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Propagators of confined particles, especially the Landau-gauge gluon propagator, may have complex
singularities as suggested by recent numerical works as well as several theoretical models, e.g., motivated
by the Gribov problem. In this paper, we study formal aspects of propagators with complex singularities in
reconstructing Minkowski propagators starting from Euclidean propagators by the analytic continuation.
We derive the following properties rigorously for propagators with arbitrary complex singularities
satisfying some boundedness condition. The two-point Schwinger function with complex singularities
violates the reflection positivity. In the presence of complex singularities, while the holomorphy in the
usual tube is maintained, the reconstructed Wightman function on the Minkowski spacetime becomes a
nontempered distribution and violates the positivity condition. On the other hand, the Lorentz symmetry
and locality are kept intact under this reconstruction. Finally, we argue that complex singularities can be
realized in a state space with an indefinite metric and correspond to confined states. We also discuss
consequences of complex singularities in the Becchi-Rouet-Stora-Tyutin formalism. Our results could open
up a new way of understanding a confinement mechanism, mainly in the Landau-gauge Yang-Mills theory.
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I. INTRODUCTION

One of the most fundamental properties of strong inter-
actions is color confinement, the absence of colored degrees
of freedom from the physical spectrum. Understanding this
property in the framework of relativistic quantum field
theory (QFT) is a long-standing problem and of crucial
importance for particle and nuclear physics. Analytic struc-
tures of the correlation functions enable us to extract
valuable information on the state-space structure through,
e.g., the Killén-Lehmann spectral representation [1], which
will be useful toward understanding a confinement mecha-
nism. Therefore, investigating analytic structures of confined
propagators, e.g., the gluon propagator, and considering their
implications are of great interest.

In the last decades, the gluon, ghost, and quark propa-
gators in the Landau gauge have been extensively studied by
both lattice numerical simulations and semianalytical meth-
ods (e.g., Dyson-Schwinger equation and functional
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renormalization group), for reviews see [2—4], and also by
models motivated by the massivelike gluon propagator of
these results [5—7]. Based on these advances, in recent years,
there has been an increasing interest in the analytic structures
of the gluon, ghost, and quark propagators [8-26]. In
particular, unusual singularities invalidating the Kallén-
Lehmann spectral representation, which we call complex
singularities, receive much attention. A pair of complex
conjugate poles of the gluon propagator, which is a typical
example of such singularities, was predicted in old literature
[27-32], e.g., by improving the gauge fixing procedure. The
most remarkable point of the recent studies without assum-
ing the Kéllén-Lehmann representation is that the indepen-
dent approaches represented by numerical reconstruction
techniques from Euclidean data [21,25], models of massive-
like gluons [12,13,18,23], and the ray technique of the
Dyson-Schwinger equation [9,24] consistently suggest the
existence of complex singularities of the gluon propagator.
Moreover, some results support complex poles of the quark
propagator [23].

There are also studies of complex singularities on other
models [33-35]. A relation between complex poles of a
fermion propagator and confinement in the three-
dimensional QED was suggested in [35].

Since complex singularities cannot appear in propagators
for observable particles, we expect that the complex singu-
larities are related to color confinement. However, while the
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analytic structures have been investigated in many works,
implications of complex singularities for QFTs have been
much less studied. Theoretical consequences of complex
singularities are of crucial importance since such consi-
derations on complex singularities could play a pivotal role
in obtaining a clear description of a confinement mechanism.
Thus, we study theoretical aspects of complex singularities
in this paper.

For this purpose, the reconstruction of the two-point
Wightman function, or the vacuum expectation value of
the product of field operators, from the two-point
Schwinger function, or the Euclidean propagator, has
to be carefully investigated. Thus, we reconstruct
the Wightman function based on the holomorphy of the
Wightman function in “the tube” [36] following the
Osterwalder-Schrader (OS) reconstruction [37,38]. This
is the standard method to relate Euclidean field theories to
QFTs in axiomatic quantum field theory.

Some argue that the appearance of complex singularities
might indicate nonlocality, e.g., [29-31]. Nevertheless, this
argument relying on the naive inverse Wick rotation is not
fully convincing. Actually, as we briefly remark in this
paper, the naive inverse Wick rotation differs from the
reconstruction based on the holomorphy of the Wightman
function in the presence of complex singularities. Since the
relation between complex singularities and locality is
thus in a confusing situation, we also address this topic
carefully.

In this paper, we study formal aspects of complex
singularities, namely, analytic properties of the recon-
structed two-point Wightman function and implications of
complex singularities for the state-space structure. The
standard reconstruction procedure and contents of this
paper are illustrated in Fig. 1. Because of the somewhat
confusing situation on this subject as mentioned above, it
is essential to clarify consequences of complex singular-
ities that can be stated unambiguously. Thus, we derive
these analytic properties with rigorous proofs. Moreover,
since it is very important to investigate states related to the
confined particles for understanding a confinement
mechanism, we consider state-space structures yielding
complex singularities.

The main results of this paper are listed as follows, as
announced in [39]. Suppose that the Euclidean propagator,
or the two-point Schwinger function, has complex singu-
larities in the complex squared momentum plane, as
defined in Sec. III A. Then, the following claims are
derived:

(A) The reflection positivity is violated for the Schwinger

function (Theorem 6).

(B) The holomorphy of the Wightman function W (& —
in) in the tube (Theorem 3) and the existence of the
boundary value as a distribution (Theorem 4) are
still valid. Thus, we can reconstruct the Wightman
function from the Schwinger function.

standard:
OS reconstruction
Sec. III:
reconstruction Sy — Wh

Minkowski
Wightman functions {W,}

Euclidean
Schwinger functions {S, }

Sec. IV: a possibility | standard: Wightman
is discussed reconstruction

Relativistic QFT
states and operators

FIG. 1. The reconstruction procedure and contents of this paper.
In the standard reconstruction procedure, we start from a family of
Schwinger functions satisfying OS axioms and finally reconstruct a
QFT by the OS theorem [37,38] and Wightman’s reconstruction
theorem [ [36], Theorems 2—-6]. We re-examine this reconstruction
procedure when a propagator has complex singularities. In Sec. II,
it is pointed out that we should begin with a Schwinger function
with complex singularities. In Sec. III, we reconstruct a Wightman
function from the Schwinger function in the same way as the OS
reconstruction based on the holomorphy in the tube. In Sec. IV, we
discuss a possibility in the reconstruction procedure from the
Wightman functions to a QFT.

(C) The temperedness (Theorem 5) and the positivity
condition in 2(R*) (Theorem 7) are violated for the
reconstructed Wightman function. The spectral
condition is never satisfied since it requires the
temperedness as a prerequisite.

(D) The Lorentz symmetry (Theorem 8 and Theorem 9)
and spacelike commutativity (Theorem 10) are kept
intact.

(E) A quantum mechanical observation (Claim 3) sug-
gests, together with an example of QFT (Sec. IV B),
that complex singularities correspond to pairs of
zero-norm eigenstates of complex eigenvalues.

This paper is organized as follows. In Sec. II, we

emphasize the difference between complex singularities
of a Euclidean propagator and a (real-)time-ordered one in
the momentum space and take a glimpse of some properties
to be generally derived in Sec. III B. In Sec. III, we give a
definition of complex singularities (Sec. III A) and derive
the properties (Sec. III B) listed above with a mathematical
rigor except for the last one (E). In Sec. IV, based on the
results of Sec. III, we consider quantum-theoretical aspects,
namely, what complex singularities imply on the state-
space structure. We also discuss implications of complex
singularities in the Becchi-Rouet-Stora-Tyutin (BRST)
formalism. A summary is given in Sec. V, and Sec. VI
is devoted to discussion on related topics and future
prospects. The mathematical notations and standard axioms
are summarized in Appendix A. Appendix B contains a
detailed proof of the violation of the reflection positivity
(Theorem 6). Appendix C summarizes violated axioms of
the OS axioms for Schwinger functions and the Wightman
axioms for Wightman functions.
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II. PRELIMINARY DISCUSSION

In this section, we sketch out the main properties of
complex singularities and emphasize the difference
between complex singularities of a Euclidean propagator
and those of a (real-)time-ordered propagator in the
momentum space. For simplicity, we consider (0 + 1)-
dimensional field theories in this section. This nonrigorous
discussion helps us to determine a point of departure
toward the rigorous discussion in Sec. III.

A. Difference between complex singularities of
Euclidean propagator and (real-)time-ordered one

We consider complex singularities of Euclidean and real-
time propagators on the complex squared momentum
plane. We point out that the conventional Wick rotation
in the squared momentum plane p?> — —p% is not appli-
cable in the presence of complex singularities. Thus, we
emphasize that complex singularities in the propagators
that appear in many works should be regarded as Euclidean
ones and that the reconstruction procedure must be care-
fully considered.

We define the “Wightman functions” D~ () and D= ()
and the real-time propagator D(t) by

D= (1) = (0]¢p(1)9(0)]0),
D=(t) = (0]¢(0)¢p(2)0),
D(1) = 0(1)D* (1) + 6(~1)D=(1). (1)

Usually, we can analytically continue D~ (¢) and D=(¢) to
the lower and upper half planes of the complex ¢ plane,
respectively. In particular, D~ (—iz) can be defined for
7> 0, while D<(—i7) can be defined for 7 < 0.

Thus, we introduce the Euclidean propagator A(z),
which is identified with the “two-point Schwinger func-
tion”, as

A~ (7)== D> (—itr) (forz>0),
A=<(7) := D<(—ir) (for z <0),
A(7) = 0(7)A” (1) + O(—7) A= (7). (2)

This connection between the Wightman and Schwinger
functions is consistent with the standard reconstruction
method given in (A23) and (A25), where the Schwinger
function is regarded as the “values” of the Wightman
function at pure imaginary times. We denote the Fourier
transforms of D(f) and A(z) by D(p,) and A(pg),
respectively.

We emphasize that the connection between Euclidean
correlation functions and vacuum expectation values of the
product of field operators should be implemented in the
complex time plane rather than in the complex squared
momentum plane. Here, with the connection (2), we

demonstrate that the reconstructed propagator D(¢) cannot
have a well-defined Fourier transform if A(pj) has com-
plex poles. This indicates that a real-time propagator with
complex poles [where D(p,) has complex poles] is not the
reconstructed propagator from a Euclidean propagator with
complex poles [where A( pr) has complex poles].

1. Physical case

First, we observe the physical case for a comparison. Let
us assume as a definition of the “physical case”,
(i) completeness: 1 =", |n)(n|, where |n) is an ei-
genstate of the Hamiltonian H with an eigenvalue
E,: H|n) = E,|n),

(ii) translational covariance: ¢ (1) = ef'¢p(0)e="!,

(iii) spectral condition: positivity of H, namely, E, > 0.
Then, one can relate Euclidean and real-time propagators
A(pg) and D(p,) by the conventional Wick rotation
p% — —p2. Indeed, these three conditions yield the spectral
representations for the Wightman functions and the real-
time propagator,

D*(0) = [ daeip(o)

D<(1) = A " do ep(o),

D) =i fae 8

where we have defined the spectral function p(c) by
plo) =Y 8(c = E,)|(n|$(0)|0) . (4)

Consequently, from (2), the Euclidean propagator has the
spectral representation given by

A~ (1) = D7 (-it) = Am do e " p(o),
A=<(7) = D~ (—ir) = Aoo do e”p(o),

Bipe) = [ a0 20 )

Therefore, in the physical case, the Euclidean propagator
A(pg) and the real-time propagator D(p,) are related by
the analytic continuation on the complex squared momen-
tum plane: p} — —p%. The spectral representation guar-
antees this consequence, which does not hold in the
presence of complex singularities as is shown below.

2. With complex poles

For example, let us take the Gribov-type propagator with
complex poles,
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A(pg) =—2E—. (6)

This gives the following Euclidean propagator in the
Euclidean time:

1 ylr| =&
=—e V2 _
A7) 2}'e 2 sin < 7 + 4> , (7)

Although a complete reconstruction method from
Euclidean to Minkowski in the presence of complex
singularities has not been established, we here assume
the connection introduced in (2), which is consistent with
the standard reconstruction method, even in the presence of
complex singularities. With this connection, we have the
Wightman functions,

“(=t) = L sinn (71— z)
D=(-1) 2}/6 smh(\/z 1) (8)
Then, both D”(f) and D=<(¢) increase exponentially
as t = +oo.

Therefore, starting with the Gribov-type Euclidean propa-
gator, we have the Wightman functions D~ () and D<(t) of
exponential growth. Such Wightman functions D~ (¢) and
D=(t) cannot be regarded as tempered distributions, and
therefore, they do not have well-defined Fourier transforms.
This is also the case for D(¢). Thus, the Minkowski
propagator cannot be reconstructed from the Euclidean
propagator with complex poles by using the simple “inverse
Wick rotation” p% — —pj in the complex squared momen-
tum plane, since the “reconstructed” real-time propagator
has no Fourier transform. In other words, a Euclidean
propagator with complex poles [where A(pg) has complex
poles] is different from a real-time propagator with complex
poles [where f)( Po) has complex poles]. In particular, one
has to take care of the definition of complex singularities.

Again, one should reconstruct the propagator not by the
simple inverse Wick rotation on the complex squared
momentum plane, p3 — —p3, but by the standard method
explained in (A23) and (A25). The former reconstruction is
often discussed in some literature, e.g., in [29-31], which is
different from the latter one. As more is discussed in Sec. VI
A, we argue that the latter one should be adopted because of
the fundamental relation (A23) and some advantages.

D~ (1) =

B. Properties

Let us briefly summarize properties of complex poles.
Here, we suppose that the Euclidean propagator A(p £) has
complex poles:

(a) The Wightman functions D”(¢) and D<(¢) recon-
structed from the Euclidean propagator A(z) cannot be
regarded as tempered distributions because they grow
exponentially as t — +oo0.

(b) A Euclidean propagator with only complex poles
violates the reflection positivity (A20) because A(z)
violates the necessary condition for the reflection
positivity (A22): A(r) > 0 for all 7 > 0.

(c) The positivity in the sector {¢(¢)|0)},cr is violated
due to the nontemperedness. Indeed, suppose that the
sector {¢(7)|0) },cr had a positive metric. From the
translational invariance of the two-point function,
the time-translation operator defined on this sector,
U(s)p(1)]|0) == ¢(t + 5)|0), is unitary, i.e., (0|¢(r)
U(s)"U(s)p(?)]0) = (0]gp(£)¢p(¢')|0). Since the mo-
dulus of a matrix element of a unitary operator
is not more than one in a space with a positive
metric, we would have an upper bound
{0l (0)U(s)#(0)]0)| < (0]¢p(0)¢h(0)[0) or [D=(s)[ <
|D=(0)|, which contradicts the nontemperedness.

In the next section, we see that these properties always
hold rigorously if A(py) has complex singularities

(Theorems 5, 6, and 7).

III. COMPLEX SINGULARITIES: DEFINITION
AND PROPERTIES

In this section, we give a definition of complex
singularities and rigorous proofs of some properties for
propagators. These “complex singularities” should be
regarded as complex singularities on the complex squared
momentum plane of an analytically continued Euclidean
propagator. Indeed, in many studies, propagators with
complex poles are compared with numerical results on
Euclidean ones. Therefore, we start with a two-point
Schwinger function. For details of mathematical nota-
tions, see Appendix A.

For simplicity, we work in four-dimensional Euclidean
space D = 4. However, our main results can be easily
generalized to arbitrary dimensions D >2 except for
Theorem 9 and Sec. IIIB 8§, where the Bargmann-Hall-
Wightman theorem is used for the proof.

A. Definition

1. Preliminary assumptions

For simplicity, we consider a two-point function for a
scalar field. Throughout this paper, we assume the follow-
ing conditions for a two-point Schwinger function
S, (x1,x,), which follow from the OS axioms [37,38]
(see Appendix A).

(i) [0SO]  Temperedness  S,(xj,x,) € O.7(R*?):
S, (x1,x,) is a tempered distribution defined on
the space of test functions vanishing at coincident
points x; = x,.

(i1)) [OS1] Euclidean (translational and rotational) invari-
ance:  S>(Rx; + a,Rx, + a) = S(xy,x,), for
all a € R*, R € SO(4).
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From (i) temperedness and (ii) translational invariance,
there exists a distribution S;(¢) € .#/(R%) such that
Sy (x1,x7) = S (x —x;) for x{ < x3. We can also regard
S1(¢) € S (RY), where .'(R,) is the dual space of

I (R) = {f(cf) € S (RY); ) } 9)

for any a € 74,

Moreover, (ii) Euclidean rotational invariance implies
S1(RE) = S (&) for all R € SO(4).

Let us comment on the other conditions of the standard OS
axioms [37,38] (see Appendix A). They are [OS2] reflection
positivity, [OS3] permutation symmetry, [OS4] cluster prop-
erty, and [OSO’] Laplace transform condition. Intuitively,
[OS2] reflection positivity corresponds to the positivity of the
metric of the state space. If we consider gauge theories in
Lorentz covariant gauges including confined degrees of
freedom, we must allow violation of the reflection positivity.
Thus, we do not require the reflection positivity, which is
actually broken in the presence of complex singularities
(Theorem 6). For a two-point function of a single scalar field,
[OS3] permutation symmetry is a consequence of [OSI1]
Euclidean rotational invariance. For general cases, we assume
[OS3] permutation symmetry, see Sec. III B 8. For generality,
we do not impose [OS4] the cluster property, which
corresponds to the uniqueness of the vacuum and could be
violated by a severe infrared singularity of a propagator. In
the view of the reconstruction from Euclidean field theories,
[OS0’] the Laplace transform condition is introduced for the
purpose of controlling higher point functions. Since we focus
on the two-point function in this paper, we do not take a
further look into this condition. Incidentally, the Laplace
transform condition itself is violated if the two-point function
has complex singularities due to the nontemperedness of the
Wightman functions (Theorem 5).

