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We investigate the properties of neutral and charged pions in a constant background magnetic field
mainly at zero temperature within the Nambu—Jona-Lasinio model. In the previous calculations, the Ritus
method involving Schwinger phases in a fixed gauge was employed within the momentum-space random
phase approximation (RPA) [M. Coppola et al., Phys. Lett. B 782, 155 (2018).]. However, gauge invariance
of the charged pion masses has not yet been examined. In this work, by adopting the linear response theory
based on the imaginary-time path integral formalism, we derive the correlation functions for pions in
coordinate space, where the corresponding Schwinger phases show up automatically. At sufficiently large
imaginary time 7, the meson correlation function approaches an exponential form ~ exp(—Egz), where Eg
is the ground-state energy of the one-meson state and hence determined as the meson mass. Furthermore,
we show that the mass of the charged pions is gauge independent, i.e., independent of the choice of the
vector potential for the magnetic field. Actually, we also find that the momentum-space RPA is equivalent

to the imaginary-time method used here.

DOI: 10.1103/PhysRevD.104.074026

I. INTRODUCTION

The properties of quantum chromodynamics (QCD)
matter in a strong magnetic field have recently attracted
much attention in high energy nuclear physics [1-4]. The
significance of this topic is mainly relevant to strong
magnetic fields found in various real systems related to
QCD: the surface of magnetars [5,6], the inner core of
pulsars [7,8], and the fireballs produced in peripheral heavy
ion collisions [9—-11]. The external magnetic field serves as
an extra dimension and enriches the QCD phase diagram
[2,3,12,13]. Meanwhile, magnetic-field-induced effects
have been proposed theoretically and can be probed in
recent or future experiments, such as the chiral magnetic
effect [14,15], neutral pion condensation [16], and disput-
able superconductivity in magnetized vacuum [17-19].

The chiral symmetry breaking or restoration is one of the
most important aspects of QCD under extreme circum-
stances. At zero temperature, it was proposed that an
external magnetic field enhances the chiral condensate
known as the magnetic catalysis effect [20,21]. However,
around the critical temperature, lattice QCD calculations
found that the external magnetic field reduces the chiral
condensate, which is now called the inverse magnetic
catalysis effect [22-24]. On the other hand, the meson
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properties in a magnetized QCD system have been studied
extensively. In the massless limit, the SU(2) chiral sym-
metry of two-flavor QCD is explicitly broken down to a
U(1) subgroup by the external magnetic field, and thus,
only the neutral pion is the Goldstone boson associated
with the spontaneous breaking of the residual chiral
symmetry. The properties of both neutral and charged
pions in a constant magnetic field at zero and finite
temperature have been studied by utilizing lattice QCD
simulations [18,25-30], chiral perturbation theory [31,32],
chiral effective models including the linear sigma model
[33-35] and Nambu—Jona-Lasinio (NJL) model [36-46] as
well as its Polyakov-loop extension [47], and other effec-
tive models [48,49]. For the neutral pion, there is no
ambiguity on the definition of its pole mass as the
Schwinger phase [50] vanishes. It was found that the
neutral pion mass is reduced by a weak magnetic field,
whereas its tendency in stronger magnetic field is still
uncertain [18,25-30,36-46]. For charged pions, the non-
vanishing Schwinger phase makes it hard to perform a
complete momentum-space calculation. Nevertheless, in a
recent work [42], the Schwinger phases of charged pions
have been taken into account via the Ritus method, and a
monotonical increase of the charged pion mass with the
magnetic field strength was found. Recent lattice QCD
results [29,30], however, showed that the charged pion
mass starts to decrease at sufficiently large magnetic field.

So far, most of the investigations of the charged pion
properties were performed in a fixed gauge, i.e., the Landau
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gauge or the symmetric gauge. Before we seek a way to
understand the lattice results for the charged pions, the
gauge independence of the pion masses needs to be
examined preferentially. In this work, we investigate
the pion masses in a constant magnetic field and their
gauge independence within the NJL model. In the
framework of the NJL model, mesons are regarded as
collective excitations of quark-antiquark pairs and can be
constructed by using the random phase approximation,
which guarantees the Goldstone theorem [51-53]. In the
absence of external magnetic field, the RPA can be easily
performed in momentum space. However, in an external
magnetic field, momenta are no longer good quantum
numbers for charged mesons. In this case, the presence
of a nonvanishing Schwinger phase renders the RPA
impossible to be carried out in momentum space.
Modified schemes to apply the RPA include discarding
the Schwinger phase [19,40], local expansion of the
Schwinger phase [38], and the Ritus eigenfunction
method [42].

In this work, we perform the RPA directly in coordinate
space inspired by recent lattice QCD calculations
[26,29,30]. The two-point correlation function of a meson
in coordinate space can be derived by using the path
integral formulation of the linear response theory [54,55].
Applying the imaginary-time path integral and integrating
over the spatial coordinates, the correlation function
approaches an exponential form ~exp(—Egz) at suffi-
ciently large 7. The ground-state energy Eg of the one-
meson state thus determines the meson mass and is shown
to be gauge independent within the NJL model, regardless
of the choice of regularization scheme. We show numeri-
cally and analytically that the previously used momentum-
space RPA, which simply discarded the Schwinger phase
for charged pions and determined the pion masses as the
poles at zero momentum, is actually equivalent to the
imaginary-time method used in this work. Note that a
recent work in the linear sigma model showed that the
magnetic-field-induced vertex modification is also gauge
invariant even though additional Schwinger phase
dependence of the quark-meson coupling was taken into
account [56].

