wð2Þ½J�,

Wð2Þ½J� ¼ 1

2

Z
d4X

Z
d4X0JðXÞDnðX;X0ÞJðX0Þ: ð22Þ

To evaluate the partition function Z½J� and the generat-
ing functional W½J�, we use the mean-field approximation
(MFA). In this approximation, the quantum fields σðXÞ and
πðXÞ are replaced by their classical fields. In the path
integral formalism, this is equivalent to replacing the
auxiliary fields σðXÞ and πðXÞ with their saddle point
values (SPVs), σspðXÞ and πspðXÞ. The partition function is
now approximated as

Z½J� ≃ expf−SJ½σsp; πsp�g: ð23Þ

The SPVs should be determined by the extreme condition

δSJ½σsp; πsp�
δσsp

¼ 0;
δSJ½σsp; πsp�

δπsp
¼ 0: ð24Þ

In the absence of external sources, the SPVs are static and
homogeneous. We set σspðXÞ ¼ υ, πspðXÞ ¼ 0. Here, υ ¼
−2ghψ̄ψi contributes to the effective quark mass. However,
in the presence of external sources, the SPVs may not be
static and homogeneous. To study the pion correlation

functions, we are interested in the response to infinitesimal
external sources. We expect that the induced perturbations
to the SPVs are also infinitesimal. Therefore, the SPVs can
be expressed as

σspðXÞ ¼ υþUðXÞ; πspðXÞ ¼ 0þ VðXÞ; ð25Þ

where UðXÞ and VðXÞ ¼ ðV1; V2; V3Þ are infinitesimal
perturbations induced by the external sources.
In MFA, the generating functional W½J� is simply

given by

WMF½J� ¼ −SJ½σsp; πsp�: ð26Þ

For infinitesimal external sources, it becomes

WMF½J� ¼ −
1

4g

Z
d4Xf½υþ UðXÞ�2

þ 2VþðXÞV−ðXÞ þ V2
3ðXÞg

þ T̃r ln½G−1ðX;X0Þ − ΣðXÞδð4ÞðX;X0Þ�; ð27Þ

with the notation

V�ðXÞ≡ V1ðXÞ ∓ iV2ðXÞffiffiffi
2

p : ð28Þ

Here, the inverse of the quark propagator in MFA reads

G−1ðX;X0Þ ¼ ði=D −MÞδð4ÞðX − X0Þ; ð29Þ

with M ¼ m0 þ υ being the effective quark mass. For
charged pions, the J-dependent part Σ is defined as

ΣðXÞ ¼ UðXÞ þ ½VþðXÞ − JþðXÞ�Γþ
þ ½V−ðXÞ − J−ðXÞ�Γ− þ V3ðXÞΓ3: ð30Þ

For the neutral pion, it is

ΣðXÞ ¼ UðXÞ þ VþðXÞΓþ þ V−ðXÞΓ−

þ ½V3ðXÞ − JðXÞ�Γ3: ð31Þ

Using the derivative expansion

T̃r ln½G−1ðX;X0Þ−ΣðXÞδð4ÞðX;X0Þ�

¼ T̃r ln½G−1ðX;X0Þ�−
Z

d4XTr½GðX;XÞΣðXÞ�

−
1

2

Z
d4X

Z
d4X0Tr½GðX;X0ÞΣðX0ÞGðX0;XÞΣðXÞ� þ � � � ;

ð32Þ

we can expand the generating functionalWMF½J� in powers
of the external sources and the induced perturbations,
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WMF½J� ¼ Wð0Þ
MF þWð1Þ

MF½J� þWð2Þ
MF½J� þ � � � : ð33Þ

Note that the trace over the coordinates has been taken in
the expansion, and the trace Tr is now over the color, flavor,
and spin spaces. The extreme of the zeroth-order term

∂Wð0Þ
MF=∂υ ¼ 0 gives rise to the gap equation in a constant

magnetic field. Using the vacuum regularization scheme
[57–60] and introducing a proper-time variable s, we can
express the gap equation as

M −m0

2g
¼ NcM3

π2

�
Λ
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ2

M2

r
− arctanh

�
Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ Λ2
p

��

þ NcM
4π2

X
f¼u;d

Z
∞

0

ds
e−sM

2

s2

�
Bfs

tanhðBfsÞ
− 1

�
:

ð34Þ

Here, Λ is the three-momentum cutoff in vacuum, Nc ¼ 3
is the number of the color degrees of freedom, and
Bf ≡QfB. We note that this form of the gap equation
does not depend on the gauge for the vector potential A. It

is easy to check that the first-order term Wð1Þ
MF½J� vanishes.

