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Propagators of confined particles, especially the Landau-gauge gluon propagator, may have complex
singularities as suggested by recent numerical works as well as several theoretical models, e.g., motivated
by the Gribov problem. In this paper, we study formal aspects of propagators with complex singularities in
reconstructing Minkowski propagators starting from Euclidean propagators by the analytic continuation.
We derive the following properties rigorously for propagators with arbitrary complex singularities
satisfying some boundedness condition. The two-point Schwinger function with complex singularities
violates the reflection positivity. In the presence of complex singularities, while the holomorphy in the
usual tube is maintained, the reconstructed Wightman function on the Minkowski spacetime becomes a
nontempered distribution and violates the positivity condition. On the other hand, the Lorentz symmetry
and locality are kept intact under this reconstruction. Finally, we argue that complex singularities can be
realized in a state space with an indefinite metric and correspond to confined states. We also discuss
consequences of complex singularities in the Becchi-Rouet-Stora-Tyutin formalism. Our results could open
up a new way of understanding a confinement mechanism, mainly in the Landau-gauge Yang-Mills theory.
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I. INTRODUCTION

One of the most fundamental properties of strong inter-
actions is color confinement, the absence of colored degrees
of freedom from the physical spectrum. Understanding this
property in the framework of relativistic quantum field
theory (QFT) is a long-standing problem and of crucial
importance for particle and nuclear physics. Analytic struc-
tures of the correlation functions enable us to extract
valuable information on the state-space structure through,
e.g., the Källén-Lehmann spectral representation [1], which
will be useful toward understanding a confinement mecha-
nism. Therefore, investigating analytic structures of confined
propagators, e.g., the gluon propagator, and considering their
implications are of great interest.
In the last decades, the gluon, ghost, and quark propa-

gators in the Landau gauge have been extensively studied by
both lattice numerical simulations and semianalytical meth-
ods (e.g., Dyson-Schwinger equation and functional

renormalization group), for reviews see [2–4], and also by
models motivated by the massivelike gluon propagator of
these results [5–7]. Based on these advances, in recent years,
there has been an increasing interest in the analytic structures
of the gluon, ghost, and quark propagators [8–26]. In
particular, unusual singularities invalidating the Källén-
Lehmann spectral representation, which we call complex
singularities, receive much attention. A pair of complex
conjugate poles of the gluon propagator, which is a typical
example of such singularities, was predicted in old literature
[27–32], e.g., by improving the gauge fixing procedure. The
most remarkable point of the recent studies without assum-
ing the Källén-Lehmann representation is that the indepen-
dent approaches represented by numerical reconstruction
techniques from Euclidean data [21,25], models of massive-
like gluons [12,13,18,23], and the ray technique of the
Dyson-Schwinger equation [9,24] consistently suggest the
existence of complex singularities of the gluon propagator.
Moreover, some results support complex poles of the quark
propagator [23].
There are also studies of complex singularities on other

models [33–35]. A relation between complex poles of a
fermion propagator and confinement in the three-
dimensional QED was suggested in [35].
Since complex singularities cannot appear in propagators

for observable particles, we expect that the complex singu-
larities are related to color confinement. However, while the
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analytic structures have been investigated in many works,
implications of complex singularities for QFTs have been
much less studied. Theoretical consequences of complex
singularities are of crucial importance since such consi-
derations on complex singularities could play a pivotal role
in obtaining a clear description of a confinement mechanism.
Thus, we study theoretical aspects of complex singularities
in this paper.
For this purpose, the reconstruction of the two-point

Wightman function, or the vacuum expectation value of
the product of field operators, from the two-point
Schwinger function, or the Euclidean propagator, has
to be carefully investigated. Thus, we reconstruct
the Wightman function based on the holomorphy of the
Wightman function in “the tube” [36] following the
Osterwalder-Schrader (OS) reconstruction [37,38]. This
is the standard method to relate Euclidean field theories to
QFTs in axiomatic quantum field theory.
Some argue that the appearance of complex singularities

might indicate nonlocality, e.g., [29–31]. Nevertheless, this
argument relying on the naive inverse Wick rotation is not
fully convincing. Actually, as we briefly remark in this
paper, the naive inverse Wick rotation differs from the
reconstruction based on the holomorphy of the Wightman
function in the presence of complex singularities. Since the
relation between complex singularities and locality is
thus in a confusing situation, we also address this topic
carefully.
In this paper, we study formal aspects of complex

singularities, namely, analytic properties of the recon-
structed two-point Wightman function and implications of
complex singularities for the state-space structure. The
standard reconstruction procedure and contents of this
paper are illustrated in Fig. 1. Because of the somewhat
confusing situation on this subject as mentioned above, it
is essential to clarify consequences of complex singular-
ities that can be stated unambiguously. Thus, we derive
these analytic properties with rigorous proofs. Moreover,
since it is very important to investigate states related to the
confined particles for understanding a confinement
mechanism, we consider state-space structures yielding
complex singularities.
The main results of this paper are listed as follows, as

announced in [39]. Suppose that the Euclidean propagator,
or the two-point Schwinger function, has complex singu-
larities in the complex squared momentum plane, as
defined in Sec. III A. Then, the following claims are
derived:
(A) The reflection positivity is violated for the Schwinger

function (Theorem 6).
(B) The holomorphy of the Wightman function Wðξ −

iηÞ in the tube (Theorem 3) and the existence of the
boundary value as a distribution (Theorem 4) are
still valid. Thus, we can reconstruct the Wightman
function from the Schwinger function.

(C) The temperedness (Theorem 5) and the positivity
condition in DðR4Þ (Theorem 7) are violated for the
reconstructed Wightman function. The spectral
condition is never satisfied since it requires the
temperedness as a prerequisite.

(D) The Lorentz symmetry (Theorem 8 and Theorem 9)
and spacelike commutativity (Theorem 10) are kept
intact.

(E) A quantum mechanical observation (Claim 3) sug-
gests, together with an example of QFT (Sec. IV B),
that complex singularities correspond to pairs of
zero-norm eigenstates of complex eigenvalues.

This paper is organized as follows. In Sec. II, we
emphasize the difference between complex singularities
of a Euclidean propagator and a (real-)time-ordered one in
the momentum space and take a glimpse of some properties
to be generally derived in Sec. III B. In Sec. III, we give a
definition of complex singularities (Sec. III A) and derive
the properties (Sec. III B) listed above with a mathematical
rigor except for the last one (E). In Sec. IV, based on the
results of Sec. III, we consider quantum-theoretical aspects,
namely, what complex singularities imply on the state-
space structure. We also discuss implications of complex
singularities in the Becchi-Rouet-Stora-Tyutin (BRST)
formalism. A summary is given in Sec. V, and Sec. VI
is devoted to discussion on related topics and future
prospects. The mathematical notations and standard axioms
are summarized in Appendix A. Appendix B contains a
detailed proof of the violation of the reflection positivity
(Theorem 6). Appendix C summarizes violated axioms of
the OS axioms for Schwinger functions and the Wightman
axioms for Wightman functions.

FIG. 1. The reconstruction procedure and contents of this paper.
In the standard reconstruction procedure, we start from a family of
Schwinger functions satisfying OS axioms and finally reconstruct a
QFT by the OS theorem [37,38] and Wightman’s reconstruction
theorem [ [36], Theorems 2–6]. We re-examine this reconstruction
procedure when a propagator has complex singularities. In Sec. II,
it is pointed out that we should begin with a Schwinger function
with complex singularities. In Sec. III, we reconstruct a Wightman
function from the Schwinger function in the same way as the OS
reconstruction based on the holomorphy in the tube. In Sec. IV, we
discuss a possibility in the reconstruction procedure from the
Wightman functions to a QFT.
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II. PRELIMINARY DISCUSSION

In this section, we sketch out the main properties of
complex singularities and emphasize the difference
between complex singularities of a Euclidean propagator
and those of a (real-)time-ordered propagator in the
momentum space. For simplicity, we consider (0þ 1)-
dimensional field theories in this section. This nonrigorous
discussion helps us to determine a point of departure
toward the rigorous discussion in Sec. III.

A. Difference between complex singularities of
Euclidean propagator and (real-)time-ordered one

We consider complex singularities of Euclidean and real-
time propagators on the complex squared momentum
plane. We point out that the conventional Wick rotation
in the squared momentum plane p2 → −p2

E is not appli-
cable in the presence of complex singularities. Thus, we
emphasize that complex singularities in the propagators
that appear in many works should be regarded as Euclidean
ones and that the reconstruction procedure must be care-
fully considered.
We define the “Wightman functions” D>ðtÞ and D<ðtÞ

and the real-time propagator DðtÞ by

D>ðtÞ ≔ h0jϕðtÞϕð0Þj0i;
D<ðtÞ ≔ h0jϕð0ÞϕðtÞj0i;
DðtÞ ≔ θðtÞD>ðtÞ þ θð−tÞD<ðtÞ: ð1Þ

Usually, we can analytically continue D>ðtÞ and D<ðtÞ to
the lower and upper half planes of the complex t plane,
respectively. In particular, D>ð−iτÞ can be defined for
τ > 0, while D<ð−iτÞ can be defined for τ < 0.
Thus, we introduce the Euclidean propagator ΔðτÞ,

which is identified with the “two-point Schwinger func-
tion”, as

Δ>ðτÞ ≔ D>ð−iτÞ ðfor τ > 0Þ;
Δ<ðτÞ ≔ D<ð−iτÞ ðfor τ < 0Þ;
ΔðτÞ ≔ θðτÞΔ>ðτÞ þ θð−τÞΔ<ðτÞ: ð2Þ

This connection between the Wightman and Schwinger
functions is consistent with the standard reconstruction
method given in (A23) and (A25), where the Schwinger
function is regarded as the “values” of the Wightman
function at pure imaginary times. We denote the Fourier
transforms of DðtÞ and ΔðτÞ by D̃ðp0Þ and Δ̃ðpEÞ,
respectively.
We emphasize that the connection between Euclidean

correlation functions and vacuum expectation values of the
product of field operators should be implemented in the
complex time plane rather than in the complex squared
momentum plane. Here, with the connection (2), we

demonstrate that the reconstructed propagator DðtÞ cannot
have a well-defined Fourier transform if Δ̃ðpEÞ has com-
plex poles. This indicates that a real-time propagator with
complex poles [where D̃ðp0Þ has complex poles] is not the
reconstructed propagator from a Euclidean propagator with
complex poles [where Δ̃ðpEÞ has complex poles].

1. Physical case

First, we observe the physical case for a comparison. Let
us assume as a definition of the “physical case”,

(i) completeness: 1 ¼ P
n jnihnj, where jni is an ei-

genstate of the Hamiltonian H with an eigenvalue
En: Hjni ¼ Enjni,

(ii) translational covariance: ϕðtÞ ¼ eiHtϕð0Þe−iHt,
(iii) spectral condition: positivity of H, namely, En ≥ 0.

Then, one can relate Euclidean and real-time propagators
Δ̃ðpEÞ and D̃ðp0Þ by the conventional Wick rotation
p2
0 → −p2

E. Indeed, these three conditions yield the spectral
representations for the Wightman functions and the real-
time propagator,

D>ðtÞ ¼
Z

∞

0

dσ e−iσtρðσÞ;

D<ðtÞ ¼
Z

∞

0

dσ eiσtρðσÞ;

D̃ðp0Þ ¼ i
Z

dσ
2σρðσÞ

p2
0 − σ2 þ iϵ

; ð3Þ

where we have defined the spectral function ρðσÞ by

ρðσÞ ≔
X
n

δðσ − EnÞjhnjϕð0Þj0ij2: ð4Þ

Consequently, from (2), the Euclidean propagator has the
spectral representation given by

Δ>ðτÞ ¼ D>ð−iτÞ ¼
Z

∞

0

dσ e−στρðσÞ;

Δ<ðτÞ ¼ D<ð−iτÞ ¼
Z

∞

0

dσ eστρðσÞ;

Δ̃ðpEÞ ¼
Z

dσ
2σρðσÞ
p2
E þ σ2

: ð5Þ

Therefore, in the physical case, the Euclidean propagator
Δ̃ðpEÞ and the real-time propagator D̃ðp0Þ are related by
the analytic continuation on the complex squared momen-
tum plane: p2

0 → −p2
E. The spectral representation guar-

antees this consequence, which does not hold in the
presence of complex singularities as is shown below.

2. With complex poles

For example, let us take the Gribov-type propagator with
complex poles,

RECONSTRUCTING PROPAGATORS OF CONFINED PARTICLES … PHYS. REV. D 104, 074024 (2021)

074024-3



Δ̃ðpEÞ ≔
p2
E

p4
E þ γ4

: ð6Þ

This gives the following Euclidean propagator in the
Euclidean time:

ΔðτÞ ¼ 1

2γ
e−

γjτjffiffi
2

p
sin

�
−
γjτjffiffiffi
2

p þ π

4

�
; ð7Þ

Although a complete reconstruction method from
Euclidean to Minkowski in the presence of complex
singularities has not been established, we here assume
the connection introduced in (2), which is consistent with
the standard reconstruction method, even in the presence of
complex singularities. With this connection, we have the
Wightman functions,

D>ðtÞ ¼ D<ð−tÞ ¼ i
2γ

ei
γtffiffi
2

p
sinh

�
γtffiffiffi
2

p −
iπ
4

�
: ð8Þ

Then, both D>ðtÞ and D<ðtÞ increase exponentially
as t → �∞.
Therefore, starting with the Gribov-type Euclidean propa-

gator, we have the Wightman functions D>ðtÞ and D<ðtÞ of
exponential growth. Such Wightman functions D>ðtÞ and
D<ðtÞ cannot be regarded as tempered distributions, and
therefore, they do not have well-defined Fourier transforms.
This is also the case for DðtÞ. Thus, the Minkowski
propagator cannot be reconstructed from the Euclidean
propagator with complex poles by using the simple “inverse
Wick rotation” p2

E → −p2
0 in the complex squared momen-

tum plane, since the “reconstructed” real-time propagator
has no Fourier transform. In other words, a Euclidean
propagator with complex poles [where Δ̃ðpEÞ has complex
poles] is different from a real-time propagator with complex
poles [where D̃ðp0Þ has complex poles]. In particular, one
has to take care of the definition of complex singularities.
Again, one should reconstruct the propagator not by the

simple inverse Wick rotation on the complex squared
momentum plane, p2

E → −p2
0, but by the standard method

explained in (A23) and (A25). The former reconstruction is
often discussed in some literature, e.g., in [29–31], which is
different from the latter one. As more is discussed in Sec. VI
A, we argue that the latter one should be adopted because of
the fundamental relation (A23) and some advantages.

B. Properties

Let us briefly summarize properties of complex poles.
Here, we suppose that the Euclidean propagator Δ̃ðpEÞ has
complex poles:
(a) The Wightman functions D>ðtÞ and D<ðtÞ recon-

structed from the Euclidean propagatorΔðτÞ cannot be
regarded as tempered distributions because they grow
exponentially as t → �∞.

(b) A Euclidean propagator with only complex poles
violates the reflection positivity (A20) because ΔðτÞ
violates the necessary condition for the reflection
positivity (A22): ΔðτÞ ≥ 0 for all τ > 0.

