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We apply the diabatic framework, a QCD-based formalism for the unified study of quarkoniumlike systems
in terms of heavy quark-antiquark and open-flavor meson-meson components, to the description of coupled-
channel meson-meson scattering. For this purpose, we first introduce a numerical scheme to find the solutions
of the diabatic Schrodinger equation for energies in the continuum, then we derive a general formula
for calculating the meson-meson scattering amplitudes from these solutions. We thus obtain a completely
nonperturbative procedure for the calculation of open-flavor meson-meson scattering cross sections from the
diabatic potential, which is directly connected to lattice QCD calculations. A comprehensive analysis of various
elastic cross sections for open-charm and open-bottom meson-meson pairs is performed in a wide range of the
center-of-mass energies. The relevant structures are identified, showing a spectrum of quasiconventional and
unconventional quarkoniumlike states. In addition to the customary Breit-Wigner peaks, we obtain nontrivial
structures such as threshold cusps and minimums. Finally, our results are compared with existing data and with
results from our previous bound-state—based analysis, finding full compatibility with both.
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I. INTRODUCTION

Ever since the discovery of the y.,(3872) back in 2003
[1], many quarkoniumlike meson states, whose properties
defy the conventional description as heavy quark-antiquark
bound states, have been discovered [2]. The mass of these
unconventional states generally lies close below or above the
lowest open-flavor threshold with the same quantum num-
bers. This suggests a possible relevant role of open-flavor
meson-meson components. As a matter of fact, many
theoretical descriptions incorporating meson-meson degrees
of freedom have been attempted. These include (but are not
limited to) effective field theories, molecular models, and
“unquenched” quark models. We refer the reader to [3—14]
and references therein for a more comprehensive review on
the present theoretical and experimental landscape.

In recent years, new theoretical input from lattice QCD
has sparked further progress. In particular, the static energy
levels for a bottomonium bb configuration mixing with one
or two open-bottom meson-meson configurations have
been calculated in lattice QCD [15,16], and significant
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progress has been made in the understanding of the
properties of some charmoniumlike states near open-charm
meson-meson thresholds [17,18]. These results have been
used to study the effect of up to two spin-averaged
thresholds on the bottomonium spectrum [19,20]. A more
general framework for the interaction of a QQ pair (where
Q stands for a heavy quark, b, or ¢) with an arbitrary
number of meson-meson channels has been obtained
through the implementation of the diabatic approach in
QCD [21-23]. This type of approach, first developed in
molecular physics [24], has been applied to calculate the
mass spectrum and OZI-allowed strong decay widths of
charmoniumlike [21,22] and bottomoniumlike [23] states.

In the diabatic framework, the dynamics, including the
Q-0 interaction and the Q Q—meson-meson mixing induced
by string breaking, is completely described by a potential
matrix whose elements are directly related to the static
energy levels calculated in lattice QCD. This diabatic
potential matrix is then plugged into a multichannel
Schrédinger equation involving all the QQ and meson-
meson components for a given set of J©¢ quantum numbers.
Then, the solutions of this diabatic Schrodinger equation
allow for the description of quarkoniumlike meson states
within the same JP¢ family [21]. Specifically, bound state
solutions for energies below the lowest open-flavor J©¢
threshold can be directly assigned to quarkoniumlike meson
states. In contrast, solutions for energies above one or more
thresholds, containing as many free-wave meson-meson
components, cannot be directly assigned to physical mesons.
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Indeed, a dedicated formalism has to be developed in order
to obtain a proper physical description.

As an alternative, one may try to avoid this difficulty
following a bound state approximation even for energies
above threshold. This is, quarkoniumlike meson states in
this energy region can be assigned to bound state solutions
of areduced set of Schrodinger equations where the coupling
with open thresholds is neglected. Then, decay widths and
mass shifts induced from the coupling of these bound states
with the continuum of free meson-meson states can be
evaluated using a procedure well known in nuclear physics
and hadron spectroscopy [25,26]. Actually, we have pre-
viously followed this approximation for a spectral analysis of
charmoniumlike and bottomoniumlike mesons [21-23].
Notwithstanding the good results obtained, this approxima-
tion presents some shortcomings. On the one hand, there is
an ambiguity regarding the number of bound states for a
given JPC related to the possibility of choosing different sets
of neglected thresholds when calculating some of them. In
[21-23], this ambiguity was obviated ad hoc by assuming a
one-to-one correspondence between calculated bound states
and Cornell states. On the other hand, mixing between
different QQ partial waves induced through their coupling to
the same meson-meson thresholds is not properly taken into
account in the case of open thresholds. Finally, there may be
physical mesons escaping the bound state approximation.

In order to overcome these shortcomings, we develop in
this article a formalism to describe quarkoniumlike mesons
from the continuum solutions of the diabatic Schrédinger
equation above threshold. More precisely, we solve numeri-
cally the diabatic Schrodinger equation for energies above
threshold. Then we decompose the asymptotic limit of each
solution, which consists of one or more free waves in
various meson-meson channels, as a superposition of
stationary meson-meson scattering states. From this
decomposition, we obtain the on shell S matrix for the
coupled-channel meson-meson scattering process. Finally,
we identify quarkoniumlike meson states as resonances in
the calculated scattering cross sections as a function of the
energy. From this analysis, we recover the quarkoniumlike
meson states obtained in the bound state approximation as
well as identify additional structures in the cross sections.

It should be pointed out that numerous treatments of the
effects of coupled channels in the quarkoniumlike meson
spectrum can be found in the literature; see, for instance,
[26-40]. A major difference of these treatments with
respect to our diabatic approach is the use of a phenom-
enological mixing potential (mostly through a 3P, model)
instead of an interaction based on lattice QCD.
Furthermore, in some of these treatments, a perturbative
approach, whose validity is questionable (see Appendix in
[22]), has been employed. Such differences make rather
difficult a direct comparison between these studies and
ours. Somewhat closer to our approach is a quite recent
first attempt to study JP¢ = 0** 2%+ charmoniumlike

resonances in coupled DD-DD; scattering on the lattice
[41]. However, the several simplifying assumptions needed
for this first lattice investigation of the coupled-channel
system also prevent a direct comparison with our results.

The contents of this article are organized as follows. In
Sec. II, we briefly revisit the diabatic approach in QCD and
write down the diabatic Schrodinger equation. Section III
treats the numerical method used to solve the diabatic
Schrodinger equation for continuum energies above the
lowest open-flavor threshold. The theoretical framework
used to describe coupled-channel meson-meson scattering
is detailed in Sec. IV, where we derive the formula for
calculating the S matrix. The calculated elastic cross
sections are briefly discussed in Sec. V. Then, in
Sec. VI, we summarize our main findings.