The pion correlation functions can be extracted from the

second-order term Wð2Þ
MF½J�. To evaluate this term, we need

to know the expression of the quark propagator GðX;X0Þ. A
direct Fourier transformation to momentum space is
impossible because of the lack of translational invariance.
In flavor space, it is diagonal and can be written as

GðX;X0Þ ¼
�
GuðX;X0Þ 0

0 GdðX;X0Þ

�
: ð35Þ

According to Schwinger’s proper-time method [50], the
propagator of each flavor GfðX;X0Þ (f ¼ u; d) can be
decomposed as

GfðX;X0Þ ¼ eiΦf ðX;X0ÞḠfðX − X0Þ; ð36Þ

where the Schwinger phase reads

ΦfðX;X0Þ ¼ Qf

Z
X

X0
AμdXμ ¼ Qf

Z
r

r0
A · dr; ð37Þ

in which the integral is calculated along the straight line.
While the Schwinger phase is explicitly gauge dependent
and breaks the translation invariance, the remaining part
ḠfðX − X0Þ is translation invariant and does not depend on
the gauge for A. It is convenient to define the Fourier
transformation of ḠfðX − X0Þ as

ḠfðX − X0Þ ¼
Z

d4K
ð2πÞ4 e

−iK·ðX−X0ÞḠfðKÞ; ð38Þ

where wework in Euclidean space andK ≡ ðK; K4Þ. In our
convention, K · X ≡ K4τ −K · r. The momentum-space
version is given by

ḠfðKÞ ¼
Z

∞

0

dse−sðM
2þK2

kþK2⊥
tanhðBf sÞ

Bf s
Þ

× ½M − =K þ iðK2γ1 − K1γ2Þ tanhðBfsÞ�
× ½1þ iγ1γ2 tanhðBfsÞ�; ð39Þ

where we use the notations K⊥ ¼ ðK1; K2Þ and Kk ¼
ðK3; K4Þ here and in the following.

III. THE NEUTRAL PION

For the neutral pion, we can show that the induced
perturbations UðXÞ and V�ðXÞ do not couple to the source

JðXÞ in the second-order term Wð2Þ
MF½J� by completing the

trace in flavor space or spin space. Therefore, these induced
perturbations should be of order OðJ2Þ and can be
neglected. The relevant terms can be written as

Wð2Þ
MF½J� ¼ −

1

2

Z
d4X

Z
d4X0ð JðXÞ V3ðXÞ Þ

×

� ΠðX;X0Þ −ΠðX;X0Þ
−ΠðX;X0Þ 1

2g δ
ð4ÞðX − X0Þ þ ΠðX;X0Þ

�

×

�
JðX0Þ
V3ðX0Þ

�
: ð40Þ

Here the polarization function for the neutral pion is
defined as

ΠðX;X0Þ ¼
X
f¼u;d

Tr½GfðX;X0Þiγ5GfðX0; XÞiγ5�

¼
X
f¼u;d

Tr½ḠfðX − X0Þiγ5ḠfðX0 − XÞiγ5�: ð41Þ

Here we see that the Schwinger phase of each flavor cancels
exactly, in accordance with the charge neutrality of the
neutral pion. Performing the Fourier transformations

JðXÞ ¼
Z

d4K
ð2πÞ4 e

−iK·XJðKÞ;

V3ðXÞ ¼
Z

d4K
ð2πÞ4 e

−iK·XV3ðKÞ; ð42Þ

we obtain

Wð2Þ
MF½J� ¼ −

1

2

Z
d4K
ð2πÞ4 ð Jð−KÞ V3ð−KÞ Þ

×

� ΠðKÞ −ΠðKÞ
−ΠðKÞ 1

2g þ ΠðKÞ
��

JðKÞ
V3ðKÞ

�
; ð43Þ
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where the momentum-space version of the polarization
function reads

ΠðKÞ ¼
X
f¼u;d

Z
d4P
ð2πÞ4 Tr½ḠfðPÞiγ5ḠfðPþ KÞiγ5�: ð44Þ

The induced perturbation V3ðKÞ should be solved by using
the extreme condition. Up to order OðJÞ, it is determined

by the extreme of Wð2Þ
MF. Using the fact Πð−KÞ ¼ ΠðKÞ,

we find

V3ðKÞ ¼ ΠðKÞ
1
2g þ ΠðKÞ JðKÞ þOðJ2Þ: ð45Þ

Substituting this solution into (43), we finally obtain

Wð2Þ
MF½J� ¼

1

2

Z
d4K
ð2πÞ4 Jð−KÞDnðKÞJðKÞ; ð46Þ

where the correlation function of the neutral pion is
given by

DnðKÞ ¼ −
ΠðKÞ

1þ 2gΠðKÞ : ð47Þ

Its coordinate-space version is obtained via the Fourier
transformation

DnðX;X0Þ ¼
Z

d4K
ð2πÞ4 e

−iK·ðX−X0ÞDnðKÞ: ð48Þ

The polarization function ΠðKÞ can be evaluated as

ΠðKÞ ¼ −4Nc

X
f¼u;d

Z
d4P
ð2πÞ4

Z
∞

0

ds
Z

∞

0

dte−s½M
2þP2

kþP2⊥
tanhðBf sÞ

Bf s
�e−t½M

2þðKþPÞ2kþðKþPÞ2⊥
tanhðBf tÞ

Bf t
�

× fsech2ðBfsÞsech2ðBftÞP⊥ · ðKþ PÞ⊥ þ ½M2 þ Pk · ðKþ PÞk�½1þ tanhðBfsÞ tanhðBftÞ�g: ð49Þ