In addition to the assumptions taken from the standard
OS axiom, we further require that the two-point Schwinger
function $,(£) € .'(RZ,) has a well-defined Fourier
transform S, (k). Simply, this can be realized by the
following assumption:

(iii) The Schwinger function S, () can be regarded as an
element of .7"(R*): (&) € ' (R*).
This assumption allows the well-defined Fourier transform,

510 = [ dieessi e (10)
From the rotational invariance, we can write!

'Note the difference of conventions with our previous papers
[18,20,23], where we took S, (k) = D(—k?). In particular, the
timelike axis is the negative real axis in this paper unlike the
previous ones (see Fig. 2). Note also that the Minkowski
notations in [18,20,23] were misleading; they should be
Euclidean.

S, (k) = D(K?). (11)

A few remarks are in order.

(a) While the condition S§(¢) € .%(RY,) allows any
singularity at £ = 0, the new condition (iii) S;(&) €
'(R*) imposes that such a singularity is at most
derivatives of a delta function D*5(&). We do not expect
appearance of singularities beyond usual distributions at
least in an ultraviolet asymptotic free theory.

(b) For real-valued fields, namely, real-valued
S1(&), Si(k)=D(k*) is a real distribution from
the rotational symmetry (or the permutation sym-
metry) S, (=€) = S().

(c) There is a constraint on the massless singularities. For
example, this formulation excludes the “dipole ghost
pole”: D(k*) ~ 1/k* without a regularization since
D(k*) = S, (k) € .'(R*). This constraint depends
on the spacetime dimension. The massless pole
(without a regularization) is prohibited in the two-
dimensional space.

2. Definition of complex singularities

Now, let us define complex singularities of a two-point
Schwinger function. We call the positive real axis of the
complex k? plane the Euclidean (spacelike) axis and call
the negative real axis of the complex k? plane the timelike
axis. In addition to (i)—(iii), we assume the following
for D(k?):

(iv) D(k*) = S,(k) is holomorphic except singularities
on the timelike axis {k?; k> < 0} and a finite number
of poles and branch cuts of finite length satisfying:
(iva)The singularities on the timelike axis can be

represented as a tempered distribution on
[—00, 0], namely,

D(—6* —i€) — D(—06* + i€)

eioDiscD(—az) € .7([0,0]), (12)

where .#’([0,00]) is the dual space
of #([0.00]) = {f(2) = g(~(1+2)):gis a
C* function on [—1, 0]}. For details, see Appen-
dix A or [ [40], Sec. A.3.].

(ivb) D(k?) = S;(k) is holomorphic at least in
neighborhoods of all points of the Euclidean
axis {k?;k* > 0} in the sense that there is no
singularity on the Euclidean axis.

(ivc)The complex branch cuts are not located across
the real axis.

(v) The analytically continued D(z) on the complex
plane z = k? tends to vanish as |z| — co.

With these assumptions (i)—(v), we call singularities except
on the negative real axis complex singularities.

The first assumption (iva) is imposed for a practical

purpose. Without this condition, the spectral function
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would generally be a hyperfunction, which makes an
analytical treatment difficult. Due to this condition, the

Dis%(;fz) (see Theorem 1), is well

defined. The second assumption (ivb) excludes “tachyonic
singularities”, which could make S;(¢) ill defined. The
third one (ivc) claims that, except for the timelike singu-
larities, there are no singularities in the vicinity of the real
axis. This is a technical assumption for defining the spectral
function and also for simplifying the proof of Theorem 5.

Although assumption (v) is a technical one,” we expect
that the gluon, ghost, and quark propagators satisfy this
property due to the ultraviolet asymptotic freedom. Indeed,
in the Landau gauge, the QCD propagators have the
asymptotic form of D(k?) where 7, and f,

“spectral” integral, [§°

are, respectively, the first coefficients of the anomalous
dimension and the beta function [41].

The finiteness of branch cuts is required for the
reconstruction of the Wightman function. One could allow
infinitely long branch cuts whose discontinuities are sup-
pressed faster than any exponential decay as |z| = oo and
those which approach asymptotically to the negative real
axis sufficiently fast. We make a further comment on this
point below. For simplicity, we restrict ourselves to the case
without branch cuts of infinite length in this paper.

Although we have restricted ourselves to poles and cuts
at the assumption (iv), we note that one can easily
generalize theorems in Sec. III B, i.e., Theorems 2-11,
to arbitrary complex singularities if the following condi-
tions are satisfied: boundedness of locations in |k?|, (iva)
regularity of the timelike singularities, (ivb, ivc) holomor-
phy in a neighborhood of the real axis except for the
timelike axis, and (v) D(k*) — 0 as k> — co. With these
conditions, contributions from complex singularities can be
represented as integrals along contours surrounding these
singularities according to the Cauchy integral theorem.
Then, we can use the same proofs described in Sec. III B for
this generalization.

3. Generalized spectral representation

As an immediate consequence following from the com-
plex singularities, we derive the generalized spectral
representation for D(k?).

Here, we consider the setup illustrated in Fig. 2, which is
characterized by the following:

(1) {Zf};lilz positions of the complex poles

2 {nf};’il: their orders

(3) 7,: a small contour surrounding z, clockwise
“ {Ck}iv;‘lz the complex branch cuts

(5) I'y: a contour wrapping around C; clockwise
(6) Cy: the negative real axis

*Note that discussion similar to the following one can be done
for D(z) of polynomial growth in z as |z| — oo by applying the
Cauchy theorem to D(z)/z" in Theorem 1.

Im k2 k2

%

Re k?

Cy

FIG. 2. The contours y, and I'; surround the pole z, and the
branch cut C; clockwise, respectively. The contour C consists of
the path C; winding the negative real axis and the large circle C,:
C = Cy U C,. The orientation of the contour C is taken counter-
clockwise. The propagator D(k?) is holomorphic in the region

bounded by C U {7,}3"; U {T3}re.

(7) C = C;y U Cy: the contour consisting of the path C,
encompassing C, and the large circle C, counter-
clockwise.

The discontinuity of D(¢) foracutCy (k =0,1,...,N,)is
denoted by Disce, D({). On a cut with an orientation,
Disce, D({) = D(¢ + id{) — D({ — id), where d{ is an
infinitesimal along the given orientation of C;. For example,
for the negative real axis C, with the orientation from
0 to —oo, Disce D(—0?) = D(—0* — ie) — D(—0” + i€)
(e = +0).

Theorem 1.—Let D(k*) = S,(k) be a propagator sat-
isfying (i)—(v). In the above notation, the generalized
spectral representation follows for k> which is not on
singularities of D(k?),

2 Ny ne (m)
% z
o) = [ a2 217 ‘
( ) /0 0-62—|—k2+;m2::1(k2—2f)m
N
< Pr(§)
+ d¢ ; 13
; Ci K=< (13)
where
1
p(6?) :== —Disce D(—06?), (14)
27l 0
. |
70 = —— ¢ dIPD(K)(K? = z,)m""!
2ri J,,
= L. sm=1,...,0p),
(£=1,...Nyim=1 ) (15)
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1
—Discy, D
S —DisegD(¢)

(k=1,....N,). (16)

pi(§) = for ¢ € C;

We have taken the orientation of C; (k =1, ...,N,) in the

discontinuities Disce, D({) to coincide with the orientation

of the integral in (13) and the orientation of C, in

Disce,D({) to be from the origin to negative infinity.

Before proceeding to the proof, let us add several

remarks.

(a) If there exists no complex singularity (N, = N. = 0),
this theorem provides the Killén-Lehmann spectral
representation

D(k2):/) do p( ) (17)

o>+ Kk’

except for the non-negativity p(c?) > 0. In this sense,
(13) is a generalization of the Killén-Lehmann spec-
tral representation.

(b) For real-valued fields, D(k?) is real for k> > 0 as noted
above. Then, from the Schwarz reflection principle
D(z*) = [D(z)]*, the spectral function can be written
in the form

p(?) = %ImD(—az _ie) (e—+0), (18)

which is the usual dispersion relation.

(c) Similarly, for real-valued fields, the Schwarz reflection
principle D(z*) = [D(z)]* implies that the complex
singularities must appear as complex conjugate pairs
(up to arbitrariness of the branch cuts).

(d) Disce, D() is in general a hyperfunction, which is not
very convenient for careful analyses. Thus, although
Theorem 1 is itself important, we utilize an equa-
tion (19) appearing in the proof given below rather
than (13) in order to prove subsequent theorems. Only
for the timelike part, namely, the first term of (13), we
use the spectral representation in the following sub-
sections, since the assumption (iva) makes p(c?)
somewhat easy to treat.

(e) Note that the domains of the integrals only represent
that p(6?) € .#"([0, o0]) and that supp py lies in the
closure of the cut C;. In particular, we allow a massless
pole, namely, a pole at the origin k> = 0, as long as
assumption (iii) is maintained.

Proof—For any point k> not on the singularities, the
Cauchy integral formula yields

d¢ D(¢
D) = ]{Zﬂlz: k?

Z?i 2mi { — k2
Zﬁk 2ri{ - kz’ (19)

where we have chosen the contours (Cy, 7., ') sufficiently
close to the singularities.

Assumption (v) guarantees that the integration along the
large circle C, vanishes. Thus, the first term reads

d¢ D) _ [ d¢ D)
ﬁz_mc—kz_/clz_mc—k” 20

where C; surrounds the negative real axis.
For the second term, a calculation yields

N

¢ D(¢ " vz
SRS s @

=1 m=1

Therefore, we have

N, ¢ Z(fm
2\ _
b - [ E DG S5 2

= (K" —z/)
é'
- Z 7{—1 i k> = ¢’ (22)

where C7! and I';! denote C; and I', with inverse
directions, respectively. Note that C! and I';! are roughly
“contours surrounding the cuts counterclockwise”. By
taking a limit shrinking these contours (C;,I7), the
right-hand side of (22) is represented as (13). [

B. Some properties of complex singularities

Here, we derive analytic properties of propagators with
complex singularities. As a first step, we consider
(Sec. III B 1) an example of one pair of complex conjugate
simple poles. After that, we prove the properties of general
complex singularities: (Sec. III B 2) Holomorphy in the
tube, (Sec. III B 3) Violation of temperedness of the
reconstructed Wightman function, (Sec. IIIB4)
Violation of reflection positivity, (Sec. IIIl B 5) Violation
of (Wightman) positivity, (Sec. III B 6) Lorentz symmetry,
and (Sec. IIIB7) Locality. The organization of this
section is illustrated in Fig. 3. Some remarks on gener-
alization to arbitrary spinor fields are made in Sec. III B 8.

1. Example: One pair of complex conjugate simple poles

Let us first consider the propagator D(k*) with one pair
of complex conjugate simple poles, which is decomposed

074024-7
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Holomorphy of Wi (§ — in) in the tube
(simple complex pole)
[Lemma 1 and Theorem 2]

l

Holomorphy of Wi (§ — in) in the tube
(general)
[Theorem 3]

l

Complex Lorentz symmetry of W1 (€ — in)
—
[Theorem 9]

I W1(€) = lim o Wi(€ —in) € 2'(R*)

nevy

[Theorem 4]

Non-temperedness of W1 (€)
[Theorem 5]

Lorentz symmetry of W1 (&)
[Theorem 8 and Lemma, 3]

|

I

Violation of Wightman positivity
[Theorem 7]

Violation of reflection positivity
[Theorem 6]

Spacelike commutativity of W1 (&)
[Theorem 10]

FIG. 3.

Flow chart summarizing Sec. III B. In our proofs, a theorem at a destination of an arrow requires theorems in its upstream.

Figure 5 shows the detailed relation on the dotted line between Theorems 9 and 8. The green blocks are consistent with the usual QFT,

while the red blocks with thick boxes contradict that.

into the “timelike part” D, (k*) and “complex-pole part”
D, (k*),

D(k*) = Dy(k?) + D, (k?),

(k) = /0 ® g2 L)

o’ +k*’

z z
D.,(k*) = : 23
er (k) M2+k2+(M*)2+k2 (23)

Without loss of generality, we can assume ImM? > 0.
Accordingly, the Schwinger function is decomposed as

Sy (5) - Stl(é) + Scp(f)’

4
Stl(g):/(;lﬂl)€4eik§D[l(k2)’

Scp(g) :/(;iﬂ]): eik‘fDCp(kz). (24)

Our aim here is to demonstrate the reconstruction pro-

cedure S, (€ &) — W, (£, &) according to the definition
of the reconstruction (A23) and (A25). We can reconstruct
each part of the Wightman function separately, as S,; —
Wy and S, = W,

Wi(&) = Wa() + W, (8). (25)

We first consider the timelike part S;; — W,,. Since the
timelike part is not a main subject of this paper, let us
describe the reconstruction procedure of this part only
briefly. This reconstruction procedure consists of the
following steps:

Step 1. Regarding S,(£) as an ordinary function S,;(¢)
on {(£,&); &, > 0}
Step 2. Performing analytic continuation from

Wi(=i&y. &) = Su(&.&4) to Wy(&—in) defined on
the tube R* — iV,

Step 3. Taking the boundary value as a tempered
distribution W (&) = lim -0 W, (&—in) € S (RY),

where V. denotes the (open) forward light cone

Vo ={(".7%) e R: 1" > |ijl}. (26)

Let us take a closer look into each step. Main properties
of the spectral function that we use in these steps are
p(6?) € .7"([0,00]) and its regularization ;- (D(-o* —
ie) — D(—0” + i€)) (¢ — +0). R

Step 1. This step claims that there exists a function S,;(£)
such that,” for any test function f(&) € .7(R%),

d*k
/ (2”)4 Dtl

where f(k):= [d*éf(&)e’™. Noting the properties of
p(6?), we have the desired function S,;(¢)

(k)7 (k) = / PR3, (27)

*Recall that the Fourier transform of a tempered distribution is
defined by the Fourier transform of its test function.

074024-8
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8u(8) = A ® do? p(c?)3.2.(2).
3F .o~V HE I
ng(é)zf dk3e,~k_§e _)+ '

Step 2. We can confirm that the Cauchy-Riemann
equation holds in the tube &—in€ R*—iV, for the
following function W, (& — in):

(28)

W& — in) = / ® Ao p()W (&~ in).

37 oL —iV 52+I;7(§0—in0)
. &’k pe
W (& — in) = P

which satisfies W,;(—i&,. &) = 8,(&.&,). Thus, W, (& — in)
is the desired analytic continuation.

Step 3. We can take the limity — 0 (y € V) of W, (£ —
in) as a functional of .7(R*). For each f € .7(R*), we
define

(29)

Walf) =tim [ e feWate—in

nev.

_ A " 4o p(c?)id* (f, 2), (30)

where iAT(f,6?) is the free Wightman function of

mass o2,

IA*(f, 0%) = / dEF()iDT (£, 0?)

_ / d*k 1
202V + 02
. [/ dief(@)eV RS

4

iat e = 2n) [ 55

e Y(ko)S(K2 = 0?),  (31)

with the Loretzian vectors & = (&0, ), k = (k% k). We can
check that this linear functional W, (f) is continuous in
f € .7(R*). Hence, we obtain the timelike part of the
reconstructed Wightman function which is a tempered
distribution.

Let us next reconstruct the complex-pole part S., —
W., in a similar way. The complex-pole part S, (&) can be
expressed as

- Bk =] Z AR
S (EE) = | —=eik¢ —Eglei| Exléal]
Cp(g 54) / (2”)3 e |:2E}‘€' e 7k + 2E}Z e

(32)

where Er=V e + M? is a branch of Re Er > 0. We chose

Im M > 0, so that Im E; > 0 holds. Note that S, (€, &)
can be regarded as a function for &, > 0.
For a later purpose, we state this derivation as a lemma.

Lemma 1.—The following equation holds for
{€C—(—00,0]
d‘k . | e VR
Sg(f) :_/ 2 elk: kZ / 2 ké
(2r)* —I—C (2r)3 ]-CQ+C
(33)

where we have chosen Rey/ i + ¢? > 0, and these Fourier

transforms are understood in .#’(R*) and .#"(R?), respec-
tively. Moreover, the right-hand side is an ordinary function
for &, > 0,

3% iRV
5.(8) = / (‘”‘ (in.7(RY). (34)

22)° 2K +¢

where this integral over k is the ordinary integral (namely,
not necessarily understood as the Fourier transform of a
tempered distribution).

Proof—For the former assertion (33), it is sufficient to
prove that, for any test function f € .7 (R%),

oy ()7

-J [ (S

- '54') [ @i,
N

(35)
where f(k):= [d*¢f(£)e’™. Since both f(k) and f(£)

are of rapid decrease, Fubini’s theorem (for f d*k —
[k [ dky and [dk, [d*e — [d*¢ [ dk,) yields

/%(l#%)ﬂ)
oy e [ o
_/ dsk/ 45/ dk, kzelfg' (36)

Therefore, a simple residue calculation gives
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J 2t (el

Bk o [ e~ VEHCIE
— [ o [ et (10, 67
2

(2r)3 [ 4

Since both f(&) and [ d*Eei*f (&) are of rapid decrease,
we can change the order of the integrals to obtain the
right-hand side of (35). This establishes the former
assertion (35).