IL. DIABATIC SCHRODINGER EQUATION

The diabatic approach in QCD is a recently proposed
theoretical framework aiming at a unified description of both
conventional and unconventional quarkoniumlike states
based on lattice QCD results. Its construction, as well as
its differences from other commonly used approaches in
heavy-meson spectroscopy, has been explained extensively
in [21]. In this section we briefly recap its main features.

The dynamics is governed by the diabatic Schrodinger
equation,

(K +V)|¥) = E|Y), (1)

where |W) is the state of the system containing one QQ and
N meson-meson components MEZ)M(ZZ) withi=1,....N, E
the c.m. energy, K the kinetic energy operator, and V the
diabatic potential operator. If we conveniently represent |¥)
as a column vector,

™))

where [y(©) and |y)) are the states of the QO and

M (1’>1\7I§i) components, respectively, then we can represent
the kinetic energy operator as a matrix,

2u0)
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with (¥ and ), respectively, the reduced mass of the QQ

and M(li)ll_/léi) component and p’> the squared relative
momentum operator. Accordingly, in this notation, the
diabatic potential operator reads

vo vl Vi
(Ot (1)
V. \%
V= “f‘”‘ , (4)
Vfg’)f YN

where vanishing matrix elements have been omitted.
By projecting on the relative position space, we have

/mvm+vww¢w=Emw, (5)

where the wave function (r|¥) is written as
yt(r)
(r|¥) = : (6)

with y) (r) = (r|y?) and w (r) = (r|y?), respectively,
the wave function of the QQ and M; @ 3 g) component.

It is important to realize that, since we do not project
explicitly on spin, each component of the wave function (6)
is intended as a spin vector. In practice, since the diabatic
potential must incorporate the symmetries of QCD, we
impose JPC conservation. Therefore, each solution to
the diabatic Schrodinger equation is labeled by its JP¢
and m; quantum numbers, with J and m; the total angular
momentum and its projection, P the parity, and C the
charge-conjugation parity. Then the wave function compo-
nents are more conveniently expressed in terms of the
irreducible tensors of order J,

= ey e (7)

mp,mg

Vi (#) = (#lls. .

satisfying

/df’yzj.t?ﬁ('ﬁ)y; 71]/( ) = 810 0m,m, Ouwdsss  (8)

7™ are Clebsch-Gordan coefficients,
Y7 sphencal harmonics, and & spin  vectors.

Concretely, the wave function components are expanded as

WJPC ZRJPC jomj © ('A'> (9)

where r = 1#, C,

WJPC ZRJPCk y/m, A (10)

where ¢ and k label the distinct ({9, s(®) and (1), s()
partial waves coupling to J7C in the QQ and M() Vi g’
configuration, respectively, while Rﬁ(pc_ t(r) and R J,,C k(r)
stand for radial wave functions.

The kernel (i.e., the position space representation) of the
kinetic energy operator reads

(r|K|r'y=6(F —r) (11)

T 2™

As for the potential energy, the diagonal term V()
describing the Q-Q interaction, is directly connected to
quenched lattice QCD results for the static light field
energy [42]. It is represented by the kernel,

5(r' =r)Vel(r), (12)

where V(r) corresponds to the Cornell potential,

(rvOl) =

Vc(r):or—)§+mg+mQ—ﬂ, (13)

with o, y, mg (mp), and f, respectively, the string tension,
color Coulomb strength, heavy quark (antiquark) mass, and
a constant. The other diagonal terms read

r[VOy =8 —r)TW, (14)

with T the threshold value,

T = m y + m ), (15)

Ml

o and m

where m M

" are the masses of the corresponding

mesons.
(i)

As for the nonvamshlng off diagonal elements V" |
governing the QQ—M ] g) mixing due to string breaking,
they can be determined ab initio by including the static
energy levels calculated in unquenched lattice QCD. This is

done by expanding their kernel in J”C-conserving tensors,

m1x Z Zylm,]() y/m” A,

JCm, 1K

<r|V ry=5(r'—r)

(16)

where for simplicity, we have assumed the radial mixing
potentials vy (r) to be independent of the [, s, and J©¢

mix
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quantum numbers. Thus, using Eqgs. (11)—(16), the diabatic
Schrodinger equation (5) reduces to a multichannel radial
Schrodinger equation with a radial diabatic potential matrix
written in terms of V(r), T, and V'(;)ix(r). It is then
possible to determine anix( ) by virtue of the direct
correspondence between the static energy levels and the
eigenvalues of the diabatic potential matrix [24]. Our
educated guess [21],

Al 1 (Ve(r) = TO\2
|V1‘n1x( 7| —2CXP{—2 <6p(,)) } (17)

(1) J.m
(=Tt Ve ), @) [ Vany"

1
(— % + T(l))l//})c’mj (r)

I 71

1 J.m A A m
Vi (D0, (F) [ #2000

If we now substitute Egs. (9) and (10), multiply by (yf o0 ()
‘1

multichannel radial equation,

0 0
O 1 1)
Zﬂ(())}’z

o

1@ !
Zﬂ(o)dr+
1,
L@ 10+
2, dr? 2uD 2

where we have introduced the reduced radial wave func-

. 0
tions 'yt (r) = rRYe. (r) and ulj, (r) = rRU ().

The generalization to any number of partial waves and an
arbitrary number of meson-meson components is straight-

forward by considering each u(J(,J,)C (r) and each u(J,ZC (r) as
an independent component of the eigenfunction.

It has to be remarked that by using Egs. (4), (14), and
(15), we are neglecting all meson-meson interactions from
light meson exchange depicted in Fig. 1(a). Instead,
the diabatic potential incorporates a meson-meson inter-

action mediated by QQ depicted in Fig. 1(b). Then our

FIG. 1. Diagrammatic representation of possible meson-
meson interactions. Solid and dashed lines correspond to heavy
and light quarks, respectively. (a) Light meson exchange. (b)
Mixing with QQ.

where the factors A1) and p(?), respectively, represent the
strength and mixing length scale of the mixing, is based
on the static energy levels recently calculated in
unquenched lattice QCD [15,16]. The physical reasons
behind this parametrization have been detailed in [21],
which we refer to.