(c) The positivity in the sector fϕðtÞj0igt∈R is violated
due to the nontemperedness. Indeed, suppose that the
sector fϕðtÞj0igt∈R had a positive metric. From the
translational invariance of the two-point function,
the time-translation operator defined on this sector,
UðsÞϕðtÞj0i ≔ ϕðtþ sÞj0i, is unitary, i.e., h0jϕðtÞ
UðsÞ†UðsÞϕðt0Þj0i ¼ h0jϕðtÞϕðt0Þj0i. Since the mo-
dulus of a matrix element of a unitary operator
is not more than one in a space with a positive
metric, we would have an upper bound
jh0jϕð0ÞUðsÞϕð0Þj0ij ≤ h0jϕð0Þϕð0Þj0i or jD<ðsÞj ≤
jD<ð0Þj, which contradicts the nontemperedness.

In the next section, we see that these properties always
hold rigorously if Δ̃ðpEÞ has complex singularities
(Theorems 5, 6, and 7).

III. COMPLEX SINGULARITIES: DEFINITION
AND PROPERTIES

In this section, we give a definition of complex
singularities and rigorous proofs of some properties for
propagators. These “complex singularities” should be
regarded as complex singularities on the complex squared
momentum plane of an analytically continued Euclidean
propagator. Indeed, in many studies, propagators with
complex poles are compared with numerical results on
Euclidean ones. Therefore, we start with a two-point
Schwinger function. For details of mathematical nota-
tions, see Appendix A.
For simplicity, we work in four-dimensional Euclidean

space D ¼ 4. However, our main results can be easily
generalized to arbitrary dimensions D ≥ 2 except for
Theorem 9 and Sec. III B 8, where the Bargmann-Hall-
Wightman theorem is used for the proof.

A. Definition

1. Preliminary assumptions

For simplicity, we consider a two-point function for a
scalar field. Throughout this paper, we assume the follow-
ing conditions for a two-point Schwinger function
S2ðx1; x2Þ, which follow from the OS axioms [37,38]
(see Appendix A).

(i) [OS0] Temperedness S2ðx1; x2Þ ∈ 0S 0ðR4·2Þ:
S2ðx1; x2Þ is a tempered distribution defined on
the space of test functions vanishing at coincident
points x1 ¼ x2.

(ii) [OS1] Euclidean (translational and rotational) invari-
ance: S2ðRx1 þ a; Rx2 þ aÞ ¼ S2ðx1; x2Þ, for
all a ∈ R4; R ∈ SOð4Þ.
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From (i) temperedness and (ii) translational invariance,
there exists a distribution S1ðξÞ ∈ S 0ðR4þÞ such that
S2ðx1; x2Þ ¼ S1ðx2 − x1Þ for x41 < x42. We can also regard
S1ðξÞ ∈ S 0ðR4

≠0Þ, where S 0ðR4
≠0Þ is the dual space of

S ðR4
≠0Þ ≔

(
fðξÞ ∈ S ðR4Þ;

DαfðξÞjξ¼0 ¼ 0

for any α ∈ Z4
≥0

)
: ð9Þ

Moreover, (ii) Euclidean rotational invariance implies
S1ðRξÞ ¼ S1ðξÞ for all R ∈ SOð4Þ.
Let us comment on the other conditions of the standard OS

axioms [37,38] (see Appendix A). They are [OS2] reflection
positivity, [OS3] permutation symmetry, [OS4] cluster prop-
erty, and [OS0’] Laplace transform condition. Intuitively,
[OS2] reflection positivity corresponds to the positivity of the
metric of the state space. If we consider gauge theories in
Lorentz covariant gauges including confined degrees of
freedom, we must allow violation of the reflection positivity.
Thus, we do not require the reflection positivity, which is
actually broken in the presence of complex singularities
(Theorem 6). For a two-point function of a single scalar field,
[OS3] permutation symmetry is a consequence of [OS1]
Euclidean rotational invariance. For general cases, we assume
[OS3] permutation symmetry, see Sec. III B 8. For generality,
we do not impose [OS4] the cluster property, which
corresponds to the uniqueness of the vacuum and could be
violated by a severe infrared singularity of a propagator. In
the view of the reconstruction from Euclidean field theories,
[OS0’] the Laplace transform condition is introduced for the
purpose of controlling higher point functions. Since we focus
on the two-point function in this paper, we do not take a
further look into this condition. Incidentally, the Laplace
transform condition itself is violated if the two-point function
has complex singularities due to the nontemperedness of the
Wightman functions (Theorem 5).
In addition to the assumptions taken from the standard

OS axiom, we further require that the two-point Schwinger
function S1ðξÞ ∈ S 0ðR4

≠0Þ has a well-defined Fourier
transform S1ðkÞ. Simply, this can be realized by the
following assumption:
(iii) The Schwinger function S1ðξÞ can be regarded as an

element of S 0ðR4Þ: S1ðξÞ ∈ S 0ðR4Þ.
This assumption allows the well-defined Fourier transform,

S1ðkÞ ¼
Z

d4ξ e−ikξS1ðξÞ: ð10Þ

From the rotational invariance, we can write1

S1ðkÞ ¼ Dðk2Þ: ð11Þ

A few remarks are in order.
(a) While the condition S1ðξÞ ∈ S 0ðR4

≠0Þ allows any
singularity at ξ ¼ 0, the new condition (iii) S1ðξÞ ∈
S 0ðR4Þ imposes that such a singularity is at most
derivatives of a delta functionDαδðξÞ. We do not expect
appearance of singularities beyond usual distributions at
least in an ultraviolet asymptotic free theory.

(b) For real-valued fields, namely, real-valued
S1ðξÞ, S1ðkÞ ¼ Dðk2Þ is a real distribution from
the rotational symmetry (or the permutation sym-
metry) S1ð−ξÞ ¼ S1ðξÞ.

(c) There is a constraint on the massless singularities. For
example, this formulation excludes the “dipole ghost
pole”: Dðk2Þ ∼ 1=k4 without a regularization since
Dðk2Þ ¼ S1ðkÞ ∈ S 0ðR4Þ. This constraint depends
on the spacetime dimension. The massless pole
(without a regularization) is prohibited in the two-
dimensional space.

2. Definition of complex singularities

Now, let us define complex singularities of a two-point
Schwinger function. We call the positive real axis of the
complex k2 plane the Euclidean (spacelike) axis and call
the negative real axis of the complex k2 plane the timelike
axis. In addition to (i)–(iii), we assume the following
for Dðk2Þ:
(iv) Dðk2Þ ¼ S1ðkÞ is holomorphic except singularities

on the timelike axis fk2; k2 < 0g and a finite number
of poles and branch cuts of finite length satisfying:
(iva)The singularities on the timelike axis can be

represented as a tempered distribution on
½−∞; 0�, namely,

Dð−σ2 − iϵÞ −Dð−σ2 þ iϵÞ
⟶
ϵ→þ0

DiscDð−σ2Þ ∈ S 0ð½0;∞�Þ; ð12Þ

where S 0ð½0;∞�Þ is the dual space
of S ð½0;∞�Þ ≔ ffðλÞ ¼ gð−ð1þ λÞ−1Þ; g is a
C∞ function on ½−1; 0�g. For details, see Appen-
dix A or [ [40], Sec. A. 3.].

(ivb)Dðk2Þ ¼ S1ðkÞ is holomorphic at least in
neighborhoods of all points of the Euclidean
axis fk2; k2 > 0g in the sense that there is no
singularity on the Euclidean axis.

(ivc)The complex branch cuts are not located across
the real axis.

(v) The analytically continued DðzÞ on the complex
plane z ¼ k2 tends to vanish as jzj → ∞.

With these assumptions (i)–(v), we call singularities except
on the negative real axis complex singularities.
The first assumption (iva) is imposed for a practical

purpose. Without this condition, the spectral function

1Note the difference of conventions with our previous papers
[18,20,23], where we took S1ðkÞ ¼ Dð−k2Þ. In particular, the
timelike axis is the negative real axis in this paper unlike the
previous ones (see Fig. 2). Note also that the Minkowski
notations in [18,20,23] were misleading; they should be
Euclidean.
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would generally be a hyperfunction, which makes an
analytical treatment difficult. Due to this condition, the

“spectral” integral,
R
∞
0

DiscDð−σ2Þ
k2þσ2

(see Theorem 1), is well
defined. The second assumption (ivb) excludes “tachyonic
singularities”, which could make S1ðξÞ ill defined. The
third one (ivc) claims that, except for the timelike singu-
larities, there are no singularities in the vicinity of the real
axis. This is a technical assumption for defining the spectral
function and also for simplifying the proof of Theorem 5.
Although assumption (v) is a technical one,2 we expect

that the gluon, ghost, and quark propagators satisfy this
property due to the ultraviolet asymptotic freedom. Indeed,
in the Landau gauge, the QCD propagators have the
asymptotic form of Dðk2Þ ∼ 1

k2ðln jk2jÞγ0=β0 , where γ0 and β0
are, respectively, the first coefficients of the anomalous
dimension and the beta function [41].
The finiteness of branch cuts is required for the

reconstruction of the Wightman function. One could allow
infinitely long branch cuts whose discontinuities are sup-
pressed faster than any exponential decay as jzj → ∞ and
those which approach asymptotically to the negative real
axis sufficiently fast. We make a further comment on this
point below. For simplicity, we restrict ourselves to the case
without branch cuts of infinite length in this paper.
Although we have restricted ourselves to poles and cuts

at the assumption (iv), we note that one can easily
generalize theorems in Sec. III B, i.e., Theorems 2–11,
to arbitrary complex singularities if the following condi-
tions are satisfied: boundedness of locations in jk2j, (iva)
regularity of the timelike singularities, (ivb, ivc) holomor-
phy in a neighborhood of the real axis except for the
timelike axis, and (v) Dðk2Þ → 0 as k2 → ∞. With these
conditions, contributions from complex singularities can be
represented as integrals along contours surrounding these
singularities according to the Cauchy integral theorem.
Then, we can use the same proofs described in Sec. III B for
this generalization.

3. Generalized spectral representation

As an immediate consequence following from the com-
plex singularities, we derive the generalized spectral
representation for Dðk2Þ.
Here, we consider the setup illustrated in Fig. 2, which is

characterized by the following:
(1) fzlgNp

l¼1: positions of the complex poles

(2) fnlgNp

l¼1: their orders
(3) γl: a small contour surrounding zl clockwise
(4) fCkgNc

k¼1: the complex branch cuts
(5) Γk: a contour wrapping around Ck clockwise
(6) C0: the negative real axis

(7) C ¼ C1 ∪ C2: the contour consisting of the path C1

encompassing C0 and the large circle C2 counter-
clockwise.

The discontinuity ofDðζÞ for a cut Ck (k ¼ 0; 1;…; Nc) is
denoted by DiscCkDðζÞ. On a cut with an orientation,
DiscCkDðζÞ ≔ Dðζ þ idζÞ −Dðζ − idζÞ, where dζ is an
infinitesimal along the given orientation of Ck. For example,
for the negative real axis C0 with the orientation from
0 to −∞, DiscC0Dð−σ2Þ ¼ Dð−σ2 − iϵÞ −Dð−σ2 þ iϵÞ
ðϵ → þ0Þ.
Theorem 1.—Let Dðk2Þ ¼ S1ðkÞ be a propagator sat-

isfying (i)–(v). In the above notation, the generalized
spectral representation follows for k2 which is not on
singularities of Dðk2Þ,

Dðk2Þ ¼
Z

∞

0

dσ2
ρðσ2Þ
σ2 þ k2

þ
XNp

l¼1

Xnl
m¼1

ZðmÞ
l

ðk2 − zlÞm

þ
XNc

k¼1

Z
Ck

dζ
ρkðζÞ
k2 − ζ

; ð13Þ

where

ρðσ2Þ ≔ 1

2πi
DiscC0Dð−σ2Þ; ð14Þ

ZðmÞ
l ≔ −

1

2πi

I
γl

dk2Dðk2Þðk2 − zlÞm−1

ðl ¼ 1;…; Np;m ¼ 1;…; nlÞ; ð15Þ

FIG. 2. The contours γl and Γk surround the pole zl and the
branch cut Ck clockwise, respectively. The contour C consists of
the path C1 winding the negative real axis and the large circle C2:
C ¼ C1 ∪ C2. The orientation of the contour C is taken counter-
clockwise. The propagator Dðk2Þ is holomorphic in the region

bounded by C ∪ fγlgNp

l¼1 ∪ fΓkgNc
k¼1.

2Note that discussion similar to the following one can be done
for DðzÞ of polynomial growth in z as jzj → ∞ by applying the
Cauchy theorem to DðzÞ=zn in Theorem 1.
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ρkðζÞ ≔
1

2πi
DiscCkDðζÞ for ζ ∈ Ck

ðk ¼ 1;…; NcÞ: ð16Þ

We have taken the orientation of Ck ðk ¼ 1;…; NcÞ in the
discontinuities DiscCkDðζÞ to coincide with the orientation
of the integral in (13) and the orientation of C0 in
DiscC0DðζÞ to be from the origin to negative infinity.
Before proceeding to the proof, let us add several

remarks.
(a) If there exists no complex singularity ðNp ¼ Nc ¼ 0Þ,

this theorem provides the Källén-Lehmann spectral
representation

Dðk2Þ ¼
Z

∞

0

dσ2
ρðσ2Þ
σ2 þ k2

; ð17Þ

except for the non-negativity ρðσ2Þ ≥ 0. In this sense,
(13) is a generalization of the Källén-Lehmann spec-
tral representation.

(b) For real-valued fields,Dðk2Þ is real for k2 > 0 as noted
above. Then, from the Schwarz reflection principle
Dðz�Þ ¼ ½DðzÞ��, the spectral function can be written
in the form

ρðσ2Þ ¼ 1

π
ImDð−σ2 − iϵÞ ðϵ → þ0Þ; ð18Þ

which is the usual dispersion relation.
(c) Similarly, for real-valued fields, the Schwarz reflection

principle Dðz�Þ ¼ ½DðzÞ�� implies that the complex
singularities must appear as complex conjugate pairs
(up to arbitrariness of the branch cuts).

(d) DiscCk DðζÞ is in general a hyperfunction, which is not
very convenient for careful analyses. Thus, although
Theorem 1 is itself important, we utilize an equa-
tion (19) appearing in the proof given below rather
than (13) in order to prove subsequent theorems. Only
for the timelike part, namely, the first term of (13), we
use the spectral representation in the following sub-
sections, since the assumption (iva) makes ρðσ2Þ
somewhat easy to treat.

(e) Note that the domains of the integrals only represent
that ρðσ2Þ ∈ S 0ð½0;∞�Þ and that supp ρk lies in the
closure of the cut Ck. In particular, we allow a massless
pole, namely, a pole at the origin k2 ¼ 0, as long as
assumption (iii) is maintained.