For the latter assertion (34), it is enough to prove that, for
any test function f(&) € S (R%),

Pr [ e-VP+ .
/df“/(zzr)3 (2 2 >/d3§ek§f@

+¢
Al By

This follows from Fubini’s theorem and integrability4 of
USSP for & SR, 2
Note that E; = |l§| + 0(1/|I;|) strongly suggests that
Im M? does not affect the convergence. Then, the con-
vergence and holomorphy of the analytically continued
Schwinger function is valid in the wusual tube
(—i£4,&) € R* — iV, This holomorphy is an important
step. We prove this claim carefully.

Theorem 2.—The complex-pole part of the Wightman
function,

“The integrability can be verified by the following estimation:
for f € .7(R%),

VI
—f (5)‘

WK +¢

< _|f(§)Imaxysole™ 4 X7]

- _ - 3
2\\/13 + C|(Re\/k2 +0)

<P rdReR 10 (1 @)
x seung(f(ﬂ)(l T (1)) max (1 (,73)))

which is integrable in k and £. Note that the supremum is finite
due to Bg4f(§)|§4:0 =0 for any n € Zy,,.

ch(é - i”) = / (gﬂ]): e

7 (0 i ZF  _p0_:0
—iE7(E—in°) iEL (& —in’)
. [2E,;e C T ’

(39)

ik-(E=itf)

is holomorphic in the tube &—in= (& —in®, & —iij) €
Proof —The first and second terms of the integrand in

(39) decreases rapidly as |k| — co. Indeed, we find

Z

L B (& =in®)+ik-(E-itf)
2E;
_ Z| e—nORcE;+§OImE,;+I_€-;7
2|E¢]
Z]  otmE. - (Re Eam|i]) -0 R+ R
:Me ‘e 3 e
k
S2|é||ea I g g (Re Ex-[R) o~ —iDFl, (40)

For n € V., we have, as |k| - o0,

(@ ImE; -0 and (ReE;— |k|) -0 from E;=
K[ + O(1/]k]), R

(b) exponential decreasing of e~k in |k,

from which the first term decreases rapidly:

L om B+ (i) € (R3) for fixed &€ R* and

k

nev,. Similarly for the second term, we have
2Z—£ie_iElf<(§0 )ik i) € (R for fixed ¢eR?
k

andneV,.

Since the integrand in (39) decreases rapidly as

|%| — o0, we can change the order of the integration
and differentiations with respect to & and #. Therefore,
the Cauchy-Riemann equations with respect to (several
complex variables) &—in hold in the tube &—in e
R* —iV,, which guarantees the holomorphy of W.,
(£ —in) in the tube. =

Note that, usually, it is the spectral condition that
guarantees the holomorphy of the Wightman function
in the tube. Without the spectral condition, it is, in general,
difficult to establish the analytic arguments based on the
holomorphy of the Wightman functions. However,
Theorem 2 (and more generally Theorem 3) suggests that
such analytic arguments are still valid even in the presence
of complex singularities, while complex singularities
violate a prerequisite of the spectral condition, namely,
the temperedness (see the discussion below or
Theorem 5).

Let us regard the Fourier transform in (39) as a tempered
distribution in 5 with a smooth parameter £°. Then, we can
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take the limit  — 0 with # € V_ to obtain the recon-
structed Wightman function (A25),

-, d3]_€) =2 Z 20 VAR
w 0’ — ik-& —iE-& iEZE )
Cp@ 3 / —(2”)3 e [2E4 e B —2E,§ e 't

(41)

The first term in the bracket exponentially increases as
&0 — 400 and so does the second one as £ — —oo, with
the choice Im M? > 0. Therefore, complex poles invali-
date temperedness of the Wightman function.” The non-
temperedness is proved more generally in Sec. III B 3.

2. Holomorphy in the tube and boundary value

We have seen the holomorphy of the Wightman function
in the usual tube in the presence of the simple complex
poles (Theorem 2). Here, we generalize this theorem to the
cases with arbitrary complex singularities.

Theorem 3.—Let S;(p)=D(p?>) be a two-point
Schwinger function with complex singularities satisfying

(i)~(v). Then, W,(=i&;, &) = $,(& &) (& > 0) has an
analytic continuation W, (& — in) to the tube R* — iV
Proof.—We first recall that

4
S1(8) = / (jﬂ’; D (R2), (42)

and D(k?) can be represented as Theorem 1. We know that
the timelike part can be analytically continued to the tube.
Therefore, we prove the holomorphy for the part coming
from complex singularities.

From (19) in the proof of Theorem 1, the contributions of
complex singularities can be expressed as®

Scomplex<§) = / lké{Z% i kz (:
- Z?{ 2ri k2_D(§ } (#3)

Thus, it is sufficient to prove that

*Indeed, suppose that W, (&, Zf) were a tempered distribution.
Then, the Fourier transform of W, (&% &) in & 2—23"5%50 +
k

- e
Z o TEE

3 would be in .#/(R*) (by the Schwartz nuclear

theorem) This contradicts with the exponential growth in £°.
®For this proof, it is enough to take y, and I'; so close to their
singularities that they do not intersect with the positive real axis.

d*k . [ d D)
/ (2ﬂ)4ek§ /C e (44)

can be analytically continued to the tube for any smooth
path C of finite length and any smooth function D(¢) on C.

To this end, let us proceed with the following steps:
Step 1. Interpreting (44) as an ordinary function
on (£,&,) € R? x (0, 0), that is to say, proving that

there exists an analytic function S¢(¢) on R? x (0, o)
such that for any test function f(¢) € .7(R%),
&k ([ dE D) ., e
[ s Lz (] aeraes)
- [@esc@re) (45)

Step 2. Constructing a holomorphic function Wc(c_f in)
in the tube R*—

Sc(En°) for 1 > 0.
Step 1: Interpreting (44) as a function. We prove that

d
Sc($) ’:/Cz_fi

has the desired properties of Step 1, where S/(¢) is a

function defined by (34) for &, > 0.

(@) Sc(&) is an analytic function in R? x (0, o). Indeed,
as shown in Theorem 2, S(£) is an analytic function
for &, > 0. Since C is a finite smooth path and D(¢) is
a smooth function on C, S(¢) defined by (46) is also
analytic for &, > 0.

(b) Let us verify that (46) satisfies (45). For any test
function f(¢) € ./(R%),

[ Uzeice) (] #ss0)

_/C%D(C)/<;i4k2+§/d4§f -
_ / %”9 / dEF(©)S, (&), (47)

where we have used Lemma 1 in the last equality.
Since the integrand D(()f(£)S(¢) is integrable in
(£,£) e R* x C, we can change the order of the
integrals to obtain (45).
Hence, Sc(&) given in (46) is the analytic function on
3 x (0, 00) satisfying (45). This completes the step 1.
Step 2: Analytic continuation of S(&). We prove that

iV, satisfying We(=in?, 5)

D(£)S; (&) (40)

Wele—in) = [ S=DEWAE=in).  (48)

where
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A | . .
glk‘(é_”'l) [E e_lEZv(‘fU_mO):| s (49)
k

B
Wile=in) = [ 45

is the desired function. Indeed, W (& — in) satisfies the

following properties:

(a) Holomorphy of W (& —in): From Theorem 2,
We(€—in) is holomorphic in the tube R*—iV
due to the finiteness of C and smoothness of D({).

() We(=in®, &) = Sc(€,1°) for n° > 0. Indeed, we find

. d .
We(—in®.B) = /C & W (~in. B

2mi

=L§D@&@ﬂ

2ri

Therefore, W (& — in) provides the analytic continu-
ation of (44) to the tube. This completes the proof of
Theorem 3. m

Note that the finiteness of branch cuts is essential in this
proof. If there existed a branch cut of infinite length with an
asymptotic line {re’; r > 0}, the holomorphic Wightman
function would be

Wele=in) = [ 5 |5 pise (@) | Wete—im). (51

and an estimate for large |¢| contribution would be

We(§—in) ~ / dr e=iVre" (& =in)

N/dreﬁ(f“sinf)ﬂ—;y“cos&/z). (52)

Unless DiscD({) is strongly suppressed faster than any
exponential decay as || — oo or the asymptotic line is the
positive real axis (6 = 0), the holomorphy would not be
guaranteed at least by this integral representation.
Therefore, the finiteness in (iv) plays an important role
to reconstruct the Wightman function.

With the finiteness of complex singularities, we
can take safely the limit > 0 (7 € V) as a distribu-
tion in Z'(R*), which is the dual space of Z(R*)
= {f(&); f(&)is a C*function with a compact support}.

Theorem 4.—Let S;(p)=D(p?) be a two-point
Schwinger function with complex singularities satisfying
()~(v). By Theorem 3, W, (—i&;,&) = S8,(£,84)(& > 0)
has the analytic continuation W,(£—in) to the tube
R* — iV . Then, there exists the limit lim 0 W, (E—in) €

2'(R*). Moreover, while the part reconstructed from
timelike singularities is a tempered distribution in

" (R*), the part from complex singularities is a tempered

distribution in & with a smooth parameter c_‘f(l
Proof—By Theorem 3, W, (=i&;,£) = $1(£.£4) (4 > 0)
has an analytic continuation W;(&—in) to the tube
R*—iV,.
From the proof of Theorem 3, we can write W, (& — in)
corresponding to the representation of Theorem 1 as

W, (5 - i’?) = th(f - i’?) + Wcomplex (5 - iﬂ)

W& — in) = A ® ds?p(X)W 2 (& — in)

N, d

Wcomplex(g - i’?) - - Z f —C WC(& - ”/I)D(C)
t=1"v7e
N,

27l
d
- g 2_5,-W<:(5— in)D(),  (53)
k=1 k

where W2 (& — in) and W, (& — in) are given by (29) and
(49), respectively.

As seen in Sec. IIIB 1, the boundary value of the
timelike part is a tempered distribution, represented as
(30), Wy (&) = lim 0 W,y (¢ = in) € #"(R*) € 7'(RY).

Next, we consider the complex part W ,ppiex (& — i17). As
discussed in (41), W¢(& — in) has a boundary value that is a

tempered distribution in E with a smooth parameter £°.
Indeed, by smearing it with any test function

1@ e 7R,

/ PEFEW,(E - i)

d3l_€ 7= 1 . 0_: 0 = 2 1E

(54)

converges to, as n — 0 (n € V),
[ aEr@wie-m
&Pk [ 1 —iE& 3E £(F) pik-E
oy ([ #5079

which is a C® function of &£°.
Let us show that the boundary value of Woompiex (& — i77)

is also a tempered distribution in £ with a smooth parameter

& Tt suffices to prove that, for any test function f (E) S
#(R3) and any finite smooth path C,
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/dﬁf@ [/ jiD(C)Wc(f—iﬂ)] (56)

has a limit that is a C* function of & as 7 — 0 (3 € V.,).
This can be proved as follows. Due to the finiteness of C

and the rapid decrease of f (E) we have

/ e Q) { / m)}
/ 27i { / d35f(§)W¢(§—in)]. (57)

We have already shown that | BEf (E)Wé«(f —in) has a
limit that is a C* function of & as # — 0 (3 € V). From
the finiteness of C, (56) also has such a desired limit.
Therefore, ~ Weompex(§ — i)  has  the  limit
hm,,’?vi Weomplex (€ — i) that is a tempered distribution in

& with a smooth parameter £°. Since any smooth function

can be regarded as a distribution, we have
lim -0 W, (& —in) € Z'(R*). This completes the proof
of Theorem 4. ]

So far, we have seen that, even in the presence of
complex singularities, we can analytically continue a
Schwinger function to the tube and define its Wightman
function W (&) on the real space as a distribution. However,
the existence of complex singularities always violates the
temperedness of a Wightman function as a boundary value,
which is proved in the next section.

3. Violation of temperedness of Wightman functions and
ill-defined asymptotic states

Theorem 5.—Let S;(p)=D(p?>) be a two-point
Schwinger function with complex singularities satisfying
(i)-(v). By Theorems 3 and 4, W,(=i&;.&) = S, (&, &)
(&4 > 0) has the analytic continuation W (& — in) to the
tube R* — iV, and there exists the boundary value as a
distribution W (&) := lim -0 Wy (é—in) € Z'(R*). Then,
the boundary value cannot be regarded as a tempered
distribution W, (€) & .7 (R*).

Note that this theorem can be intuitively understood as
follows. Readers who can accept the following reasoning
can skip the (somewhat technical) proof.

(a) For simple complex poles, the nontemperedness
follows from (41).

(b) The higher-order poles ——— can be formally rep-
resented as the (m — 1)th order derivative of the simple

. Since the derivative with

respect to Z, cannot suppress the exponential growth
of W,,(&, E) given in (41), higher-order complex
poles also break temperedness.

(c) The contribution of a complex branch cut fc

a superposition of W_,(&, 5) with the weight pk(C )
Therefore, the exponential growth of the Wightman
function in £ would be unchanged.

(d) Finally, let us comment on a possibility of cancellation
between contributions from different complex singu-
larities. For such cancellations to occur, they must
have the same exponentially growing factor et ImE;
and oscillating factor e~*'ReEz_ This indicates that this
possibility occurs only if singularities are located in
the same position in complex k4 plane. Therefore, we
would exclude this possibility.

We prove this theorem rigorously as follows. This proof
is based on an intuition that the holomorphy in the tube
would essentially imply the spectral condition for the
Wightman function in momentum representation, which
leads to the usual spectral representation against complex
singularities as in Sec. II, if the Wightman function were a
tempered distribution.

Proof—As a preparation, we define a holomorphic
function F, (&2 — in®) as

F(& —in0) = / BEW (& — in®, E)h(E),  (58)

where h(g) is a test function on the spatial directions

h(€) € #(R3). We require that its Fourier transform has a
compact support,

R(R) = / PEFER(E) € D(RY). (59)
This function F,(&° —in°) satisfies the following
properties:
(@) Fyp(&%—in®) is holomorphic in the lower-half
plane 7° > 0.

(b) In all directions of the limit |£ — in’| - oo in the
lower-half plane (7° > 0), F;,(&° — in°) grows at most
exponentially as can be seen from representation (53).

(c) For &, #0, Fj,(—i|&,]) coincides with the Schwinger

function smeared by h(¢),

Sn(&s) ==/d3251(g,§4)h(5)- (60)

(d) We define, for € > 0,

ng)(kﬁ) = /d§4 Si(|&4] + €)emihscs

— [ e Fu=itial + et (o1
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Representations (13) and (19), together with (28) and
(46), yield’

39(8) = / dE,S) (4] + €)e—ihis

Bk = [ [ 2 e
:/ —3h(k>{/ 4?7 T
(27) 0 o>+ k> + i3
N,
d¢ D(¢) —e i
- ]{2 ] 72 2° o
= Jre 2T (=0) + kT + kG

Ry fﬁ&e_e T
— Jr 27 (=) + K+ K2

(62)

from which S‘Ef)(kﬁ) has some singularities in
C — (—c0, 0] for some e > 0 and some /(k) € Z(R3).
Indeed, otherwise, S‘Ef) (k3) would be holomorphic in
C - (—00,0] for all ¢ >0 and h(k) € Z(R?). This
implies that the last two terms (except for the first term)
of (62) would vanish for all ¢ > 0.8 Then,
lim, o 3\ (k2) = [ &k h(K)D (K% + k*) would be also
holomorphic in C — (—c0,0] for any h(k) € Z(R3).
By taking the limit of the mollifiers, “approximations”
to the delta function, fz(lz) - 5(|%| — Xxo)(xg > 0), this
leads to holomorphy in C — (—0,0] of D(k?).” This
contradicts with the existence of complex singularities.
The above properties follow from the prerequisites of
theorems (i)—(v). We prove the theorem by contradiction.
Suppose that the boundary value of the Wightman function
were a tempered distribution: lim 0 Wy (£ — i) € %" (RY).
(e) Then, the boundary value of F,(& —in®) would
be a tempered distribution F, (&%) == lim, g

Fy(&® —in") € 7' (R).
Let us find a contradiction under the circumstance charac-

terized by (a)—(e).

"Note that the limit ¢ — 0 gives the smeared Schwinger
function S, (ky) = [ d&, Sj,(&4)e~"++. In other words, represen-
tation (13) enables us to ‘“complete” the point & =0
from F),(—i|&,|) defined on &, # 0.

Since the last two terms of (62) are holomorphic at least on the
negative real axis [where we have used the third assumption of
(iv)], it would be an entire function. Furthermore, it tends to
vanish as |k3| — oo and therefore would vanish.

Indeed, let h.(k) denote such a  mollifier:

ho(k) = 8(|k| = xo),& — +0. Then, lim,o [ d3kh,(k)D (K2 +
k) = C'D(K? +x3) for some C' > 0. The last two terms of
(62) would not contribute to the left-hand side due to the same

argument as the previous footnote. This leads to the holomorphy
in C — (—00,0] of D(k7 + x3) for xy > 0.

We first decompose F),(£°) as

Fu(&) = FL (&) + F(&)
Fu&) = [ Sre e Falo),

supp F'. C [0,00), suppF_ C (—00,0].  (63)

Since F, (&%) is not a function but a tempered distribution,
there is a delicate point here. We can prove this decom-
position with the following manipulation. We recall (see
Appendix A) that (R, ) = .7(R)/.7_(R) and its dual
space . (R,) =~ {F €. (R); supp F C [0,0)}. We simi-
larly define ./(R_):=.%(R)/.,(R). We also define
2 ={(fl;.11) € YR,) @ #(R_): f € #(R)} and
its dual 2”. Note the homeomorphism 2"~ . (R). By the
Hahn-Banach theorem, an element of 2" can be extended
to the dual space of .7(R.) & .#(R_), which is isomorphic
to S(Ry)® S (R)~{Fe.R);suppF C[0,00)}
@ {F €. (R); suppF C (—o0,0]}. Therefore, for any
F e .7 (R), there exist F,,F_ € .7 (R) such that F =
F, + F_ with supp F C [0, c0) and supp F_ C (—00,0].
This justifies (63). For a more general description on this
decomposition, see Proposition A.3 of [40].
Next, we list several properties of F_(&) as follows:

(@) F_(&) can be analytically continued to the whole

complex plane. To show this, we consider the hol-

omorphy in the (1) lower and (2) upper half planes

separately and (3) glue them.