It may be instructive to derive explicitly the multichannel
radial equation in the simplest possible example of a QQ
component interacting with a single meson-meson compo-

nent M( >M§ ), each with only one partial wave contrib-
uting to JPC. In this case, Eq. (5) reads

PN ~ gt (1) ~
© (r) fdr/ l(ll)-i(ll)(r,)ll//llc.mj(r",) E ll/‘(/(g)c‘,n'lj (I’) (18)
o e, () W, (r)

l(’,r)”’ (7)), and integrate over the solid angle 7, we get the
5

||

(1) u(?;)c, r M((pc. r
Vel(r)  Vig(r) J 1() el 7 l() , (19)
v 10 ) Nl o) e (1)

mix

JPC;I JPC;l

I

approximation could be regarded as the assumption that
other interactions (like light meson exchange potentials) are
subdominant with respect to the diabatic QQ-mediated
ones. Although similar approximations for the potential
matrix are commonly used in this context [compare, for
example, with Eq. (7) of Ref. [16] ], this assumption may be
debatable. In fact there have been effective field theory
studies [43,44], where the dynamical energy levels have
been described through a dominant contact meson-meson
interaction. Therefore, our treatment should be considered
as an exploratory research on the effect of the mixing term.
One should keep in mind though that additional contribu-
tions to the potential might be implicitly taken into account
through the effective values of the parameters in the mixing
potential.

For energies below the lowest JPC threshold, the
spectrum of solutions to the diabatic Schrédinger equation
consists in a certain number of discrete energies with wave
functions representing properly normalizable states. Then,
a discrete solution with energy E can be assigned to a
quarkoniumlike meson with mass E. Concretely, solutions
for energies far below the lowest threshold, containing a
very dominant QQ component, differ very little from the
quark model solutions obtained from the Cornell potential.
They correspond to the lowest-lying conventional quarko-
nium (charmonium and bottomonium) states observed
experimentally. In contrast, solutions with a relevant
meson-meson component may appear close below the
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lowest threshold, as may be the case for the charmonium-
like meson y.(3872) [21].

For energies above one or more thresholds, the solutions,
containing one or more free-wave meson-meson compo-
nents, cannot be directly assigned to physical mesons.
Instead, they have a more natural interpretation in terms of
stationary meson-meson scattering states. More precisely,
the diabatic Schrodinger equation for any energy E above
threshold can be used to describe the J”¢ contribution to a
meson-meson scattering process at c.m. energy E, where
the meson-meson interaction is mediated by QQ [see
Fig. 1(b)]. From this interpretation, quarkoniumlike mes-
ons observed experimentally can be properly assigned to
meson-meson scattering resonances.

III. NUMERICAL SOLUTION ABOVE
THRESHOLD

In this section, we briefly revisit the finite difference
method for the solution of the diabatic Schrodinger
equation and show how the imposition of appropriate
boundary conditions can be used to obtain a set of
independent solutions for each energy above threshold.

In order to keep the discussion both simple and general,
we start by examining the simplest case of a single radial
Schrodinger equation,

-iwm+<€;y+wn_@wn—a (20)

where V(r) is some spherical potential, u(r) a reduced
radial wave function, x4 a reduced mass, and [/ a relative
orbital angular momentum.

The finite difference method consists in discretizing the
radial configuration space in a lattice of equally spaced points
r,- This gives rise to a matrix Schrodinger equation whose
solution yields the numerical wave function u, = u(r,).

Discretization of the centrifugal and potential energy
terms in (20) is straightforward, while that of the second
derivative proceeds in two steps. The first step is to introduce
the O(d?*) approximation for the second derivative,

n o Untl — 2Mn + Up_
U, =~

7 , (21)

where d is the discretization step. Notice however that this
expression cannot determine the value of the wave function
at the boundaries of the lattice, given, respectively, by ry = 0
and roy =y = (N + 1)d, where N is the number of
points in its interior. Thus, the second step is to impose
for these points Dirichlet boundary conditions uy = b
and un | = beyy, SO the second derivative for n = 1 and
n = N reads

u, — 2u b()

un_y —2uy | bey
MKI ~ T + dztr B (23)

while forn =2,...,N —1 it is given by Eq. (21).
The discretized spherical Schrédinger equation is then
written in matrix form as

(H - E)u =B, (24)

where u is the numerical reduced wave function (without
the boundary values),

U
u= C (25)
un
H is the Hamiltonian matrix,
H =K+ Vg, (26)

with K the tridiagonal kinetic energy matrix,

-2 1
1 -2 1
1
K=- , 27
S (27)
1 -2 1
1 =2

Vegr = diag(Vege(ry1), ..., Ve (rn)) where Vet (r) =

V(r) + 1(21;;), and B a constant numerical vector related
to the boundary conditions, whose only nonzero compo-

nents are in general the first and the last one,

1 b
B=-— : 28
2ﬂd2 ( bextr > ( )

If the potential V(r) is either regular or diverges at most
as r~! for r — 0, as it is always in our case, the physical
boundary condition at the origin is by = 0. As for the
boundary condition at rg, assuming r.,, to be very large,
there are two distinct cases,

(i) if E <lim,_ V(r), the physical boundary condi-

tion is bgyr = 0;
(i) if otherwise E > lim,_, V(r), any finite b, is
physical.
These two scenarios lead to very different treatments of the
numerical Schrédinger equation.

In the first case, we have B = 0 and Eq. (24) reduces to a
secular equation for the Hamiltonian matrix H, whose
solution provides the bound state spectrum and the corre-
sponding wave functions.
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In the second case, the energy spectrum is known a priori,
being the continuum E > lim,_, V(r), but there is no
physical criterion to fix the boundary condition at the
extreme. Then for each continuum energy E the wave
functions are calculated solving the nonhomogeneous
Eq. (24) with an arbitrary nonzero boundary condition
bexr # 0. Indeed, as we have fixed the boundary condition
at ry, there is only one linearly independent solution for each
value of E; therefore, different choices of b, will produce
the same wave function up to a global multiplicative factor.
Note that the assumption b, # 0 is not restrictive in
numerical applications. In fact, since the energies yielding
a nontrivial solution that vanishes at r., constitute a discrete
subset of the continuum (i.e., the energy levels of a particle in
a spherical box), the chance of picking accidentally the exact
numerical value of one such energy is negligible.

The procedure we have detailed for a single-channel
equation can be easily extended to the solution of the
diabatic Schrodinger equation. We begin by observing
that if instead of (20), one has a multichannel radial
Schrodinger equation [like Eq. (19), for example], then
the discretization procedure yields a system of coupled
numerical equations that can be rearranged in the form (24),
with the tridiagonal matrix H substituted by a more general
Hermitian banded matrix.