Proof.—For any point k2 not on the singularities, the
Cauchy integral formula yields

Dðk2Þ ¼
I
C

dζ
2πi

DðζÞ
ζ − k2

þ
XNp

l¼1

I
γl

dζ
2πi

DðζÞ
ζ − k2

þ
XNc

k¼1

I
Γk

dζ
2πi

DðζÞ
ζ − k2

; ð19Þ

where we have chosen the contours ðC1; γl;ΓkÞ sufficiently
close to the singularities.
Assumption (v) guarantees that the integration along the

large circle C2 vanishes. Thus, the first term reads

I
C

dζ
2πi

DðζÞ
ζ − k2

¼
Z
C1

dζ
2πi

DðζÞ
ζ − k2

; ð20Þ

where C1 surrounds the negative real axis.
For the second term, a calculation yields

XNp

l¼1

I
γl

dζ
2πi

DðζÞ
ζ − k2

¼
XNp

l¼1

Xnl
m¼1

ZðmÞ
l

ðk2 − zlÞm
: ð21Þ

Therefore, we have

Dðk2Þ ¼
Z
C−1
1

dζ
2πi

DðζÞ
k2 − ζ

þ
XNp

l¼1

Xnl
m¼1

ZðmÞ
l

ðk2 − zlÞm

þ
XNc

k¼1

I
Γ−1
k

dζ
2πi

DðζÞ
k2 − ζ

; ð22Þ

where C−1
1 and Γ−1

k denote C1 and Γk with inverse
directions, respectively. Note that C−1

1 and Γ−1
k are roughly

“contours surrounding the cuts counterclockwise”. By
taking a limit shrinking these contours ðC1;ΓkÞ, the
right-hand side of (22) is represented as (13). ▪

B. Some properties of complex singularities

Here, we derive analytic properties of propagators with
complex singularities. As a first step, we consider
(Sec. III B 1) an example of one pair of complex conjugate
simple poles. After that, we prove the properties of general
complex singularities: (Sec. III B 2) Holomorphy in the
tube, (Sec. III B 3) Violation of temperedness of the
reconstructed Wightman function, (Sec. III B 4)
Violation of reflection positivity, (Sec. III B 5) Violation
of (Wightman) positivity, (Sec. III B 6) Lorentz symmetry,
and (Sec. III B 7) Locality. The organization of this
section is illustrated in Fig. 3. Some remarks on gener-
alization to arbitrary spinor fields are made in Sec. III B 8.

1. Example: One pair of complex conjugate simple poles

Let us first consider the propagator Dðk2Þ with one pair
of complex conjugate simple poles, which is decomposed
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into the “timelike part” Dtlðk2Þ and “complex-pole part”
Dcpðk2Þ,

Dðk2Þ ¼ Dtlðk2Þ þDcpðk2Þ;

Dtlðk2Þ ¼
Z

∞

0

dσ2
ρðσ2Þ
σ2 þ k2

;

Dcpðk2Þ ¼
Z

M2 þ k2
þ Z�

ðM�Þ2 þ k2
: ð23Þ

Without loss of generality, we can assume ImM2 > 0.
Accordingly, the Schwinger function is decomposed as

S1ðξÞ ¼ StlðξÞ þ ScpðξÞ;

StlðξÞ ¼
Z

d4k
ð2πÞ4 e

ikξDtlðk2Þ;

ScpðξÞ ¼
Z

d4k
ð2πÞ4 e

ikξDcpðk2Þ: ð24Þ

Our aim here is to demonstrate the reconstruction pro-
cedure S1ðξ⃗; ξ4Þ → W1ðξ0; ξ⃗Þ according to the definition
of the reconstruction (A23) and (A25). We can reconstruct
each part of the Wightman function separately, as Stl →
Wtl and Scp → Wcp,

W1ðξÞ ¼ WtlðξÞ þWcpðξÞ: ð25Þ

We first consider the timelike part Stl → Wtl. Since the
timelike part is not a main subject of this paper, let us
describe the reconstruction procedure of this part only
briefly. This reconstruction procedure consists of the
following steps:

Step 1. Regarding StlðξÞ as an ordinary function ŜtlðξÞ
on fðξ⃗; ξ4Þ; ξ4 > 0g

Step 2. Performing analytic continuation from
Wtlð−iξ4; ξ⃗Þ ¼ Ŝtlðξ⃗; ξ4Þ to Wtlðξ − iηÞ defined on
the tube R4 − iVþ

Step 3. Taking the boundary value as a tempered
distribution WtlðξÞ ¼ lim η→0

η∈Vþ
Wtlðξ − iηÞ ∈ S 0ðR4Þ,

where Vþ denotes the (open) forward light cone

Vþ ≔ fðη0; η⃗Þ ∈ R4; η0 > jη⃗jg: ð26Þ

Let us take a closer look into each step. Main properties
of the spectral function that we use in these steps are
ρðσ2Þ ∈ S 0ð½0;∞�Þ and its regularization 1

2πi ðDð−σ2 −
iϵÞ −Dð−σ2 þ iϵÞÞ (ϵ → þ0).
Step 1. This step claims that there exists a function ŜtlðξÞ

such that,3 for any test function fðξÞ ∈ S ðR4þÞ,

Z
d4k
ð2πÞ4 Dtlðk2Þf̃ðkÞ ¼

Z
d4ξfðξÞŜtlðξÞ; ð27Þ

where f̃ðkÞ ≔ R
d4ξfðξÞeikξ. Noting the properties of

ρðσ2Þ, we have the desired function ŜtlðξÞ

FIG. 3. Flow chart summarizing Sec. III B. In our proofs, a theorem at a destination of an arrow requires theorems in its upstream.
Figure 5 shows the detailed relation on the dotted line between Theorems 9 and 8. The green blocks are consistent with the usual QFT,
while the red blocks with thick boxes contradict that.

3Recall that the Fourier transform of a tempered distribution is
defined by the Fourier transform of its test function.
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ŜtlðξÞ ≔
Z

∞

0

dσ2 ρðσ2ÞŜσ2ðξÞ;

Ŝσ2ðξÞ ≔
Z

d3k⃗
ð2πÞ3 e

ik⃗·ξ⃗ e
−

ffiffiffiffiffiffiffiffiffi
σ2þk⃗2

p
jξ4j

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ σ2

p : ð28Þ

Step 2. We can confirm that the Cauchy-Riemann
equation holds in the tube ξ − iη ∈ R4 − iVþ for the
following function Wtlðξ − iηÞ:

Wtlðξ − iηÞ ≔
Z

∞

0

dσ2ρðσ2ÞWσ2ðξ − iηÞ;

Wσ2ðξ − iηÞ ≔
Z

d3k⃗
ð2πÞ3 e

ik⃗·ðξ⃗−iη⃗Þ e
−i

ffiffiffiffiffiffiffiffiffi
σ2þk⃗2

p
ðξ0−iη0Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ σ2

p ; ð29Þ

which satisfiesWtlð−iξ4; ξ⃗Þ ¼ Ŝtlðξ⃗; ξ4Þ. Thus,Wtlðξ − iηÞ
is the desired analytic continuation.
Step 3. We can take the limit η → 0 ðη ∈ VþÞ ofWtlðξ −

iηÞ as a functional of S ðR4Þ. For each f ∈ S ðR4Þ, we
define

WtlðfÞ ≔ lim
η→0
η∈Vþ

Z
d4ξ fðξÞWtlðξ − iηÞ

¼
Z

∞

0

dσ2 ρðσ2ÞiΔþðf; σ2Þ; ð30Þ

where iΔþðf; σ2Þ is the free Wightman function of
mass σ2,

iΔþðf; σ2Þ ≔
Z

d4ξ fðξÞiΔþðξ; σ2Þ

≔
Z

d3k
ð2πÞ3

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ σ2

p
×

�Z
d4ξfðξÞe−i

ffiffiffiffiffiffiffiffiffi
σ2þk⃗2

p
ξ0þik⃗·ξ⃗

�
;

iΔþðξ; σ2Þ ¼ ð2πÞ
Z

d4k
ð2πÞ4 e

−ikξθðk0Þδðk2 − σ2Þ; ð31Þ

with the Loretzian vectors ξ ¼ ðξ0; ξ⃗Þ; k ¼ ðk0; k⃗Þ. We can
check that this linear functional WtlðfÞ is continuous in
f ∈ S ðR4Þ. Hence, we obtain the timelike part of the
reconstructed Wightman function which is a tempered
distribution.
Let us next reconstruct the complex-pole part Scp →

Wcp in a similar way. The complex-pole part ScpðξÞ can be
expressed as

Scpðξ⃗; ξ4Þ ¼
Z

d3k⃗
ð2πÞ3 e

ik⃗·ξ⃗

�
Z
2Ek⃗

e−Ek⃗jξ4j þ Z�

2E�
k⃗

e−E
�
k⃗
jξ4j

�
;

ð32Þ

where Ek⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þM2

p
is a branch of ReEk⃗ > 0. We chose

ImM2 > 0, so that ImEk⃗ > 0 holds. Note that Scpðξ⃗; ξ4Þ
can be regarded as a function for ξ4 > 0.
For a later purpose, we state this derivation as a lemma.
Lemma 1.—The following equation holds for

ζ ∈ C − ð−∞; 0�:

SζðξÞ≔
Z

d4k
ð2πÞ4 e

ikξ 1

k2 þ ζ
¼
Z

d3k⃗
ð2πÞ3 e

ik⃗·ξ⃗

2
64e−

ffiffiffiffiffiffiffiffi
k⃗2þζ

p
jξ4j

2

ffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ ζ

q
3
75;

ð33Þ

where we have chosen Re
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ ζ2

q
> 0, and these Fourier

transforms are understood in S 0ðR4Þ and S 0ðR3Þ, respec-
tively. Moreover, the right-hand side is an ordinary function
for ξ4 > 0,

SζðξÞ ¼
Z

d3k⃗
ð2πÞ3

eik⃗·ξ⃗−
ffiffiffiffiffiffiffiffi
k⃗2þζ

p
ξ4

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ ζ

q ðinS 0ðR4þÞÞ; ð34Þ

where this integral over k⃗ is the ordinary integral (namely,
not necessarily understood as the Fourier transform of a
tempered distribution).
Proof.—For the former assertion (33), it is sufficient to

prove that, for any test function f ∈ S ðR4Þ,
Z

d4k
ð2πÞ4

�
1

k2 þ ζ

�
f̃ðkÞ

¼
Z

dξ4

Z
d3k⃗
ð2πÞ3

�
e−

ffiffiffiffiffiffiffiffi
k⃗2þζ

p
jξ4j

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ ζ

q �Z
d3ξ⃗eik⃗·ξ⃗fðξÞ;

ð35Þ

where f̃ðkÞ ≔ R
d4ξfðξÞeikξ. Since both f̃ðkÞ and fðξÞ

are of rapid decrease, Fubini’s theorem (for
R
d4k →R

d3k⃗
R
dk4 and

R
dk4

R
d4ξ →

R
d4ξ

R
dk4) yields

Z
d4k
ð2πÞ4

�
1

k2 þ ζ

�
f̃ðkÞ

¼
Z

d3k⃗
ð2πÞ3

Z
dk4
ð2πÞ

1

k2 þ ζ

Z
d4ξfðξÞeikξ

¼
Z

d3k⃗
ð2πÞ3

Z
d4ξ

Z
dk4
ð2πÞ fðξÞ

eikξ

k2 þ ζ
: ð36Þ

Therefore, a simple residue calculation gives
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Z
d4k
ð2πÞ4

�
1

k2 þ ζ

�
f̃ðkÞ

¼
Z

d3k⃗
ð2πÞ3

Z
d4ξ eik⃗·ξ⃗

0
@e−

ffiffiffiffiffiffiffiffi
k⃗2þζ

p
jξ4j

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ ζ

q
1
AfðξÞ: ð37Þ

Since both fðξÞ and
R
d3ξ⃗eik⃗·ξ⃗fðξÞ are of rapid decrease,

we can change the order of the integrals to obtain the
right-hand side of (35). This establishes the former
assertion (35).
For the latter assertion (34), it is enough to prove that, for

any test function fðξÞ ∈ S ðR4þÞ,

Z
dξ4

Z
d3k⃗
ð2πÞ3

�
e−

ffiffiffiffiffiffiffiffi
k⃗2þζ

p
jξ4j

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ ζ

q �Z
d3ξ⃗eik⃗·ξ⃗fðξÞ

¼
Z

d4ξ

�Z
d3k⃗
ð2πÞ3

eik⃗·ξ⃗−
ffiffiffiffiffiffiffiffi
k⃗2þζ

p
ξ4

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ ζ

q �
fðξÞ: ð38Þ

This follows from Fubini’s theorem and integrability4 of��� e− ffiffiffiffiffiffi
k⃗2þζ

p
ξ4

2
ffiffiffiffiffiffiffiffi
k⃗2þζ

p fðξÞ
��� for f ∈ S ðR4þÞ. ▪

Note that Ek⃗ ¼ jk⃗j þOð1=jk⃗jÞ strongly suggests that
ImM2 does not affect the convergence. Then, the con-
vergence and holomorphy of the analytically continued
Schwinger function is valid in the usual tube
ð−iξ4; ξ⃗Þ ∈ R4 − iVþ. This holomorphy is an important
step. We prove this claim carefully.
Theorem 2.—The complex-pole part of the Wightman

function,

Wcpðξ − iηÞ ¼
Z

d3k⃗
ð2πÞ3 e

ik⃗·ðξ⃗−iη⃗Þ

×

�
Z
2Ek⃗

e−iEk⃗ðξ0−iη0Þ þ Z�

2E�
k⃗

e−iE
�
k⃗
ðξ0−iη0Þ

�
;

ð39Þ

is holomorphic in the tube ξ − iη ¼ ðξ0 − iη0; ξ⃗ − iη⃗Þ ∈
R4 − iVþ.
Proof.—The first and second terms of the integrand in

(39) decreases rapidly as jk⃗j → ∞. Indeed, we find

���� Z
2Ek⃗

e−iEk⃗ðξ0−iη0Þþik⃗·ðξ⃗−iη⃗Þ
����

¼ jZj
2jEk⃗j

e−η
0 ReEk⃗þξ0 ImEk⃗þk⃗·η⃗

¼ jZj
2jEk⃗j

eξ
0ImEk⃗e−η

0ðReEk⃗−jk⃗jÞe−η0jk⃗jþk⃗·η⃗

≤
jZj
2jEk⃗j

eξ
0 ImEk⃗e−η

0ðReEk⃗−jk⃗jÞe−ðη0−jη⃗jÞjk⃗j: ð40Þ

For η ∈ Vþ, we have, as jk⃗j → ∞,
(a) ImEk⃗ → 0 and ðReEk⃗ − jk⃗jÞ → 0 from Ek⃗ ¼

jk⃗j þOð1=jk⃗jÞ,
(b) exponential decreasing of e−ðη0−jη⃗jÞjk⃗j in jk⃗j,
from which the first term decreases rapidly:
Z
2Ek⃗

e−iEk⃗ðξ0−iη0Þþik⃗·ðξ⃗−iη⃗Þ ∈ S ðR3Þ for fixed ξ ∈ R4 and

η ∈ Vþ. Similarly for the second term, we have
Z�
2E�

k⃗

e−iE
�
k⃗
ðξ0−iη0Þþik⃗·ðξ⃗−iη⃗Þ ∈ S ðR3Þ for fixed ξ ∈ R4

and η ∈ Vþ.
Since the integrand in (39) decreases rapidly as

jk⃗j → ∞, we can change the order of the integration
and differentiations with respect to ξ and η. Therefore,
the Cauchy-Riemann equations with respect to (several
complex variables) ξ − iη hold in the tube ξ − iη ∈
R4 − iVþ, which guarantees the holomorphy of Wcp

ðξ − iηÞ in the tube. ▪
Note that, usually, it is the spectral condition that

guarantees the holomorphy of the Wightman function
in the tube. Without the spectral condition, it is, in general,
difficult to establish the analytic arguments based on the
holomorphy of the Wightman functions. However,
Theorem 2 (and more generally Theorem 3) suggests that
such analytic arguments are still valid even in the presence
of complex singularities, while complex singularities
violate a prerequisite of the spectral condition, namely,
the temperedness (see the discussion below or
Theorem 5).
Let us regard the Fourier transform in (39) as a tempered

distribution in ξ⃗ with a smooth parameter ξ0. Then, we can

4The integrability can be verified by the following estimation:
for f ∈ S ðR4þÞ,

���� e−
ffiffiffiffiffiffiffiffi
k⃗2þζ

p
ξ4

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ ζ

q fðξÞ
����

≤
jfðξÞjmaxX≥0je−Xξ4X3j

2j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ ζ

q
jðRe

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ ζ

q
Þ
3

≤ ð2j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ ζ

q
jðRe

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ ζ

q
Þ
3

ð1þ ðξÞ2Þ3Þ
−1

× sup
η∈R4

�
jfðηÞð1þ ðηÞ2Þ3jmax

�
1; e−3

�
3

η4

�
3
��

;

which is integrable in k⃗ and ξ. Note that the supremum is finite
due to ∂n

ξ4
fðξÞj

ξ4¼0
¼ 0 for any n ∈ Z≥0.
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take the limit η → 0 with η ∈ Vþ to obtain the recon-
structed Wightman function (A25),

Wcpðξ0; ξ⃗Þ ¼
Z

d3k⃗
ð2πÞ3 e

ik⃗·ξ⃗

�
Z
2Ek⃗

e−iEk⃗ξ
0 þ Z�

2E�
k⃗

e−iE
�
k⃗
ξ0
�
:

ð41Þ

The first term in the bracket exponentially increases as
ξ0 → þ∞ and so does the second one as ξ0 → −∞, with
the choice ImM2 > 0. Therefore, complex poles invali-
date temperedness of the Wightman function.5 The non-
temperedness is proved more generally in Sec. III B 3.