In accordance with the gap equation, here we also use the
vacuum regularization scheme [57–60] to regularize the
ultraviolet divergence. The polarization function is decom-
posed into a vacuum term and a B-dependent term,

ΠðKÞ ¼ ΠVðKÞ þ ΠBðKÞ: ð50Þ
The divergence in the vacuum term is regularized by
using the same three-momentum cutoff Λ as in the gap
equation (34). We write

ΠVðKÞ ¼ −8Nc

Z
d4P
ð2πÞ4

M2 þ P · ðPþ KÞ
½M2 þ ðPþ KÞ2�ðM2 þ P2Þ

× ΘðΛ − jPjÞ: ð51Þ

Here the notation P · K ≡ P ·Kþ P4K4 is used. The B-
dependent term ΠBðKÞ ¼ ΠðKÞ − limB→0ΠðKÞ is finite
and characterizes the effects induced by the magnetic field.
The space-integrated correlation function of the neutral

pion PnðτÞ, which is only a function of the imaginary time
τ, can be evaluated as

PnðτÞ ¼
Z

d3rDnðτ; r; τ0 ¼ 0; r0 ¼ 0Þ

¼
Z

d3r
Z

d4K
ð2πÞ4 e

−iðK4τ−K·rÞDnðKÞ

¼
Z

∞

−∞

dK4

2π
e−iK4τDnðK4;K ¼ 0Þ

¼
Z

∞

0

dK4

π
cosðK4τÞDnðK4;K ¼ 0Þ: ð52Þ

In the last line, we have used the fact that the polarization
functionΠðKÞ is even inK. Here we see that the integration
over r forces the momentumK to be zero. For vanishingK,
the polarization function ΠðKÞ can be simplified.
Completing the integral over the four-momentum P and
substituting the proper-time variables with s → ð1þ uÞs=2
and t → ð1 − uÞs=2, we obtain

ΠðK4;K ¼ 0Þ ¼ Nc

8π2
X
f¼u;d

Z
∞

0

ds
Z

1

−1
due−ð

1−u2
4

K2
4
þM2Þs

×

��
1 − u2

4
K2

4 −
1

s
−M2

�
Bf cothðBfsÞ

−
B2
f

sinh2ðBfsÞ
	
: ð53Þ

Meanwhile, the vacuum term in Eq. (51) becomes

ΠVðK4;K ¼ 0Þ ¼ −
8Nc

π2

Z
Λ

0

djPj P2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þM2

p

4ðP2 þM2Þ þ K2
4

:

ð54Þ
Nowwe present our numerical results. For the two-flavor

NJL model, we use the parameter set g ¼ 4.93 GeV−2,
Λ ¼ 0.653 GeV, and m0 ¼ 5 MeV determined by fitting
the pion mass mπ ¼ 0.134 GeV, the pion decay constant
fπ ¼ 93 MeV, and the quark condensate hūui ¼
−ð0.25 GeVÞ3 in vacuum at vanishing external magnetic
field [61]. We calculate the neutral pion mass mπ0ðeBÞ by
fitting the large-τ behavior Pn ∼ expð−τmπ0Þ. The numeri-
cal result is shown in Fig. 1.
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As a comparison, we also show the pole mass obtained
from the momentum-space RPA [19], i.e., the solution of
the pole equation in Minkowski space,

1þ 2gΠðK4 → −iK0;K ¼ 0Þ ¼ 0: ð55Þ
The two results are in perfect agreement, as we expected.
The agreement can be analytically proven as follows. Let us
consider the following integral:

IðτÞ ¼
Z

∞

−∞

dK4

2π
e−iK4τFðK4Þ; ð56Þ

where FðK4Þ is an arbitrary function. Rotating to
Minkowski space by substituting K4 → −iK0, we obtain

IðτÞ ¼
Z

i∞

−i∞

dK0

2πi
e−K0τfðK0Þ; ð57Þ

where fðK0Þ≡ Fð−iK0Þ. To proceed, we suppose that
FðK4Þ has no real poles for K4; i.e., fðK0Þ has no poles on
the imaginary axis of the complex K0 plane. For τ > 0, we
can close the integral path along the imaginary axis with a
semicircle at infinity in the right half plane, obtaining

IðτÞ ¼
I
C

dK0

2πi
e−K0τfðK0Þ ¼

X
l

ResfðElÞe−Elτ; ð58Þ

where El (l ¼ 0; 1; 2;…) are the poles of fðK0Þ in the right
half plane, and ResfðElÞ are the corresponding residues.
Assuming that the pole E0 with minimal real part is real, we
find that for τ → ∞, IðτÞ ∼ e−E0τ. Thus, the obtained mass
E0 is exactly the same as the pole mass solved from the pole
equation.
While the neutral pion mass from the above NJL model

calculation shows a nonmonotonic behavior, i.e., it turns to
increase at large magnetic field (eB > 0.8 GeV2), recent
lattice QCD calculations indicate a monotonic decrease
[26,28–30]. This could be understood from the binding
energy of the neutral pion, Eb ¼ 2M −mπ0 . The numerical
result from the NJL model is demonstrated in Fig. 2. If the
monotonic decrease observed in lattice QCD calculations is
true, it indicates that the binding energy Eb is under-
estimated or the magnetic catalysis is overestimated in the
NJL model. We may need to improve the NJL model by
adopting a nonlocal interaction [32] or an eB-dependent
coupling constant [37].