Regarding the boundary condition at r,, note that each
diabatic channel falls into one of the two aforementioned
cases (i) or (ii) depending on the energy. In particular, QQ
and closed meson-meson channels fall into category (i)
whereas open meson-meson channels fall into category (ii).
So for energies below the lowest threshold, where all
meson-meson channels are closed, all reduced wave
function components vanish at “infinity,” which corre-
sponds to bound state solutions. Otherwise, above thresh-
old, the boundary condition at r.,, becomes a numerical
vector whose only nonzero block is that corresponding to
open meson-meson channels,

boo
bextr - bextr = bOPe“ ’ (29)
bclosed
with
»
bQQ =0, bopen ’ bclosed =0, (30)
b(#)

where 7i is the total number of partial waves coupling to J©¢

in the open meson-meson channels.

Finally, notice that one can choose up to 7 linearly
independent boundary conditions by, yielding as many
independent solutions with the same energy. Therefore, for
an arbitrary continuum energy, one is able to build a basis

set of solutions to the diabatic Schrodinger equation by
solving (24) with boundary conditions (30) for 7 linearly
independent numerical vectors bgp,. In practice, we build
and solve the nonhomogeneous linear system (24) in
Python using the NumPy and SciPy libraries [45,46] and
taking the canonical basis of C" as our set of 7i linearly
independent vectors bgpep-

For the sake of completeness, we report here that in this
paper, we have used d = 107 fm and 7, = 200 fm.

IV. MULTICHANNEL SCATTERING STATES

A. Asymptotic solutions above threshold

Let us now examine in detail the asymptotic r — oo
behavior of a solution to the diabatic Schrodinger equation
above threshold, beginning with the simplest possible
example of a single open meson-meson channel M 51)]\_/[;1)

with only one partial wave (1(11)’ s(ll)) coupling to JFC.

If there were no mixing, V. (r) =0, the spectrum
of the diabatic Schrédinger equation would decompose
in a discrete spectrum of pure quarkonium states
! (r) = 0) and a continuum E > T!) of pure meson-
meson (y(?)(r) = 0) free states given by

1 2 NIONN m A
l//(JP)C,m,(") = ;ﬂ(np(l)ll‘ ng‘)(P“)r)ylj(n);(l)(")’ (31)

with j;(pr) the Ith spherical Bessel function of the first
kind, p(V) = pWp(M the relative meson-meson momentum

with modulus p() = /24D (E-TM), and 1 /2D p1);t"

a normalization factor introduced to facilitate the connec-
tion with the scattering states (see below). Then, the
asymptotic behavior of a continuum solution would be
written as

() Lo2p®

: (H 7z J.m A
U/Jpcm_,(r)z; 7 (1 ] sm<p(1)r—l1 5)))[5]);51)@),

“E

(32)

where we have defined the symbol =~ for the asymptotic
equality relation, meaning that the two sides are equal in the
limit » — oo, and used

. 1 . T
],(pr)_ﬁsm<pr—l§>. (33)

If now we introduce the mixing potential (17), the
continuum solutions cease being pure meson-meson
states as they acquire a QQ component as well. Notice
though that as the mixing potential (17) goes to zero
exponentially for r — oo, the QQ behaves as a bound
component vanishing very quickly in the asymptotic limit.
Hence, these mixed free-bound states correspond to a
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meson-meson pair interacting at short distances through the
mixing with QQ. The asymptotic behavior of these states is
known from elastic scattering theory; see, for example,
Eq. (11.17) in [47], as

/2 <]).(l) i T
Vit (7 =7 ;ﬁm’l‘ e’ S‘“<P(1)’—l§1)§ ’7511’)6;1>
J .y ~
X ylu) U (7). (34)
[ |

where the effect of the short-range interaction amounts to
)

JPC;I
solution without mixing with QQ. Notice that here and in
the following, we omit bound components and focus
instead on the asymptotic behavior of the open meson-
meson components.

Let us now generalize to an arbitrary number of partial

waves (l,({l),s,g)) coupling to JPC in the open channel.

Recalling from the previous section that whenever there is
more than one (partial-wave) channel, there are many
independent solutions with the same energy, the asymptotic
behavior of any continuum solution can be conveniently
expressed as

the introduction of a phase shift » with respect to the

0
() L2k A0 ()
Y v (1) = ;W;w Agre

. nrt 1 m -
X sin <p(1)r - l,(( ) 5t nﬂp)c;k;h>3’ﬂn ") (F)
k Sk

(35)

[compare, for example, with Chap. X, Egs. (12), (14) in
[48]], where we have introduced the additional label % to
distinguish independent solutions with the same energy.
Notice that, as the diabatic mixing couples the various

meson-meson partial waves to each other, the coefficients
1

(JP )C;k;h
partial-wave channel to the others through the coupled-
channel interaction.

In the most general case of an arbitrary number of
meson-meson components, one must realize that there is a
different number of open channels depending on the
energy. Then, if E is the energy and n the number of open
thresholds at that energy, E > TU) for j=1,...,n, the
asymptotic behavior of the solutions is given by the open
meson-meson components,

a give account of the flow of probability from one

. () -
() LN CT W)
WJPC,mJ;h(r) 5 ;p(j)zl C e
k

. , N ; .
X s (p(-/>r - l/ij) ) + ”;j’)c;k;h> yiff?i(j) (7),
k "k

(36)

where h = 1, ..., /i with 71 the total number of partial waves
coupling to JF€ in all the open meson-meson channels. For
more than one open threshold, these solutions correspond
to a meson-meson scattering process, where the coupled-
channel interaction is provided by the mixing of QQ with
all the meson-meson components.

B. Meson-meson S matrix

Let us now see how to extract the on shell meson-meson
S matrix from the solutions of the diabatic Schrodinger
equation above threshold. As shown in the Appendix, the
meson-meson scattering states from an initial open channel
7, with quantum numbers J”€, m;, 1), s/)  to a final open
channel j can be expressed as

e 1 /2 M(./‘) ) ) ) ST
WJJpc<mJ;k,(r) = ;Wzllk 0Ok Sin pUr — l,((” 3
k
N e i(p) Wz m ~
+ p(J) ﬂPCJ;k’kle ([7( ) lk 2>:| ~)}](!’) i(j) (r)’ (37)
Tk

where k' and k are used to label distinct partial waves
(107,50 and (1), s)) coupling to J¥C in the initial and
final channel, respectively, and ffp_cj, /k v is the corresponding

partial-wave scattering amplitude. Notice that the normali-
zation factors have been chosen according to the state
normalization by energy,

(Ve|¥p) = 6(E' - E), (38)

instead of momentum. This is motivated by the fact that the
open channels in general differ in their threshold and
reduced mass, which makes normalization by momentum
unpractical as there is a different value of the relative
meson-meson momentum for each open channel.