The paper is organized as follows. In Sec. II, we show
that the meson mass can be defined via the meson
correlation function at large imaginary time and establish
a theoretical framework to calculate the meson correlation
functions in a constant magnetic field in the two-flavor
NJL model. In Sec. III, we calculate the correlation
function of the neutral pion, from which the neutral pion
mass is extracted. In Sec. IV, the correlation function and
mass of the charged pions are studied. A general proof of
the gauge independence of charged meson masses and the
equivalence between the momentum-space RPA and the
imaginary-time method is also presented. We summarize
in Sec. V.

II. PION CORRELATION FUNCTIONS

We start from the imaginary-time correlation function for
a mesonic state in a magnetized QCD vacuum,

Dy(z. 17, 1) = (vac|T,d(z, )" (7, v)|vac), (1)

with |vac) being the vacuum state of the system, 7 being the
imaginary time, and T, denoting the imaginary-time order.
The composite field operator for the mesonic state ¢(z, r) is
constructed by using the quark field operator v,

A

¢(z.1) =y (r. 0Ty (z ), (2)

where the matrix Iy characterizing the mesonic state can
be decomposed as I'yy = I'p @ I['g, with I and I'r being
matrices in the spin and flavor spaces, respectively. In this
work, we are interested in the pions and hence, I'p = iys.

Because of the translational invariance in the temporal
dimension, we set 7 = 0 without loss of generality. Since
we are interested in the limit 7 — oo, we focus on the case
7 > 0. In this case, we have

Du(z, 1, v') = Dy(r,1;0,1)

= (vacle™ s (r) e G (1) |vac),  (3)

where H is the Hamiltonian of the system, ¢g(r) = $(0, )
is the composite field operator in the Schroedinger
picture, and we have used the time evolution ¢(z,r) =
et $(0, r)e"ﬂ . The vacuum state is the ground state of the
Hamiltonian A, with the eigenenergy being the vacuum
energy Eyge i.e., e|vac) = e |vac). Since the follow-
ing derivations are only related to the one-meson states, we
can set E,,. = 0 without loss of generality.
Now the correlation function becomes

Dy(z.r.r) = (vaclgs(r)e " d{(r)[vac).  (4)

The composite field operator (;ﬁg(r) acting on the vacuum
state is only related to the one-meson states. Denoting the
one-meson states as |M;), with / being the collection of
quantum numbers, we can write

Pe(r)lvac) = > fi(0)My), (vaclds(r) = > f7(r) (M.
1 1
(5)

The expansion coefficients f;(r) are not important for
the determination of the meson mass. The one-meson
states |M;) are also the eigenstates of the Hamiltonian,
with eigenenergies E;. Therefore, the meson correlation
function can be expressed as
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(z.r.r') = )My My) e

> fim)fu(r

Lr

= fi)fi(F)e (6)

where we have used the fact (M;|M;) = ;.
The meson mass my; is defined as the lowest eigene-
nergy of the one-meson state, i.e.,

my = Eg = mlin{El}. (7)

Equation (6) shows that at large positive 7 (z — o), only
the term with the lowest energy Eg survives, that is

Dy(z.r.x') = fG(r)fo(r)e . (8)

Therefore, we can utilize the exponential form exp(—Eg7)
at large positive 7 to extract the meson mass my;. For a
system with translational invariance, the correlation func-
tion is only a function of the relative coordinate r — r’. We
can set r' = 0 and define

Pu(7) E/d3rDM(r, r,0). )

Since the exponential form exp(—Eg7) at large positive 7 is
not related to the translational invariance, for a system
without translational invariance, we can still set ¥/ = 0 and
define Py;(7) in the same way. In any case, we can extract
the meson mass my = Eg from the large-r behav-
ior Py (7) ~ exp(—Eg7).

On the other hand, the correlation function can also be
defined and computed from the imaginary-time path
integral formalism. To this end, we define the partition
function in the presence of external sources,

:/D[y—,,v,,...] exp Ud“X(ﬁ+J¢+J*¢T) ,
(10)

where ¢ = yTyy and [d*X = [dr [d*r. We will also
use the notation X = (z,r) in the following. While
the explicit form of the partition function replies on the
effective model we adopt, the meson correlation function

can be calculated through the generating functional
W|J| = In Z[J]. We have

SWIJ]
57 (X)8J " (X)|,_y—o’
The above formalism is valid for charged mesons (complex

scalar bosons). For a neutral meson, i.e., ¢ = ¢, only the
source term J¢ is needed, and we have

Dy(X.X') = (11)

W]
8J(X)8J (X')| o’

Now we adopt a chiral effective model of QCD, the NJL
model. To study the pion properties, it is sufficient to
consider the two-flavor case. The Lagrangian density of the
two-flavor NJL model is given by

Dy(X.X') = (12)

Ly = @(i@ = mo)w + gl(pw)* + (Fiystw)?],  (13)
where y = (u, d)T represents the two-flavor quark field, m
is the current quark mass, g is the coupling constant of the
four-fermion interaction, and z; (i = 1,2,3) are the Pauli
matrices in flavor space. In the presence of an external
electromagnetic field, the normal derivative 0, is replaced
by the covariant one D, = 9, —iQA,, where the quark
charge matrix reads Q = diag(Q,, Q4) in flavor space, with
Q. =2e/3, Q4= —-e/3, and e being the elementary
charge. In this work, we consider a constant magnetic
field with strength B along the z direction. Thus, we choose
Ay = 0 and the vector potential A satisfies the equation
V x A = BZ. The general solution for the vector potential
can be expressed as A = A | + A’, where A’ has a curl of
zero, V x A’ = 0. The rotational part A | is chosen as

Bx

A=-(1+9F i+ (-9 (14

Here the parameter £ is an arbitrary real number. The
symmetric gauge and the Landau gauge correspond to & =
0 and & = +£1, respectively.