IV. CHARGED PIONS

For charged pions, we can show that the induced
perturbations UðXÞ and V3ðXÞ do not couple to the sources
J�ðXÞ in the second-order term Wð2Þ

MF½J� by completing the
trace in flavor space or spin space. Therefore, these induced
perturbations should be of order OðJ2�Þ and can be
neglected. The relevant terms can be written as

Wð2Þ
MF½J� ¼ −

Z
d4X

Z
d4X0ð JþðXÞ VþðXÞ Þ

� ΠðX;X0Þ −ΠðX;X0Þ
−ΠðX;X0Þ 1

2g δ
ð4ÞðX − X0Þ þ ΠðX;X0Þ

��
J−ðX0Þ
V−ðX0Þ

�
: ð59Þ

Here the polarization function for charged pions is defined as

ΠðX;X0Þ ¼ 2Tr½GuðX;X0Þiγ5GdðX0; XÞiγ5� ¼ 2eiΦðX;X0ÞTr½ḠuðX − X0Þiγ5ḠdðX0 − XÞiγ5�: ð60Þ
The Schwinger phase ΦðX;X0Þ can be evaluated as

ΦðX;X0Þ ¼ ΦuðX;X0Þ þΦdðX0; XÞ ¼ Qu

Z
X

X0
AμdXμ þQd

Z
X0

X
AμdXμ ¼ e

Z
X

X0
AμdXμ: ð61Þ

FIG. 1. The mass of the neutral pionmπ0ðeBÞ normalized by the
vacuum pion mass mπ ¼ 0.134 GeV as a function of eB. The
blue dots are our results extracted from the correlation function in
the NJL model using the imaginary-time method. The result from
the momentum-space RPA (red dotted line) is presented for
comparison.

FIG. 2. The effective quark mass M and the binding energy Eb
as a function of eB.
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Thus, ΦðX;X0Þ is just the Schwinger phase of the composite charged pions. For any two spacetime points Z and Z0, the
correlation function of charged pions DcðZ; Z0Þ is given by

DcðZ; Z0Þ ¼ δ2Wð2Þ
MF½J�

δJþðZÞδJ−ðZ0Þ : ð62Þ

To separate the Schwinger phase, we define the following reduced generating functional:

W̄ð2Þ
MF½J̄� ¼ −

Z
d4X

Z
d4X0ð J̄þðXÞ V̄þðXÞ Þ

� Π̄ðX − X0Þ −Π̄ðX − X0Þ
−Π̄ðX − X0Þ 1

2g δ
ð4ÞðX − X0Þ þ Π̄ðX − X0Þ

��
J̄−ðX0Þ
V̄−ðX0Þ

�
; ð63Þ

where the reduced polarization function is defined as

Π̄ðX − X0Þ ¼ 2Tr½ḠuðX − X0Þiγ5ḠdðX0 − XÞiγ5�; ð64Þ
and the reduced sources are given by

J̄þðXÞ ¼ JþðXÞeiΦðX;Z0Þ; V̄þðXÞ ¼ VþðXÞeiΦðX;Z0Þ; J̄−ðX0Þ ¼ J−ðX0ÞeiΦðZ0;X0Þ; V̄−ðX0Þ ¼ V−ðX0ÞeiΦðZ0;X0Þ: ð65Þ

Note that here Z0 is an arbitrary given spacetime point designed to calculate the correlator DcðZ; Z0Þ. Expression (63) has
formal translational invariance. If we reexpress it in terms of the original sources J� and V�, the phase term
exp½iΦðX; Z0Þ þ iΦðZ0; X0Þ� appears. This is in contrast to the Schwinger phase term exp ½iΦðX;X0Þ� appearing in
(59). Using this reduced generating functional, we can show that

DcðZ; Z0Þ ¼ eiΦðZ;Z0Þ δ2W̄ð2Þ
MF½J̄�

δJ̄þðZÞδJ̄−ðZ0Þ : ð66Þ

The proof of this result is tedious but straightforward. The details are presented in Appendix. We note that the phase term
exp½iΦðZ0; X0Þ� reduces to unity automatically, and the phase term exp½iΦðX; Z0Þ� reduces to the Schwinger phase
exp½iΦðX;X0Þ� when we do the variational derivative with respect to the source J̄− located at Z0.
Performing the Fourier transformations