It is important to realize that there are in total 7
independent scattering states (one for each partial wave
K coupling to JFC), that is as many as independent
solutions to the diabatic Schrodinger equation at the same
energy. Hence, Eqgs. (36) and (37) give two equivalent
representations of the space of solutions at energy E, related
to each other through a change of basis transformation,
written as

l//y”_cj,mj;k’ (r) = Zwy-')"./;h (r)F(Jng;k’;h’ (39)
h
where TV are the change of basis matrix elements.

JPC;k/;h
If we now plug (36) and (37) into (39), after some simple
algebra, we obtain

W e )
E :aJ”C;k;he PRI G gy = O Ok (40)
h
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and
jei (")
JPL kk' - 2 (ZQJP(, k JPCkhFJpC k, h 5jj/5kk/> .
lP

(41)

We can further simplify Eqgs. (40) and (41) using matrix
notation. For the sake of simplicity, let us rearrange
momentarily the indices (j, k), (j/,k') as 7,7 =1,....7,
so that each j or j specifies uniquely a partial-wave
channel for the scattering process. In this way, we can
drop the subscripts &, k¥’ and rewrite Egs. (40) and (41) as

. . 0) .
() =i pe ()
> dle e T =5, (42)
h
and
. (5) -
inpc, (")
G ZhaJPC'he JPC'hFJPC'h - 577’
gPc — ’ (43)

respectively. Let us now introduce the 7 x 7 Jost matrices
Tt
JPC&
3 i)
(yJiPc)jh = a(/,.)c;he 7, (44)
where j labels the rows and & the columns, and the 7 x 7
change of basis matrix I jrc,

(Tyrc)yy = ry,,g;h,

(45)

with 4 and ' the row and column index, respectively. Then
Eq. (42) can be rewritten in matrix notation as

y;PCFJPC =1, (46)

where 1 is the 7i-dimensional identity matrix, meaning that
the change of basis matrix I'jrc is just the inverse of # 7,

Plugging the change of basis matrix back into (43) yields
the scattering amplitude,

L (47)

from which, recalling that J©¢ conservation implies that the
S matrix is block diagonal,

(S)JPC my.J; ¥id C mpy = 5JPCJ/P'C' 5m1m11 (SJPC)jj/’ (48)

one can recognize the J¥¢ block of the S matrix as

Sjre = egszc(j;m)_l. (49)

Equation (49) is a general formula known in multichan-
nel scattering theory; see, for example, Eq. (20.18) in [47]
(notice that we lack the momentum factors because we
adopt a different normalization), that allows us to calculate
the on shell S matrix numerically from the solution of the
diabatic Schrodinger equation above threshold. Indeed, the

numerical values of the amplitudes a J,,)C Kk
()

U defining the Jost matrices (44), can be obtained

and phase shifts

simply by fitting Eq. (36) to the long-distance numerical
wave functions from Sec. IIL

Finally, it is shown in the Appendix that the total
unpolarized cross section can be calculated as

il — Za}:g (50)
JPC
with each JXC cross section ojﬁ obtained as
L, iy (2 J _|_ -
oyl = o (51
I*e (2s 5+ 1 +1)4 ZZ Fircpl™s G
where sM y and s, are the spins of the initial-channel

mesons M <1 /) and Mg ), and we have restored the notation
j. k), (j/, k') for the partial-wave channels.
p

V. RESULTS

In this section, we identify quarkoniumlike mesons
from the structures in the calculated J¥C cross sections
as a function of the energy. More precisely, we do not use
the total cross section (50) but rather a scaled J¥€ cross
section defined as

(28,00 + 1)(2s e +1)
4m(2] + 1)

- Z Z \p j‘;c/k K (52)

This scaled J”C cross section is more convenient for our
theoretical analysis for a number of reasons:
(1) it makes easier the distinction of resonances;

(i) it is a dimensionless quantity;

(iii) it is not affected by the purely kinematical (p{/))=2
behavior of the cross section, what allows for a more
detailed study for energies close above threshold;

(iv) it is symmetric under exchanges j <> j', as per
the detailed balance principle (i.e., time reversal
symmetry);

(v) its values are bounded by the unitarity condition

5;;,}]'/ = (P(j))zﬁ?;cj/

> i &;‘,?Cj < 1, where the maximum value of 1 is
expected at the mass of an isolated resonance
without nonresonant background.
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We restrict our study to meson-meson pairs with pretty
small widths and thresholds well separated in energy. In
this manner, we avoid the technical complications deriving
from the treatment of the widths and the possible presence
of overlapping thresholds. This constrains our formalism to
be safely applicable only up to energies of 4.1 GeV in the
charmoniumlike sector, see [21,22], and 10.8 GeV in the
bottomoniumlike one, see [23]. For the sake of simplicity,
we shall discuss here only elastic processes, as they are the
most convenient for the current theoretical analysis.

For practical purposes, we shall compare the scattering
resonances with existing quarkoniumlike states and with
our former predictions from the bound state approximation.
For this comparison to be meaningful, we use the same
parameters as in Refs. [21-23], that we list here for
completeness.

For the Cornell potential, we take the standard,

o = 925.6 MeV/fm, (53)
x = 102.6 MeV fm, (54)

(we use 7 =c = 1 units, so 1 fm~' = 197.3 MeV) while
for the constant we choose a flavor-independent value,

p =855 MeV, (55)

and for the heavy quark masses, we use
m, = 1840 MeV, (56)
my, = 5215 MeV. (57)
As for the mixing potential (17), in order not to spoil our
predictive power, we choose universal values p and A
for all thresholds. Moreover, we adopt the prescription of
taking A as the effective mixing strength of QQ with the
isospin-singlet combination of two approximately degen-
erate thresholds containing up and down quarks. Then the

effective mixing strength of QQ with a hidden-strange

threshold is given by A/+/2 (see the Appendix in Ref. [23]
for more details). We use

A. =130 MeV, (58)
p. = 0.3 fm, (39)
for charmoniumlike systems and
A, =55 MeV, (60)
pp = 0.3 fm, (61)

for bottomoniumlike ones.

Finally, the threshold values have been obtained from
the sum of the corresponding open-flavor meson exper-
imental masses [2].

The calculated scaled J7€ = (0,1,2)** and JF€ = 17—
cross sections for the elastic scattering of open-charm and
open-bottom meson-meson pairs are presented in Secs. VA
and V B, respectively. It may be useful to anticipate their
common general features:

(1) There is a resonance at about the energy of any
Cornell quarkonium state. These resonances, con-
taining a very dominant QQ component, are usually
most evident in the open channel with the nearest
threshold.