The partition function of the NJL model is given by (10)
with £ — Ly To study charged pions, we introduce the
source term J ¢ + J_¢", where

V2iiysd,  ¢' = gT_y = V2diysu,

(15)

¢ =yl y=

with

T, ity

V2

For the neutral pion, the source term is J¢, with ¢ = w3y
and I'; =iys73. The four-fermion interaction can be
decoupled by applying the Hubbard-Stratonovich trans-
formation which also introduces auxiliary meson fields
6(X) and z(X). Integrating out the quark fields, we obtain

(16)

Iy =iys

= /Do-Dnexp{—SJ[G,ﬂ]}, (17)

where the action reads
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2(X) +72%(X)

Sj[a,ft]:/d4X6 15 -TrinG;'(X,X'). (18)

Here the trace Tr is taken over the coordinate, color, flavor,
and spin spaces. To study charged pions, we introduce the
sources J, and J_. The inverse of the quark propagator is
given by

G;' (X, X") = [ip — my — o(X) — iyst - 2(X)
+J.(X)C, +J_(X)r_]s® (X = X'). (19)

Assuming that the external sources are small, we can
expand the generating functional W[J] =1nZ[J] in
powers of the external sources, W[J] = W + W [J] +
W®)[J] + - --. The correlation function for charged pions

D.(X,X') is related to the second-order term W®)[J].
We have

W] = / d*x / d*X'J (X)D.(X, X")J_(X").  (20)

To study the neutral pion, we introduce a single source J.
The inverse of the quark propagator is given by

G;'(X.X') = [ip — mg — o(X) — iyst - 2(X)
+ J(X)T5]6W (X = X7). (21)

The correlation function for the neutral pion D, (X, X’) is
related to the second-order expansion W) [J],

W] :% / d*x / d*X'J(X)D, (X, X")J(X'). (22)

To evaluate the partition function Z[J] and the generat-
ing functional W/[J], we use the mean-field approximation
(MFA). In this approximation, the quantum fields ¢(X) and
(X) are replaced by their classical fields. In the path
integral formalism, this is equivalent to replacing the
auxiliary fields o(X) and #(X) with their saddle point
values (SPVs), o, (X) and 7., (X). The partition function is
now approximated as

Z[‘]} ZCXp{—S][USp,ﬂ'Sp]}. (23)
The SPVs should be determined by the extreme condition

—0. 38)low. ] _ 0. (24)
o0 ong,

58/ [53p ’ ”sp}

In the absence of external sources, the SPVs are static and
homogeneous. We set 64, (X) = v, 7, (X) = 0. Here, v =
—2¢(pw) contributes to the effective quark mass. However,
in the presence of external sources, the SPVs may not be
static and homogeneous. To study the pion correlation

functions, we are interested in the response to infinitesimal
external sources. We expect that the induced perturbations
to the SPVs are also infinitesimal. Therefore, the SPVs can
be expressed as

op(X) =0+ UX),  7p(X)=0+V(X), (25)

where U(X) and V(X) = (V,,V,,V3) are infinitesimal
perturbations induced by the external sources.
In MFA, the generating functional W[J] is simply
given by
WyirlJ] = =S;ogp. 7). (26)

sp»

For infinitesimal external sources, it becomes

Wrld) = = [ &X{fo-+ ()]

+2V (X)V_(X) + V3(X)}

+ Trin[G~'(X, X') = Z(X)6W (X, X))],  (27)
with the notation

Vi(X) F iVy(X)

Here, the inverse of the quark propagator in MFA reads

Vi(X) = (28)

G'(X,X') = (ip - M)W (X - X'), (29)

with M = my+ v being the effective quark mass. For
charged pions, the J-dependent part X is defined as

Z(X) =UX) + [Vo(X) = T (X)]r,
+ [Vo(X) = J_(X)T- + V5(X)5. - (30)

For the neutral pion, it is

S(X) = UX) + V. (X)T, + V_(X)T_
+ [V3(X) = J(X)]. (31)

Using the derivative expansion
Trin[G' (X, X') — Z(X)6™W (X, X")]
=Trin[G7'(X,X")] - / d*XTr[G(X, X)Z(X)]
—%/d4X/d4X’Tr[g(X,X’)Z(X’)Q(X’,X)Z(X)]+---,
(32)

we can expand the generating functional Wyg[J] in powers
of the external sources and the induced perturbations,
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0 1 2
Wirll] = Witk + Waeld] + Wageld] + -+ (33)
Note that the trace over the coordinates has been taken in
the expansion, and the trace Tr is now over the color, flavor,
and spin spaces. The extreme of the zeroth-order term

81/\/%: /Ov = 0 gives rise to the gap equation in a constant
magnetic field. Using the vacuum regularization scheme
[57-60] and introducing a proper-time variable s, we can
express the gap equation as

M—=mo _ N M TA 1+ A arctanh A
2g M M? VM? + A2
/ —sM |: st 1:|
e s |tanh(Bs) '

(34)