J̄�ðXÞ ¼
Z

d4K
ð2πÞ4 e

−iK·XJ̄�ðKÞ; V̄�ðXÞ ¼
Z

d4K
ð2πÞ4 e

−iK·XV̄�ðKÞ; ð67Þ

we obtain

W̄ð2Þ
MF½J̄� ¼ −

Z
d4K
ð2πÞ4 ð J̄þð−KÞ V̄þð−KÞ Þ

� Π̄ðKÞ −Π̄ðKÞ
−Π̄ðKÞ 1

2g þ Π̄ðKÞ
��

J̄−ðKÞ
V̄−ðKÞ

�
; ð68Þ

where the momentum-space version of the reduced polarization function reads

Π̄ðKÞ ¼ 2

Z
d4P
ð2πÞ4 Tr½ḠuðPÞiγ5ḠdðPþ KÞiγ5�: ð69Þ

The induced perturbations V̄�ðKÞ should be solved by using the extreme condition. Up to orderOðJ̄Þ, it can be determined

by the extreme of W̄ð2Þ
MF. We obtain

V̄�ðKÞ ¼
Π̄ðKÞ

1
2g þ Π̄ðKÞ J̄�ðKÞ þOðJ̄2Þ: ð70Þ

Substituting this solution into (68), we finally obtain

W̄ð2Þ
MF½J̄� ¼

Z
d4K
ð2πÞ4 J̄þð−KÞD̄cðKÞJ̄−ðKÞ; ð71Þ
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where

D̄cðKÞ ¼ −
Π̄ðKÞ

1þ 2gΠ̄ðKÞ ð72Þ

can be understood as the reduced correlation function of
charged pions in momentum space without the Schwinger
phase. Therefore, the full correlation function of charged
pions based on Eq. (66) reads

DcðZ; Z0Þ ¼ eiΦðZ;Z0Þ
Z

d4K
ð2πÞ4 e

−iK·ðZ−Z0ÞD̄cðKÞ ¼ −eiΦðZ;Z0Þ
Z

d4K
ð2πÞ4 e

−iK·ðZ−Z0Þ Π̄ðKÞ
1þ 2gΠ̄ðKÞ : ð73Þ

The reduced polarization function Π̄ðKÞ can be evaluated as

Π̄ðKÞ ¼ −8Nc

Z
d4P
ð2πÞ4

Z
∞

0

dsdte−s½M
2þP2

kþP2⊥
tanhðBusÞ

Bus
�e−t½M

2þðPþKÞ2kþðPþKÞ2⊥
tanhðBdtÞ

Bdt
�

× fsech2ðBusÞsech2ðBdtÞP⊥ · ðPþKÞ⊥ þ ½M2 þ Pk · ðPþKÞk�½1þ tanhðBusÞ tanhðBdsÞ�g: ð74Þ

Again it is decomposed into a vacuum term and a B-dependent term,

Π̄ðKÞ ¼ ΠVðKÞ þ Π̄BðKÞ: ð75Þ

The regularized version of the vacuum term ΠVðKÞ is given by Eq. (51).
For the general decomposition of the vector potential A ¼ A⊥ þA0, the Schwinger phase Φ can be evaluated as

Φðr; r0Þ ¼ e
Z

r

r0
A · dr ¼ −

eB
2
½ðxy0 − x0yÞ þ ξðxy − x0y0Þ� þ e½φðrÞ − φðr0Þ�: ð76Þ

Here we have defined A0 ¼ ∇φ due to the fact that A0 has a curl of zero. Then, the space-integrated correlation function of
charged pions PcðτÞ, which is only a function of the imaginary time τ, is given by

PcðτÞ ¼
Z

d3rDcðτ; r; τ0 ¼ 0; r0 ¼ 0Þ ¼
Z

d3r
�
eiΦðr;0Þ

Z
d4K
ð2πÞ4 e

−iðK4τ−K·rÞD̄cðKÞ
�
: ð77Þ

A complete study of the gauge dependence is rather complicated due to the large functional space of φðrÞ. In the following,
we first neglect A0 and focus on the dependence on the parameter ξ. In this case, the integral over r can be carried out to
obtain

PcðτÞ ¼
Z

∞

0

dK4

π
cos ðK4τÞ

Z
∞

0

dK2⊥
eBξ

J0

�
K2⊥
eBξ

�
D̄cðK4;K⊥; K3 ¼ 0Þ; ð78Þ

Here, J0ðxÞ is the zeroth-order Bessel function of the first kind. Unlike the case for the neutral pion, here the space
integration only forces K3 ¼ 0. If we work in the symmetry gauge (ξ ¼ 0), the transverse momentum is also forced to be
zero because of the fact

lim
ξ→0

1

eBξ
J0

�
K2⊥
eBξ

�
¼ δðK2⊥Þ: ð79Þ

For vanishing K3, the polarization function Π̄ðKÞ can be further simplified by substituting the proper-time variables with
s → ð1þ uÞs=2 and t → ð1 − uÞs=2. We obtain

Π̄ðK4;K⊥;K3 ¼ 0Þ ¼ Nc

4π2

Z
∞

0

ds
Z

1

−1
due−

1−u2
4

sK2
4
−sM2−I1ðs;uÞK2⊥I2ðs;uÞ

��
1− u2

4
K2

4 −
1

s
−M2

�
½1þ tanhðB−

u sÞ tanhðBþ
d sÞ�

þ I2ðs;uÞsech2ðB−
u sÞsech2ðBþ

d sÞ½I1ðs; uÞK2⊥ − 1�
	
; ð80Þ
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where B−
u ¼ Buð1 − uÞ=2 and Bþ

d ¼ Bdð1þ uÞ=2. The functions I1ðs; uÞ and I2ðs; uÞ are defined as

I1ðs; uÞ ¼
1

Bu coth ðB−
u sÞ þ Bd coth ðBþ

d sÞ
; I2ðs; uÞ ¼

BuBd

Bu tanh ðBþ
d sÞ þ Bd tanh ðB−

u sÞ
: ð81Þ

A. Charged pions as point particles

Before we present the numerical result of charged pions
in the NJL model, it is useful to study the corresponding
results in the free Klein-Gordon theory, i.e., consider them
as free point particles. The quantized energy levels, i.e., the
Landau levels of charged pions, obtained from the Klein-
Gordon equation in a constant magnetic field, are given by