(ii) There appear additional resonances that do not
correspond to the energy of any Cornell state. These
resonances, with a significant meson-meson com-
ponent, are located close to some meson-meson
threshold.

(iii) Superposition of different resonances and their
overlap with thresholds may result in the creation
of complex structures in the cross section which
deviate from the customary Breit-Wigner form.

The emerging physical picture is that of a quarkoniumlike
spectrum consisting in quasiconventional plus unconven-
tional states from the meson-meson interaction provided
by the diabatic mixing of Fig. 1(b). The appearance of the
unconventional states, as well as their eventual composi-
tion, depends on the strength of the Q(Q-meson-meson
mixing and the position of the Cornell potential bound
states with respect to the meson-meson thresholds coupling
to them.

In what follows, we simply identify those enhancements
in the calculated open-charm and open-bottom cross
sections which can be associated to resonances. A more
thorough analysis, especially of the most complex struc-
tures such as threshold cusps and minimums, shall be the
subject of a forthcoming paper.

A. Elastic cross section for open-charm mesons

The calculated scaled cross section for elastic open-
charm meson-meson scattering processes with JF€ =
(0,1,2)** and JP€ = 17~ are shown in Fig. 2.

Visual comparison of these plots with the masses and
widths reported in Table V of Ref. [22] provides us with an
independent check of the results obtained in the bound state
approximation. So the presence of a narrow resonance with
JP€ = 0" close below the D D, threshold with a mass of
3920.9 MeV, coming from the interaction of the D D;
threshold with the 2P Cornell state, is confirmed from the
calculated peak in the DD cross section. Another peak,
without correspondence in the bound state approximation,
is visible in the D D, cross section close above threshold,
which may include some enhancement due to the presence
of the resonance close below threshold. This second peak at
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FIG. 2. Scaled elastic cross section & rc for open-charm meson-meson scattering with JPC = (0,1,2)"* and JPC€ = 17—, versus c.m.

energy E in GeV.

about 3950 MeV can be partly attributed to a quasiconven-
tional 0™ resonance with a very dominant 2P ¢¢ compo-
nent coming as well from the interaction of the 2P Cornell
state at 3953.7 MeV with the D D, threshold. Notice that
this state was also present in the bound state approximation
when neglecting the (open) DD, threshold, but it was
discarded because a one-to-one correspondence with
Cornell states was assumed and the 2P cc¢ core had already
been assigned to the calculated bound state at 3920.9 MeV
[22]. These two peaks may be related to the experimental
candidates X(3915) (see below) and the more uncertain
Zc0(3860). Indeed, it is quite possible that due to the
proximity in energy of the peaks their effect is present in
both candidates. If this is the case, dedicated experiments
would be required to unveil their presence. In this regard, it
is important to emphasize that these peaks are more easily
distinguished in the scaled cross section (52) than in the
physical one (51).

Apart from these peaks, a tiny bump at about 4030 MeV
can be seen in the D*D* cross section. It might correspond
to a new resonance due to the interaction between the
D*D* threshold and the distant 2P Cornell state, but its

experimental observation in the physical cross section
seems unlikely. (Even more difficult should be the obser-
vation of the other tiny structure at the DD threshold.)

For JP€ = 21+, the calculated DD elastic cross section
shows two peaks, a broader one at about 3.9 GeV, close
above the DD* threshold, and a narrower one at about
4 GeV, close below the D*D* threshold. They correspond
to the two excited 27" resonances at 3881.1 MeV and
4003.9 MeV calculated in the bound state approximation,
the broader (narrower) one resulting mainly from the
threshold interactions with the 2P (1F) Cornell state.
Notice that the narrower peak around 4 GeV is also visible
in the DD* and, to a much lesser extent, in the DD, cross
sections. From the experimental point of view, there is a
2** candidate, the y.,(3930), which may be assigned to
the broader peak.

It may be worth mentioning that there is a tiny enhance-
ment of the DD* cross section on the background of the
broader peak, near 3.95 GeV, that can be associated to a
quasiconventional resonance with a very dominant 2P c¢
component. Moreover, a quasiconventional resonance with
a very dominant 1 F c¢ component can be inferred from the
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bump in the D*D* cross section just above threshold.
Neither of these resonances find correspondence in the
bound state approximation since the 2P and 1F cc¢ cores
were assigned to the bound states corresponding to the
peaks near 3.9 GeV and 4 GeV, respectively.

For JP€ = 1%, two peaks are clearly visible in the DD*
cross section, one very close to threshold, which can be
correlated to the presence of the y.,(3872) state close
below threshold, and another one at about 3.95 GeV,
corresponding to a quasiconventional 2P c¢¢ resonance,
that has no correspondence in the bound state approxima-
tion. This last state was discarded in Ref. [22] because the
2P cc core had already been assigned to the calculated
bound state at 3871.7 MeV. At present, there is no suitable
experimental candidate in the PDG [2] for this 1+
resonance at about 3.95 GeV. We note however that recent
studies of ete™ — ywJ/y from the BESIII Collaboration
[49] show that a good fit to data is obtained by introducing
either two or three resonant structures. In the three-
resonance fitting scenario, along with the X(3872) and
X(3915), there is an additional resonance, labeled
X(3960), at 3963.7 + 5.5 MeV (see Table I of that refer-
ence). Then our calculated 171 peak at 3.95 GeV may be
tentatively identified with X(3960). Moreover, according to
[49] the fitting including X(3872), X(3915), and X(3960)
implies a width for X(3915) much smaller than the current
PDG average value, opening an alternative interpretation
of this state as the experimental counterpart of the very
narrow 07" calculated peak at 3920.9 MeV (see above).
We strongly encourage further experimental efforts in
establishing the possible existence of a 1™ charmonium-
like resonance near 3.95 GeV as well as the quantum
numbers of the X(3915), what could provide a crucial test
of our predictions.

For JPC€ = 17—, a quasiconventional resonance around
3.77 GeV is clearly visible in the calculated DD cross
section, in perfect correspondence with the state of mass
3771.7 MeV (with a very dominant 1D c¢¢ component)
obtained in the bound state approximation and with the
experimental y(3770). On the other hand, the D*D* cross
section shows a peak at 4080 MeV, close below the D D*
threshold, which may be assigned to the experimental
w(4040). This is particularly relevant because, as explained
in Ref. [22], the bound state approximation is not suited for
the description of this resonance. In this regard, it is worth
mentioning that the calculated bump is not a standard Breit-
Wigner curve. This complex structure seems to include the
effect of a quasiconventional 3S c¢ resonance located
around 4097 MeV and maybe also some effect from a
third resonance above 4.1 GeV (as an extended numerical
calculation beyond 4.1 GeV seems to point out). The
minimum around 4.14 GeV in the calculated cross sections
has to do with this complexity.