2. Holomorphy in the tube and boundary value

We have seen the holomorphy of the Wightman function
in the usual tube in the presence of the simple complex
poles (Theorem 2). Here, we generalize this theorem to the
cases with arbitrary complex singularities.
Theorem 3.—Let S1ðpÞ ¼ Dðp2Þ be a two-point

Schwinger function with complex singularities satisfying
(i)–(v). Then, W1ð−iξ4; ξ⃗Þ ¼ S1ðξ⃗; ξ4Þ ðξ4 > 0Þ has an
analytic continuation W1ðξ − iηÞ to the tube R4 − iVþ.
Proof.—We first recall that

S1ðξÞ ¼
Z

d4k
ð2πÞ4 e

ikξDðk2Þ; ð42Þ

and Dðk2Þ can be represented as Theorem 1. We know that
the timelike part can be analytically continued to the tube.
Therefore, we prove the holomorphy for the part coming
from complex singularities.
From (19) in the proof of Theorem 1, the contributions of

complex singularities can be expressed as6

ScomplexðξÞ ¼
Z

d4k
ð2πÞ4 e

ikξ

�XNp

l¼1

I
γl

dζ
2πi

−DðζÞ
k2 þ ð−ζÞ

þ
XNc

k¼1

I
Γk

dζ
2πi

−DðζÞ
k2 þ ð−ζÞ

	
: ð43Þ

Thus, it is sufficient to prove that

Z
d4k
ð2πÞ4 e

ikξ

Z
C

dζ
2πi

DðζÞ
k2 þ ζ

ð44Þ

can be analytically continued to the tube for any smooth
path C of finite length and any smooth function DðζÞ on C.
To this end, let us proceed with the following steps:
Step 1. Interpreting (44) as an ordinary function
on ðξ⃗; ξ4Þ ∈ R3 × ð0;∞Þ, that is to say, proving that
there exists an analytic function SCðξÞ on R3 × ð0;∞Þ
such that for any test function fðξÞ ∈ S ðR4þÞ,Z

d4k
ð2πÞ4

�Z
C

dζ
2πi

DðζÞ
k2 þ ζ

��Z
d4ξ fðξÞeikξ

�

¼
Z

d4ξ SCðξÞfðξÞ; ð45Þ

Step 2. Constructing a holomorphic functionWCðξ − iηÞ
in the tube R4 − iVþ satisfying WCð−iη0; ξ⃗Þ ¼
SCðξ⃗; η0Þ for η0 > 0.

Step 1: Interpreting (44) as a function. We prove that

SCðξÞ ≔
Z
C

dζ
2πi

DðζÞSζðξÞ ð46Þ

has the desired properties of Step 1, where SζðξÞ is a
function defined by (34) for ξ4 > 0.
(a) SCðξÞ is an analytic function in R3 × ð0;∞Þ. Indeed,

as shown in Theorem 2, SζðξÞ is an analytic function
for ξ4 > 0. Since C is a finite smooth path and DðζÞ is
a smooth function on C, SCðξÞ defined by (46) is also
analytic for ξ4 > 0.

(b) Let us verify that (46) satisfies (45). For any test
function fðξÞ ∈ S ðR4þÞ,Z

d4k
ð2πÞ4

�Z
C

dζ
2πi

DðζÞ
k2 þ ζ

��Z
d4ξ fðξÞeikξ

�

¼
Z
C

dζ
2πi

DðζÞ
Z

d4k
ð2πÞ4

1

k2 þ ζ

Z
d4ξ fðξÞeikξ

¼
Z
C

dζ
2πi

DðζÞ
Z

d4ξ fðξÞSζðξÞ; ð47Þ

where we have used Lemma 1 in the last equality.
Since the integrand DðζÞfðξÞSζðξÞ is integrable in
ðξ; ζÞ ∈ R4 × C, we can change the order of the
integrals to obtain (45).

Hence, SCðξÞ given in (46) is the analytic function on
R3 × ð0;∞Þ satisfying (45). This completes the step 1.
Step 2: Analytic continuation of SCðξÞ. We prove that

WCðξ − iηÞ ≔
Z
C

dζ
2πi

DðζÞWζðξ − iηÞ; ð48Þ

where

5Indeed, suppose thatWcpðξ0; ξ⃗Þ were a tempered distribution.
Then, the Fourier transform of Wcpðξ0; ξ⃗Þ in ξ⃗: Z

2Ek⃗
e−iEk⃗ξ

0 þ
Z�
2E�

k⃗

e−iE
�
k⃗
ξ0 would be in S 0ðR4Þ (by the Schwartz nuclear

theorem). This contradicts with the exponential growth in ξ0.
6For this proof, it is enough to take γl and Γk so close to their

singularities that they do not intersect with the positive real axis.
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Wζðξ − iηÞ ≔
Z

d3k⃗
ð2πÞ3 e

ik⃗·ðξ⃗−iη⃗Þ
�

1

2Ek⃗

e−iEk⃗ðξ0−iη0Þ
�
; ð49Þ

is the desired function. Indeed, WCðξ − iηÞ satisfies the
following properties:
(a) Holomorphy of WCðξ − iηÞ: From Theorem 2,

WCðξ − iηÞ is holomorphic in the tube R4 − iVþ
due to the finiteness of C and smoothness of DðζÞ.

(b) WCð−iη0; ξ⃗Þ ¼ SCðξ⃗; η0Þ for η0 > 0. Indeed, we find

WCð−iη0; ξ⃗Þ ¼
Z
C

dζ
2πi

DðζÞWζð−iη0; ξ⃗Þ

¼
Z
C

dζ
2πi

DðζÞSζðξ⃗; η0Þ

¼ SCðξ⃗; η0Þ: ð50Þ

Therefore, WCðξ − iηÞ provides the analytic continu-
ation of (44) to the tube. This completes the proof of
Theorem 3. ▪
Note that the finiteness of branch cuts is essential in this

proof. If there existed a branch cut of infinite length with an
asymptotic line freiθ; r > 0g, the holomorphic Wightman
function would be

WCðξ − iηÞ ¼
Z
C

dζ
2πi

�
1

2π
DiscDðζÞ

�
Wζðξ − iηÞ; ð51Þ

and an estimate for large jζj contribution would be

WCðξ − iηÞ ∼
Z

dr e−i
ffiffi
r

p
eiθ=2ðξ0−iη0Þ

∼
Z

dr e
ffiffi
r

p ðξ0 sin θ=2−η0 cos θ=2Þ: ð52Þ

Unless DiscDðζÞ is strongly suppressed faster than any
exponential decay as jζj → ∞ or the asymptotic line is the
positive real axis (θ ¼ 0), the holomorphy would not be
guaranteed at least by this integral representation.
Therefore, the finiteness in (iv) plays an important role
to reconstruct the Wightman function.
With the finiteness of complex singularities, we

can take safely the limit η → 0 ðη ∈ VþÞ as a distribu-
tion in D 0ðR4Þ, which is the dual space of DðR4Þ
¼ ffðξÞ; fðξÞis a C∞function with a compact supportg.
Theorem 4.—Let S1ðpÞ ¼ Dðp2Þ be a two-point

Schwinger function with complex singularities satisfying
(i)–(v). By Theorem 3, W1ð−iξ4; ξ⃗Þ ¼ S1ðξ⃗; ξ4Þðξ4 > 0Þ
has the analytic continuation W1ðξ − iηÞ to the tube
R4 − iVþ. Then, there exists the limit lim η→0

η∈Vþ
W1ðξ − iηÞ ∈

D 0ðR4Þ. Moreover, while the part reconstructed from
timelike singularities is a tempered distribution in

S 0ðR4Þ, the part from complex singularities is a tempered
distribution in ξ⃗ with a smooth parameter ξ0.
Proof.—By Theorem 3,W1ð−iξ4; ξ⃗Þ¼S1ðξ⃗;ξ4Þ ðξ4 > 0Þ

has an analytic continuation W1ðξ − iηÞ to the tube
R4 − iVþ.
From the proof of Theorem 3, we can write W1ðξ − iηÞ

corresponding to the representation of Theorem 1 as

W1ðξ − iηÞ ¼ Wtlðξ − iηÞ þWcomplexðξ − iηÞ

Wtlðξ − iηÞ ¼
Z

∞

0

dσ2ρðσ2ÞWσ2ðξ − iηÞ

Wcomplexðξ − iηÞ ¼ −
XNp

l¼1

I
γl

dζ
2πi

Wζðξ − iηÞDðζÞ

−
XNc

k¼1

I
Γk

dζ
2πi

Wζðξ − iηÞDðζÞ; ð53Þ

where Wσ2ðξ − iηÞ and Wζðξ − iηÞ are given by (29) and
(49), respectively.
As seen in Sec. III B 1, the boundary value of the

timelike part is a tempered distribution, represented as
(30), WtlðξÞ ¼ lim η→0

η∈Vþ
Wtlðξ − iηÞ ∈ S 0ðR4Þ ⊂ D 0ðR4Þ.

Next, we consider the complex partWcomplexðξ − iηÞ. As
discussed in (41),Wζðξ − iηÞ has a boundary value that is a
tempered distribution in ξ⃗ with a smooth parameter ξ0.
Indeed, by smearing it with any test function
fðξ⃗Þ ∈ S ðR3Þ,

Z
d3ξ⃗fðξ⃗ÞWζðξ − iηÞ

¼
Z

d3k⃗
ð2πÞ3 e

k⃗·η⃗

�
1

2Ek⃗

e−iEk⃗ðξ0−iη0Þ
��Z

d3ξ⃗fðξ⃗Þeik⃗·ξ⃗
�

ð54Þ

converges to, as η → 0 ðη ∈ VþÞ,

Z
d3ξ⃗fðξ⃗ÞWζðξ − iηÞ

→
Z

d3k⃗
ð2πÞ3

�
1

2Ek⃗

e−iEk⃗ξ
0

��Z
d3ξ⃗fðξ⃗Þeik⃗·ξ⃗

�
; ð55Þ

which is a C∞ function of ξ0.
Let us show that the boundary value of Wcomplexðξ − iηÞ

is also a tempered distribution in ξ⃗ with a smooth parameter
ξ0. It suffices to prove that, for any test function fðξ⃗Þ ∈
S ðR3Þ and any finite smooth path C,
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Z
d3ξ⃗fðξ⃗Þ

�Z
C

dζ
2πi

DðζÞWζðξ − iηÞ
�

ð56Þ

has a limit that is a C∞ function of ξ0 as η → 0 ðη ∈ VþÞ.
This can be proved as follows. Due to the finiteness of C

and the rapid decrease of fðξ⃗Þ, we have

Z
d3ξ⃗fðξ⃗Þ

�Z
C

dζ
2πi

DðζÞWζðξ − iηÞ
�

¼
Z
C

dζ
2πi

DðζÞ
�Z

d3ξ⃗fðξ⃗ÞWζðξ − iηÞ
�
: ð57Þ

We have already shown that
R
d3ξ⃗fðξ⃗ÞWζðξ − iηÞ has a

limit that is a C∞ function of ξ0 as η → 0 ðη ∈ VþÞ. From
the finiteness of C, (56) also has such a desired limit.
Therefore, Wcomplexðξ − iηÞ has the limit

lim η→0
η∈Vþ

Wcomplexðξ − iηÞ that is a tempered distribution in

ξ⃗ with a smooth parameter ξ0. Since any smooth function
can be regarded as a distribution, we have
lim η→0

η∈Vþ
W1ðξ − iηÞ ∈ D 0ðR4Þ. This completes the proof

of Theorem 4. ▪
So far, we have seen that, even in the presence of

complex singularities, we can analytically continue a
Schwinger function to the tube and define its Wightman
functionW1ðξÞ on the real space as a distribution. However,
the existence of complex singularities always violates the
temperedness of a Wightman function as a boundary value,
which is proved in the next section.

3. Violation of temperedness of Wightman functions and
ill-defined asymptotic states

Theorem 5.—Let S1ðpÞ ¼ Dðp2Þ be a two-point
Schwinger function with complex singularities satisfying
(i)–(v). By Theorems 3 and 4, W1ð−iξ4; ξ⃗Þ ¼ S1ðξ⃗; ξ4Þ
ðξ4 > 0Þ has the analytic continuation W1ðξ − iηÞ to the
tube R4 − iVþ, and there exists the boundary value as a
distribution W1ðξÞ ≔ lim η→0

η∈Vþ
W1ðξ − iηÞ ∈ D 0ðR4Þ. Then,

the boundary value cannot be regarded as a tempered
distribution W1ðξÞ ∉ S 0ðR4Þ.
Note that this theorem can be intuitively understood as

follows. Readers who can accept the following reasoning
can skip the (somewhat technical) proof.
(a) For simple complex poles, the nontemperedness

follows from (41).
(b) The higher-order poles 1

ðk2−zlÞm can be formally rep-
resented as the (m − 1)th order derivative of the simple
pole 1

k2−zl
with respect to zl. Since the derivative with

respect to zl cannot suppress the exponential growth
of Wcpðξ0; ξ⃗Þ given in (41), higher-order complex
poles also break temperedness.

(c) The contribution of a complex branch cut
R
Ck
dζ ρkðζÞ

k2−ζ is
a superposition of W−ζðξ0; ξ⃗Þ with the weight ρkðζÞ.
Therefore, the exponential growth of the Wightman
function in ξ0 would be unchanged.

(d) Finally, let us comment on a possibility of cancellation
between contributions from different complex singu-
larities. For such cancellations to occur, they must
have the same exponentially growing factor eξ

0 ImEk⃗

and oscillating factor e−iξ
0ReEk⃗. This indicates that this

possibility occurs only if singularities are located in
the same position in complex k4 plane. Therefore, we
would exclude this possibility.