E2ðn;K3Þ ¼ K2
3 þ ð2nþ 1ÞeBþm2

π; ð82Þ
with n ¼ 0; 1; 2;… characterizing the Landau levels. Note
that these Landau levels are independent of the gauge
chosen for the vector potential A. Therefore, the charged
pion mass is given by the energy of the lowest Landau level
(LLL), i.e.,

mπ�ðeBÞ ¼ minfjEðn;K3Þjg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ eB
q

: ð83Þ

On the other hand, we can also determine the charged
pion mass from their correlation function by using the
imaginary-time method. The Fourier transformation of
their reduced correlation function is given by [62]

D̄cðKÞ ¼
Z

∞

0

dssechðeBsÞ

× exp

�
−s

�
m2

π þK2
k þK2⊥

tanhðeBsÞ
eBs

�	
: ð84Þ

The space-integrated correlation function can be analyti-
cally evaluated as

PcðτÞ ¼
Z

d3r

�
eiΦðr;0Þ

Z
d4K
ð2πÞ4 e

−iðK4τ−K·rÞD̄cðKÞ
�

¼ 1

2
ffiffiffi
π

p
Z

∞

0

ds
cschðeBsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s½ξ2 þ coth2ðeBsÞ�
p

× exp

�
−sm2

π −
τ2

4s

�
: ð85Þ

In the limit τ → ∞, the integral over s is dominated around
s ∼ τ due to the term exp ½−τ2=ð4sÞ�. For large s, we can use
the leading asymptotic behavior cschðeBsÞ ∼ 2 expð−eBsÞ
and cothðeBsÞ ∼ 1. The proper-time integral can be carried
out analytically, obtaining

PcðτÞ ∼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 þ 1
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
π þ eB

p exp


−τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ eB
q �

;

τ → ∞: ð86Þ

It is clear that even though the prefactor depends on the
gauge parameter ξ, the mass is always the same. We also
calculate the charged pion mass numerically. The results
are shown in Fig. 3. The numerical results for different
gauge parameters are in perfect agreement with the mass
determined by the energy of LLL.
It is interesting to discuss whether we can extend the

imaginary-time method to finite temperature. At finite
temperature T, the correlation function can be obtained
via the following replacements:

K4 → 2nπT;
Z

∞

−∞

dK4

2π
→ T

X∞
n¼−∞

: ð87Þ

Accordingly, Eq. (85) becomes

PcðτÞ ¼
1

2
ffiffiffi
π

p
Z

∞

0

ds
cschðeBsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s½ξ2 þ coth2ðeBsÞ�
p

× exp

�
−sm2

π −
τ2

4s

�
ϑ3

�
−

iτ
4sT

; e−
1

4sT2

�
; ð88Þ

where ϑ3ðu; qÞ is the elliptic theta function,

ϑ3ðu; qÞ≡ 1þ 2
X∞
n¼1

qn
2

cosð2nuÞ: ð89Þ

The general behavior of PcðτÞ at finite T is shown in Fig. 4.
At finite T, PcðτÞ is no longer a pure decreasing

function, but an oscillating function with periodicity
β ¼ 1=T. Therefore, the zero-temperature decaying
behavior PcðτÞ ∼ e−τmπ� cannot be used to extract the

FIG. 3. The mass of charged pions mπ�ðeBÞ as a function of eB
extracted from the large-τ behavior of Eq. (85) for different gauge
parameter ξ varying from 0 to 1. The analytical result (LLL) is
also shown for comparison.
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charged pion mass. The maxima decay fast due to the term
exp ½−τ2=ð4sÞ�. They are located exactly at τ ¼ nβ
(n ¼ 0; 1; 2;…). Therefore, at large n, we have

Pcðτ ¼ nβÞ ∼ e−nβmπ� : ð90Þ

This method should maintain gauge independence and
gives mπ�ðeBÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ eB
p

. However, since n is not a
continuous variable, it is not quite useful for a numerical
extraction of the mass. On the other hand, the minima go
smoothly and may be used to extract the mass numerically.
Near the first minimum τ ¼ β=2, the correlation function
behaves as