In addition to the aforementioned minimum, the calcu-
lated open-charm meson-meson scaled cross sections

reveal the presence of other peculiar structures such as
the threshold cusps in the 17~ D,D, and DD* cross
sections at the D* D* threshold. Threshold cusps have been
studied extensively in the literature, see, for example, [50]
and references therein, but it is not clear a priori which
thresholds may produce a nontrivial structure. In this
respect, the diabatic formalism may be an ideal framework
to study their occurrence as it provides a unified description
for energies across various thresholds. An analysis of the
calculated threshold cusps in the charm as well as in the
bottom sectors will be given in a separate paper.

B. Elastic cross section for open-bottom mesons

The calculated scaled cross section for elastic open-
bottom meson-meson scattering processes with JPC =
(0,1,2)** and JP€ = 17~ are shown in Fig. 3.

As in the charmoniumlike case, the calculated cross
section confirm the bottomoniumlike resonances calculated
within the bound state approximation; see Table VIII of
Ref. [23]. We see that for 0" there is a peak at about
the energy of the 4P Cornell state at 10782.2 MeV,
corresponding to a quasiconventional 4P bb resonance
(recall that the nearby BB} threshold does not couple to
0*"). This peak, much more visible in the B*B* than in the
BB and B, B, cross sections, corresponds to the bound state
predicted at 10778.1 MeV. Although no experimental
candidate is known at present, it has to be remarked that
this resonance shows up as a standard Breit-Wigner peak
since it is quite isolated from any other structure. This may
facilitate the experimental discovery of the corresponding
bottomiumlike resonance, notwithstanding its relatively
small width. Actually, apart from this peak, there is only
a tiny cusp in the B*B* cross section at the B, B, threshold
and a small bump in BB just above threshold which may be
due to the interaction of BB with the 3P Cornell state at
10536.6 MeV.

For 21 there are two relevant structures: a Breit-Wigner
peak in the BB cross section, somewhat below the BB*
threshold, and a very broad and asymmetric bump (most
visible in the B*B* cross section) reaching its maximum
around the BB} threshold. The first peak corresponds to a
quasiconventional resonance, with a very dominant 2F bb
component, predicted in the bound state approximation
(the effect of the BB* threshold being just a small shift in
the mass of the 2F bb Cornell state). On the other hand, the
second more complex structure may be involving the effect
of more than one resonance: the one at 10782.3 MeV from
the bound state approximation and some other resonance
above 10.8 GeV, as the presence of a minimum might be
indicating (and an extended numerical calculation beyond
10.8 GeV seems to confirm). It may also include some
effect from the interaction of the B*B* threshold with
the 2F Cornell state at 10601.0 MeV. This complexity
may make difficult the identification of the underlying
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resonance(s). In contrast, we expect the Breit-Wigner peak
in BB close below the BB* threshold to be clearly identified
when data are available.

For 17+, there is a peak close below the B B} threshold
that is clearly visible in the B*B* and BB* cross sections,
corresponding to the resonance at 10778.9 MeV from the
bound state approach. In addition to this peak, there appears
an enhancement in the B,B? cross section just above the
corresponding threshold, at about the mass of the 4P
Cornell state (10782.2 MeV). The presence of the quasi-
conventional 4P bb resonance in this structure is somehow
diluted within the enhancement of the B B} cross section
due to the presence of the resonance close below threshold.
In [23], we suggested to look experimentally for a narrow
resonance at about 10780 MeV, which is in perfect agree-
ment with the sharp peak calculated just below the B B}
threshold. We realize now that the presence of the second
peak just above the B B: threshold could hinder its
experimental detection. In this regard, the expected decay
of the narrow resonance to Y(15)¢ could be determinant
for its disentanglement from data.

For 177, the two prominent peaks observed in the
figure are in perfect agreement with the bound state

Scaled elastic cross section & »c for open-bottom meson-meson scattering with J°¢ = (0, 1,2)** and J*¢ = 17, versus c.m.

approximation prediction. The first peak, close below the
BB* threshold, comes mostly from the interaction of the
BB* threshold with the 4S bb state at 10615.0 MeV. Also
related to this interaction, there is a bump in the BB* cross
section close above threshold which is associated to a
quasiconventional 4S bb resonance. As for the second
prominent peak, it can be associated to a quasiconventional
3D bb resonance. Experimentally, the prominent peaks can
be assigned to the well established Y(10580) and the not
well established Y (10753), respectively, whereas the effect
of the smaller bump is expected to be diluted within the
data assigned to Y(10580). Notice that both prominent
peaks are slightly asymmetric, possibly indicating addi-
tional contributions from a threshold interaction with the
3D Cornell state in the first peak and with the 4S5 Cornell
state in the second one.

Altogether, the results for charmoniumlike and bottomo-
niumlike states show, as anticipated, a spectrum of quasi-
conventional resonances in one-to-one correspondence with
the Cornell spectrum plus additional unconventional reso-
nances located close to some meson-meson thresholds.

It is worth remarking that these results, which overcome
the shortcomings of the bound state approximation, allow
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for a description of all existing candidates in the energy
range under study as well as for definite prescriptions,
which could guide the experimental searches of yet
unknown predicted resonances.

VI. SUMMARY

We have extended the diabatic framework, a QCD-based
formalism for the description of quarkoniumlike systems in
terms of QQ and open flavor meson-meson components, to
the study of coupled-channel meson-meson scattering. This
has allowed us to overcome the shortcomings of the bound
state approximation previously used for the analysis of
quarkoniumlike states with masses above the lowest
meson-meson threshold.

Our study of coupled-channel meson-meson scattering
has gone through two separate steps. First, we have solved
numerically the diabatic Schrodinger equation above
threshold by using an extension of the well-known grid
method that allows for nonvanishing values of the wave
function at the boundaries. Then, we have used the
asymptotic behavior of these continuum solutions to extract
the meson-meson scattering amplitudes and cross sections.