Here, A is the three-momentum cutoff in vacuum, N, = 3
is the number of the color degrees of freedom, and
By = OyB. We note that this form of the gap equation
does not depend on the gauge for the vector potential A. It

is easy to check that the first-order term Wl(vl[)F [J] vanishes.
The pion correlation functions can be extracted from the

second-order term Wl(vzlf; [/]. To evaluate this term, we need
to know the expression of the quark propagator G(X, X’). A
direct Fourier transformation to momentum space is
impossible because of the lack of translational invariance.
In flavor space, it is diagonal and can be written as
!
Gox) = (P D) 6
0 Ga(X. X')

According to Schwinger’s proper-time method [50], the
propagator of each flavor G¢(X,X’) (f =u,d) can be
decomposed as

Gr(X.X) = e XXIGi (X — X), (36)

where the Schwinger phase reads

(X, X) = O /XA,,dXﬂ —0 /rA-dr, (37)
X/

v
in which the integral is calculated along the straight line.
While the Schwinger phase is explicitly gauge dependent
and breaks the translation invariance, the remaining part
G¢(X — X') is translation invariant and does not depend on
the gauge for A. It is convenient to define the Fourier
transformation of G¢(X — X’) as

Gix-x)= [ 8

(2rz)* e KRG (K), (38)

where we work in Euclidean space and K = (K, K;). In our
convention, K -X = K,z — K -r. The momentum-space
version is given by

Gf(K) = /00 dse” s(M?+K3+K7 ‘d“‘;(fljf:))
0
X [M - K+ i(KZ}/l — Kl}’z) tanh(st)]
X [1 4 iy,y, tanh(Bgs)], (39)

where we use the notations K, = (K, K;) and K| =
(K3, K4) here and in the following.

III. THE NEUTRAL PION

For the neutral pion, we can show that the induced
perturbations U(X) and V. (X) do not couple to the source
J(X) in the second-order term Wﬁ% [/] by completing the
trace in flavor space or spin space. Therefore, these induced
perturbations should be of order O(J?) and can be
neglected. The relevant terms can be written as

WL / ‘X / EX(J(X) V(X))
(X, X') _II(X, X)
. (—H(X, X) Le(x - x) +H(X,X’))
() 40

Here the polarization function for the neutral pion is
defined as

(X, X') = ZTr[gf(X, X")iysGe(X', X)iys]
f=u,d
= > TrlGe(X ~ X)irsGr(X' = X)iys].  (41)
f=u,d

Here we see that the Schwinger phase of each flavor cancels
exactly, in accordance with the charge neutrality of the
neutral pion. Performing the Fourier transformations

4
100 = [ G

4
Vy(x) = / TK iwxy (), (42)

e—iK-XJ(K)’

w0 seme) () @
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where the momentum-space version of the polarization
function reads

-3 [
fud

The induced perturbation V5 (K) should be solved by using
the extreme condition. Up to order O(J), it is determined

P)iysGe(P + K)iys].  (44)

by the extreme of Wﬁ% Using the fact II(—K) = I1(K),
we find
Vi) =38y 1 owr) (45)
’ +I(K) '

Substituting this solution into (43), we finally obtain
D3

4 2 2
/ d*p / 1s/ lte™ s|M? +P
f=u,d

x {sech?(Bgs)sech?(B;t)P, - (K + P), +

In accordance with the gap equation, here we also use the
vacuum regularization scheme [57-60] to regularize the
ultraviolet divergence. The polarization function is decom-
posed into a vacuum term and a B-dependent term,
TI(K)

= My (K) + T(K). (50)

The divergence in the vacuum term is regularized by
using the same three-momentum cutoff A as in the gap
equation (34). We write

d4P
8N, /

x O(A - |P]).

M2 +P-(P+K)
+ (P + K)?|(M?* + P?)
(51)

Here the notation P- K =P - K + P,K, is used. The B-
dependent term Ilz(K) = II(K) — limp_oII(K) is finite
and characterizes the effects induced by the magnetic field.

The space-integrated correlation function of the neutral
pion P, (z), which is only a function of the imaginary time
7, can be evaluated as

Pa(r) = /d3an(r, r;7 =0,r =0)

d*K .
— /d3r/ 4e—z(K4r—K~r)Dn(K)
[

dK4 —lK4TD
o 27

dK,
—2 cos(K47)D, (K4, K = 0).
p3

(K4, K=0)

(52)

d*K
(2z)*

1
2
Wikl = 5 J(=K)Dy(K)J(K).  (46)
where the correlation function of the neutral pion is
given by

1(K)

DaK) = =5 T 2411(K)

(47)

Its coordinate-space version is obtained via the Fourier
transformation

D,(x.x) = [

The polarization function IT1(K) can be evaluated as

d*K
(2x)*

e~ KX=X)D (K). (48)

+P2 ldnh(va)]

2 tanh(Bg1)
1L Bgs ]

1L Byt

(K+P)

e—l[Mer(KJrP)H

[M> + P - (K+P)][1 + tanh(Bgs) tanh(B;t)]}. (49)

|
In the last line, we have used the fact that the polarization
function I(K) is even in K. Here we see that the integration
over r forces the momentum K to be zero. For vanishing K,
the polarization function TI(K) can be simplified.
Completing the integral over the four-momentum P and
substituting the proper-time variables with s — (1 + u)s/2
and r — (1 —u)s/2, we obtain

o0 1 2
K. K =0) ds [ due(5KiHMYs
( 4 8ﬂ2f§1/ s/_] ue Va4
1—u? , 1 5
X 4 K4 - ; -M Bf COth(BfS)
B
- . 53
sinhz(st)} (53)

Meanwhile, the vacuum term in Eq. (51) becomes

8N VP2 + M?