(1) For the lower-half plane, we define F_(& — in®) =
Fi(& = in) = F (& = in), where F_(&° — in") is
the Laplace transform of F (). This is the desired
holomorphic function. Indeed, because of the sup-
port property supp F. C [0,0), F (& —in®) is
holomorphic in the lower-half plane (° > 0). The
holomorphy of F (& — in®) and F,, (& — in°) from
(a) yields that F_(£° —in°) defined above is hol-
omorphic in the lower-half plane. The boundary
values are F,(& —in®) - F;, (&%) from (e) and
Fo (& —in®) = F. (&) as is well known,' from
which F_(& — in®) has the boundary value F_(&°).
Therefore, F_(& —in) = F,(&° — in®) — F(&° -
in®) provides the analytic continuation to the
lower-half plane.

(2) For the upper-half plane, the Laplace transform of
F_(w) provides the analytic continuation due
to suppF_ C (—o0,0].

(3) We have two analytic continuations in the upper- and
lower-half planes that have the coincident boundary
value on the real axis. By the one-variable version of
the edge of the wedge theorem, one can find an

YFor example, see Theorems 2-9 in [36].
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entire function which is the analytic continuation
from both half planes.

(b1")In all directions of the limit |&° — in°| — oo in the
lower-half plane (7° > 0), F_(& —in®) grows at
most exponentially. Indeed, both F, (& —in®) and
Fp (& —in®) satisfy this condition due to (b)
and suppF, C [0, o).

(b2")In all directions of the limit |£° —in°| - oo in the
upper-half plane (7° < 0), F_(& — in®) grows at most
polynomially because of supp F_ C (—o0,0].

(c") F_(—i&,) is of at most polynomial growth in & > 0
due to (c) and supp F, C [0, o).

From (2'), (bl’), (¢'), and the temperedness of F_(&), a

variant of the Paley-Wiener-Schwartz theorem for one-

sided support (see, e.g., Theorem A of [42]) implies that

F_(& — in®) in the lower-half plane can be written as the

Laplace transformation of a tempered distribution () of

suppF”_ C [0, 00) (which actually coincides with F_(w)).

Thus, in all directions of the limit |&° — in°] — oo in the

lower-half plane, F_(&° — in®) grows at most polynomially.

Together with (b2’), we conclude that the entire function

F_(& — in®) is a polynomial, whose Fourier transform is a

point-supported distribution.

Because of the support properties suppF_ = {0} and
suppF, C [0, ), F, (@) can absorb F_(w) in the decom-
position (63). From here on, we assume F_ = 0 without
loss of generality.

Finally, let us construct S‘gf)(kﬁ) defined in (d) from

Fi(&%) = F(&). Due to supp F',. C [0, c0), the analytic
continuation of F,(£°) to the lower-half plane is given by
the Laplace transform of F .,

. do . o _ o=
Fh(éo _”70) — /Ze za)cfoe {,;WUFJr(a))’ (64)

which is a holomorphic function for #° > 0.
Therefore, using (c) and (d), we have

008) = [ deu Fy(=iled  ie)e
ik dw - —ew —wlé
= [ déje b | = F (w)e~ ekl (65)
2n
Since a tempered distribution is a sum of derivatives of

continuous functions (of at most polynomial growth):
Fi(w)=>M,(—=2)%f,(w), we can rewrite

)

gm0 ol

da) ~ (ln 20)6_6(1)
/ 8(0"" k2 +w*’ (66)

is a non-negative integer, and f,(w) is a
continuous function of suppf, C [0, o). Note that the last
line of (66) can be regarded as an ordinary function,
although we have calculated the Fourier transformation
in (65) and (66) as a tempered distribution in the above
equations.

Representation (66) shows the holomorphy of S (kz)

on C — (—c0,0] for all e >0 and i(k) € Z(R?), which
contradicts with the existence of singularity explained in
(d). This completes the proof of Theorem 5. [

Let us comment on some implications of the non-
temperedness. As seen from (41), a typical nontempered
behavior is the exponential growth in £°. The exponential
growth of the Wightman function largely affects asymptotic
states, which correspond to “&° — 4o limit”. This indi-
cates that asymptotic states of the field are ill defined
without some artificial manipulations. " Since such states in
the “full” state space are far from being identified with
asymptotic particle states and should be eliminated from
the physical state space, the complex singularities could be
considered as a signal of confinement.

Finally, let us comment on the spectral condition. The
spectral condition for the two- point Wightman function
states supp W,(q) C V., where W,(g = [} W, (¢)
with Lorentzian vectors &, g. Since the ex1stence of W,(q)
is assumed in the spectral condition, this condition requires
the temperedness as a prerequisite. Therefore, Theorem 5
implies that the spectral condition is never satisfied in the
presence of complex singularities.

where «,,

4. Violation of reflection positivity

As a consequence of the nontemperedness, we can prove
that the reflection positivity [OS2] is always violated in the
presence of complex singularities. Since complex singu-
larities invalidate the Kéllén-Lehmann spectral representa-
tion, some conditions of the standard axiom should be
violated. Therefore, the violation of the reflection positivity
is in some sense trivial. However, for this paper to be self-
contained and because of importance of this claim, we
describe the proofin detail in Appendix B. Moreover, to the

"For Lee-Wick theory, which is the simplest model providing
complex poles considered below, some manipulations on the S
matrix were discussed in old literature, e.g., see [ [43], Sec. 16]
for a review. However, these manipulations can cause Lorentz
noninvariance and acausality. We insist that such states corre-
sponding to complex singularities should be eliminated from the
physical state space before taking the asymptotic limit (rather
than causing Lorentz noninvariance).
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best of our knowledge, an explicit proof on this claim
is new.

Theorem 6.—If S,(p)=D(p*) is a two-point
Schwinger function with complex singularities satisfying
(1)—(v), then the reflection positivity [OS2] is violated.

Proof.—The reflection positivity for the two-point
function (A20) is a necessary condition of the reflection
positivity [OS2].

In Appendix B, it is proved that the reflection positivity
for the two-point function (A20) yields temperedness of a
reconstructed two-point Wightman function (Theorem 11).
Therefore, the nontemperedness (Theorem 5) implies the
violation of the reflection positivity. (]

The reflection positivity, especially (A20) for the two-
point function, is often checked by a necessary condition:
the positivity of 8, (k, &) = [ d*Ee™*%S,(€,&,) (A22), e.g.,
[20]. Using this check, one can easily show that a
propagator with only simple complex conjugate poles
violates the reflection positivity. Indeed, from (32), we
have, for &, > 0,

- Z*
Sy (k&) = e b 4

Z V4
= u e~ 5 ReEr oog (&ImE,; —arg <—> > ,
E;

- E
(67)

—E2é,

which is negative for some &, > 0. However, this check is
not useful to prove the violation of the reflection positivity
for general propagators with complex singularities. For
example, in the case seen in Sec. III B 1, we have, by
assuming some regularity of the spectral function p(s?),

Si(k.&) = /\2—7 do e~ p(c® — &)

V4 V4
+ % e S ReEr cog (@ImE; —arg <E> ) ,

k
(68)

which could be positive if the spectral function p(6?) is
positive and large. Theorem 6 indicates that the existence of
complex singularities always invalidates the reflection
positivity irrespective of the timelike singularities. It is
redundant to check the positivity of (A22) numerically for a
propagator with complex singularities.

5. Violation of (Wightman) positivity

Let us consider the positivity condition of the Wightman
function. First of all, the standard positivity condition,

/ dxdy W, (y =) f*()f(y) 20 for any f € F(R?).

(69)

makes no sense for a nontempered distribution W, (y — x).
It is natural to examine a positivity condition in a weak
sense using Z(R*), instead of .(R*), which we call
Wightman positivity in 2(R*) (for the two-point function),

/ dxdy W, (y - )f*()f(y) 20 for any f € D(R?).

(70)

Here, we examine this positivity condition. As can be
inferred from the violation of the reflection positivity, this
condition is also violated in the presence of complex
singularities. We prove the following theorem in a way
similar to Theorem 6.

Theorem 7.—Let S,(p)=D(p*?) be a two-point
Schwinger function with complex singularities satisfying
(i)-(v). By Theorems 3 and 4, Wl(—i§4,;é) = Sl(g, &)
(&4 > 0) has the analytic continuation W (& — in) to the
tube R* — iV ., and there exists the boundary value as a
distribution W (&) := limqgo+ W, (€ - in) € Z'(R*). Then,

the Wightman positivity in Z(R*) for W (&) is violated.
Proof—In the next lemma (Lemma 2), we prove that the
Wightman positivity implies the temperedness of Wj.
Therefore, the Wightman positivity is violated due to the
nontemperedness (Theorem 5). [
Lemma 2.—1Let W, (&) € Z'(R*) be a distribution sat-
isfying the Wightman positivity in 2(R*). Then, W (&) can
be regarded as a tempered distribution: W, (&) € .7/ (R%).
The following proof of Lemma 2 is based on an intuition
that W, (£) is roughly a matrix element of a unitary operator
and is therefore bounded above in a positive-definite state
space as shown in Sec. II B.
Proof—We define a sesquilinear form on Z(R*): for
f.9€ 2(RY),

(f. 0w = / dxdby Wiy — 1) (Wgly).  (71)

which is positive semidefinite due to the Wightman
positivity (70). For a € R*, U(a) denotes an operator on
P(R*) defined by

(U(a)f)(x) = f(x = a), (72)

which satisfies (U(a)f, U(a)f)y = (f. f)w-
Since (-,-)y 1is positive semidefinite, the Cauchy-
Schwarz inequality yields
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|(f. Ul@)g)wl <V (f. Fhw(g. 9)w- (73)

Thus, for all f,g € 2(R*),

(f * (g W) (a) = (. U(@)d)w (74)

is bounded in a € R*, where §(x) = g(—x) and (f x g)
(x) = [d*&f(x = &)g(d).

Note that there exists a convenient necessary and
sufficient condition for a distribution 7€ Z'(R*) to be
a tempered distribution [ [44], Theorem 5, Chapter 7]:

Te R &
a * T'is a smooth function of at most

polynomial growth for any @ € Z(R*).  (75)

Now, let us fix an arbitrary g € Z(R*). Then, (f * (g *
W1))(a) is a smooth function bounded above for all
f € 2(R*). The condition for temperedness (75) implies
that we can regard (g« W;) € .%”(R*), from which (g x
W)(x) is a smooth function of at most polynomial growth.

Therefore, from arbitrariness of g € 2(R*) and (75),
we obtain W, € .%”(R*). This completes the proof of
Lemma 2. L]

6. Lorentz symmetry

Since the Lorentz invariance is itself an important nature
and also an essential step to the locality, let us carefully
prove the Lorentz invariance of the reconstructed
Wightman function.

Theorem 8—Let S,(p) =D(p?) be a two-point
Schwinger function with complex singularities satisfying
(i)-(v). By Theorems 3 and 4, W,(=i&y.&) = S,(E. &)
(&4 > 0) has the analytic continuation W, (& — in) to the
tube R* — iV, and there exists the boundary value as a
distribution limn,gvi W, (& —in) € Z'(R*). Then, both the

holomorphic Wightman function and its boundary value are
(restricted) Lorentz invariant. More precisely, for all proper
orthochronous Lorentz transformations A € SO(3,1)*,
for £ —in € R*— iV,
(76)

Wi(A(§ = in)) = Wi(£ = in),

and for any f € Z(R*%),

Wi(f) = Wi(fa). with fr(€):=f(ATE).  (77)

Proof.—Let us first consider the holomorphic Wightman
function (76). This can be decomposed as (53):
Wl (f - ”7) = th(f - ”7) + Wcomplex(f - ”7) Therefore,
the Lorentz invariance of W, (& —in) follows from that
of the respective parts.

The timelike part W (& — in) is expressed as (29). Since
the free Wightman function W_.(&—in) is a Lorentz
invariant function as is well known, W, (£ — in) is also
Lorentz invariant.

For the Lorentz invariance of the complex part
W complex (€ = in7), similarly from representation (53), it is
sufficient to prove that W, (A(& —in)) = W, (§ —in)in & —
in€R*— iV, forall A € SO(3,1)". We prove this claim
in Lemma 3 to be given below. This established the
invariance (76).

The latter assertion (77) immediately follows from the
former one (76). m

Lemma 3.—The Wightman function W,(& — i), (49), of
a simple complex pole defined on &—in€R*—iV,
satisfies, for all A € SO(3,1)*,

W(A(E —in)) = W(& - in). (78)

Proof.—The spatial rotational symmetry is manifest by
the expression (49). Therefore, it suffices to prove the
invariance under the boost along &,

E=(.6.8.8)
= &= A= (y(&0-p&). 8,808 - p).  (79)
As mentioned in [45], one can show the invariance under

the boost by a contour deformation.
Under this transformation, W,(& — in) reads

3% -l
W (A(E—in)) = 'k 1 ik (& =il )=iEx (& ~in")
¢ 1 (27)7 2E;
Pk 1

- |G

REmHELE =) (g0

where we have defined Ej := 1/ K+ ¢ of the principal
branch (Re E; > 0), and

EL = y(E; + Bks).

Ky = yks + BE). K = (ky, ky, K5). (81)

Note that a simple computation and ReE; > 0 yield

Ep = \JP (B + Pl =y (B + ). (82)

from which we have
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dk,
dkjE =E.=Ep, (83)

By changing the variable from k to l?, we obtain

7
W (A —in) = / d3kzLei§/'(5‘iﬁ>-fEi’<¢° -,
RZXC/; (271')’ ZE]?
(84)
where the contour Cy is defined by
Cp = {ks' =y(ks + PE;): k3 € R}, (85)

(see Fig. 4). Note that, for all |3 < 1, Ep = y(E; + pks)
does not vanish on the contour k5" € Cg, namely, k3 € R.
Since the family of the contours {Cy}o.s_s scans the
region bounded by Cs_, and Cp, the integrand
ﬁpeiz/'(g_iﬁ)_iEi’<§o_i”o) is holomorphic in the region
bounded by Cg_y and Cy. Therefore, the holomorphy
allows us to deform the contour Cy into Cp_, i.e., the
real axis, and finally,

Im k3'

Re k3'

FIG. 4. Schematic picture of the contour Cy in the k% complex
plane. The cross symbols represent the points at E; = 0. The

T\ _i0 . .. .
integrand 51— M EIELE =) o singularities: branch points at
k

these points and cuts represented as wavy lines. This integrand is
holomorphic in the region bounded by the real axis Cy—q and Cy.

W (A(E — i) = / PR L iy @i
¢ rexc, (27)° 2Ey
37! o -
_ / d k3Leik’-(f—iﬁ)—iE;r(?—m”)
— We(&— in). (86)
which establishes the Lorentz invariance. ]

So far, we have verified the Lorentz invariance explicitly.
Because of importance of this assertion, we prove it from
another point of view. The Lorentz invariance follows from a
stronger symmetry, the proper complex Lorentz symmetry.

Theorem 9.—Let W, (& — in) be a holomorphic function
in the tube R* — iV and invariant under the Euclidean
rotation groulz) SO(4) (within the domain of definition of
Wi(E—in)).” Then, W(&—in) is invariant under the
proper complex Lorentz group L. (C), including the
restricted Lorentz group, namely, for any A € L (C),

LAz ERY =iV, = W (Az) = Wi(2),  (87)

where L, (C) = {A € C¥* ATGA = G,detA = 1} with
the metric G = diag(1,—1,—1,—1). In particular, the
holomorphic Wightman function of Theorem 3 satis-
fies (87).

Proof.—Since the Euclidean rotation gives a real envi-
ronment of the complex Lorentz group, the assumption of
the theorem and the identity theorem for holomorphic
functions guarantee that, for every z € R* — iV, there
exists a complex neighborhood of the identity element of
the complex Lorentz group L, (C) under which the
holomorphic function W(z) is invariant.

The same argument for proving the Bargmann-Hall-
Wightman theorem (Theorems 2-11 and its lemma of
[36]) ensures the existence of a curve in L, (C), {A(s) €
L, (C);s€0,1],A(0) =1,A(1) = A}, such that
A(s)z € R* —iV,. Therefore, by using repeatedly the
invariance under the neighborhood of the identity element
for the function on the curve W, (A(s)z), the former
assertion (87) holds.

An analytic continuation of a SO(4) invariant function is
invariant under SO(4) within its domain of definition, since
M,,W,(z) vanishes in the domain due to the identity

theorem, where M w is the SO(4) symmetry generators.
Thus, the latter assertion follows from the former one. =
Let us add some remarks.

(a) Unlike the other theorems, a generalization of this
argument to D # 4 is nontrivial because of the usage
of the same argument as the Bargmann-Hall-Wightman
theorem.