This procedure has been applied to the calculation of
the elastic cross section as a function of the energy for
open-charm as well as open-bottom meson-meson scat-
tering. Quarkoniumlike resonances have been identified
from standard Breit-Wigner peaks and more general
structures in the cross section. We have shown that
quarkoniumlike resonances previously obtained from
the bound state approximation constitute only a part
(as a direct consequence of the constraints inherent to
such approximation) of the whole spectrum. We find that
this is formed by quasiconventional resonances, with
masses close to those of Cornell bound states, as well as
by unconventional ones, with masses close to the energies
of some meson-meson thresholds. It must be observed
that sometimes the quasiconventional resonances are not

|
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isolated from other enhancements in the cross section,
which hinders their identification. All existing experi-
mental candidates have been assigned to calculated states.
As for predicted but yet undiscovered resonances, an
initial analysis to guide experimental searches has been
outlined. In this regard, the experimental confirmation of
our predictions of a 17" quasiconventional charmonium-
like resonance with a mass about 3950 MeV, a narrow
0" unconventional charmoniumlike resonance with a
mass about 3920 MeV assigned to X(3915), and a 11+
unconventional bottomoniumlike resonance with a mass
about 10780 MeV, would provide strong further support
to our theoretical description.
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APPENDIX: PARTIAL-WAVE EXPANSION OF
MESON-MESON SCATTERING STATES

Since we are treating heavy-light quark mesons as point-
like particles, the stationary scattering state from an initial
v

meson-meson channel My "M; " with spins s ), s -7, and
1

2
projections Opth1s Opgth to a final channel M g’ WIE’ ) with

spins s M s i) and projections aM(l j)s O ) can be written as

2
[see, for example, Eq. (20.11) in [47]]

ip\/)
etr'r

=)

ip("). <) H .7
ipVr ] <) .
e + ng(]j> ,Gh_/’éj) ;UM(/)’GM(]‘U (p r)
2 1 2

o
where p and 7 are interpreted as the beam and detection directions, respectively, with f{fé) I T (p-F) the
M M M
1 2

corresponding scattering amplitude. Notice that for the sake of simplicity, we have omitted the subscripts s, (), s
1

2
N

i) ("
}‘/[2 ’ Mlj ’

S o) in the scattering states, in the understanding that they are always implicit.

2

We wish to expand (A1) in stationary scattering states with definite J, m;, [/, and sU") quantum numbers. To do so, we

introduce the plane wave expansion,

S

]j/ O.M(]j) o'M(jr)
1

2 i il
’ 19,6y 15 m

ipU). 10) i) YO D
ipVr — E E S (pl) [ !
i) € 4z 5JJ’51(])1(/>5”’1(/)m/(j’)50M(]f>0M(f’)5O'M<!')GM(J")l Jiw(PYIN)Y (r)YN’) ®).
1 2
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and rearrange it conveniently as

0) . i
5~-/5 5 47T 55 . ./5 S ll . (J)r
YOI "M;j) "M;' z : 2 : § : § : § 7010 1 Osi H U J 1) (P )
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1 2 )50 ! 7 1 2 ! 5! I 5
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Similarly, we expand the scattering amplitude as
j<J Aoay E : § ' j<i 1(/ MG A
ng(j) ’61\?1(-">;6M(j’)'6/\71(.//)(‘p r) =4 fl(f>.)n[</-) A9 m ()C()C()3C ()0 Y ( )Yl(/ (p>’ (A4)
! ? ! 2 19m,;) l(f/>,ml(j/) i Myomy Mz
which can be rewritten using angular momentum algebra as
jf _ i- /
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1 2 1 2
Let us now take the definition of the meson-meson spin-orbital eigenfunctions,
m g O'lf
_ my,mg,my m, Mz T ETMy g My
) - Z CZ,S,.] " Y Z C‘Ml S gﬂM] 5‘\'/\712 ) (A6)
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with \fsﬂ':'l‘ and 5::2 the meson spin vectors, where X can be either 7 or p, [ either [ () or 1) , s either sU) or s( ) , M either M u)
or M, () and M, either Mgi ) or M& /). Using orthogonality of the meson spin vectors, fle 55 = , and

OMIDM]
é M2 5 Mz - 5 we ObSCI’VG that
Sz Sz O

/
-
%51,

N ey () = Tyl (), (A7)

2
my,img

which can be inserted in (A3) to obtain

int/)
T2 0 er T
i T ) )
o0 o6 . T T
M . M
_ 1 2 0) - my o aN gt I 2
= fsM(,) CfsM(, <47f E E E 5,']"51(»1(/)55(/)3(1’)l Ji (P(" Ir ) 1) 5U) (FY 10§ 12 ‘fsMu’) QCSMU’) ’ (A8)
! 2 Jmy G) ' 1 2
and in (A5) to obtain
e ot ot ey y]’” Jm : o) Ol
5.7 — 1 2 J J 2
"M(l./')'”M;j);”M(j’)’GM(j')(p 7) §SM<IJ> gsMgﬂ 4n E : § : E : 1) 5010 lu ”(p) &M 7) &M(j’)' (A9)
ot 2 Jany 10) 50) 40" 2
Finally, inserting Eqs. (A8), (A9) in (A1) yields the desired expansion,
l//j‘—j/ GMEI ot géj E E j=r ( y] mpt o GME/’) Gig” AlO
AL ) r) = K r .. P K . K p )
P52, ) g »”M(,/w"M;f’)( ) é‘M &, ) WJ il ) 1</>.,s</>(p) &ME/J fwgﬂ) (A10)
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with

j<=r ~ 2R NP )P () hed () §<7 i(pVr=10g) | yylmy (4
1.m,;1<f’>.,s(f’>(r)_ ' Z 050y Oy Sin| pr =1 D) +p J210) 500 s € : y,m,sm(" )
0)

W
r ”p(j)lm’s,
(A11)
[compare, for example, with Eqgs. (15.12), (15.16) in [S1]].
The total unpolarized cross section,
- 1 2
- ](—] Ao
ol = TNTESET Z Z / P\fe 07497, 0) ) (p -7 (A12)

( 2
2

[see, for example, Eq. (5.9) in [47]] can be then calculated from the scattering states (A11). Concretely, inserting (AS5)
into (A12), after a lengthy calculation, one eventually finds

2

i _

o’ =
ZSMY/) + IZSM;]-/) +

fj(_j sU); /) 0 (A13)

If one further imposes conservation of parity and C parity, then it is ultimately possible to write the total unpolarized cross
section as a sum of J¥C cross sections, 6// =Y rc o3, with each contribution involving only (I, s) partial waves

JPC

coupling to the specific quantum numbers,

471'(2

o —
o (2s w) T 1)(

1

where k' and k label distinct (I, s) partial waves coupling to

JPC

ZZ)}N‘—J . 2

(Al14)

in the initial and final channel, respectively.
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