4(P2 +M?) + K3’

M, (K, K = 0)
(54)

Now we present our numerical results. For the two-flavor
NJL model, we use the parameter set g = 4.93 GeV~2,
A =0.653 GeV, and my = 5 MeV determined by fitting
the pion mass m, = 0.134 GeV, the pion decay constant
f==93MeV, and the quark condensate (Gu)=
—(0.25 GeV)? in vacuum at vanishing external magnetic
field [61]. We calculate the neutral pion mass m(eB) by
fitting the large-z behavior P, ~ exp(—tm_o). The numeri-
cal result is shown in Fig. 1.
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FIG. 1. The mass of the neutral pion m o (eB) normalized by the
vacuum pion mass m, = 0.134 GeV as a function of eB. The
blue dots are our results extracted from the correlation function in
the NJL model using the imaginary-time method. The result from
the momentum-space RPA (red dotted line) is presented for
comparison.

As a comparison, we also show the pole mass obtained
from the momentum-space RPA [19], i.e., the solution of
the pole equation in Minkowski space,

1+ 2¢T1(K, — —iKy. K = 0) = 0. (55)

The two results are in perfect agreement, as we expected.
The agreement can be analytically proven as follows. Let us
consider the following integral:

ﬂﬂz/ff-%wmo (56)

where F(K,;) is an arbitrary function. Rotating to
Minkowski space by substituting K, — —iK,, we obtain

100 = [Ttk (57)
—ico 2ri

where f(K,) = F(—iK,). To proceed, we suppose that
F(K4) has no real poles for Ky; i.e., f(Kj) has no poles on
the imaginary axis of the complex K, plane. For 7 > 0, we
can close the integral path along the imaginary axis with a
semicircle at infinity in the right half plane, obtaining

7(0) = § G0 ek (Ko) =

2
/d“X/d“X’ Jo (X

ZResf E))e Er (58)

) v

WMF

(X, X')
—TI(X, X')

0.0 0.5 1.0 1.5 2.0
eB [GeV?]

FIG. 2. The effective quark mass M and the binding energy Ey
as a function of eB.

where E; (I =0, 1,2, ...) are the poles of f(K) in the right
half plane, and Resf(E;) are the corresponding residues.
Assuming that the pole E, with minimal real part is real, we
find that for 7 — oo, Z(z) ~ e~£07. Thus, the obtained mass
E, is exactly the same as the pole mass solved from the pole
equation.

While the neutral pion mass from the above NJL model
calculation shows a nonmonotonic behavior, i.e., it turns to
increase at large magnetic field (eB > 0.8 GeV?), recent
lattice QCD calculations indicate a monotonic decrease
[26,28-30]. This could be understood from the binding
energy of the neutral pion, E,, = 2M — m . The numerical
result from the NJL model is demonstrated in Fig. 2. If the
monotonic decrease observed in lattice QCD calculations is
true, it indicates that the binding energy E, is under-
estimated or the magnetic catalysis is overestimated in the
NJL model. We may need to improve the NJL model by
adopting a nonlocal interaction [32] or an eB-dependent
coupling constant [37].

IV. CHARGED PIONS

For charged pions, we can show that the induced
perturbations U(X) and V;(X) do not couple to the sources
J 1 (X) in the second-order term Wl(vzu): [J] by completing the
trace in flavor space or spin space. Therefore, these induced
perturbations should be of order O(J2) and can be
neglected. The relevant terms can be written as

—I1(X, X’) ) (]_(X’) ) (59)

Lo (x - x)+n(x.x) )\ v_(x)

Here the polarization function for charged pions is defined as

TI(X, X') = 2Tr[Gy(X, X")iysGa(X', X )iys] = 2 *XXITr(Gy (X = X")iysGa(X' = X)iys). (60)

The Schwinger phase ®(X, X’) can be evaluated as

X X' X
DX, X) = B, (X, X') + By(X', X) = Qu/ AﬂdX"—i—Qd/ A, dx" :e/ wa (61)
X' X !
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Thus, ®(X, X’) is just the Schwinger phase of the composite charged pions. For any two spacetime points Z and Z', the
correlation function of charged pions D.(Z, Z') is given by

W EWRl]
D.(Z,7') = ng_(z). (62)

To separate the Schwinger phase, we define the following reduced generating functional:

i = [ax [exo v ( 5T e T ) (). e

—I(X -X") 569X -X)+ X -X) )\ V_(X)
where the reduced polarization function is defined as
(X = X) = 2Tr[Gy (X = X")iysGa(X" = X)iys]. (64)
and the reduced sources are given by
J.(X) = J,.(X)e®X2) Y (X) =V, (X)X J_(X) =J_(X)e®ZX), V_(X')=V_(X)e*ZX)  (65)

Note that here Z’ is an arbitrary given spacetime point designed to calculate the correlator D.(Z, Z'). Expression (63) has
formal translational invariance. If we reexpress it in terms of the original sources J. and V., the phase term
expli®(X,Z') + i®(Z',X")] appears. This is in contrast to the Schwinger phase term exp [i®(X,X’)] appearing in
(59). Using this reduced generating functional, we can show that

P Waiel7]

D Z,Z/ — i@(z,z’)*'
() = S @I (2)

(66)
The proof of this result is tedious but straightforward. The details are presented in Appendix. We note that the phase term
exp[i®(Z', X’)] reduces to unity automatically, and the phase term exp[i®(X,Z’)] reduces to the Schwinger phase
exp[i®(X, X")] when we do the variational derivative with respect to the source J_ located at Z'.