We prove this theorem rigorously as follows. This proof
is based on an intuition that the holomorphy in the tube
would essentially imply the spectral condition for the
Wightman function in momentum representation, which
leads to the usual spectral representation against complex
singularities as in Sec. II, if the Wightman function were a
tempered distribution.
Proof.—As a preparation, we define a holomorphic

function Fhðξ0 − iη0Þ as

Fhðξ0 − iη0Þ ≔
Z

d3ξ⃗W1ðξ0 − iη0; ξ⃗Þhðξ⃗Þ; ð58Þ

where hðξ⃗Þ is a test function on the spatial directions
hðξ⃗Þ ∈ S ðR3Þ. We require that its Fourier transform has a
compact support,

h̃ðk⃗Þ ≔
Z

d3ξ⃗eik⃗·ξ⃗hðξÞ ∈ DðR3Þ: ð59Þ

This function Fhðξ0 − iη0Þ satisfies the following
properties:
(a) Fhðξ0 − iη0Þ is holomorphic in the lower-half

plane η0 > 0.
(b) In all directions of the limit jξ0 − iη0j → ∞ in the

lower-half plane (η0 > 0), Fhðξ0 − iη0Þ grows at most
exponentially as can be seen from representation (53).

(c) For ξ4 ≠ 0, Fhð−ijξ4jÞ coincides with the Schwinger
function smeared by hðξ⃗Þ,

Shðξ4Þ ≔
Z

d3ξ⃗S1ðξ⃗; ξ4Þhðξ⃗Þ: ð60Þ

(d) We define, for ϵ > 0,

S̃ðϵÞh ðk24Þ ≔
Z

dξ4 Shðjξ4j þ ϵÞe−ik4ξ4

¼
Z

dξ4 Fhð−iðjξ4j þ ϵÞÞe−ik4ξ4 : ð61Þ
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Representations (13) and (19), together with (28) and
(46), yield7

S̃ðϵÞh ðk24Þ ¼
Z

dξ4Shðjξ4j þ ϵÞe−ik4ξ4

¼
Z

d3k⃗
ð2πÞ3 h̃ðk⃗Þ

�Z
∞

0

dσ2
ρðσ2Þ

σ2þ k⃗2þ k24
e−ϵ

ffiffiffiffiffiffiffiffiffiffi
σ2þk⃗ 2

p

−
XNp

l¼1

I
γl

dζ
2πi

DðζÞ
ð−ζÞþ k⃗2þ k24

e−ϵ
ffiffiffiffiffiffiffiffi
k⃗ 2−ζ

p

−
XNc

k¼1

I
Γk

dζ
2πi

DðζÞ
ð−ζÞþ k⃗2þ k24

e−ϵ
ffiffiffiffiffiffiffiffi
k⃗ 2−ζ

p �
;

ð62Þ

from which S̃ðϵÞh ðk24Þ has some singularities in

C − ð−∞; 0� for some ϵ > 0 and some h̃ðk⃗Þ ∈ DðR3Þ.
Indeed, otherwise, S̃ðϵÞh ðk24Þ would be holomorphic in

C − ð−∞; 0� for all ϵ > 0 and h̃ðk⃗Þ ∈ DðR3Þ. This
implies that the last two terms (except for the first term)
of (62) would vanish for all ϵ > 0.8 Then,

limϵ↓0 S̃
ðϵÞ
h ðk24Þ ¼

R
d3k⃗ h̃ðk⃗ÞDðk24 þ k⃗2Þ would be also

holomorphic in C − ð−∞; 0� for any h̃ðk⃗Þ ∈ DðR3Þ.
By taking the limit of the mollifiers, “approximations”
to the delta function, h̃ðk⃗Þ → δðjk⃗j − x0Þðx0 > 0Þ, this
leads to holomorphy in C − ð−∞; 0� of Dðk2Þ.9 This
contradicts with the existence of complex singularities.

The above properties follow from the prerequisites of
theorems (i)–(v). We prove the theorem by contradiction.
Suppose that the boundary value of the Wightman function
were a tempered distribution: lim η→0

η∈Vþ
W1ðξ − iηÞ ∈ S 0ðR4Þ.

(e) Then, the boundary value of Fhðξ0 − iη0Þ would
be a tempered distribution Fhðξ0Þ ≔ limη0↓0

Fhðξ0 − iη0Þ ∈ S 0ðRÞ.
Let us find a contradiction under the circumstance charac-
terized by (a)–(e).

We first decompose Fhðξ0Þ as

Fhðξ0Þ ¼ Fþðξ0Þ þ F−ðξ0Þ

F�ðξ0Þ ¼
Z

dω
2π

e−iωξ
0

F̃�ðωÞ;

supp F̃þ ⊂ ½0;∞Þ; supp F̃− ⊂ ð−∞; 0�: ð63Þ

Since Fhðξ0Þ is not a function but a tempered distribution,
there is a delicate point here. We can prove this decom-
position with the following manipulation. We recall (see
Appendix A) that S ðR̄þÞ ≔ S ðRÞ=S −ðRÞ and its dual
space S 0ðR̄þÞ≃ fF ∈S 0ðRÞ; suppF ⊂ ½0;∞Þg. We simi-
larly define S ðR̄−Þ ≔ S ðRÞ=SþðRÞ. We also define
X ≔ fð½f�þ; ½f�−Þ ∈ S ðR̄þÞ ⊕ S ðR̄−Þ; f ∈ S ðRÞg and
its dual X 0. Note the homeomorphism X ≃S ðRÞ. By the
Hahn-Banach theorem, an element of X 0 can be extended
to the dual space ofS ðR̄þÞ ⊕ S ðR̄−Þ, which is isomorphic
to S 0ðR̄þÞ ⊕ S 0ðR̄−Þ ≃ fF ∈ S 0ðRÞ; suppF ⊂ ½0;∞Þg
⊕ fF ∈ S 0ðRÞ; suppF ⊂ ð−∞; 0�g. Therefore, for any
F̃ ∈ S 0ðRÞ, there exist F̃þ; F̃− ∈ S 0ðRÞ such that F̃ ¼
F̃þ þ F̃− with supp F̃þ ⊂ ½0;∞Þ and supp F̃− ⊂ ð−∞; 0�.
This justifies (63). For a more general description on this
decomposition, see Proposition A.3 of [40].
Next, we list several properties of F−ðξ0Þ as follows:

(a′) F−ðξ0Þ can be analytically continued to the whole
complex plane. To show this, we consider the hol-
omorphy in the (1) lower and (2) upper half planes
separately and (3) glue them.

(1) For the lower-half plane, we define F−ðξ0 − iη0Þ ≔
Fhðξ0 − iη0Þ − Fþðξ0 − iη0Þ, where Fþðξ0 − iη0Þ is
the Laplace transform of F̃þðωÞ. This is the desired
holomorphic function. Indeed, because of the sup-
port property supp F̃þ ⊂ ½0;∞Þ, Fþðξ0 − iη0Þ is
holomorphic in the lower-half plane (η0 > 0). The
holomorphy of Fþðξ0 − iη0Þ and Fhðξ0 − iη0Þ from
(a) yields that F−ðξ0 − iη0Þ defined above is hol-
omorphic in the lower-half plane. The boundary
values are Fhðξ0 − iη0Þ → Fhðξ0Þ from (e) and
Fþðξ0 − iη0Þ → Fþðξ0Þ as is well known,10 from
which F−ðξ0 − iη0Þ has the boundary value F−ðξ0Þ.
Therefore, F−ðξ0 − iη0Þ ¼ Fhðξ0 − iη0Þ − Fþðξ0 −
iη0Þ provides the analytic continuation to the
lower-half plane.

(2) For the upper-half plane, the Laplace transform of
F̃−ðωÞ provides the analytic continuation due
to suppF̃− ⊂ ð−∞; 0�.

(3) We have two analytic continuations in the upper- and
lower-half planes that have the coincident boundary
value on the real axis. By the one-variable version of
the edge of the wedge theorem, one can find an

7Note that the limit ϵ → 0 gives the smeared Schwinger
function S̃hðk4Þ ≔

R
dξ4 Shðξ4Þe−ik4ξ4 . In other words, represen-

tation (13) enables us to “complete” the point ξ4 ¼ 0
from Fhð−ijξ4jÞ defined on ξ4 ≠ 0.

8Since the last two terms of (62) are holomorphic at least on the
negative real axis [where we have used the third assumption of
(iv)], it would be an entire function. Furthermore, it tends to
vanish as jk24j → ∞ and therefore would vanish.

9Indeed, let hεðk⃗Þ denote such a mollifier:
hεðk⃗Þ → δðjk⃗j − x0Þ; ε → þ0. Then, limε↓0

R
d3k⃗h̃εðk⃗ÞDðk24 þ

k⃗2Þ ¼ C0Dðk24 þ x20Þ for some C0 > 0. The last two terms of
(62) would not contribute to the left-hand side due to the same
argument as the previous footnote. This leads to the holomorphy
in C − ð−∞; 0� of Dðk24 þ x20Þ for x0 > 0. 10For example, see Theorems 2–9 in [36].
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entire function which is the analytic continuation
from both half planes.

(b1′) In all directions of the limit jξ0 − iη0j → ∞ in the
lower-half plane (η0 > 0), F−ðξ0 − iη0Þ grows at
most exponentially. Indeed, both Fþðξ0 − iη0Þ and
Fhðξ0 − iη0Þ satisfy this condition due to (b)
and suppF̃þ ⊂ ½0;∞Þ.

(b2′) In all directions of the limit jξ0 − iη0j → ∞ in the
upper-half plane (η0 < 0), F−ðξ0 − iη0Þ grows at most
polynomially because of supp F̃− ⊂ ð−∞; 0�.

(c′) F−ð−iξ4Þ is of at most polynomial growth in ξ4 > 0

due to (c) and supp F̃þ ⊂ ½0;∞Þ.
From (a0), (b10), (c0), and the temperedness of F−ðξ0Þ, a
variant of the Paley-Wiener-Schwartz theorem for one-
sided support (see, e.g., Theorem A of [42]) implies that
F−ðξ0 − iη0Þ in the lower-half plane can be written as the
Laplace transformation of a tempered distribution F̃0

−ðωÞ of
suppF̃0

− ⊂ ½0;∞Þ (which actually coincides with F̃−ðωÞ).
Thus, in all directions of the limit jξ0 − iη0j → ∞ in the
lower-half plane, F−ðξ0 − iη0Þ grows at most polynomially.
Together with (b2’), we conclude that the entire function
F−ðξ0 − iη0Þ is a polynomial, whose Fourier transform is a
point-supported distribution.
Because of the support properties suppF̃− ¼ f0g and

suppF̃þ ⊂ ½0;∞Þ, F̃þðωÞ can absorb F̃−ðωÞ in the decom-
position (63). From here on, we assume F̃− ¼ 0 without
loss of generality.
Finally, let us construct S̃ðϵÞh ðk24Þ defined in (d) from

Fhðξ0Þ ¼ Fþðξ0Þ. Due to supp F̃þ ⊂ ½0;∞Þ, the analytic
continuation of Fhðξ0Þ to the lower-half plane is given by
the Laplace transform of F̃þ,

Fhðξ0 − iη0Þ ¼
Z

dω
2π

e−iωξ
0

e−ωη
0

F̃þðωÞ; ð64Þ

which is a holomorphic function for η0 > 0.
Therefore, using (c) and (d), we have

S̃ðϵÞh ðk24Þ ¼
Z

dξ4 Fhð−ijξ4j − iϵÞe−ik4ξ4

¼
Z

dξ4e−ik4ξ4
Z

dω
2π

F̃þðωÞe−ϵωe−ωjξ4j: ð65Þ

Since a tempered distribution is a sum of derivatives of
continuous functions (of at most polynomial growth):
F̃þðωÞ ¼

P
M
n¼1 ð− ∂

∂ωÞαn f̃nðωÞ, we can rewrite

S̃ðϵÞh ðk24Þ ¼
XM
n¼1

Z
dξ4e−ik4ξ4

Z
∞

0

dω
2π

f̃nðωÞ
∂αn

∂ωαn
e−ϵωe−ωjξ4j

¼
XM
n¼1

Z
∞

0

dω
2π

f̃nðωÞ
∂αn

∂ωαn

2ωe−ϵω

k24 þ ω2
; ð66Þ

where αn is a non-negative integer, and f̃nðωÞ is a
continuous function of suppf̃n ⊂ ½0;∞Þ. Note that the last
line of (66) can be regarded as an ordinary function,
although we have calculated the Fourier transformation
in (65) and (66) as a tempered distribution in the above
equations.
Representation (66) shows the holomorphy of S̃ðϵÞh ðk24Þ

on C − ð−∞; 0� for all ϵ > 0 and h̃ðk⃗Þ ∈ DðR3Þ, which
contradicts with the existence of singularity explained in
(d). This completes the proof of Theorem 5. ▪
Let us comment on some implications of the non-

temperedness. As seen from (41), a typical nontempered
behavior is the exponential growth in ξ0. The exponential
growth of theWightman function largely affects asymptotic
states, which correspond to “ξ0 → �∞ limit”. This indi-
cates that asymptotic states of the field are ill defined
without some artificial manipulations.11 Since such states in
the “full” state space are far from being identified with
asymptotic particle states and should be eliminated from
the physical state space, the complex singularities could be
considered as a signal of confinement.
Finally, let us comment on the spectral condition. The

spectral condition for the two-point Wightman function
states supp W̃1ðqÞ ⊂ Vþ, where W̃1ðqÞ ¼

R
d4ξeiqξW1ðξÞ

with Lorentzian vectors ξ, q. Since the existence of W̃1ðqÞ
is assumed in the spectral condition, this condition requires
the temperedness as a prerequisite. Therefore, Theorem 5
implies that the spectral condition is never satisfied in the
presence of complex singularities.

4. Violation of reflection positivity

As a consequence of the nontemperedness, we can prove
that the reflection positivity [OS2] is always violated in the
presence of complex singularities. Since complex singu-
larities invalidate the Källén-Lehmann spectral representa-
tion, some conditions of the standard axiom should be
violated. Therefore, the violation of the reflection positivity
is in some sense trivial. However, for this paper to be self-
contained and because of importance of this claim, we
describe the proof in detail in Appendix B. Moreover, to the

11For Lee-Wick theory, which is the simplest model providing
complex poles considered below, some manipulations on the S
matrix were discussed in old literature, e.g., see [ [43], Sec. 16]
for a review. However, these manipulations can cause Lorentz
noninvariance and acausality. We insist that such states corre-
sponding to complex singularities should be eliminated from the
physical state space before taking the asymptotic limit (rather
than causing Lorentz noninvariance).
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best of our knowledge, an explicit proof on this claim
is new.
Theorem 6.—If S1ðpÞ ¼ Dðp2Þ is a two-point

Schwinger function with complex singularities satisfying
(i)–(v), then the reflection positivity [OS2] is violated.
Proof.—The reflection positivity for the two-point

function (A20) is a necessary condition of the reflection
positivity [OS2].
In Appendix B, it is proved that the reflection positivity

for the two-point function (A20) yields temperedness of a
reconstructed two-point Wightman function (Theorem 11).
Therefore, the nontemperedness (Theorem 5) implies the
violation of the reflection positivity. ▪
The reflection positivity, especially (A20) for the two-

point function, is often checked by a necessary condition:

the positivity of S1ðk⃗; ξ4Þ ≔
R
d3ξ⃗eik⃗·ξ⃗S1ðξ⃗; ξ4Þ (A22), e.g.,

[20]. Using this check, one can easily show that a
propagator with only simple complex conjugate poles
violates the reflection positivity. Indeed, from (32), we
have, for ξ4 > 0,

S1ðk⃗; ξ4Þ ¼
Z
2Ek⃗

e−Ek⃗ξ4 þ Z�

2E�
k⃗

e−E
�
k⃗
ξ4

¼ jZj
jEk⃗j

e−ξ4 ReEk⃗ cos

�
ξ4ImEk⃗ − arg

�
Z
Ek⃗

��
;

ð67Þ

which is negative for some ξ4 > 0. However, this check is
not useful to prove the violation of the reflection positivity
for general propagators with complex singularities. For
example, in the case seen in Sec. III B 1, we have, by
assuming some regularity of the spectral function ρðσ2Þ,

S1ðk⃗; ξ4Þ ¼
Z

∞ffiffiffiffi
k⃗2

p dσ e−σξ4ρðσ2 − k⃗2Þ

þ jZj
jEk⃗j

e−ξ4 ReEk⃗ cos

�
ξ4ImEk⃗ − arg

�
Z
Ek⃗

��
;

ð68Þ

which could be positive if the spectral function ρðσ2Þ is
positive and large. Theorem 6 indicates that the existence of
complex singularities always invalidates the reflection
positivity irrespective of the timelike singularities. It is
redundant to check the positivity of (A22) numerically for a
propagator with complex singularities.