"Note that the action of R € SO(4) upon (& —
sented as (7° + i&, & —iif) = R(° + i&°, &€ — iff).

in) is repre-
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Complex Lorentz symmetry
L4 (C) (or SL(2,C) x SL(2,0C))

Euclidean rotation
SO(4) (or SU(2) x SU(2))

Lorentz symmetry

SO(3,1)* (or SL(2,T))

Theorem 8

FIG.5. A sketch of relations among the well-known Bargmann-
Hall-Wightman (BHW) theorem, Theorem 8, and Theorem 9.
Theorem 9 is a composition of (1) the same argument as the BHW
theorem from Euclidean to complex Lorentz symmtry and (2) the
restriction from complex Lorentz symmetry to Lorentz symmetry.

(b) Using the Bargmann-Hall-Wightman theorem, we can
prove the complex Lorentz invariance also from
Theorem 8.

(c) Relations among the well-known Bargmann-Hall-
Wightman theorem, Theorem 8, and Theorem 9 are
depicted in Fig. 5.

(d) As is well known, this theorem guarantees a single-
valued analytic continuation of the Wightman function
to the extended tube, 7':=L_ (C)(R*-iV,)=
{Aze C*3(z,A) € (R*- iV, ) x L (C)}, which
includes the Jost points R* N 7. Here, the Jost points
are just spacelike points: R*n .77 = {(&,&) e
R*; (£9)2 — & < 0}. Note that the proper complex
Lorentz group includes —1 € L, (C), from which the
equality W, (z) = W, (—z) follows.

(e) The reconstruction is based on the identification of
(A23): W, (=i&y, &) = S1(&,&,4). However, we have
reconstructed the Wightman function using only the
Schwinger function with positive imaginary time
&4 > 0. It should be possible to use the Schwinger
function with negative imaginary time &, < O for the
reconstruction. The holomorphy in the extended tube
together with the invariance under the proper complex
Lorentz group, especially —1 € L (C), guarantees the
consistency that the reconstruction from &, < 0 would
give the same holomorphic Wightman function as that
from &, > 0.

7. Locality

Finally, let us comment on locality. Some argue that
complex singularities are associated with nonlocality. One
might claim that the nonlocality of the Yang-Mills theory in
a gauge-fixed picture is rather “natural” due to the Gribov-
Singer obstruction, see [4,27,46] and [28,47]. However, we
argue that complex singularities themselves do not neces-
sarily lead to nonlocality.

For example, the problem of locality has been discussed
in [29-31] (see also Sec. VI A), in which they assert that
complex poles describe short-lived excitations and that the

locality is broken in short range at the level of propagators,
but the corresponding S matrix remains causal. However, as
we have mentioned above, this interpretation is different
from our results.

To the best of our knowledge, the only axiomatic way to
impose locality is the spacelike commutativity. To argue that
complex singularities themselves do not necessarily yield
nonlocality, it suffices to prove the spacelike commutativity
at the level of two-point functions, because existence of
complex singularities is a property of propagators.

Theorem 10.—Let S,(p) = D(p®) be a two-point
Schwinger function with complex singularities satis-

-

fying (i)—(v). By Theorems 3 and 4, W, (-i&, &)=
S (554)(§4>0) has the analytic continuation W, (& — in)

to the tube R* — iV, and there exists the boundary value as
adistribution W, (&) = lim -0 W, (¢ — i) € Z'(R*). Then,
nevy

the boundary value W, (&) satisfies the spacelike commu-
tativity: W, (&) = W, (=¢) for spacelike &.

Proof—For a spacelike point &, there exists an element
of the restricted Lorentz group A such that A = —¢&.
Therefore, the spacelike commutativity W, (&) = W (=¢)
immediately follows from Theorem 8. [

Note that the spacelike commutativity at this level is also
an immediate consequence of the holomorphy in the
extended tube and the invariance under the (proper)
complex Lorentz group [see Remark (d) of Theorem 9].

One might argue that, e.g., from the Jost-Lehmann-
Dyson (JLD) representation [48], complex singularities
could lead to violation of the local spacelike commutativity.
Nevertheless, the Wightman function with complex singu-
larities breaks temperedness (Theorem 5). This nontemper-
edness enables a theory to evade the restriction of the
theorems like the JLD representation that assumes exist-
ence of Fourier transform of Wightman functions. Hence,
there is no contradiction here.

In conclusion, even in the presence of complex singular-
ities, the spacelike commutativity at the level of two-point
functions remains intact. Therefore, complex singularities
themselves not necessarily lead to nonlocality.

8. Generalization to arbitrary spinor fields

So far, we have restricted our arguments to the case of a
single scalar field for simplicity. Since the gluon fields are
vector and the quark fields are spinor, it is important to
generalize the above arguments to include vector and spinor
fields. Here, remarks on this generalization are made. This
section is applicable only for four-dimensional cases, since
the complex Lorentz symmetry L_ (C) plays a pivotal role.

Except for a single scalar field, the permutation sym-
metry [OS3] is not an immediate consequence of the
Euclidean rotational symmetry. Therefore, for arbitrary
spinor fields including vector and (Dirac-)spinor ones,
we assume the following (ii'a) and (ii'b) instead of (ii) in
Sec. IIT'A.
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(ii'a) [OS1] Euclidean (translational and rotational) invari-
ance: for all translation a € R*, Euclidean rotation
(A,B) € SU(2) x SU(2), labels of fields (ki,k,),
and spinor (dotted and undotted) indices (v, , vy, ),

Slhik) (A(A,B)x; + a,A(A,B)x, + a)

21/k Viy

=y sk

Hiey Hiy

“ Hiy ok k)
(A, B, S®)(A, B)Dj;SQ”k jﬂ (x1, %),

(88)

where A(A B) € SO(4) is the vector representation,
and S*) (A, B)ff,f' and §2) (A, B)”k’ are, respectively,
finite-dimensional representations of SU(2) x SU(2)
of the fields labeled by k; and k,.

(ii'b) [OS3] Permutation symmetry:

ky k
S (1, 30) = (=

)652 iy ,,k (xz,xl)v (89)
where (—1)° = 1 for bosonic fields and (—1)°
for fermionic fields.

For assumptions (iv)—(v), D(kz) is understood as each

component of the tensor decomposition of the Schwinger
(k1 ky)
Ly 12/

=-1

function S (k). For example, for a vector field, the

tensor decompos1tion is

D/w(k>

kk,
= D1<k2)5;w +D2(k2> I;Cz ’ (90)

and therefore, we assume (iv) and (v) for D,(k?) and
D, (k?). In the case of the Landau gauge, the assumptions
apply Dr(k*) = Dy(K*) = =D, (K*).

By repeating the same arguments for each (ki,k,;
Uk, Vk,)» We can generalize the holomorphy in the tube,
boundary value as a distribution, the nontemperedness, and
the violation of the (reflection-)positivity. Their proofs do
not essentially depend on the Lorentz (or Euclidean)
symmetry. Nontrivial points are Lorentz symmetry and
locality.

For Lorentz symmetry, Theorem 9 based on the complex
Lorentz symmetry can be easily generalized,13 while this is
not the case for Lemma 3 and Theorem 8. The Bargmann-
Hall-Wightman argument holds for arbitrary spinor fields.

For locality, note that the proof of Theorem 10 is
applicable only for a single scalar field. However, the
alternative proof remarked below the proof of Theorem 10
can be generalized.

Let us prove here the spacelike commutativity: for
spacelike & € R*,

"Note that every finite-dimensional representation of SU (2) x
SU(2) can be analytically continued to that of the complex
Lorentz symmetry SL(2,C) x SL(2,C).

ky orir(kak
Wi (@ = (~D)with (—o. 1)

The proof is as follows. The permutation symmetry and
the Euclidean rotation (A, B) = (1,—1) € SU(2) x SU(2)
implies

ky.ky o olka .k
s\l (&) = (-1)sieh) (<)

c gy oV ky .k
= (-1) (_1)1( k kl)SEazkzll/il &), (92)
where J(vy,, vy, ) denotes the number of dotted indices in
vk, and vy, . Therefore, the holomorphic Wightman function
satisfies

ki .k ; [ Uy sl ko ky .
W) (&= in) = (=17 (=1) b WiES) (£~ in).
(93)
Using the complex Lorentz symmetry (A,B) = (1,—1) €
SL(2,C) x SL(2,C) again, we have
klskZ o /
W) (6= in) = (D)W (=4 i), (94)

where the right-hand side is understood as a single-valued
analytic continuation to the extended tube 7' = L (C)T
by the Bargmann-Hall-Wightman theorem. Let us take the
limit # - 0y €V,). The left-hand side gives the

Wightman function W+ (¢) as usual. On the other

l,yk]vkz
hand, at spacelike &, i.e., at the Jost point & € R* n .77, the
limit W) (=E—in) — wikk) (=¢) is independent of

lvk Vi ll’k Vi,

the direction of the limit # — 0. Therefore, the right-hand
side of (94) tends to W) (=¢). This establishes the

Ly, 2V
spacelike (ant1—)commutat1v1ty 91).
Therefore, the main conclusions (A)—(D) hold regardless
of spins.

IV. INTERPRETATION IN A STATE SPACE WITH
AN INDEFINITE METRIC

We have discussed analytic aspects of complex singu-
larities. In this section, we consider a possible kinematic
structure yielding complex singularities, i.e., a realization
of complex singularities in a quantum theory. Since
abandoning the positivity of the state-space metric is very
common in Lorentz covariant gauge-fixed descriptions of
gauge theories, we consider a quantum theory in a state
space with an indefinite metric.

In Sec. IVA, we argue that the natural candidates
providing complex singularities in an indefinite-metric
state space are zero-norm pairs of eigenstates with complex
eigenvalues. In Sec IV B, we present the Lee-Wick model
as an example of QFT with complex poles. In Sec. IV C, we
discuss complex poles in the BRST formalism in a heuristic

074024-20



RECONSTRUCTING PROPAGATORS OF CONFINED PARTICLES ...

PHYS. REV. D 104, 074024 (2021)

way. Finally, some remarks are made on gauge-invariant
propagators in Sec. IV D.

A. Complex singularities and complex spectra

An important observation is that a complex energy
spectrum can appear in an indefinite metric state space
even if the Hamiltonian is (pseudo-)Hermitian. For a
review on indefinite-metric quantum field theories, see,
e.g., [43].

Beforehand, let us introduce some notions on an indefi-
nite-metric state space. Note that the completeness of
eigenstates of a Hermitian operator does not always hold
even in a finite dimensional state space with an indefinite
metric. Instead of simple eigenstates, the set of “generalized

eigenstates” {|E°),|E"),...,|E""")} that are defined
to be elements of sequences: (H —E)|E) = E|E"),
(H-E)|E') = E|E?),...,(H—E)|E""Y =0 spans the

full state space, in general, where H is a Hermitian operator,
and the value E of such a sequence {|E®), |[E'), ..., |E""1)}
is called the generalized eigenvalue. This follows from the
standard Jordan decomposition. A generalized eigenstate |n)
is said to be of order M if and only if both (H — E,,)M|n) =
0 and (H — E,)"~!'|n) # 0 hold. For example, |E) of a
sequence {|E®), |E"), ..., |E" ")} is a generalized eigenstate
of order n.

For a while, we consider the O + 1 dimensional case in
which a field ¢(7) is regarded as an operator-valued
function whose domain contains at least the vacuum |0),
for simplicity. Alternatively, one could consider a situation
in which field operators are smeared in spatial directions.

We begin with the necessity of complex spectra for
existence of complex singularities.

Claim 1.—Let us assume the following:

(i) Completeness of (denumerable) generalized

eigenstates |n) of the Hamiltonian H:
L= Sty m) (], where e = (n|n') is the
nondegenerate metric

(ii) Translational covariance: ¢ (1) = e™'(0)e

(iii) Real-valuedness of generalized eigenvalues E, of
the Hamiltonian H

Moreover, as technical assumptions,
following:

(iv) Existence of an upper bound M on the orders of
generalized eigenstates,14 finiteness of a sum
dow ’1;,],,/ for any |n) in the complete system, and
the absolute convergence of the sum,

—iHt

we assume the

“Note that all states that are not generalized eigenstates of
finite order can be seen as “generalized eigenstates of infinite
order”. The notion “generalized eigenstates of infinite order” is
thus irrelevant to the spectral decomposition. Therefore, it would
be appropriate to assume the upper bound.

M(n)-1

Z Z it (i)

nn =0
x (01¢(0)(H — E,)"|n) (n'|¢#(0)[0). (95)

which actually equals (0|¢(7)¢(0)]0), where E,
is the generalized eigenvalue of |n), M(n) is the
order of |n), and |0) is the vacuum state satisfy-
ing H|0) = 0.
Then, the Wightman function (0|¢(7)¢(0)|0) can be
regarded as a tempered distribution.
Derivation.—Since |n) is a generalized eigenstate of
order M(n), (H—E,)M™|n) =0 and (H — E,)"""!|n)
# 0 hold, which implies

(H—E,)"n). (96

By assumptions (i) and (ii), we have
Z’?_l —iE,t
x (0]¢p(0)e~tH=Ex) In><n’|¢(0)|0>

M(n)-1
_ Zﬂ

kg e—zE,ll
x (0lp(0)(H — E, ) |n){n'|(0)]0).
97)

(Ol(1)

Note that the generalized eigenvalue E, is real by
assumption (iii).
For any test function f(¢) € .(R), we obtain

[ arooisnso >|o>]

M(n)-1

1
< (S Y | O~ £, i o))
n.n' k=0
X < sup —f> < const. X < sup 6"f > (98)
k<M k<M 8(1)

where f(w) = [dte™™'f(¢) is the Fourier transform of
f(t), and we have used assumptions (iv). This inequality
proves (0|¢(1)¢(0)|0) € ' (R). "

From this claim, the nontemperedness (Theorem 5) is
incompatible with the reality of the spectrum. Thus,
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complex spectra should be allowed for complex singular-
ities to appear. We call eigenvalues that are not real complex
eigenvalues. Note that eigenstates of complex eigenvalues
of a Hermitian operator appear as pairs of zero-norm states.
As an introduction to the state-space structure with com-
plex eigenvalues, we prove the following claim.

Claim 2.—Let H be a Hermitian operator and have a
complex eigenvalue: H|a) = E,|a), E, # E},. Suppose that
its generalized eigenstates form a complete system. Then,

(1) |a@) is a zero-norm state.

(2) There exists a partner state |) such that (f|a) # 0,
(B|B) =0, and (H — E})*|f) =0 for some inte-
ger kP

Derivation.

(1) Since E, # E}, the equation E,(a|a) = (a|H|a) =
E}(ala) implies that |@) is a zero-norm state:
(ala) = 0.

(2) Because of the nondegeneracy of the metric, |a) has
a partner state, namely, |) such that (f|a) # 0. One
can take a generalized eigenstate of H as this state
|3). Indeed, otherwise, the completeness would
imply that |a) is orthogonal to all states, which
contradicts with the nondegeneracy. Therefore, |)
satisfies: for some integer k,

(alp) #0,  (H—Ep)"|p) =0,
(H - E;)1[) #0. (99)
From the second and first equations, we have
(E;, — Eg)*(al) =0, and therefore, Ejz= Ej.
Similarly to |a), |f) is also a zero-norm state:
(B|p) = 0 since Ej is not real, Ej # Ej. L]

The simplest possibility to provide complex singularities
is a pair of the zero-norm states {|a), |#) }. Let us consider a
consequence from such minimal complex spectra.

Claim 3.—Suppose, in addition to (i), (ii), (iv) of

Claim 1, the following:

(iii") Besides real eigenvalues, the Hermitian Hamiltonian
H has one pair of eigenstates {|a), |#)} of complex
conjugate eigenvalues E,, E; = E7, with a positive
real part ReE, > 0.

(v) The field operator ¢ () is Hermitian.

Then, the following statements hold:

() If (B|¢(0)]0) =0 or (alp(0)[0) =0, then the
Wightman function is in .%”(R). In particular, the
Schwinger function has no complex singularity.

@) If {5|¢(0)|0) # 0 and (a|¢(0)|0) # O, then the
Schwinger function has a pair of simple complex
conjugate poles besides the real singularities.

One can prove the one-to-one correspondence between a
sequence of generalized eigenstates of E,: {|a),(H —
E,)|a),(H — E,)?|a),---} and that of E} in finite dimensional
cases. For an example, see Sec. 7 of [43].

Derivation.—First, let us examine the metric structure of
the state space. The eigenstates of complex eigenvalues,
H|x) = E,|a), H|) = E%|B), are orthogonal to the gener-
alized eigenstates with real eigenvalues |n). Indeed, for
every |n) satisfying (H—E,)M™|n) =0 and (H-
E )M~ n) #0 with real E,, (Ej;—E,)""(aln) =0
and (E, — E,)")(B|n) = 0 hold, from which (a|n) =
(f|ny = 0. The metric 5, ,, = (n|m) is “block diagonal-
ized” to the sectors of real energies and of complex
energies; we can decompose the completeness relation as

DM = D Mawt D Mo

nn' n,n’ :real n,n’:complex

(100)

The metric n;ln, in the second term is a two-by-two matrix

and can be written as 17,5 = 175 = 0, 1, = ((fla))™",

and 775, = ((alp3))™!
Now, we have

(Olgp(2) Z e (01¢h(0) ) (n'|(0)]0)

n,n' :real

+ E ]7; L/ e—lEnl

n,n’:complex
x (0[¢(0)|n){(n'|(0)]0).