PcðτÞ ∼ cosh ½mπ�ðτ − β=2Þ�: ð91Þ

This behavior was used to extract the hadron masses in the
lattice QCD calculations [28,29]. Here we also use this
function to extract the charged pion mass at finite temper-
ature from Eq. (88). The numerical results extracted from
the data around the first minimum are shown in Fig. 5.
In the free point particle model without interaction,

the charged pion mass is always
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ eB
p

at arbitrary
temperature. Therefore, the gauge dependence of the
charged pion mass becomes severe at high temperature.
The breaking of gauge independence is due to the mixing of
higher Landau levels with the LLL at finite temperature.
However, at sufficiently low temperature, gauge independ-
ence still remains. At larger eB, the higher Landau levels
are suppressed compared to the LLL, and hence, the
temperature window where the gauge independence is
nearly guaranteed is extended to higher temperature.
This can be understood by taking eB → ∞ in Eq. (88).
In this case, cothðeBsÞ ≃ 1, and hence, the gauge-

dependent term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ cothðeBsÞ

p
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ 1

p
. Therefore,

the extraction scheme of Eq. (91) breaks down when T is
not much smaller than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ eB
p

. In this case, it may be
better to introduce a small isospin chemical potential and

extract the charged pion mass from the isospin density as it
is more sensitive to the energy.

B. Charged pions as composite particles
in the NJL model

In the NJL model, the charged pions are composite
bosons. If we choose the vector potential A ¼ A⊥, we can
extract their mass at zero temperature from Eq. (78) at large
τ. The results for different gauge parameters ξ are illus-
trated in Fig. 6. Regardless of the numerical accuracy, the
gauge independence seems to be still well satisfied. Our
numerical results also agree well with the result from the
momentum-space RPA.
The gauge independence can be exactly proven as

follows. For the present choice of the vector potential
A ¼ A⊥, we have

PcðτÞ ¼
Z

∞

0

dK2⊥
eBξ

J0

�
K2⊥
eBξ

�

×

�Z
∞

−∞

dK4

2π
e−iK4τD̄cðK4;K⊥; K3 ¼ 0Þ

�
: ð92Þ

FIG. 4. The behavior of the correlation function PcðτÞ at finite
temperature in the free point particle model.

FIG. 5. The charged pion mass in the free point particle model
as a function of T with the gauge constant ξ varying from 0 to 1
for eB ¼ 0.5 GeV2 (red band) and eB ¼ 2.0 GeV2 (blue band).

FIG. 6. The charged pion mass squared as a function of eB in
the NJL model, with the gauge constant ξ varying from 0 to 1.
The result from themomentum-space RPA (red dotted line), which
discards the Schwinger phase, is also shown for comparison.
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The integral over K4 can be converted to a contour as we
have done for the neutral pion. For τ → ∞, it is going to
pick up the lowest branch of the poles forK0 determined by
the pole equation

1þ 2gΠ̄cðK4 → −iK0;K⊥; K3 ¼ 0Þ ¼ 0: ð93Þ
For convenience, we denote this K⊥-dependent pole as
EðK⊥Þ. Therefore, for τ → ∞, the correlation function
PcðτÞ goes as

PcðτÞ ∼
Z

∞

0

dK2⊥
eBξ

J0

�
K2⊥
eBξ

�
exp ½−τEðK⊥Þ�

¼ 1

eBξπ

Z
∞

−∞
dK1

Z
∞

−∞
dK2J0

�
K2

1 þ K2
2

eBξ

�

× exp ½−τEðK1; K2Þ�: ð94Þ
While the integral over K⊥ ¼ ðK1; K2Þ cannot be carried
out analytically, we can use the Laplace method for
τ → ∞. We suppose the global minimum of the disper-
sion EðK1; K2Þ on the K1 − K2 plane is located at
ðK1; K2Þ ¼ ðu1; u2Þ, i.e.,

minfEðK1; K2Þg ¼ Eðu1; u2Þ: ð95Þ

Using the Laplace method, we arrive at the large-τ behavior

PcðτÞ ∼ exp½−τEðu1; u2Þ�; ð96Þ

where the prefactors are irrelevant for the mass and are not
shown here. Therefore, the mass is exactly determined by
the minimum of the dispersion EðK⊥Þ solved from the
pole equation. If the minimum is located at K⊥ ¼ 0, this
justifies the momentum-space RPA which discards the
Schwinger phase and solves the pole mass at K ¼ 0. In
Fig. 7, the numerical results show that the minimum is
always located at K⊥ ¼ 0 for different values of eB.
For a general choice of the vector potential A, we can

also show that mass is exactly determined by the minimum
of the dispersion EðKÞ solved from the pole equation in the

momentum-space RPA. In this case, we can directly start
from the correlation function

Dcðτ; r; τ0; r0Þ ¼ eiΦðr;r0Þ
Z

d4K
ð2πÞ4 e

−iK4ðτ−τ0ÞeiK·ðr−r0ÞD̄cðKÞ

¼ eiΦðr;r0Þ
Z

d3K
ð2πÞ3 e

iK·ðr−r0Þ

×
Z

∞

−∞

dK4

2π
e−iK4ðτ−τ0ÞD̄cðK4;KÞ: ð97Þ

Because of the translational invariance in the temporal
direction, we can set τ0 ¼ 0. For τ → ∞, the integral over
K4 picks up the lowest branch of the poles K0 ¼ EðKÞ
determined by the pole equation in the momentum-space
RPA,