Performing the Fourier transformations

. K- _ d*K
TeX) = [ e ™ I2K), Va0 = / G VLK), (67)
we obtain
@ [AK (ﬁ(K) ~TI(K) )(1(1@)
M= [ G 00 70 e 1 one ) (5 ) (68)
where the momentum-space version of the reduced polarization function reads
- P .
1K) =2 [ GG P)rsGulP + K)irs) (69)

The induced perturbations V', (K) should be solved by using the extreme condition. Up to order O(J), it can be determined
by the extreme of V_Vl(\iz; We obtain

_ k) - _
Vo(K)= ——J,.(K)+ O(J%). 70
+(K) = T <) + O (10)
Substituting this solution into (68), we finally obtain
-2 = d*K - - -
2
Wl = [ Gl (KPR (K. )
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where can be understood as the reduced correlation function of
charged pions in momentum space without the Schwinger
phase. Therefore, the full correlation function of charged
pions based on Eq. (66) reads

_ I(K)

D.(K) = T3 20(K) (72)

d*K

o) d*K o—iK-(2-2) 1(K)
V4

DAZ.7) = id)(Z,Z’)/ ~iK(Z-Z)D (K) = — iCD(Z,Z’)/ R 73
o(2.2) = ¢ o(K) =~ (27)" T+ 2M1(K) 73)

The reduced polarization function I1(K) can be evaluated as

2 tanh(Bg1)

fI(K) = =8N, / ((2141;‘4 / ™ dsdpe™ MHRTHPLER M (PR (PK)L =]
)" Jo

x {sech?®(B,s)sech*(B47)P, - (P +K) | + [M? + P - (P + K)|[1 + tanh(B,s) tanh(Bys)]}. (74)

Again it is decomposed into a vacuum term and a B-dependent term,

M(K) = y(K) + Hz(K). (75)

The regularized version of the vacuum term ITy, (K) is given by Eq. (51).
For the general decomposition of the vector potential A = A | + A’, the Schwinger phase ® can be evaluated as

or.x) e ["A-dr = =T’ =) + elay = 23] + clplw) - pl1)] (76)

Here we have defined A’ = V¢ due to the fact that A’ has a curl of zero. Then, the space-integrated correlation function of
charged pions P.(z), which is only a function of the imaginary time z, is given by

4
. K _. -
Pe(z) = / FrD(z, 17 = 0,1’ = 0) = / d3r{e'¢<r~0> / —éﬂ)4 e~ (K=KND (K) | (77)

A complete study of the gauge dependence is rather complicated due to the large functional space of ¢(r). In the following,
we first neglect A’ and focus on the dependence on the parameter & In this case, the integral over r can be carried out to
obtain

 [dK, =dK? (K} B
Pc(f)—/o ﬂCOS(Kﬂ)/O eBE Jo(el% D.(K4, K, K3=0), (78)

Here, Jy(x) is the zeroth-order Bessel function of the first kind. Unlike the case for the neutral pion, here the space
integration only forces K53 = 0. If we work in the symmetry gauge (¢ = 0), the transverse momentum is also forced to be
zero because of the fact

i, (K1) sk2) (79)
—~0eBE "\ eBé L

For vanishing K3, the polarization function T1(K) can be further simplified by substituting the proper-time variables with
s = (1+u)s/2 and t — (1 — u)s/2. We obtain

_ N oo 1 - 1—u? 1
MKy Ky K3 =0) =7 02/ dS/ due™ 42"’(3—“”2‘1'("*”Kifz(s,u){[ 4M K3 —~—M?|[1 + tanh(Bys) tanh(By's)]
T~ Jo —1 N
+ T, (s, u)sech?(By s)sech? (B s)[Z, (s, u)K3 — 1]} (80)
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where By = B,(1 —u)/2 and Bf = By(1 + u)/2. The functions Z, (s, u) and Z,(s, u) are defined as

1
B, coth (Bys) + Bycoth (B]s)’

Zi(s,u)=

A. Charged pions as point particles

Before we present the numerical result of charged pions
in the NJL model, it is useful to study the corresponding
results in the free Klein-Gordon theory, i.e., consider them
as free point particles. The quantized energy levels, i.e., the
Landau levels of charged pions, obtained from the Klein-
Gordon equation in a constant magnetic field, are given by

E*(n,K3) = K3 + (2n+ 1)eB + m2, (82)

with n =0, 1,2, ... characterizing the Landau levels. Note
that these Landau levels are independent of the gauge
chosen for the vector potential A. Therefore, the charged
pion mass is given by the energy of the lowest Landau level
(LLL), i.e.,

m,+(eB) = min{|E(n, K3)|} = \/m2 +eB. (83)

On the other hand, we can also determine the charged
pion mass from their correlation function by using the
imaginary-time method. The Fourier transformation of
their reduced correlation function is given by [62]

D.(K) = Aw dssech(eBs)

Xexp{— {m +K+Ki%}}. (84)

The space-integrated correlation function can be analyti-
cally evaluated as

Pe(z) :/d%[eﬂb(r,o)/(dz“ﬂl()4

e—i(Ku—K-r)Z_)C (K):|

csch(eBs)
2\/— \/s & + coth?(eBs)|
2
X exp <—sm,2, - E) . (85)

In the limit 7 — oo, the integral over s is dominated around
s ~ 7 due to the term exp [—72/(4s)]. For large s, we can use
the leading asymptotic behavior csch(eBs) ~ 2 exp(—eBs)
and coth(eBs) ~ 1. The proper-time integral can be carried
out analytically, obtaining

1 1
~ exp(—n/m,zr + eB),
VE +1/m2 +eB

T 0. (86)

Pe(z)

BBy (81)
B, tanh (B s) + By tanh (Bys)

Zr(s,u) =

It is clear that even though the prefactor depends on the
gauge parameter £, the mass is always the same. We also
calculate the charged pion mass numerically. The results
are shown in Fig. 3. The numerical results for different
gauge parameters are in perfect agreement with the mass
determined by the energy of LLL.