5. Violation of (Wightman) positivity

Let us consider the positivity condition of the Wightman
function. First of all, the standard positivity condition,

Z
d4xd4yW1ðy − xÞf�ðxÞfðyÞ ≥ 0 for any f ∈ S ðR4Þ;

ð69Þ

makes no sense for a nontempered distribution W1ðy − xÞ.
It is natural to examine a positivity condition in a weak
sense using DðR4Þ, instead of S ðR4Þ, which we call
Wightman positivity inDðR4Þ (for the two-point function),
Z

d4xd4yW1ðy − xÞf�ðxÞfðyÞ ≥ 0 for any f ∈ DðR4Þ:

ð70Þ

Here, we examine this positivity condition. As can be
inferred from the violation of the reflection positivity, this
condition is also violated in the presence of complex
singularities. We prove the following theorem in a way
similar to Theorem 6.
Theorem 7.—Let S1ðpÞ ¼ Dðp2Þ be a two-point

Schwinger function with complex singularities satisfying
(i)–(v). By Theorems 3 and 4, W1ð−iξ4; ξ⃗Þ ¼ S1ðξ⃗; ξ4Þ
ðξ4 > 0Þ has the analytic continuation W1ðξ − iηÞ to the
tube R4 − iVþ, and there exists the boundary value as a
distribution W1ðξÞ ≔ lim η→0

η∈Vþ
W1ðξ − iηÞ ∈ D 0ðR4Þ. Then,

the Wightman positivity in DðR4Þ for W1ðξÞ is violated.
Proof.—In the next lemma (Lemma 2), we prove that the

Wightman positivity implies the temperedness of W1.
Therefore, the Wightman positivity is violated due to the
nontemperedness (Theorem 5). ▪
Lemma 2.—Let W1ðξÞ ∈ D 0ðR4Þ be a distribution sat-

isfying the Wightman positivity in DðR4Þ. Then, W1ðξÞ can
be regarded as a tempered distribution: W1ðξÞ ∈ S 0ðR4Þ.
The following proof of Lemma 2 is based on an intuition

thatW1ðξÞ is roughly a matrix element of a unitary operator
and is therefore bounded above in a positive-definite state
space as shown in Sec. II B.
Proof.—We define a sesquilinear form on DðR4Þ: for

f; g ∈ DðR4Þ,

ðf; gÞW ≔
Z

d4xd4yW1ðy − xÞf�ðxÞgðyÞ; ð71Þ

which is positive semidefinite due to the Wightman
positivity (70). For a ∈ R4, ÛðaÞ denotes an operator on
DðR4Þ defined by

ðÛðaÞfÞðxÞ ≔ fðx − aÞ; ð72Þ

which satisfies ðÛðaÞf; ÛðaÞfÞW ¼ ðf; fÞW .
Since ð·; ·ÞW is positive semidefinite, the Cauchy-

Schwarz inequality yields
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jðf; ÛðaÞgÞW j ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf; fÞWðg; gÞW

p
: ð73Þ

Thus, for all f; g ∈ DðR4Þ,

ðf � ðg �W1ÞÞðaÞ ¼ ðf�; ÛðaÞĝÞW ð74Þ

is bounded in a ∈ R4, where ĝðxÞ ≔ gð−xÞ and ðf � gÞ
ðxÞ ≔ R

d4ξfðx − ξÞgðξÞ.
Note that there exists a convenient necessary and

sufficient condition for a distribution T ∈ D 0ðR4Þ to be
a tempered distribution [ [44], Theorem 5, Chapter 7]:

T ∈ S 0ðR4Þ ⇔
α � T is a smooth function of at most

polynomial growth for anyα ∈ DðR4Þ: ð75Þ

Now, let us fix an arbitrary g ∈ DðR4Þ. Then, ðf � ðg �
W1ÞÞðaÞ is a smooth function bounded above for all
f ∈ DðR4Þ. The condition for temperedness (75) implies
that we can regard ðg �W1Þ ∈ S 0ðR4Þ, from which ðg �
W1ÞðxÞ is a smooth function of at most polynomial growth.
Therefore, from arbitrariness of g ∈ DðR4Þ and (75),

we obtain W1 ∈ S 0ðR4Þ. This completes the proof of
Lemma 2. ▪

6. Lorentz symmetry

Since the Lorentz invariance is itself an important nature
and also an essential step to the locality, let us carefully
prove the Lorentz invariance of the reconstructed
Wightman function.
Theorem 8.—Let S1ðpÞ ¼ Dðp2Þ be a two-point

Schwinger function with complex singularities satisfying
(i)–(v). By Theorems 3 and 4, W1ð−iξ4; ξ⃗Þ ¼ S1ðξ⃗; ξ4Þ
ðξ4 > 0Þ has the analytic continuation W1ðξ − iηÞ to the
tube R4 − iVþ, and there exists the boundary value as a
distribution lim η→0

η∈Vþ
W1ðξ − iηÞ ∈ D 0ðR4Þ. Then, both the

holomorphicWightman function and its boundary value are
(restricted) Lorentz invariant. More precisely, for all proper
orthochronous Lorentz transformations Λ ∈ SOð3; 1Þþ,

W1ðΛðξ − iηÞÞ ¼ W1ðξ − iηÞ; for ξ − iη ∈ R4 − iVþ;

ð76Þ

and for any f ∈ DðR4Þ,

W1ðfÞ ¼ W1ðfΛÞ; with fΛðξÞ ≔ fðΛ−1ξÞ: ð77Þ

Proof.—Let us first consider the holomorphic Wightman
function (76). This can be decomposed as (53):
W1ðξ − iηÞ ¼ Wtlðξ − iηÞ þWcomplexðξ − iηÞ. Therefore,
the Lorentz invariance of W1ðξ − iηÞ follows from that
of the respective parts.

The timelike part Wtlðξ − iηÞ is expressed as (29). Since
the free Wightman function Wσ2ðξ − iηÞ is a Lorentz
invariant function as is well known, Wtlðξ − iηÞ is also
Lorentz invariant.
For the Lorentz invariance of the complex part

Wcomplexðξ − iηÞ, similarly from representation (53), it is
sufficient to prove thatWζðΛðξ − iηÞÞ ¼ Wζðξ − iηÞ in ξ −
iη ∈ R4 − iVþ for all Λ ∈ SOð3; 1Þþ. We prove this claim
in Lemma 3 to be given below. This established the
invariance (76).
The latter assertion (77) immediately follows from the

former one (76). ▪
Lemma 3.—TheWightman functionWζðξ − iηÞ, (49), of

a simple complex pole defined on ξ − iη ∈ R4 − iVþ
satisfies, for all Λ ∈ SOð3; 1Þþ,

WζðΛðξ − iηÞÞ ¼ Wζðξ − iηÞ: ð78Þ

Proof.—The spatial rotational symmetry is manifest by
the expression (49). Therefore, it suffices to prove the
invariance under the boost along ξ3,

ξ ¼ ðξ0; ξ1; ξ2; ξ3Þ
→ ξ0 ≔ Λξ ¼ ðγðξ0 − βξ3Þ; ξ1; ξ2; γðξ3 − βξ0ÞÞ: ð79Þ

As mentioned in [45], one can show the invariance under
the boost by a contour deformation.
Under this transformation, Wζðξ − iηÞ reads

WζðΛðξ − iηÞÞ ¼
Z

d3k⃗
ð2πÞ3

1

2Ek⃗

eik⃗·ðξ⃗
0−iη⃗0Þ−iEk⃗ðξ0 0−iη0 0Þ

¼
Z

d3k⃗
ð2πÞ3

1

2Ek⃗

eik⃗
0·ðξ⃗−iη⃗Þ−iE0

k⃗
ðξ0−iη0Þ; ð80Þ

where we have defined Ek⃗ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ ζ

q
of the principal

branch (ReEp⃗ > 0), and

E0
k⃗
≔ γðEk⃗ þ βk3Þ;

k03 ≔ γðk3 þ βEk⃗Þ; k⃗0 ≔ ðk1; k2; k03Þ: ð81Þ

Note that a simple computation and ReEk⃗ > 0 yield

Ek⃗0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ðEk⃗ þ βk3Þ2

q
¼ γðEk⃗ þ βk3Þ; ð82Þ

from which we have
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dk03
dk3

Ek⃗ ¼ E0
k⃗
¼ Ek⃗0: ð83Þ

By changing the variable from k⃗ to k⃗0, we obtain

WζðΛðξ − iηÞÞ ¼
Z
R2×Cβ

d3k⃗0

ð2πÞ3
1

2Ek⃗0
eik⃗

0·ðξ⃗−iη⃗Þ−iEk⃗0 ðξ0−iη0Þ;

ð84Þ

where the contour Cβ is defined by

Cβ ≔ fk30 ¼ γðk3 þ βEk⃗Þ; k3 ∈ Rg; ð85Þ

(see Fig. 4). Note that, for all jβj < 1, Ek⃗0 ¼ γðEk⃗ þ βk3Þ
does not vanish on the contour k30 ∈ Cβ, namely, k3 ∈ R.
Since the family of the contours fCβ0 g0<β0<β scans the
region bounded by Cβ¼0 and Cβ, the integrand
1

2Ek⃗0
eik⃗

0·ðξ⃗−iη⃗Þ−iEk⃗0 ðξ0−iη0Þ is holomorphic in the region

bounded by Cβ¼0 and Cβ. Therefore, the holomorphy
allows us to deform the contour Cβ into Cβ¼0, i.e., the
real axis, and finally,

WζðΛðξ − iηÞÞ ¼
Z
R2×Cβ

d3k⃗0

ð2πÞ3
1

2Ek⃗0
eik⃗

0·ðξ⃗−iη⃗Þ−iEk⃗0 ðξ0−iη0Þ

¼
Z

d3k⃗0

ð2πÞ3
1

2Ek⃗0
eik⃗

0·ðξ⃗−iη⃗Þ−iEk⃗0 ðξ0−iη0Þ

¼ Wζðξ − iηÞ; ð86Þ

which establishes the Lorentz invariance. ▪
So far, we have verified the Lorentz invariance explicitly.

Because of importance of this assertion, we prove it from
another point of view. The Lorentz invariance follows from a
stronger symmetry, the proper complex Lorentz symmetry.
Theorem 9.—Let W1ðξ − iηÞ be a holomorphic function

in the tube R4 − iVþ and invariant under the Euclidean
rotation group SOð4Þ (within the domain of definition of
W1ðξ − iηÞ).12 Then, W1ðξ − iηÞ is invariant under the
proper complex Lorentz group LþðCÞ, including the
restricted Lorentz group, namely, for any Λ ∈ LþðCÞ,

z;Λz ∈ R4 − iVþ ⇒ W1ðΛzÞ ¼ W1ðzÞ; ð87Þ

where LþðCÞ ≔ fΛ ∈ C4×4;ΛTGΛ ¼ G; detΛ ¼ 1g with
the metric G ¼ diagð1;−1;−1;−1Þ. In particular, the
holomorphic Wightman function of Theorem 3 satis-
fies (87).
Proof.—Since the Euclidean rotation gives a real envi-

ronment of the complex Lorentz group, the assumption of
the theorem and the identity theorem for holomorphic
functions guarantee that, for every z ∈ R4 − iVþ, there
exists a complex neighborhood of the identity element of
the complex Lorentz group LþðCÞ under which the
holomorphic function W1ðzÞ is invariant.
The same argument for proving the Bargmann-Hall-

Wightman theorem (Theorems 2–11 and its lemma of
[36]) ensures the existence of a curve in LþðCÞ; fΛðsÞ ∈
LþðCÞ; s ∈ ½0; 1�;Λð0Þ ¼ 1;Λð1Þ ¼ Λg, such that
ΛðsÞz ∈ R4 − iVþ. Therefore, by using repeatedly the
invariance under the neighborhood of the identity element
for the function on the curve W1ðΛðsÞzÞ, the former
assertion (87) holds.
An analytic continuation of a SOð4Þ invariant function is

invariant under SOð4Þwithin its domain of definition, since
M̂μνW1ðzÞ vanishes in the domain due to the identity
theorem, where M̂μν is the SOð4Þ symmetry generators.
Thus, the latter assertion follows from the former one. ▪
Let us add some remarks.

(a) Unlike the other theorems, a generalization of this
argument to D ≠ 4 is nontrivial because of the usage
of the same argument as the Bargmann-Hall-Wightman
theorem.

FIG. 4. Schematic picture of the contour Cβ in the k03 complex
plane. The cross symbols represent the points at Ek⃗ ¼ 0. The

integrand 1
2Ek⃗

eik⃗
0 ·ðξ⃗−iη⃗Þ−iE0

k⃗
ðξ0−iη0Þ has singularities: branch points at

these points and cuts represented as wavy lines. This integrand is
holomorphic in the region bounded by the real axis Cβ¼0 and Cβ.

12Note that the action of R ∈ SOð4Þ upon ðξ − iηÞ is repre-
sented as ðη0 þ iξ0; ξ⃗ − iη⃗Þ ↦ Rðη0 þ iξ0; ξ⃗ − iη⃗Þ.
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(b) Using the Bargmann-Hall-Wightman theorem, we can
prove the complex Lorentz invariance also from
Theorem 8.

(c) Relations among the well-known Bargmann-Hall-
Wightman theorem, Theorem 8, and Theorem 9 are
depicted in Fig. 5.

(d) As is well known, this theorem guarantees a single-
valued analytic continuation of the Wightman function
to the extended tube, T 0 ≔ LþðCÞðR4 − iVþÞ ¼
fΛz ∈ C4; ∃ ðz;ΛÞ ∈ ðR4 − iVþÞ × LþðCÞg, which
includes the Jost points R4 ∩ T 0. Here, the Jost points
are just spacelike points: R4 ∩ T 0 ¼ fðξ0; ξ⃗Þ ∈
R4; ðξ0Þ2 − ξ⃗2 < 0g. Note that the proper complex
Lorentz group includes −1 ∈ LþðCÞ, from which the
equality W1ðzÞ ¼ W1ð−zÞ follows.

(e) The reconstruction is based on the identification of
(A23): W1ð−iξ4; ξ⃗Þ ¼ S1ðξ⃗; ξ4Þ. However, we have
reconstructed the Wightman function using only the
Schwinger function with positive imaginary time
ξ4 > 0. It should be possible to use the Schwinger
function with negative imaginary time ξ4 < 0 for the
reconstruction. The holomorphy in the extended tube
together with the invariance under the proper complex
Lorentz group, especially −1 ∈ LþðCÞ, guarantees the
consistency that the reconstruction from ξ4 < 0 would
give the same holomorphic Wightman function as that
from ξ4 > 0.