The first term is characterized by Claim 1, which provides
singularities only on the negative real axis in the Schwinger
function. On the other hand, the second term reads

D e B 014 (0)|n) (' h(0) 0)

n,n’ :complex

= ({Bla))~" e~ (0]¢h(0)]ax) (Bl 4(0)|0)
(<alﬂ>) te= e (0](0)|B) (al#(0)|0).
(102)

(101)

Wcomplex (t) =

Let us evaluate W ompiex () in the following cases:
(1) (B|¢(0)|0) =0 or (a|¢(0)|0) = 0. The Hermiticity
of ¢ yields

—_
)
<
—

S
=
2

I

(0[(0) )"
(103)

from which W ,npiex (f) = 0 in this case. Thus, the
Wightman function can be regarded as a tempered

distribution.
(2) (l(0)[0) # 0 and (al$(0)[0) # 0. We define
: 2Ea<0|¢<0<)ﬂ||02><ﬁ|¢(0)|0> .

which does not vanish in this case. The Schwinger
function of this part S¢ompiex (7) for 7 # 0 is given by
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Scomplex (T) = Wcomplex (_i|T | )

zZ z .
— - rt"[‘ R _Ea‘T“ 105
k" T e (105)
This function can be represented as
complex / ——e i« S‘complex(k)
Soomren (k) = + = (106)
complex k2 + Eg k2 ( a)z ’

which is indeed a pair of simple complex conju-
gate poles.

Therefore, the pair of eigenstates {|a), |$)} leads to either

(1) the Wightman function is in .'(R), or (2) the

Schwinger function has a pair of simple complex conjugate

poles. [

Therefore, complex singularities defined in the previous
section can appear in a state space with an indefinite metric,
when the Hamiltonian H has complex spectra. This claim
suggests a correspondence between complex singularities
and zero-norm pairs of eigenstates of complex eigenvalues.

Finally, let us add remarks on this claim.

(a) The necessity of an indefinite metric for complex
singularities is consistent with Theorem 7, the viola-
tion of the Wightman positivity.

(b) Claim 3 also implies that, under the assumption of the
Hermiticity of the Hamiltonian and field operators,
complex singularities should appear as complex con-
jugate pairs. This statement can be also understood by
the (intuitive) representation of the Schwinger func-
tion S(7): for 7 > 0, S(z) = (0|¢p(0)e~7¢(0)|0). The
Hermiticity of the Hamiltonian and the field operator
yields S(z) € R, from which D(z)* = D(z*). This
complex-conjugate pairing is consistent with Remark
(d) of Theorem 1.

The discussion above is restricted to quantum mechan-
ics, or the (0 4 1) dimension. In the next subsection, we see
an example of QFT with complex poles.

B. Example: Lee-Wick model

A simple possible QFT yielding complex poles is the
Lee-Wick model of complex ghosts [49], which has been
studied for many years. Here, we briefly review its
kinematic structure following its covariant operator formu-
lation given in Ref. [45] and see that there indeed exists a
Hermitian field whose propagator has complex poles.

Let us start with the Lagrangian density of the Lee-Wick
model of complex scalar field ¢ with complex mass
M? ecC,

S0 () + (0,0) ()

= M2 — (M) ($7)’]. (107)

We expand the field operator ¢ as

P(x) = ¢ (x) + 17 (x),
+ _ &Sp 1 =\ piDX—iEjt
$0) = | G g e

ﬁT(")e—iﬁ-EJriEl-,t’ (108)

o [ dp 1
P )(x)—/(zﬂ)3\/m

where Ej:=+/M?+ p?, and we chose ReE; >0 and
Re\/Eif, > 0. The canonical commutation relation implies
a(p). /()] = [B(P). a"(§)] = (27)*6(p — §). We define
the vacuum [|0) by a(p)|0) =p(p)|0) =0, or

+)(x)[0) = [¢7)(x)]7|0) = 0. Note that the field operator
¢(x) together with its parts ¢(*)(x) and ¢(~)(x) is a Lorentz
scalar, and therefore, the vacuum |0) is a Lorentz invariant
state, see [45] for details. Note that the Lorentz symmetry is
manifest in this formulation until one (artificially) considers
asymptotic states. The Hamiltonian reads

d3p D 4 * - -
"= / (s ' (PlP) + Ea (P)P(P)]. - (109)
ignoring some constant. Notice that the complex-energy

states a'(p)|0) and B7(p)|0) form a pair of zero-norm
states (|, a) =a'(p)[0).|p.B) = p'()|0)) for every

peR’,
(p.alg.a) = (p.plg.p) = 0
(p.alg.p) = (p.Blg.a) = 27)*6(p — g).  (110)
The commutators of the fields are given by
[#(x). p(y)] = iA(x = y. M?),
[#(x). 4" ()] = 0. (111)
where
&Ep 1
A, M2) = /ﬁE—ﬁsm(p'x—Eﬁt). (112)

Note that A(x, M?) is a Lorentz-invariant function as
shown in Lemma 3 as expected from the invariance of
the field operator and the vacuum state. This theory is
thus spacelike commutative at least in the level of
elementary fields, since A(x —y, M?) vanishes for space-
like x — y.

Next, let us show that the Euclidean propagator of a
Hermitian combination with a constant Z € C,

® = VZp+VZ T, (113)
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has indeed complex poles. In this sense, the complex fields
¢ and ¢' are the counterparts in the covariant operator
formalism of so-called i particles [47].

Using the following correlators:

d’p iP-F—iEzt

OO0 = [ 5 Es s erin,

(0lgp(x)"(0)[0) = 0.

3 s oy
O W 010 = [ 5 Sesp ™ 14
we find
D (1.5) = (0](x)(0) 0
= [Z00l () (0)]0) + 2 {0l () (0)[0)]

:/ dp [ Z iPF—iEst | z o PE-ES
2n) |2E; 2E; '

—~

(115)
which is exactly the same as the Wightman function (41)
reconstructed from the Schwinger function (23). From the
relation (2), we obtain the Euclidean propagator Ag (7, X)
for 7 # 0,

Ag(7,X) = 0(—1)Dg(it,X) + 0(7)D

(-
Pp [ 2 AR
— ip-X—Ejl| lP'X—E,;M
/ [2E~ ¢ BT

(2
d‘ p /dp4 ip-X+ipyt
2z

r)’

(2x)?
e
pi+E: pi+(Ey)]

3(it, %)

(116)

The Euclidean propagator in the momentum space is given
by

V4 n VA
pE+ M pp+ (M¥)?

Ao (pp) = . (117)

which indeed exhibits a pair of complex conjugate poles.

Therefore, a kinematic structure of the covariant operator
formalism of the Lee-Wick model yields simple complex
poles. The simple complex poles correspond to the one-
particle-like zero-norm states with complex masses.

Finally, let us comment on a construction of a composite
operator whose propagator obeys the Killén-Lehmann
representation [47].

As mentioned above, the field ¢(x) corresponds to the
so-called i-particle. According to the toy model [47], we
define

O(x) = ¢(x)¢" (x). (118)
This propagator can be expressed as
D5(y = x) = (0]0(y)O(x)[0)
B / dp d’q 1
) (2n)’ (22) 4E, E
x e~ HEyHE) (O =x)+i(p+§)-(G-3) (119)

which seems not tempered since (E, + E;) is complex, in
general. However, the following reasoning indicates that
this composite-field propagator involves only real spectra.]6

The Euclidean propagator Ay (7, I_c') in the imaginary time 7
and spatial momentum k is given by

- d*p 1
Ap(t, k)= | —5———¢
Bo(r.k) / (277 4E,E_, ¢
which reads in the momentum space,

. &p E,+Ep, !
AO(k’ k4) = 3 * B r \2
(2z)° 2E,E;_, pi+ (E, +E;_,)

&Pp 1 [1 1
/(2ﬂ) 32 |E, (ks — iE,)? + (Ef_,)?

1 1
+ * . Tk
E;_, (ks +iE;_, 2 2}

(Ep+E;_ )7l ) (120)

[ | 1
_/(2ﬂ)4p2+M2 (k=p)* + (M*)*
(121)

This is what is calculated in [47] and takes a form of the
Kéllén-Lehmann spectral representation with a positive
spectral density. Back to the real-time propagator, this
implies (0|O(y)O(x)|0) has only real spectra. Thus, the
composite operator O(x) could be regarded to be
“physical”.

C. Complex singularities in a BRST quartet

Here, we discuss implications from the interpretation of
complex singularities in an indefinite-metric state space in
light of confinement. As discussed above, complex singu-
larities correspond to zero-norm states. Such states, which

"“This phenomenon corresponds to nonuniqueness of a
Cauchy integral. For example, if D(k?) has singularities only

D(
on the negative real axis, one can represent D(k?) = fc 2d,,¢, = /8’

where C is an arbitrary contour which separates the positive and
negative real axes. In this representation, D(k?), which has no
complex singularities, appears to have complex singularities on
the contour C.
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are not physical, should be confined according to some
confinement mechanism.

It is worthwhile considering implications in the Kugo-
Ojima BRST quartet mechanism [50]. Here, we assume
existence of a Hermitian nilpotent BRST operator Qp:

Q% =0, Qg = Qp. Some issues on this existence are
mentioned in Sec. VIC. In this scenario, confined states
should belong to BRST quartets, i.e., BRST exact (BRST
daughter) or BRST noninvariant (BRST parent) states.
Thus, complex energy states, which lead to complex
singularities of the propagators, should belong to BRST
quartets.

In this section, we provide only a sketch of the argument.
Suppose that the gluon propagator has complex singular-
ities. Then, “one-gluon state” has complex energy states,
which is schematically expressed as

A, (0)0) = E) + [E*) + -, (122)
where |E) and |E*) stand for a pair of complex energy
states, (E*|E) # 0. Since |E) and |E*) should be excluded
from the physical state space constructed from the BRST
cohomology Ker Qz/ImQj to make the theory physical,
we require that | E) and |E*) are either BRST exact or BRST
noninvariant states.

We can easily exclude a possibility that both |E) and |E*)
are BRST exact. Indeed, if they were BRST exact, |E) =
QOply) and |E*) = Qgly*), then the nonorthogonality
(E*|E) # 0 contradicts with the nilpotency of the BRST
charge Qg, Q% = 0. Therefore, at least either |E) & KerQjp
or |E*) ¢ KerQp holds.

We assume further that a CPT (antiunitary) operator ©
exists and satisfies

@ =1 0)0)=1[0). ©0;6 =0
®@HO = H,  ©A,(0)0 = —A4,(0). (123)
®4,(0)0 = —A,(0) and ©|0) = |0) implies
®|E) = —|E*), O|E") = —|E). (124)

When either |E) ¢ KerQp or |E*) ¢ KerQp holds, the
possibilities are (i) |E) &€ KerQp and |E*) € ImQp,
(ii) |[E) € ImQjp and |E*) & KerQp, and (iii) |[E) ¢ KerQp
and |E*) & KerQp. The first two possibilities (i) and (ii) can
be excluded by (124) and Qz® = OQp, namely,
|E) € KerQp < |E*) € KerQp. Thus, the only possibility
is (iii); both complex energy states are BRST noninvariant.

"Notice that, if the complex energy states are confined
correctly, asymptotic states in the physical state space are
expected to be well defined. Therefore, if such a confinement
mechanism works well, the nontemperedness of the Wightman
function and the ill definedness of the asymptotic states would not
provide any physical issue.

Hence, existence of a CPT operator and nonexistence of
complex energy states in the physical state space implies
that both |E) and |E*) should contain BRST parent states.
In the simplest possibility, complex energy states form a
double-BRST quartet.

As a consequence, since QplE) =|E,c) #0 and
Op|E*) = |[E*, c) # 0, we have

(D,C)(0)[0) = 05A,(0)[0) =

E,c)+ |E*¢c)+---
(125)

Since the ghost propagator seems to have no complex
singularity according to recent analyses, e.g., [9,12,13,
18,21,24,25], this implies that the gluon-ghost bound state
should contain complex energy states whose energies are
equal to those of the gluon. Therefore, a propagator of the
gluon-ghost bound state should have complex singularities
at the same position as the gluon propagator.

Let us summarize the discussion above. Complex energy
states should be “eliminated” from the physical state space
by some confinement mechanism. In the Kugo-Ojima
scenario, they should be in BRST quartets. For complex
singularities in the gluon propagator, the “one-gluon state”
should have complex conjugate energy states (122), |E)
and |E*). The other discussion in this section can be
summarized as the following claim.

Claim 4.—Suppose that |E) and |E*) of the “one-gluon
state” with (E|E*) # 0 are in BRST quartets. Then, either
|E) or |E*) is not a BRST daughter state. Moreover, with
the additional assumption of the existence of the CPT
operator, both |E) and |E*) contain BRST parent states.

This claim predicts that a propagator of the gluon-ghost
bound state should have complex singularities at the same
positions as those of the gluon propagator.

D. Complex singularities and gauge-invariant
propagators

Regarding complex singularities of the gluon propagator,
a natural question is how complex singularities are “can-
celed out” in the physical gauge-invariant propagators, e.g.,
the glueball propagators. Here, we make some comments
on this issue.

First, we can see that gauge-invariant propagators have
no complex singularity in the BRST formalism if all
complex spectra are in BRST quartets. To this end, let
us consider the following two-point function of a gauge-
invariant operator O(x), e.g., O(x) = F{,F%" for the 0**
glueball,

(0]0(x)0(0)[0) = (0]O(0)e™*O(0)[0).  (126)
Since O(x) is gauge invariant, it is BRST invariant;
therefore QpO(x)|0) = 0. Assuming the completeness
relation, we write
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(0[O(x)

Z” —ipyx

n, n'

(010(0)[n){n"|O(0)|0).
(127)

As we have seen, if some states with complex energies
(p,)° contribute, this two-point function has complex
singularities. In order to prevent complex-energy states
to appear in the physical state space KerQz/ImQp, we
assume that such complex-energy states are in BRST
quartets. Note that a BRST parent-parent pair does not
appear in the completeness relation due to the nilpotency,

0=05= )

n,n’'€{parents}

M, Qpln)(n'|Qp. (128)

which yields ’7;’1,, , =0 for n,n € {parents}, where
{parents} denotes a basis of a complementary space of
KerQp. Thus, every quartet in the completeness relation
satisfies |n) € ImQp or |n') € ImQp. This implies
(0]O(0)|n) =0 or (n'|O(0)|0) = 0, which is case (1) of
Claim 3. Therefore, with those assumptions, the gauge-
invariant propagator has no complex singularity.

The above discussion indicates that complex-energy
intermediate states are ‘“canceled out” due to the BRST
invariance of the operator O. For example, this suggests
that possible complex singularities of the (9,A% — 9,A%)?
propagator should disappear in the full (F' ,‘j,,)z propagator.

Second, although checking this scenario by a concrete
calculation is an interesting topic, it is a highly difficult
task. Indeed, the connection between the full gluon
propagator and the full glueball propagator is very com-
plicated. For example, one has to maintain all of the
composite operators JAJA, AAOA,AAAA to preserve the
BRST symmetry.

Third, let us mention some calculations on the glueball
propagator from the (refined-)Gribov-Zwanziger propaga-
tor. The lowest-order calculation leads to complex branch
cuts [28,51]. Note that, because of the soft breaking of the
BRST symmetry of the Gribov-Zwanziger model, the
composite operator (F%,)* can mix with BRST noninvar-
iant operators. One can hope that such mixing would
somehow eliminate unphysical complex singularities of the
glueball propagator, which is expected in the i particle
scenario [47]. In terms of the i particle, it is possible to
construct a composite operator whose propagator has only
timelike cut at the lowest order. However, a systematic
mechanism behind this scenario in the Gribov-Zwanziger
model is still far from clear.

Finally, in relation to this topic, it is worthwhile noting
that the reflection positivity for gauge-invariant quantities
was proven in the lattice gauge theory [52]. This is of
extreme importance from a viewpoint of the reconstruction
from Euclidean field theories. This could lead to the

spectral condition and positivity in the physical state space
KerQg/ImQp, which have been just assumed.

V. SUMMARY

Let us summarize our findings. In Sec. II, we have
presented a sketch of the discussion emphasizing that
complex singularities of propagators on the complex
squared momentum plane differ depending on whether
the propagator is Euclidean one or Minkowski one. This is
an important remark for determining a starting point toward
considering the reconstruction. We have to regard “com-
plex singularities” as those of Euclidean propagator and
consider the reconstruction carefully.

The main part of this paper consists of general properties
of Wightman functions in Sec. III and implications on state
spaces in Sec. IV.

In Sec. III, we have defined complex singularities and
reconstructed Wightman functions from Schwinger func-
tions with complex singularities. We have obtained the
following general properties on this reconstruction as stated
in the Introduction:

(A) Violation of the reflection positivity of the

Schwinger functions (Theorem 6)

(B) Holomorphy in the tube (Theorem 3) and existence
of the boundary value as a distribution (Theorem 4)

(C) Violation of the temperedness (Theorem 5) and the
positivity condition in Z(R*) (Theorem 7)

(D) Validity of Lorentz symmetry (Theorem 8§
and Theorem 9) and spacelike commutativity
(Theorem 10)

The organization of our proofs of these theorems is
depicted in Fig. 3. See Appendix C for a summary of
violated axioms.

In Sec. IV, we have considered a possible state-
space structure in the presence of complex singula-
rities. Consequently, a quantum mechanical observation
(Sec. IVA) suggests the following:

(E) Complex singularities correspond to zero-norm

states with complex energy eigenvalues

Indeed, we have first argued the necessity of nonreal
spectra by proving Claim 1. Secondly, Claim 2 implies
that the complex-energy states have zero-norm and form
complex conjugate pairs. Third, Claim 3, which asserts that
a pair of zero-norm eigenstates of complex conjugate
energies yield a pair of complex conjugate poles in
(0 + 1)-dimensional theory, indicates that complex singu-
larities correspond to pairs of zero-norm eigenstates of
complex conjugate energies.