It is interesting to discuss whether we can extend the
imaginary-time method to finite temperature. At finite
temperature 7', the correlation function can be obtained
via the following replacements:

/_dK“ TZ (87)

n=—0oo

K, - 2nrT,

Accordingly, Eq. (85) becomes

csch(eBs)
P.(7)
2\/— \/s & + coth?(eBs)]

2 . ]
X exp <—sm,2Z - :—s) 95 (—“:—TT , e_wZ) , (88)

where 93(u, ¢) is the elliptic theta function,

95(u.q) =142 q" cos(2nu). (89)
n=lI

The general behavior of P, () at finite T is shown in Fig. 4.

At finite 7, P.(z) is no longer a pure decreasing
function, but an oscillating function with periodicity
p=1/T. Therefore, the zero-temperature decaying
behavior P.(7) ~ e™"+* cannot be used to extract the

o ‘ ‘ ‘ e
----- - LLL T
12 -
¥
> 10 -
S .l...-"' ° £=0.00
= 08f - £=0.25
S o6l o _
< 0.6 = * £=0.50
g o4f N s £=075
IJ
02k v £=1.00
00 1 1 1
0.0 0.5 10 15 2.0
eB [GeV?]
FIG. 3. The mass of charged pions m_: (eB) as a function of eB

extracted from the large-z behavior of Eq. (85) for different gauge
parameter £ varying from O to 1. The analytical result (LLL) is
also shown for comparison.
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10} eB=05GeV? £=1.00 T=0.10 GeV -

i L e 7=0.15 GeV

0.8

Pe() / Pc(0)

o
ES
T

o
N

0.0

0 10 20 30 40 50
7 [GeV™!]

FIG. 4. The behavior of the correlation function P, () at finite
temperature in the free point particle model.

charged pion mass. The maxima decay fast due to the term
exp [-72/(4s)]. They are located exactly at 7= nf
(n=0,1,2,...). Therefore, at large n, we have

Pelz = np) ~ &M (90)

This method should maintain gauge independence and

gives m,:(eB) = \/m2 + eB. However, since n is not a
continuous variable, it is not quite useful for a numerical
extraction of the mass. On the other hand, the minima go
smoothly and may be used to extract the mass numerically.
Near the first minimum 7 = /2, the correlation function
behaves as

P.(7) ~ cosh [m (7 — f/2)]. (91)

This behavior was used to extract the hadron masses in the
lattice QCD calculations [28,29]. Here we also use this
function to extract the charged pion mass at finite temper-
ature from Eq. (88). The numerical results extracted from
the data around the first minimum are shown in Fig. 5.
In the free point particle model without interaction,

the charged pion mass is always \/m2 + eB at arbitrary
temperature. Therefore, the gauge dependence of the
charged pion mass becomes severe at high temperature.
The breaking of gauge independence is due to the mixing of
higher Landau levels with the LLL at finite temperature.
However, at sufficiently low temperature, gauge independ-
ence still remains. At larger eB, the higher Landau levels
are suppressed compared to the LLL, and hence, the
temperature window where the gauge independence is
nearly guaranteed is extended to higher temperature.
This can be understood by taking eB — oo in Eq. (88).
In this case, coth(eBs)=~1, and hence, the gauge-

dependent term /&2 + coth(eBs) ~ /& + 1. Therefore,
the extraction scheme of Eq. (91) breaks down when T is

not much smaller than \/m2 + eB. In this case, it may be
better to introduce a small isospin chemical potential and

oo T
e
£ 096 e
=" .. ©B=05GeV?
S ogaf -eeeeee £=0.00
El
s — £21.00
0.2}
-------- £20.00
0.90f — &=1.00 ]
0.00 0.05 0.10 0.15 0.20
T [GeV]
FIG. 5. The charged pion mass in the free point particle model

as a function of T with the gauge constant ¢ varying from O to 1
for eB = 0.5 GeV? (red band) and eB = 2.0 GeV? (blue band).

extract the charged pion mass from the isospin density as it
is more sensitive to the energy.

B. Charged pions as composite particles
in the NJL model

In the NJL model, the charged pions are composite
bosons. If we choose the vector potential A = A |, we can
extract their mass at zero temperature from Eq. (78) at large
7. The results for different gauge parameters & are illus-
trated in Fig. 6. Regardless of the numerical accuracy, the
gauge independence seems to be still well satisfied. Our
numerical results also agree well with the result from the
momentum-space RPA.

The gauge independence can be exactly proven as
follows. For the present choice of the vector potential
A = A |, we have

_ [~dK} (K]
Pe(e) _/0 eBe 0 <e3f)

©dKy ik,
X 2—6 4 ,DC(K4,KJ_,K3 :0) . (92)
_eo 2W
4t E
o £2000  -eeeeee RPA E1
& 3 T |
% 3 £=0.25 A
<) + £2050 51
o - 1
s , A £=0.75 -
o v =100 ‘.—‘i
S A
o'k 1 .‘,!’"'
s !"!‘_..
B
0 l—-"'! L L L
0.0 0.5 1.0 1.5 2.0
eB [GeV?]