7. Locality

Finally, let us comment on locality. Some argue that
complex singularities are associated with nonlocality. One
might claim that the nonlocality of the Yang-Mills theory in
a gauge-fixed picture is rather “natural” due to the Gribov-
Singer obstruction, see [4,27,46] and [28,47]. However, we
argue that complex singularities themselves do not neces-
sarily lead to nonlocality.
For example, the problem of locality has been discussed

in [29–31] (see also Sec. VI A), in which they assert that
complex poles describe short-lived excitations and that the

locality is broken in short range at the level of propagators,
but the corresponding Smatrix remains causal. However, as
we have mentioned above, this interpretation is different
from our results.
To the best of our knowledge, the only axiomatic way to

impose locality is the spacelike commutativity. To argue that
complex singularities themselves do not necessarily yield
nonlocality, it suffices to prove the spacelike commutativity
at the level of two-point functions, because existence of
complex singularities is a property of propagators.
Theorem 10.—Let S1ðpÞ ¼ Dðp2Þ be a two-point

Schwinger function with complex singularities satis-
fying (i)–(v). By Theorems 3 and 4, W1ð−iξ4;ξ⃗Þ¼
S1ðξ⃗;ξ4Þðξ4>0Þ has the analytic continuation W1ðξ − iηÞ
to the tubeR4 − iVþ, and there exists the boundary value as
a distributionW1ðξÞ ¼ lim η→0

η∈Vþ
W1ðξ − iηÞ ∈ D 0ðR4Þ. Then,

the boundary value W1ðξÞ satisfies the spacelike commu-
tativity: W1ðξÞ ¼ W1ð−ξÞ for spacelike ξ.
Proof.—For a spacelike point ξ, there exists an element

of the restricted Lorentz group Λ such that Λξ ¼ −ξ.
Therefore, the spacelike commutativity W1ðξÞ ¼ W1ð−ξÞ
immediately follows from Theorem 8. ▪
Note that the spacelike commutativity at this level is also

an immediate consequence of the holomorphy in the
extended tube and the invariance under the (proper)
complex Lorentz group [see Remark (d) of Theorem 9].
One might argue that, e.g., from the Jost-Lehmann-

Dyson (JLD) representation [48], complex singularities
could lead to violation of the local spacelike commutativity.
Nevertheless, the Wightman function with complex singu-
larities breaks temperedness (Theorem 5). This nontemper-
edness enables a theory to evade the restriction of the
theorems like the JLD representation that assumes exist-
ence of Fourier transform of Wightman functions. Hence,
there is no contradiction here.
In conclusion, even in the presence of complex singular-

ities, the spacelike commutativity at the level of two-point
functions remains intact. Therefore, complex singularities
themselves not necessarily lead to nonlocality.

8. Generalization to arbitrary spinor fields

So far, we have restricted our arguments to the case of a
single scalar field for simplicity. Since the gluon fields are
vector and the quark fields are spinor, it is important to
generalize the above arguments to include vector and spinor
fields. Here, remarks on this generalization are made. This
section is applicable only for four-dimensional cases, since
the complex Lorentz symmetry LþðCÞ plays a pivotal role.
Except for a single scalar field, the permutation sym-

metry [OS3] is not an immediate consequence of the
Euclidean rotational symmetry. Therefore, for arbitrary
spinor fields including vector and (Dirac-)spinor ones,
we assume the following (ii′a) and (ii′b) instead of (ii) in
Sec. III A.

FIG. 5. A sketch of relations among the well-known Bargmann-
Hall-Wightman (BHW) theorem, Theorem 8, and Theorem 9.
Theorem 9 is a composition of (1) the same argument as the BHW
theorem from Euclidean to complex Lorentz symmtry and (2) the
restriction from complex Lorentz symmetry to Lorentz symmetry.
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(ii′a) [OS1] Euclidean (translational and rotational) invari-
ance: for all translation a ∈ R4, Euclidean rotation
ðA;BÞ ∈ SUð2Þ × SUð2Þ, labels of fields ðk1; k2Þ,
and spinor (dotted and undotted) indices ðνk1 ; νk2Þ,

Sðk1;k2Þ
2;νk1νk2

ðΛðA;BÞx1 þ a;ΛðA;BÞx2 þ aÞ
¼

X
μk1 ;μk2

Sðk1ÞðA;BÞμk1νk1
Sðk2ÞðA;BÞμk2νk2

Sðk1;k2Þ
2;μk1μk2

ðx1; x2Þ;

ð88Þ

where ΛðA;BÞ ∈ SOð4Þ is the vector representation,
and Sðk1ÞðA; BÞμk1νk1

and Sðk2ÞðA;BÞμk2νk2
are, respectively,

finite-dimensional representations of SUð2Þ × SUð2Þ
of the fields labeled by k1 and k2.

(ii′b) [OS3] Permutation symmetry:

Sðk1;k2Þ
2;νk1νk2

ðx1; x2Þ ¼ ð−1ÞσSðk2;k1Þ
2;νk2νk1

ðx2; x1Þ; ð89Þ

where ð−1Þσ ¼ 1 for bosonic fields and ð−1Þσ ¼ −1
for fermionic fields.

For assumptions (iv)–(v), Dðk2Þ is understood as each
component of the tensor decomposition of the Schwinger

function Sðk1;k2Þ1;νk1νk2
ðkÞ. For example, for a vector field, the

tensor decomposition is

DμνðkÞ ¼ D1ðk2Þδμν þD2ðk2Þ
kμkν
k2

; ð90Þ

and therefore, we assume (iv) and (v) for D1ðk2Þ and
D2ðk2Þ. In the case of the Landau gauge, the assumptions
apply DTðk2Þ ¼ D1ðk2Þ ¼ −D2ðk2Þ.
By repeating the same arguments for each ðk1; k2;

νk1νk2Þ, we can generalize the holomorphy in the tube,
boundary value as a distribution, the nontemperedness, and
the violation of the (reflection-)positivity. Their proofs do
not essentially depend on the Lorentz (or Euclidean)
symmetry. Nontrivial points are Lorentz symmetry and
locality.
For Lorentz symmetry, Theorem 9 based on the complex

Lorentz symmetry can be easily generalized,13 while this is
not the case for Lemma 3 and Theorem 8. The Bargmann-
Hall-Wightman argument holds for arbitrary spinor fields.
For locality, note that the proof of Theorem 10 is

applicable only for a single scalar field. However, the
alternative proof remarked below the proof of Theorem 10
can be generalized.
Let us prove here the spacelike commutativity: for

spacelike ξ ∈ R4,

Wðk1;k2Þ
1;νk1νk2

ðξÞ ¼ ð−1ÞσWðk2;k1Þ
1;νk2νk1

ð−ξÞ: ð91Þ

The proof is as follows. The permutation symmetry and
the Euclidean rotation ðA;BÞ ¼ ð1;−1Þ ∈ SUð2Þ × SUð2Þ
implies

Sðk1;k2Þ1;νk1νk2
ðξÞ ¼ ð−1ÞσSðk2;k1Þ1;νk2νk1

ð−ξÞ
¼ ð−1Þσð−1ÞJðνk2 ;νk1 ÞSðk2;k1Þ1;νk2νk1

ðξÞ; ð92Þ

where Jðνk2 ; νk1Þ denotes the number of dotted indices in
νk1 and νk2 . Therefore, the holomorphic Wightman function
satisfies

Wðk1;k2Þ
1;νk1νk2

ðξ − iηÞ ¼ ð−1Þσð−1ÞJðνk2 ;νk1 ÞWðk2;k1Þ
1;νk2νk1

ðξ − iηÞ:
ð93Þ

Using the complex Lorentz symmetry ðA; BÞ ¼ ð1;−1Þ ∈
SLð2;CÞ × SLð2;CÞ again, we have

Wðk1;k2Þ
1;νk1νk2

ðξ − iηÞ ¼ ð−1ÞσWðk2;k1Þ
1;νk2νk1

ð−ξþ iηÞ; ð94Þ

where the right-hand side is understood as a single-valued
analytic continuation to the extended tube T 0 ¼ LþðCÞT
by the Bargmann-Hall-Wightman theorem. Let us take the
limit η → 0ðη ∈ VþÞ. The left-hand side gives the

Wightman function Wðk1;k2Þ
1;νk1νk2

ðξÞ as usual. On the other

hand, at spacelike ξ, i.e., at the Jost point ξ ∈ R4 ∩ T 0, the
limit Wðk2;k1Þ

1;νk2νk1
ð−ξ − iηÞ → Wðk2;k1Þ

1;νk2νk1
ð−ξÞ is independent of

the direction of the limit η → 0. Therefore, the right-hand

side of (94) tends to Wðk2;k1Þ
1;νk2νk1

ð−ξÞ. This establishes the

spacelike (anti-)commutativity (91).
Therefore, the main conclusions (A)–(D) hold regardless

of spins.

IV. INTERPRETATION IN A STATE SPACE WITH
AN INDEFINITE METRIC

We have discussed analytic aspects of complex singu-
larities. In this section, we consider a possible kinematic
structure yielding complex singularities, i.e., a realization
of complex singularities in a quantum theory. Since
abandoning the positivity of the state-space metric is very
common in Lorentz covariant gauge-fixed descriptions of
gauge theories, we consider a quantum theory in a state
space with an indefinite metric.
In Sec. IVA, we argue that the natural candidates

providing complex singularities in an indefinite-metric
state space are zero-norm pairs of eigenstates with complex
eigenvalues. In Sec IV B, we present the Lee-Wick model
as an example of QFTwith complex poles. In Sec. IV C, we
discuss complex poles in the BRST formalism in a heuristic

13Note that every finite-dimensional representation of SUð2Þ ×
SUð2Þ can be analytically continued to that of the complex
Lorentz symmetry SLð2;CÞ × SLð2;CÞ.
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way. Finally, some remarks are made on gauge-invariant
propagators in Sec. IV D.

A. Complex singularities and complex spectra

An important observation is that a complex energy
spectrum can appear in an indefinite metric state space
even if the Hamiltonian is (pseudo-)Hermitian. For a
review on indefinite-metric quantum field theories, see,
e.g., [43].
Beforehand, let us introduce some notions on an indefi-

nite-metric state space. Note that the completeness of
eigenstates of a Hermitian operator does not always hold
even in a finite dimensional state space with an indefinite
metric. Instead of simple eigenstates, the set of “generalized
eigenstates” fjE0i; jE1i;…; jEn−1ig that are defined
to be elements of sequences: ðH − EÞjE0i ¼ EjE1i;
ðH − EÞjE1i ¼ EjE2i;…; ðH − EÞjEn−1i ¼ 0 spans the
full state space, in general, where H is a Hermitian operator,
and the value E of such a sequence fjE0i; jE1i;…; jEn−1ig
is called the generalized eigenvalue. This follows from the
standard Jordan decomposition. A generalized eigenstate jni
is said to be of orderM if and only if both ðH − EnÞMjni ¼
0 and ðH − EnÞM−1jni ≠ 0 hold. For example, jE0i of a
sequence fjE0i; jE1i;…; jEn−1ig is a generalized eigenstate
of order n.
For a while, we consider the 0þ 1 dimensional case in

which a field ϕðtÞ is regarded as an operator-valued
function whose domain contains at least the vacuum j0i,
for simplicity. Alternatively, one could consider a situation
in which field operators are smeared in spatial directions.
We begin with the necessity of complex spectra for

existence of complex singularities.
Claim 1.—Let us assume the following:
(i) Completeness of (denumerable) generalized

eigenstates jni of the Hamiltonian H:
1 ¼ P

n;n0 η
−1
n;n0 jnihn0j, where ηn;n0 ¼ hnjn0i is the

nondegenerate metric
(ii) Translational covariance: ϕðtÞ ¼ eiHtϕð0Þe−iHt

(iii) Real-valuedness of generalized eigenvalues En of
the Hamiltonian H

Moreover, as technical assumptions, we assume the
following:
(iv) Existence of an upper bound M on the orders of

generalized eigenstates,14 finiteness of a sumP
n0 η

−1
n;n0 for any jni in the complete system, and

the absolute convergence of the sum,

X
n;n0

η−1n;n0
XMðnÞ−1

k¼0

e−iEnt
ð−itÞk
k!

× h0jϕð0ÞðH − EnÞkjnihn0jϕð0Þj0i; ð95Þ

which actually equals h0jϕðtÞϕð0Þj0i, where En
is the generalized eigenvalue of jni, MðnÞ is the
order of jni, and j0i is the vacuum state satisfy-
ing Hj0i ¼ 0.

Then, the Wightman function h0jϕðtÞϕð0Þj0i can be
regarded as a tempered distribution.
Derivation.—Since jni is a generalized eigenstate of

order MðnÞ, ðH − EnÞMðnÞjni ¼ 0 and ðH − EnÞMðnÞ−1jni
≠ 0 hold, which implies

e−iðH−EnÞtjni ¼
XMðnÞ−1

k¼0

ð−itÞk
k!

ðH − EnÞkjni: ð96Þ

By assumptions (i) and (ii), we have

h0jϕðtÞϕð0Þj0i ¼
X
n;n0

η−1n;n0e
−iEnt

× h0jϕð0Þe−iðH−EnÞtjnihn0jϕð0Þj0i

¼
X
n;n0

η−1n;n0
XMðnÞ−1

k¼0

e−iEnt
ð−itÞk
k!

× h0jϕð0ÞðH − EnÞkjnihn0jϕð0Þj0i:
ð97Þ

Note that the generalized eigenvalue En is real by
assumption (iii).
For any test function fðtÞ ∈ S ðRÞ, we obtain����

Z
dtfðtÞh0jϕðtÞϕð0Þj0i

����
¼
����X
n;n0

η−1n;n0
XMðnÞ−1

k¼0

1

k!
∂kf̃
∂ωk

����
ω¼En

× h0jϕð0ÞðH − EnÞkjnihn0jϕð0Þj0i
����

≤
�X

n;n0
jη−1n;n0 j

XMðnÞ−1

k¼0

���� 1k! h0jϕð0ÞðH − EnÞkjnihn0jϕð0Þj0i
����
�

×

�
sup

ω;k<M

���� ∂kf̃
∂ωk

����
�

≤ const. ×

�
sup

ω;k<M

���� ∂kf̃
∂ωk

����
�
; ð98Þ

where f̃ðωÞ ¼ R
dte−iωtfðtÞ is the Fourier transform of

fðtÞ, and we have used assumptions (iv). This inequality
proves h0jϕðtÞϕð0Þj0i ∈ S 0ðRÞ. ▪
From this claim, the nontemperedness (Theorem 5) is

incompatible with the reality of the spectrum. Thus,

14Note that all states that are not generalized eigenstates of
finite order can be seen as “generalized eigenstates of infinite
order”. The notion “generalized eigenstates of infinite order” is
thus irrelevant to the spectral decomposition. Therefore, it would
be appropriate to assume the upper bound.
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complex spectra should be allowed for complex singular-
ities to appear. We call eigenvalues that are not real complex
eigenvalues. Note that eigenstates of complex eigenvalues
of a Hermitian operator appear as pairs of zero-norm states.
As an introduction to the state-space structure with com-
plex eigenvalues, we prove the following claim.
Claim 2.—Let H be a Hermitian operator and have a

complex eigenvalue:Hjαi ¼ Eαjαi; Eα ≠ E�
α. Suppose that

its generalized eigenstates form a complete system. Then,
(1) jαi is a zero-norm state.
(2) There exists a partner state jβi such that hβjαi ≠ 0,

hβjβi ¼ 0, and ðH − E�
αÞkjβi ¼ 0 for some inte-

ger k.15

Derivation.
(1) Since Eα ≠ E�

α, the equation Eαhαjαi ¼ hαjHjαi ¼
E�
αhαjαi implies that jαi is a zero-norm state:

hαjαi ¼ 0.
(2) Because of the nondegeneracy of the metric, jαi has

a partner state, namely, jβi such that hβjαi ≠ 0. One
can take a generalized eigenstate of H as this state
jβi. Indeed, otherwise, the completeness would
imply that jαi is orthogonal to all states, which
contradicts with the nondegeneracy. Therefore, jβi
satisfies: for some integer k,

hαjβi ≠ 0; ðH − EβÞkjβi ¼ 0;

ðH − EβÞk−1jβi ≠ 0: ð99Þ

From the second and first equations, we have
ðE�

α − EβÞkhαjβi ¼ 0, and therefore, Eβ ¼ E�
α.