Moreover, we have discussed an example of a relativistic
QFT having propagators with complex poles which is
called the Lee-Wick model. This model also supports the
correspondence between complex singularities and pairs of
zero-norm states. Incidentally, we have argued that the field
operator of the Lee-Wick model can be understood as a
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counterpart in the covariant operator formalism of the so-
called i particle [47].

Finally, we have discussed implications of complex
singularities in the BRST formalism. Under assumptions
that the Kugo-Ojima quartet mechanism works well and
that the CPT operator exists, we have argued that both
complex conjugate energy states of the “one-gluon state”
A,(0)|0) contain BRST parent states. This predicts that
complex singularities of a propagator of the gluon-ghost
composite operator should appear at the same locations as
those of the gluon propagator.

VI. DISCUSSION

In this section, some remarks are made on related topics.

A. On other interpretation of complex singularities

Let us make comments on another interpretation of
complex singularities. We have reconstructed Wightman
functions from Schwinger functions based on (A23) and
(A25). As remarked in Sec. II, this is different from a naive
inverse Wick rotation on the complex momentum plane. An
interpretation using the inverse Wick rotation is often
discussed, e.g., in [29-31]. In these references, it is claimed
that complex poles lead to (a) short-lived gluonic particles,
(b) no free limits, (c) violation of causality (in short range),
(d) violation of reflection positivity, (e) asymptotic incom-
pleteness, and (f) violation of unitarity (in short range).

In our reconstruction method, there are some differences
on (a) short-lived particle, (c) violation of causality, and
(f) unitarity: (a) Instead of finite lifetime, the reconstructed
Wightman function grows exponentially. (c) The causality
as the spacelike commutativity is kept as mentioned in
Sec. IIIB 7. (f) The Hermiticity of Hamiltonian can be
consistent with complex poles in an indefinite metric state
space as discussed in Sec. I'V.

B. On the superconvergence relation

Oehme and Zimmermann derived the superconvergence
relation for the gluon spectral function p(c?) [41],

/°° dop(c?) = 0.

0

(129)

The core idea of the Oehme-Zimmermann argument is to
obtain the exact asymptotic form of the gluon propagator in
the complex plane by using the asymptotic freedom and
renormalization group. In particular, if the gluon anoma-
lous dimension is negative, the gluon propagator D(k?)
tends to vanish faster than 1/k?. If the Killén-Lehmann
spectral representation is assumed, the asymptotic form
yields the well-known superconvergence relation.

In the presence of complex singularities, the Killén-
Lehmann spectral representation is invalidated. Therefore,
the superconvergence relation (129) does not hold. In order

to obtain the correct asymptotic form determined by the
perturbative renormalization group, the superconvergence
relation is modified by complex singularities [18].

Here, we see how this relation is modified with the

following assumptions:

(1) The generalized spectral representation (13) for
D(k?) holds.

(i) D(k*) has the asymptotic behavior |k*||D(k?)| —
0(|k*| — o). For the gluon propagator, the pertur-
bative renormalization group and asymptotic free-

dom imply D(k?) ~ W where 7, and f3, are,
respectively, the first coefficients of the gluon
anomalous dimension and the beta function. This
assumption is satisfied when both y, and f, are
negative.

First, let us consider a simple example with one pair of

complex conjugate poles,

o 2
D) = [ a2 27
) /) 662+k2

z_ .z
M>+ k2 (M) + &

+ (130)

From assumption (ii), by taking the limit |k*| - oo (or
evaluating a contour integral along a semicircle [[18],
Sec. II C]ls), we have

2ReZ + /°° dop(c?) = 0. (131)
0

For a more general case with assumption (i), we obtain the
modified superconvergence relation by the same evaluation,

N, N, o
>-20 43 [ im0+ [Tdepen 0. (32
‘=1 k=1 7C 0

C. BRST symmetry, confinement, and
complex singularities

Finally, let us add some comments on BRST symmetry
and confinement in relation to complex singularities.

First, we have assumed a nilpotent BRST charge in
Sec. IV C. Since the Kugo-Ojima quartet mechanism is a
promising way to construct the physical state space in
gauge-fixed pictures, it would be natural to hope the
existence of a nilpotent BRST charge. However, part of

18Again, note that our previous works [18,20,23] have mis-
leading Minkowskian notations, which should be Euclidean.
Incidentally, in the presence of complex singularities, note also
that the Oehme-Zimmermann renormalization group analysis
should be implemented in Euclidean theories, since the renorm-
alization condition for the real-time propagator cannot be
imposed due to the nontemperedness.
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the evidence for complex singularities in the Landau-gauge
gluon propagator relies on numerical lattice calculations in
the minimal Landau gauge, where the usual BRST sym-
metry is not guaranteed. At the present situation, the “best-
case scenario” is that the gluon propagator of the minimal
Landau gauge would be a good approximation of some
gauge with a nilpotent BRST symmetry. Developing the
lattice Landau gauge preserving the standard BRST sym-
metry in the continuum limit overcoming the Neuberger
zero [53-55] would be an important future prospect.

Second, since complex singularities cause a problem on
the asymptotic completeness as mentioned in Sec. III B 3 in
the “full” state space, the Kugo-Ojima arguments could be
modified. It would be interesting to explore this possibility.

Third, there are few theoretical developments of the
axiomatic method without the spectral condition and
positivity to our knowledge. Such studies could yield some
constraints on complex singularities and are therefore
interesting.

Fourth, Claim 4 predicts complex gluon-ghost bound
states with the same energy as that of the gluon.
Conversely, the appearance of complex singularities in a
propagator of the gluon-ghost composite operator would be
a necessary condition for the BRST formalism to “work
well” if the gluon propagator has complex singularities.
Thus, seeking such a complex gluon-ghost bound state
would be interesting. Remarkably, the Bethe-Salpeter
equation for the gluon-ghost bound state has been studied
in light of BRST quartets in [56].

Fifth, while one can expect that complex singularities of
field correlators have something to do with a confinement
mechanism, we ought to note that complex singularities
could be trivial gauge artifacts. Although the complex
singularities yield a violation of (reflection) positivity, this
violation is itself neither necessary nor sufficient for the
confinement of a particle corresponding to the field, e.g.,
the gluon confinement. Indeed, this is not sufficient
because this violation only indicates that the field involves
some negative-norm states and does not deny the existence
of asymptotic physical states. This violation is not a
necessary condition because BRST parent states can be
positive norm, for example. Similarly, although complex
singularities correspond to confined states, their existence
is neither necessary nor sufficient for the confinement of the
corresponding particle. Moreover, such “confined states”
corresponding to complex singularities could only be
members of BRST quartets that are irrelevant to the
confinement mechanism like the timelike photon. There
are still many possibilities because understanding a

|

Oy(R4n) = f c y(R4n)

Df(xy,....,x,) = 0 for any a € Z¥}

’ifx,»:xjforsomelsi<j§n

confining theory as a quantum theory is far from being
achieved. Further studies are needed for clarification of
relations between complex singularities and confinement
mechanism.
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APPENDIX A: NOTATIONS AND AXIOMS

In this section, we introduce notations required for mathe-
matical discussions and review the standard Osterwalder-
Schrader axiom for Euclidean field theories [37].

1. Notations and conventions

We use the notation x = (¥, x*) = (x', x2,x%, x*) for a

four-vector and Euclidean inner product xy = x*y* (and
Lorentzian inner product only when explicitly mentioned).
When only one four vector is relevant as in the main text,
we also use the lower indices x = (xy, x,, x3,x4). We call
the direction of e, := (6 1) “(imaginary-)time direction”.
We also use the multi-index notation: for a multi-index
a= (a1, a,,....a,4) € Z%, D, denotes

a\a\
Gl @y

@y

where |a| = a1 + -+ a,4.

The Schwartz’s space on R” is denoted by .7 (R").
Its dual space, the space of tempered distributions, is
denoted by '(R"). We also define Z(R"):=
{f(&); f(&)is a C*function with a compact support} and
its dual space Z2'(R"). We can regard .¥'(R*)C
2'(R*). An element of 2'(R*) can be beyond polynomial
growth unlike .#”(R*). An element of Z'(R*) that cannot
be regarded as a tempered distribution is called a non-
tempered distribution.

The important test function spaces are listed as follows.
These spaces are equipped with the topologies in the same
way as [ [37], Sec. 2].

(i) Space of test functions on noncoincident points,

(A2)
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(ii) Space of test functions with (imaginary-)time-ordered supports,

Df(xy,...,x,) = 0 for any a € Z¥"

4ny __ 4ny. 1 n >0

(R )_{er(R )’unless0<x‘1‘<x‘2‘<~~-<xﬁ ’ (A3)
D%f(xy,...,x,) = Ofor any a € Z#"

7w = {re s DT ) sl (a9
unless xj < xj < -+ < xj

(iii) Space of test functions with supports of positive (imaginary-)time.
For functions of one variable, ., (R):={f(s) € #(R); suppf C [0,00)} and also .7_(R):={f(s) €
Z(R); supp f C (—o0,0]}. We define

J(RY) = SRY®S(R),  F(RY):=&"F(RY), (AS)

where ® denotes the completed topological tensor product and ®” the n-fold one.
(iv) Space of test functions on “non-negative (imaginary-)time”.
Z(R..) denotes the space of test functions on the non-negative real half line: .7(R, ) := .%(R)/.%_(R). Note that
its dual space can be identified as .7’ (R, ) ~ {F € (R); supp F C [0, 00)}. We define as above

SR = SRBSR,)., SR =" (RE). (A6)

We introduce the sets of terminating sequences .7,.7.,.”_, and .Z(R%) over the spaces .7(R*"),.7, (R*"),
S (R*), and #(RY"), respectively. An element f of one of the spaces ., (=...7 . .7, (R%)) over
S(= S (R?™), S (RY), 7 (R*"), #(RY")) is a terminating sequence f :=(fo.f,---) with foe€C,f, €
SM(n=1,2,...), ie.,

S, = é o, (A7)
n=1

with .7 := C.
Next, we define some operations X, -*, and ® on these spaces.
(@) For £ = (fo.f1.--).g = (go.g1.-+") € L., f X g is defined as

= fn—k(xl’XZ’ "'7-xn—k)gk(xi1—k+l1xn—k+2’ '--’xn)’ (AS)

(b) For f = (fo.f1, ") €L

=001 b xe o x) = fule Xorsx), (A9)

®f: ((®J_C)0’ (®i)l’)’ (®i)n(xl’x2""9xn) :=fn(19x1719x27""19xn)9 (A]O)

where  is complex conjugation in this appendix (to distinguish from -*) and dx = (¥, —x*). In the main text, the
complex conjugation is denoted by -*.

074024-29



YUI HAYASHI and KEI-ICHI KONDO

PHYS. REV. D 104, 074024 (2021)

(c) For an element of the Euclidean group (a,R) €
R*xSO(4) and f € .77,

flar (X1, ... x,) = f(Rx; + a,...,Rx, +a). (All)

For the spectral function, we define tempered distribu-
tion on a compactified set [0, co] [[40], Sec. A.3.]. We
introduce the space of test functions on [0, co] as

([0, 00]) = {f(2) = g(=(1 + A)7");

gisa C* function on[—1,0]}, (A12)

equipped with the topology characterized by the countable
nom family"” [|F(A)]" = maxieqon...suPiso
[(1+2)> 2V fF(2)| for n € Zy. Its dual space, namely,
the space of continuous linear functions of .#([0, 0]), is
denoted by .#’([0, oo]). Elements of this space are called
tempered distributions on [0, co]. With this definition, for
p(o?) € #([0., o)), the “integral” [5° dazﬁ”zﬂ)z is formally
well defined.

2. Osterwalder-Schrader Axioms

Using the above notations, we state the standard
Osterwalder-Schrader axioms, for simplicity, for the scalar
field. {S,}, is a sequence of distributions S, (x1, ..., X,,),
called Schwinger functions, satisfying

[OSO] (Temperedness):

So =1, S, € . (R*). (A13)

[OS1] (Euclidean Invariance): for all (a,R) €
R*xS0(4) and f € .7 (R*"),

Sn(f) = Sn(f(a R)) <A14)

[OS2]  (Reflection  Positivity): for all f=
(fof1-) €L,
S Sun(OF; x )20 (ALS)

“Note that this norm can be written in terms of g(u)

on [—1,0] by identifying “:_ﬁ as ||f(l)||£?.oo]:
manE{O.L,....n}ue[_l_()]|%L which is clearly finite for
f e Z([0,)).

[OS2] (Symmetry):

Sn(xl,...,xn) :Sn(x,,(l),...,x,,(n)), (A16)
for any pertumutation z(-) of n items
[OS4] (Cluster Property): for all f = (fo.f1-:).9=

(90,91 ---) €L and a = (a,0),

lim [8n+m (@fZ X gm,(la.l))

A—o0
n,m

[OSO] (Laplace Transform Condition)zoz From the

(A17)

translational invariance [OS1], we can write
4(n-1)

fgn(xlﬂ ""xn) as Sn—l(glv ""fn—l) € y/(R+ )’

e, S,(xp, .. x,)=8, (X0 — X1, x3 — X9, .0y X, —

x,_1) for x} <xj <--- < x}. This condition means
that there exists, for every n, a Schwarz seminorm

|- |l on . (RE"™) so that
1Sut (O] < IfE]Ly forall £ e #(RIY), (A18)

where fr denotes the Laplace-Fourier transform
defined by

fL(QI’ sees qn—l)
= [ Gy T
4420
e # (R, (A19)

Let us comment on the standard axiom of Euclidean field
theories.

(a) For f,ge /,, Of* xge /_, which appears in
[0S2] and [0S4].

(b) As aspecial case of [0S2], f = (0, £,0,0,...) € ./,
we have the reflection positivity for the two-
point function. For any f(x) € .7, (R*) =
{f € Z(R*); supp f € R® x [0, 00)},

/ dxdtyF9x) f()Sy(x.y) 20, (A20)

2OContrary to the original expectation, temperedness of the
(higher-point) Wightman functions would not be guaranteed by
[OS0]-[OS4] [38,57]. For the two-point sector, this condition is
irrelevant since the temperedness of the Wightman function can
be derived by the other conditions. However, it should be noted
that complex singularities also violate this condition. Note also
that this condition can be replaced by, e.g., a slight stronger
condition, “linear-growth condition”, which controls growth of
S, in n [38]. Since the aim of imposing this condition is to control
behavior of the higher-point functions, we do not go far into this
condition in this paper.
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which is equivalent to, in terms of S;(y—x):=
S,(x,y) and Fourier transforms of S; and f in the
spatial directions,

&p - - -
[t [ BTG58 =)
>0

(A21)

(c) Usually, S;(p, ) is an ordinary function. In this case,
the reflection positivity is often checked by a neces-
sary condition,

Si(p,7) >0 forall z>0,p. (A22)
If not, there exists (p,,z,) such that S,(p,,z,) <0,
and we can choose a test function f(p,z) with its
support sufficiently close to (p,, 7,/2) so that the left-
hand side of (A21) is negative. Observing the sign of
S, (P, 7) is relatively easy but is not enough to test the
reflection positivity completely even in the two-point
sector. For example, a propagator with complex poles
and largely positive spectral function will not show the
negativity of S,(p,7), while the reflection positivity
itself is violated as proven in Theorem 6.

(d) The Schwinger function S, (&,....&1) €
Y’(Rﬂn_w), e, S,(xp, . x,)=S,_1 (X0 —xq,x3 —
X3y eees Xy — Xp_y) for xt < x§ < --- < x} is regarded
as the “values” of the Wightman function at pure
imaginary times or Euclidean points,”'

W, (=i, El) (=i, 52) v (=it En—l))

= Sn—l ((51 s Tl)’ (52’ 72)’ cee (én—l ’ Tn—l))' <A23)
One expects that the Wightman function is holomor-
phic in the (extended) holomorphic tube and that the
holomorphic Wightman function provides the vacuum
expectation value of the fields as its boundary value as
the usual case [36],

Wn—l(élv (XX} fn—l)

= ; 1}17m OW,,_I (é:] - i771, ceey fn—l - i”n—l)’ (A24)
1 -1
nyip—1 €Vys

where V. denotes the forward light cone. Therefore,
the Wightman function is reconstructed from
the Schwinger function analytically continued to
Rer; > 0,

*'More generally, the Schwinger functions at noncoincident
points are regarded as the “values” at Euclidean points of the
holomorphic Wightman function defined on the permuted ex-
tended tube (see [[37], Sec 4.5]).

Wosi (0,81, (62,8), oo (141, Et))

= lim_ S, ((Em +in).

Tyseens Ty =+

(&2 t2 +ity), s (Euets Ty + 1)), (A25)

since ((—1(1;1 +it1), &), (—i(ry + it2), &), ...,
(—=i(zp_y +ity_y),&,y) for 7y, ...,7,_; > 0 is in the
tube R*"=1) — V=1 Note that the spacelike com-
mutativity of the Wightman functions follows from
the permutation symmetry [OS3] and expected
holomorphy of the analytically continued Schwinger
functions S,_; in the extended tube.

(e) A generalization of the Osterwalder-Schrader axiom
without the reflection positivity was proposed in [58].
However, the new axiom (“Hilbert space structure
condition” with “. continuity”, where the latter is
introduced for a convenient purpose) is strong enough
to derive the Laplace transform condition and prohibit
complex singularities.

APPENDIX B: PROOF OF VIOLATION OF THE
REFLECTION POSITIVITY IN THE PRESENCE
OF COMPLEX SINGULARITIES

For the proof of violation of the reflection positivity
(Theorem 6), the goal of this section is to prove Theorem 11
that the reflection positivity leads to temperedness of a
reconstructed two-point Wightman function. Consequently,
violation of the reflection positivity in the presence of
complex singularities follows from the nontemperedness
(Theorem 5).