1þ 2gΠ̄cðK4 → −iK0;KÞ ¼ 0: ð98Þ

Therefore, for τ → ∞, the correlation function goes as

Dcðτ; r; r0Þ ∼ eiΦðr;r0Þ
Z

d3K
ð2πÞ3 e

iK·ðr−r0Þe−τEðKÞ: ð99Þ

We suppose the global minimum of the dispersion EðKÞ is
located at K ¼ u, i.e.,

minfEðKÞg ¼ EðuÞ: ð100Þ

Using the Laplace method, we arrive at the large-τ behavior

Dcðτ; r; r0Þ ∼ eiΦðr;r0Þeiu·ðr−r0Þe−τEðuÞ; ð101Þ

where some prefactors are not shown. Here we see clearly
that the Schwinger phase can be discarded if we only need
to determine the mass. Normally, the minimum of the
dispersion is located atK ¼ 0, i.e., u ¼ 0. This justifies the
validity of the momentum-space RPAwhich solves the pole
mass from Eq. (98) at K ¼ 0. This argument can be
extended to other charged mesons in a constant magnetic
field, such as charged rho mesons [19].

V. SUMMARY

We investigate the masses of neutral and charged pions
in a constant magnetic field within the NJL model. To fully
take into account the Schwinger phase, we start from the
meson correlation functions in the coordinate space and
determine the meson masses from the exponential behavior
at large imaginary time. Within this imaginary-time
method, we show numerically and analytically that the
mass of the charged pions is independent of the choice of
the vector potential for the constant background magnetic
field. We also demonstrate that the previously used
momentum-space RPA [19,40], which simply discarded
the Schwinger phases and determined the meson mass as

FIG. 7. The dispersion EðK⊥Þ of the charged pions for different
values of eB in the NJL model.
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the pole at zero momentum, is actually equivalent to the
imaginary-time method used in this work.
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APPENDIX: ILLUSTRATION OF EQ. (66)

For any two given spacetime points Z and Z0, the
correlation function DcðZ; Z0Þ is given by Eq. (62).
Using the expression (59), we have

DcðZ;Z0Þ ¼ δ2Wð2Þ
MF½J�

δJþðZÞδJ−ðZ0Þ

¼−
δ

δJþðZÞ
Z

d4X
Z

d4X0ðJþðXÞ VþðXÞÞ
� ΠðX;X0Þ −ΠðX;X0Þ
−ΠðX;X0Þ δð4ÞðX−X0Þ

2g þΠðX;X0Þ

��
1

δV−ðX0Þ
δJ−ðX0Þ

�
δð4ÞðX0−Z0Þ

¼−
δ

δJþðZÞ
Z

d4X
Z

d4X0ðJþðXÞ VþðXÞÞeiΦðX;X0Þ
� Π̄ðX−X0Þ −Π̄ðX−X0Þ
−Π̄ðX−X0Þ δð4ÞðX−X0Þ

2g þ Π̄ðX−X0Þ

��
1

δV−ðX0Þ
δJ−ðX0Þ

�
δð4ÞðX0−Z0Þ

¼−
δ

δJþðZÞ
Z

d4X
Z

d4X0ðJþðXÞ VþðXÞÞeiΦðX;Z0Þ
� Π̄ðX−X0Þ −Π̄ðX−X0Þ
−Π̄ðX−X0Þ δð4ÞðX−X0Þ

2g þ Π̄ðX−X0Þ

��
1

δV−ðX0Þ
δJ−ðX0Þ

�
δð4ÞðX0−Z0Þ

¼−
δ

δJþðZÞ
Z

d4X
Z

d4X0ð J̄þðXÞ V̄þðXÞÞ
� Π̄ðX−X0Þ −Π̄ðX−X0Þ
−Π̄ðX−X0Þ δð4ÞðX−X0Þ

2g þ Π̄ðX−X0Þ

��
1

δV̄−ðX0Þ
δJ̄−ðX0Þ

�
δð4ÞðX0−Z0Þ

¼−
δ

δJþðZÞδJ̄−ðZ0Þ
Z

d4X
Z

d4X0ð J̄þðXÞ V̄þðXÞÞ
� Π̄ðX−X0Þ −Π̄ðX−X0Þ
−Π̄ðX−X0Þ δð4ÞðX−X0Þ

2g þ Π̄ðX−X0Þ

��
J̄−ðX0Þ
V̄−ðX0Þ

�

¼ δ2W̄ð2Þ
MF½J̄�

δJþðZÞδJ̄−ðZ0Þ ¼ eiΦðZ;Z0Þ δ2W̄ð2Þ
MF½J̄�

δJ̄þðZÞδJ̄−ðZ0Þ : ðA1Þ

Notice that the generating functional is changed in the last line. The phase term in the original generating functionalWð2Þ
MF½J�

is the Schwinger phase exp ½iΦðX;X0Þ�, while it becomes exp ½iΦðX; Z0Þ þ iΦðZ0; X0Þ� in the modified version W̄ð2Þ
MF½J̄�.

Fortunately, the new phase term yields to the Schwinger phase when performing the variational derivativewith respect to the
source J̄− located at Z0. The last line provides an equivalent functional definition of the charged pion correlation function,
which is convenient for us to perform the calculation.
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