FIG. 6. The charged pion mass squared as a function of eB in
the NJL model, with the gauge constant ¢ varying from 0 to 1.
The result from the momentum-space RPA (red dotted line), which
discards the Schwinger phase, is also shown for comparison.
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The integral over K, can be converted to a contour as we
have done for the neutral pion. For 7 — oo, it is going to
pick up the lowest branch of the poles for Ky determined by

the pole equation
1 + Zgﬁc(K4 d —iKo, KJ_,K3 = O) =0. (93)

For convenience, we denote this K -dependent pole as
E(K ). Therefore, for 7 — oo, the correlation function
P.(z) goes as

Pute)~ [ (k) exp e

K? + K3
=z | [ dK2J°( <BE )

x exp [-7E(K 1, K3)]. (94)

While the integral over K| = (K, K,) cannot be carried
out analytically, we can use the Laplace method for
7 — co. We suppose the global minimum of the disper-
sion E(K,,K,) on the K;— K, plane is located at
(KI’KZ) (u1’u2) le"

min{E(Ky, K»)} = E(u;, up). (95)
Using the Laplace method, we arrive at the large-7 behavior
Pe(7) ~ exp[—tE(uy, uy)], (96)

where the prefactors are irrelevant for the mass and are not
shown here. Therefore, the mass is exactly determined by
the minimum of the dispersion E(K,) solved from the
pole equation. If the minimum is located at K| = 0, this
justifies the momentum-space RPA which discards the
Schwinger phase and solves the pole mass at K = 0. In
Fig. 7, the numerical results show that the minimum is
always located at K| = 0 for different values of eB.

For a general choice of the vector potential A, we can
also show that mass is exactly determined by the minimum
of the dispersion E(K) solved from the pole equation in the

1.8

-------- eB=0.5 GeV?
L —==== eB=1.0 GeV?
eB=15 GeV?
[ o=em- - eB=2.0 GeV?

N
)

E(K.)/E©)

FIG.7. The dispersion E(K ) of the charged pions for different
values of eB in the NJL model.

momentum-space RPA. In this case, we can directly start
from the correlation function

4
DC(T, r; T’, l'/) _ eitb(r.r/) /d—K
(27)*

= eiq’(”’)/ K e
Gy

o dK . N =
/ S MIDK,K). (97)
oo 27

emiKilr=) oK) ] (K)

iK-(r-r’)

Because of the translational invariance in the temporal
direction, we can set 7 = 0. For 7 — oo, the integral over
K, picks up the lowest branch of the poles K, = E(K)
determined by the pole equation in the momentum-space
RPA,

Therefore, for 7 — oo, the correlation function goes as

/ iP(r,r') K iK-(r-r') ,—7E(K)
D(z,r,1) ~ " 2n) e e . (99)

We suppose the global minimum of the dispersion E(K) is
located at K = w, i.e.,

min{E(K)} = E(u).

Using the Laplace method, we arrive at the large-z behavior

(100)

ch (‘L’, r, l‘/) ~ eid)(r,r’)eiu~(r—r’)e—rE(u)’ (101)
where some prefactors are not shown. Here we see clearly
that the Schwinger phase can be discarded if we only need
to determine the mass. Normally, the minimum of the
dispersion is located at K = 0, i.e., u = 0. This justifies the
validity of the momentum-space RPA which solves the pole
mass from Eq. (98) at K =0. This argument can be
extended to other charged mesons in a constant magnetic
field, such as charged rho mesons [19].

V. SUMMARY

We investigate the masses of neutral and charged pions
in a constant magnetic field within the NJL. model. To fully
take into account the Schwinger phase, we start from the
meson correlation functions in the coordinate space and
determine the meson masses from the exponential behavior
at large imaginary time. Within this imaginary-time
method, we show numerically and analytically that the
mass of the charged pions is independent of the choice of
the vector potential for the constant background magnetic
field. We also demonstrate that the previously used
momentum-space RPA [19,40], which simply discarded
the Schwinger phases and determined the meson mass as
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the pole at zero momentum, is actually equivalent to the
imaginary-time method used in this work.
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APPENDIX: ILLUSTRATION OF EQ. (66)

For any two given spacetime points Z and Z’, the
correlation function D.(Z,Z') is given by Eq. (62).
Using the expression (59), we have

__ 9 /d4X/d4X’(J+(X) V+(X))(_r§§;i2) o9 (x —_j(fni;)(x)x >5

67,.(2)
:_(SJj(Z) / dx / X (X) VAX))EMXVX!)(E’I??-?) 5“)(’(_’? fn})((/ X') )(‘Z > ~%)
=5 X [ @x v+<x>>e"“’<x*2’><_ﬁr-ié__?) 5~<ij fni ) ) (o () ~7)
__ﬁs(z)/d“x/d“X’(]AX) V+(x))(_f;_§;__2) . jj(fn(’;) o ><5 an )5
:_m / aix / aX'(7,(X) Vgx))(iié{_?) 5”(;;511); ” )( X,>>

FWitlJ)

1)(2) 17
SZWMFU] —i®zz)__~ ""MEMI
67 .,.(2)81_(Z))

T 6. (2)8]_(Z)

(A1)

Notice that the generating functional is changed in the last line. The phase term in the original generating functional Wﬁ; V]
is the Schwinger phase exp [i®(X, X")], while it becomes exp [i® (X, Z') + i®(Z', X’)] in the modified version V_Vl(\i%;[]]
Fortunately, the new phase term yields to the Schwinger phase when performing the variational derivative with respect to the
source J_ located at Z’. The last line provides an equivalent functional definition of the charged pion correlation function,

which is convenient for us to perform the calculation.
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