This proof is essentially a simplified version of steps (a)
and (b) of the Osterwalder-Schrader Theorem [37].

Lemma 4.—Suppose that the two-point Schwinger
function S, satisfies

(i) temperedness, S, € %9 (R*?),

(i) translational invariance, S,(x; +a,x, +a) =

SQ(XI,JQ) for all a € R4,
(iii) the reflection positivity for the two-point sec-
tor (A20),
which follow from [OS0] temperedness, [OS1] Euclidean
invariance, and [OS2] reflection positivity, respectively.

Then, S;(x, — x;) := S, (x1, x,) (after smearing the spa-
tial directions) can be analytically continued to the right-
half plane (Re(x3 — x}) > 0), and its analytic continuation
can be regarded as a tempered distribution on the half-
plane and the spatial directions. More precisely, for any

h(g) € . (R3), there exists a holomorphic function S, (z +

is|h) on the right-half plane (z > 0) such that _

(a) On the real axis, S;(z|h) = [d>ES (& 7)h(E).

(b) Si(r+is|h) can be regarded as an element of
(R, )®.7(R)]', the dual space of .7 (R,)®.7(R).

(¢) Si(z+ is|h) is continuous in k(&) € .7(R?).
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Proof.—First of all, using (i) temperedness and (ii) trans-
lational invariance, there exists S; (&) € ."(R?%) such that
Sy (x1,x2) = 81 (x5 — x7) for x] < x3.

We prove the claim with the following steps:

Step 1. Constructing a Hilbert space with the form (A20)

Step 2. Defining spatial and (imaginary-)temporal trans-

lation operator and “Hamiltonian”

Step 3. Analytic continuation using the holomorphic

semigroup generated by the “Hamiltonian”

Step 1. Defining a Hilbert space with the form (A20)

Let us first begin with constructing a Hilbert space.
For f,g€ .7, (R*), we define a sesquilinear form on
7+ (RY) x 7, (R*) by

(f.9) = S,(Of x g) = / dhxdyF(9x)g(3)S1 (v — ).
(B1)

which is positive semidefinite: ||f]|> := (f,f) >0 from
(A20). We introduce ./ as the space of all zero norm
vectors, 1.€.,

N =A{f € L (RY):||f]> = 0}. (B2)

We then obtain a pre-Hilbert space .7, (R*)/.#" and
denote its completion by #". Therefore, % is a Hilbert
space and contains .7, (R*)/.#" as a dense subset %,
namely, .7, (R*)/ AN ~ Dy C K.

We denote the (continuous) natural map by
v:., (R*) - ¢, whose image is Z,, and the inner
product on . by (--),. It follows that, for
f7 g € y+(R4>’

(W(f), (@) = (f.9)- (B3)

Step 2. Constructing
“Hamiltonian”

Next, we define translational operators on H.
For spatial directions, we define U, (ad) on .7, (R*) by

translation operators —and

(U, (@)f)(x) = f(x = a).

for a = (@,0) and fe€.7 (R*). Note that (U(a)f,
U,(@)g) = (f.g). We then define the unitary operator
U,(a) on ¥ by a continuous extension of U, (a) defined
on %,

(B4)

U,(@)v(f) = v(U,(@)f).

Similarly, for z > 0, we define 7% on .7, (R*) by

(B5)

(T7f)(x) = f(Z,x* = 2). (B6)

Note that 7 > 0 is necessary to guarantee supp (77f) C
R3 x [0, 0). Recalling (B1), we have

(Tf.9) = (f. T79).

for f,g€ ., (R*) and 7 > 0.
Next, let us derive the following bound: for any z > 0,

fe s (RY,

(B7)

(T < (.0 =1 (B8)

Beforehand, we see that (f,77f) grows at most polyno-
mially in 7. Indeed, by the definition (B1),

(1) = [ s T s 0)SiG=For #5445,
(B9)

which shows (f,77f) increases at most polynomially as

7 — oo because of the temperedness of S, (&) € .7/(R%).

Then, by using the Cauchy-Schwarz inequality and (B7)
recursively, we have

(F.T7F) < (F. ) V2T f. T )12
= (f. )2 T )2
)
(

IA

f,f 1/2+1/4(T2Tf’ T27f>1/4
= (PR B S

1

(f ) rexp 27 In(f, T2,

IA

(B10)

for all positive integer n, positive real z >0, and
fe.Z(RYE). As n — oo, 27" In(f, T%"f) = 0 due to (at
most) linear growth of In(f, yKiikd f) in n. Therefore, the
n — oo limit of (B10) gives the boynd (B8).
In particular, for any f e .4, T°f is also zero-norm
7° f €./, since
(T, T°f) = (£, Tf) < (f.f) =0.  (Bl1)
Thus, the natural map of 77 on . (R%)/.4" is well defined.
We define 77 to be the operator defined on %,
T30(f) = o(17f). (B12)
So far, T{ is defined on the dense domain %, symmetric
from (B7), and bounded from (B8). Then, we can extend 77,
to be defined on the whole .# by continuity and have a

self-adjoint contraction” 77 on .#. Note that the semi-
group {77}, is strongly continuous due to (1) the

“From (B8), the operator norm of 77 is less than or equal to 1:
[7%]l,p < 1. A bounded operator with this property is called a
contraction.
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boundedness [|T7([,, < 1 from (B8) and (2) continuity for
points in %, lim, o [|T70(f) — v(f)|| = O from the defi-
nition (B1).

Let us define the infinitesimal generator of the semi-
group {77} 5, “Hamiltonian”, by H. Formally,”

1
H = lim— (1 — 7).
70 T

(B14)

Since the family of self-adjoint operators {77}, sat-
isfies (i) [|77]|o, < 1, (i) {77},50 form a semigroup, and
(iii) this semigroup is strongly continuous (iv) 7° =1, a
variant of Stone’s theorem yields that the infinitesimal
generator H is a self-adjoint operator, e.g., [[59],
Theorem VIII. 8 and page 315]. Therefore, we can define
a strongly continuous one-parameter group of unitary
operators on % generated by H, {T" = e "} o by
Stone’s theorem. 7% corresponds to the real-time trans-
lation operator.

Finally, we define a “holomorphic semigroup”,

[lop

{T™s .= T°T%;7 > 0,5 € R} (B15)
Step 3. Analytic continuation using the holomorphic
semigroup generated by the “Hamiltonian”
First, let us consider

(0(f). T"v(9)) - (B16)

which is a continuous bilinear functional on (f(dx),
9(y)) € Z_(RY) x 7, (R?), where .7_(R*) := {f(8x);
f(x) € . (R%)}. From the Schwartz nuclear theorem,
we can write this as a continuous linear functional of
0f* x g

(0(f). T0(g)) = / dxdy(Of* X )(x.y)S(x.y]5).
(B17)

where  S,(x,y|s) is a distribution over the space
Z_(RHQ.7, (R*) ~ {f(x,y) € .Z(R*?); f = O unless

x* < 0 < y*}. Due to the translational invariance arising

from [U,(d),T*] =0 and [T*,T%] =0, Sy(x+a,y+
als) = Sy(x,y|s) for a€R3x[0,00), from which
$al.yls) = $1(y = xls) with ,(y — x]s) € 7 (R).

“In terms of the original space .#(R*), H can be regarded as
—04 = — 6—‘)){4 Note that the reflection 9 in (B1) makes — %
Hermitian. More precisely, H can be defined on the dense domain
P, and

Ho(f) = v(=04f), (B13)

for f € .7 (R%).

Note that S;(&|s) satisfies

$1(£10) = S1(£). (B18)

Moreover, the unitarity of 7% provides the upper bound
on (v(f),T*v(g)) 4 in s. We can thus regard S;(y — x|s)
€ [Z(RY®S(R)].

Using S;(&s), we also have

(0(f). T v(g)) »
- / dxdy(Of* x g)(x.y)S1 (5 — %y — x* + 1ls).

(B19)

From the construction of 77T, the left-hand side is
holomorphic in 7 + is for 7 > 0. Therefore, by using the

uniqueness of the Schwartz nuclear theorem, S, (&,7]s)
satisfies the Cauchy-Riemann equation in the sense of a
distribution.

Now, we consider one smeared in the spatial directions,

S, (z. s|h) = / PES, E 2s)h () € [#(R)@.F R,
(B20)

for h(E) € .(R3). The Cauchy-Riemann equation of
S1(z,s|h) holds for z > 0 (still in the sense of a distribu-
tion). From [60] [p. 31], Si(z,s|h) is a holomorphic
function in 7 + is for ¢ > 0.
S\ (z, s|h) also satisfies the following: o .
(a) On the real axis s =0, S;(z|h) = [ d>ES,(E. 7)h(&)
from (B18).
(b) Si(r +is|h) can be regarded as an element of
[(R,)®.7(R)]' from the definition (B20).
(¢) Si(z+is|h) is continuous in h(&) € .#(R?) from
$i1(y = ls) € [Z(RL)@(R)]'.
Hence, this holomorphic function is what we desire. This
completes the proof. n
Furthermore, we need the following lemma to guarantee
the existence and temperedness of the boundary value.
Lemma 5.—Let S(r + is) be a holomorphic function
defined on the right-half plane 7z > 0 that can be identi-
fied with an element of [(R,)®.7(R)]', the dual
space of .7(R,)®.7(R). Then, the boundary value of
S(z+is) at 7—0 is a tempered distribution:
lim, | S(z + is) € /'(R). Moreover, if such a holomor-
phic function S(z + is|h) is a continuous linear functional
of i on another function space for each z > 0, s € R, then
the smeared boundary value is also continuous in h

2*This proof is based on Lemma 8.7 in [37] and Theorems
2-10 in [36].
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Proof—We prove that, for any test function
f(s) € Z(R), the limit

lim / dsS(z + is)f (s) (B21)

exists and is continuous in f(s) € S(R), ie.,

lim, o [dsS(z+is)f(s) = 0 as f - 0 in S (R).

Let us proceed with the following steps:

Step 1. Polynomial growth in s and 77!

Step 2. A bound for S(z+ is) smeared with a test

function

Step 1. Polynomial growth in s and ™!

We show that the holomorphic function S(z + is) grows
at most polynomially in s and 77!

Let 7o + iso be an arbitrary point on the right-half plane.
The mean-value property yields

27 .
S(tg + isg) = /0 %S(TO + isg + re'?), (B22)

for arbitrary 0 < r < 7. We may average this expression in
r with some weight. Let A(r) be a smooth function with

Therefore, we have

0 27 d
S(To+is0)—/ drrho(r)/ 2—¢
0 0 27

_ / drdsS(c+ s ol (t =70 + (s = 50)2).
(B23)

S(zo +isg+ re'®)

Since hy(\/ (1 —70)%> + (s — 50)?) € L(RL)®-Z(R) due
to the compactness of supp A, there exist non-negative
integers M, N € Z, and a constant C > 0 such that

[S(z0+iso)| < C||ho(\/(f—fo)2 +(5=50))lun.  (B24)

where || - ||, 5 is the norm” defined by
ki gk o o
En= > S0 supleist (o)
Ky ky€Z50 £1.£2€Z50 TS v

ky+ky<M £1+£)<N

suppsupp i C [+, 4] satisfying [ drrh(r) = 1. We define (B25)
ho(r) = 152h(z5'r), which satisfies [$° drrhy(r) =1
and supp o C [3.3](C [0, 7))). The bound for |S(zy + isg)| can be evaluated as
1Sz + iso)| < Cllg(y/ (2 = 70+ (5 = 50)2) L
= Cr? ki oky o _afzh\/ 1)2 2
= %% Z Z SUP TS o 2 gt (\/ (z/70 = 1) + (s/70 = S0/70)?)
k1 ko €Z50 £1.62€Z50 TS
k<M €142, <N
ky+hy—t— =2 o 0~
=C Z Z AACARE RNy (1 +T’)k‘(S0/To+S/)k2—,f—/fh(‘ /T/2_|_s/2)
k| ky€Z50 £1.652€Z5 7. o't Os't2
ki +ky<M  £14£2<N
ki ko= —£—m=2 o' 9
=€, 2 Z o TR sisup | (14 ) () e S oo (Ve 4 57) .
ki k€250 £1.62€Z50 m= Om‘ k2 - 7.5 o't Os'2
ky+ko<M €149 <N
(B26)

Note that the last term of sup, ¢ does not depend on 7,
so. Hence, we finally obtain that, for 0 < 75 < 7, with an
arbitrary fixed 7., there exists a polynomial P(sy) and an
integer n € Z such that

[S(z0 + iso)| < 75" P(s0)- (B27)

“Recall that the topology of the spaces of test functions are
introduced with the family of these (semi-)norms.

Step 2. A bound for smeared S(z + is)

So far, we have shown that |S(z + is)| is of at most
polynomial growth in z7~! as 7]0. To prove the existence
and continuity of the limit (B21), we derive a stronger
bound for S(z + is) smeared by a test function.

Let us consider S(z + is) smeared by a test function

f(s) € Z(R),

S(e: f) = / dsS(c + is)f(s). (B28)
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By the Cauchy-Riemann equation 2 S(z + is) = —i & S(r + is), we have

anJrl

5 S(Tf) = / dsS(z + is) <i§s>n+1f(S)

= "IS(z 90 ), (B29)
and therefore, for sufficiently small z,
an+l 0 n+1 .
=C, 7 (B30)

where C, ; > 0 is a positive constant, and we have used the result of the previous step (B27). Note that C, ; — 0 as f — 0

in .Z(R).

Moreover, note that S(z; f) is represented by the iterative integration

S(:f) = (1) / C / S / " dr
T T T,

an+1S 8"8
W(Twrl;f)"_ T (z =)~ (7.5 1)

= (B31)

Because of the estimate (B30), the limit 7 — 40 converges. Thus, the boundary value (B21) exists. For the continuity in

Z(R), we obtain the bound

7, z, z, B "1 okS
1S(z; f)] SCn,f[ drl‘/f drz--'[ dr, 7 n+;k!|7_7*|k’81k(7*;f) ,

which implies

. T, T, T, . n 1
ITIIQ|S(T§f)|SCn.fA dr A de"'ln dry, 1T +ZE|T*|I€

Therefore, the right-hand side of (B33) tends to vanish as
f—=0 in “(R), which establishes the continuity of
the boundary value in .#’(R). Hence, the boundary value
of a given holomorphic function is a tempered distribution.

For the latter assertion, suppose the holomorphic
function S(z + is|h) is a continuous linear functional on
another space of test functions 4. Similarly to (B28), let
S(z|h; f) denote the function smeared by a test function
f(s) € Z(R). From the assumed continuity, 7 — 0 yields
S(z + is|h) - 0 for each 7> 0,5 € R. Thus, C, and

%(T*Vl; f)| tend to vanish as h — 0. Therefore, the
bound (B33) implies that the smeared boundary value
lim, | S(z|h; f) is continuous in A.

This completes the proof. u

Theorem 11.—Suppose that the two-point Schwinger

function S, satisfies
(i) temperedness, S, € %."(R*?),

(B32)
oS
e (B33)
|
(ii) translational invariance, S,(x; +a,x, +a) =

S, (x1,x,) for all a € R*, and
(iii) the reflection positivity for the two-point sec-
tor (A20).
Then, the reconstructed Wightman function is a tempered
distribution.

Proof.-—It immediately follows from Lemmas 4 and 5
that the reconstructed Wightman function is a continuous
bilinear functional on (f, #) € .(R) x .#(R?). We obtain
the reconstructed Wightman function as a tempered dis-
tribution Wy (&, &) = lim, o S, (€, 7|&%) € .#(R*) by the
Schwartz nuclear theorem. [

Note that (i) the temperedness and (ii) the translational
invariance are assumed in the definition of complex
singularities; only (iii) the reflection positivity can be
invalid. From the nontemperedness of complex singular-
ities, we finally obtain Theorem 6.
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APPENDIX C: WHICH AXIOMS ARE (IT) Wightman axioms for Wightman functions [ [36],
VIOLATED? Theorem 2-6]:

[WO] Temperedness is violated.

[W1] Poincaré symmetry (for the two-point
function) is wvalid [for test functions
in 2(RY)].

[W2] Spectral condition is violated, since the spec-
tral condition requires the temperedness as a
prerequisite.

[W3] Spacelike commutativity (for the two-point
function) is valid [for test functions in

In this section, we summarize which axioms are violated
or not violated due to the existence of complex
singularities.

(I) Osterwalder-Schrader axioms for Schwinger func-

tions [37,38]:

[OSO] Temperedness (for the two-point function) is
assumed in the definition Sec. III A.

[OS1] Euclidean invariance (for the two-point func-
tion) is assumed in the definition Sec. IIT A.

4
[OS2] Reflection positivity is violated (Theorem 6). ‘@(R ).]' .. .
[0S3] Symmetry (for the two-point function) is [W4] Positivity is violated even for test functions
in 2(R*).

assumed in the definition Sec. IIT A.

[OS4] Cluster property (for the two-point function)
depends on massless singularity (irrelevant to
complex singularities).

[OS 0’] Laplace transform condition is itself violated,
since this requires temperedness of the Wightman
function. (However, this condition is required only for
reconstructing higher-point functions [38].)

[W5] Cluster property (for the two-point function)
depends on massless singularity (irrelevant to
complex singularities).

Therefore, the axioms whose violations are proved are
[OS2] Reflection positivity, [OS0'] Laplace transform
condition, [W0] Temperedness, [W2] Spectral condition,
and [W4] Positivity.
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