Similarly to jαi, jβi is also a zero-norm state:
hβjβi ¼ 0 since Eβ is not real, E�

β ≠ Eβ. ▪
The simplest possibility to provide complex singularities

is a pair of the zero-norm states fjαi; jβig. Let us consider a
consequence from such minimal complex spectra.
Claim 3.—Suppose, in addition to (i), (ii), (iv) of

Claim 1, the following:
(iii′) Besides real eigenvalues, the Hermitian Hamiltonian

H has one pair of eigenstates fjαi; jβig of complex
conjugate eigenvalues Eα; Eβ ¼ E�

α with a positive
real part ReEα > 0.

(v) The field operator ϕðtÞ is Hermitian.
Then, the following statements hold:
(1) If hβjϕð0Þj0i ¼ 0 or hαjϕð0Þj0i ¼ 0, then the

Wightman function is in S 0ðRÞ. In particular, the
Schwinger function has no complex singularity.

(2) If hβjϕð0Þj0i ≠ 0 and hαjϕð0Þj0i ≠ 0, then the
Schwinger function has a pair of simple complex
conjugate poles besides the real singularities.

Derivation.—First, let us examine the metric structure of
the state space. The eigenstates of complex eigenvalues,
Hjαi ¼ Eαjαi; Hjβi ¼ E�

αjβi, are orthogonal to the gener-
alized eigenstates with real eigenvalues jni. Indeed, for
every jni satisfying ðH − EnÞMðnÞjni ¼ 0 and ðH −
EnÞMðnÞ−1jni ≠ 0 with real En, ðE�

α − EnÞMðnÞhαjni ¼ 0

and ðEα − EnÞMðnÞhβjni ¼ 0 hold, from which hαjni ¼
hβjni ¼ 0. The metric ηn;m ¼ hnjmi is “block diagonal-
ized” to the sectors of real energies and of complex
energies; we can decompose the completeness relation asX

n;n0
η−1n;n0 ¼

X
n;n0∶real

η−1n;n0 þ
X

n;n0∶complex

η−1n;n0: ð100Þ

The metric η−1n;n0 in the second term is a two-by-two matrix
and can be written as η−1α;α ¼ η−1β;β ¼ 0, η−1α;β ¼ ðhβjαiÞ−1,
and η−1β;α ¼ ðhαjβiÞ−1.
Now, we have

h0jϕðtÞϕð0Þj0i ¼
X

n;n0∶real

η−1n;n0e
−iEnth0jϕð0Þjnihn0jϕð0Þj0i

þ
X

n;n0∶complex

η−1n;n0e
−iEnt

× h0jϕð0Þjnihn0jϕð0Þj0i: ð101Þ

The first term is characterized by Claim 1, which provides
singularities only on the negative real axis in the Schwinger
function. On the other hand, the second term reads

WcomplexðtÞ ≔
X

n;n0∶complex

η−1n;n0e
−iEnth0jϕð0Þjnihn0jϕð0Þj0i

¼ ðhβjαiÞ−1e−iEαth0jϕð0Þjαihβjϕð0Þj0i
þ ðhαjβiÞ−1e−iE�

αth0jϕð0Þjβihαjϕð0Þj0i:
ð102Þ

Let us evaluate WcomplexðtÞ in the following cases:
(1) hβjϕð0Þj0i ¼ 0 or hαjϕð0Þj0i ¼ 0. The Hermiticity

of ϕ yields

hαjϕð0Þj0i ¼ h0jϕð0Þjαi�;
hβjϕð0Þj0i ¼ h0jϕð0Þjβi�; ð103Þ

from which WcomplexðtÞ ¼ 0 in this case. Thus, the
Wightman function can be regarded as a tempered
distribution.

(2) hβjϕð0Þj0i ≠ 0 and hαjϕð0Þj0i ≠ 0. We define

Z ≔
2Eαh0jϕð0Þjαihβjϕð0Þj0i

hβjαi ; ð104Þ

which does not vanish in this case. The Schwinger
function of this part ScomplexðτÞ for τ ≠ 0 is given by

15One can prove the one-to-one correspondence between a
sequence of generalized eigenstates of Eα: fjαi; ðH −
EαÞjαi; ðH − EαÞ2jαi; � � �g and that of E�

α in finite dimensional
cases. For an example, see Sec. 7 of [43].
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ScomplexðτÞ ¼ Wcomplexð−ijτjÞ

¼ Z
2Eα

e−Eαjτj þ Z�

2E�
α
e−E

�
αjτj: ð105Þ

This function can be represented as

ScomplexðτÞ ¼
Z

dk
2π

eikτS̃complexðkÞ;

S̃complexðkÞ ¼
Z

k2 þ E2
α
þ Z�

k2 þ ðE�
αÞ2

; ð106Þ

which is indeed a pair of simple complex conju-
gate poles.

Therefore, the pair of eigenstates fjαi; jβig leads to either
(1) the Wightman function is in S 0ðRÞ, or (2) the
Schwinger function has a pair of simple complex conjugate
poles. ▪
Therefore, complex singularities defined in the previous

section can appear in a state space with an indefinite metric,
when the Hamiltonian H has complex spectra. This claim
suggests a correspondence between complex singularities
and zero-norm pairs of eigenstates of complex eigenvalues.
Finally, let us add remarks on this claim.
(a) The necessity of an indefinite metric for complex

singularities is consistent with Theorem 7, the viola-
tion of the Wightman positivity.

(b) Claim 3 also implies that, under the assumption of the
Hermiticity of the Hamiltonian and field operators,
complex singularities should appear as complex con-
jugate pairs. This statement can be also understood by
the (intuitive) representation of the Schwinger func-
tion SðτÞ: for τ > 0, SðτÞ ¼ h0jϕð0Þe−Hτϕð0Þj0i. The
Hermiticity of the Hamiltonian and the field operator
yields SðτÞ ∈ R, from which DðzÞ� ¼ Dðz�Þ. This
complex-conjugate pairing is consistent with Remark
(d) of Theorem 1.

The discussion above is restricted to quantum mechan-
ics, or the (0þ 1) dimension. In the next subsection, we see
an example of QFT with complex poles.

B. Example: Lee-Wick model

A simple possible QFT yielding complex poles is the
Lee-Wick model of complex ghosts [49], which has been
studied for many years. Here, we briefly review its
kinematic structure following its covariant operator formu-
lation given in Ref. [45] and see that there indeed exists a
Hermitian field whose propagator has complex poles.
Let us start with the Lagrangian density of the Lee-Wick

model of complex scalar field ϕ with complex mass
M2 ∈ C,

L ≔
1

2
½ð∂μϕÞð∂μϕÞ þ ð∂μϕÞ†ð∂μϕÞ†

−M2ϕ2 − ðM�Þ2ðϕ†Þ2�: ð107Þ

We expand the field operator ϕ as

ϕðxÞ ¼ ϕðþÞðxÞ þ ϕð−ÞðxÞ;

ϕðþÞðxÞ ¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2Ep⃗

p αðp⃗Þeip⃗·x⃗−iEp⃗t;

ϕð−ÞðxÞ ¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2Ep⃗

p β†ðp⃗Þe−ip⃗·x⃗þiEp⃗t; ð108Þ

where Ep⃗ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p⃗2

p
, and we chose ReEp⃗ ≥ 0 and

Re
ffiffiffiffiffiffi
Ep⃗

p
≥ 0. The canonical commutation relation implies

½αðp⃗Þ; β†ðq⃗Þ� ¼ ½βðp⃗Þ; α†ðq⃗Þ� ¼ ð2πÞ3δðp⃗ − q⃗Þ. We define
the vacuum j0i by αðp⃗Þj0i ¼ βðp⃗Þj0i ¼ 0, or
ϕðþÞðxÞj0i ¼ ½ϕð−ÞðxÞ�†j0i ¼ 0. Note that the field operator
ϕðxÞ together with its parts ϕðþÞðxÞ and ϕð−ÞðxÞ is a Lorentz
scalar, and therefore, the vacuum j0i is a Lorentz invariant
state, see [45] for details. Note that the Lorentz symmetry is
manifest in this formulation until one (artificially) considers
asymptotic states. The Hamiltonian reads

H ¼
Z

d3p
ð2πÞ3 ½Ep⃗β

†ðp⃗Þαðp⃗Þ þ E�
p⃗α

†ðp⃗Þβðp⃗Þ�; ð109Þ

ignoring some constant. Notice that the complex-energy
states α†ðp⃗Þj0i and β†ðp⃗Þj0i form a pair of zero-norm
states ðjp⃗; αi ≔ α†ðp⃗Þj0i; jp⃗; βi ≔ β†ðp⃗Þj0iÞ for every
p⃗ ∈ R3,

hp⃗; αjq⃗; αi ¼ hp⃗; βjq⃗; βi ¼ 0;

hp⃗; αjq⃗; βi ¼ hp⃗; βjq⃗; αi ¼ ð2πÞ3δðp⃗ − q⃗Þ: ð110Þ

The commutators of the fields are given by

½ϕðxÞ;ϕðyÞ� ¼ iΔðx − y;M2Þ;
½ϕðxÞ;ϕ†ðyÞ� ¼ 0; ð111Þ

where

Δðx;M2Þ ≔
Z

d3p
ð2πÞ3

1

Ep⃗
sinðp⃗ · x⃗ − Ep⃗tÞ: ð112Þ

Note that Δðx;M2Þ is a Lorentz-invariant function as
shown in Lemma 3 as expected from the invariance of
the field operator and the vacuum state. This theory is
thus spacelike commutative at least in the level of
elementary fields, since Δðx − y;M2Þ vanishes for space-
like x − y.
Next, let us show that the Euclidean propagator of a

Hermitian combination with a constant Z ∈ C,

Φ ≔
ffiffiffiffi
Z

p
ϕþ

ffiffiffiffiffi
Z�p

ϕ†; ð113Þ
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has indeed complex poles. In this sense, the complex fields
ϕ and ϕ† are the counterparts in the covariant operator
formalism of so-called i particles [47].
Using the following correlators:

h0jϕðxÞϕð0Þj0i ¼
Z

d3p
ð2πÞ3

1

2Ep⃗
eip⃗·x⃗−iEp⃗t;

h0jϕðxÞϕ†ð0Þj0i ¼ 0;

h0jϕ†ðxÞϕ†ð0Þj0i ¼
Z

d3p
ð2πÞ3

1

2E�
p⃗

eip⃗·x⃗−iE
�
p⃗
t; ð114Þ

we find

D>
Φðt; x⃗Þ ≔ h0jΦðxÞΦð0Þj0i

¼ ½Zh0jϕðxÞϕð0Þj0i þ Z�h0jϕ†ðxÞϕ†ð0Þj0i�

¼
Z

d3p
ð2πÞ3

�
Z

2Ep⃗
eip⃗·x⃗−iEp⃗t þ Z�

2E�
p⃗

eip⃗·x⃗−iE
�
p⃗
t
�
;

ð115Þ

which is exactly the same as the Wightman function (41)
reconstructed from the Schwinger function (23). From the
relation (2), we obtain the Euclidean propagator ΔΦðτ; x⃗Þ
for τ ≠ 0,

ΔΦðτ; x⃗Þ ≔ θð−τÞD>
Φðiτ; x⃗Þ þ θðτÞD<

Φðiτ; x⃗Þ

¼
Z

d3p
ð2πÞ3

�
Z

2Ep⃗
eip⃗·x⃗−Ep⃗jτj þ Z�

2E�
p⃗

eip⃗·x⃗−E
�
p⃗
jτj
�

¼
Z

d3p
ð2πÞ3

Z
dp4

2π
eip⃗·x⃗þip4τ

×

�
Z

p2
4 þ E2

p⃗

þ Z�

p2
4 þ ðE�

p⃗Þ2
�
: ð116Þ

The Euclidean propagator in the momentum space is given
by

ΔΦðpEÞ ¼
Z

p2
E þM2

þ Z�

p2
E þ ðM�Þ2 ; ð117Þ

which indeed exhibits a pair of complex conjugate poles.
Therefore, a kinematic structure of the covariant operator

formalism of the Lee-Wick model yields simple complex
poles. The simple complex poles correspond to the one-
particle-like zero-norm states with complex masses.
Finally, let us comment on a construction of a composite

operator whose propagator obeys the Källén-Lehmann
representation [47].
As mentioned above, the field ϕðxÞ corresponds to the

so-called i-particle. According to the toy model [47], we
define

OðxÞ ≔ ϕðxÞϕ†ðxÞ: ð118Þ

This propagator can be expressed as

D>
Oðy − xÞ ≔ h0jOðyÞOðxÞj0i

¼
Z

d3p
ð2πÞ3

d3q
ð2πÞ3

1

4EpE�
q

× e−iðEpþE�
qÞðy0−x0Þþiðp⃗þq⃗Þ·ðy⃗−x⃗Þ; ð119Þ

which seems not tempered since ðEp þ E�
qÞ is complex, in

general. However, the following reasoning indicates that
this composite-field propagator involves only real spectra.16

The Euclidean propagator ΔOðτ; k⃗Þ in the imaginary time τ
and spatial momentum k⃗ is given by

ΔOðτ; k⃗Þ ¼
Z

d3p
ð2πÞ3

1

4EpE�
k−p

e−ðEpþE�
k−pÞjτj; ð120Þ

which reads in the momentum space,

ΔOðk⃗; k4Þ ¼
Z

d3p
ð2πÞ3

Ep þ E�
k−p

2EpE�
k−p

1

p2
4 þ ðEp þ E�

k−pÞ2

¼
Z

d3p
ð2πÞ3

1

2

�
1

Ep

1

ðk4 − iEpÞ2 þ ðE�
k−pÞ2

þ 1

E�
k−p

1

ðk4 þ iE�
k−pÞ2 þ E2

p

�

¼
Z

d4p
ð2πÞ4

1

p2 þM2

1

ðk − pÞ2 þ ðM�Þ2 :

ð121Þ

This is what is calculated in [47] and takes a form of the
Källén-Lehmann spectral representation with a positive
spectral density. Back to the real-time propagator, this
implies h0jOðyÞOðxÞj0i has only real spectra. Thus, the
composite operator OðxÞ could be regarded to be
“physical”.

C. Complex singularities in a BRST quartet

Here, we discuss implications from the interpretation of
complex singularities in an indefinite-metric state space in
light of confinement. As discussed above, complex singu-
larities correspond to zero-norm states. Such states, which

16This phenomenon corresponds to nonuniqueness of a
Cauchy integral. For example, if Dðk2Þ has singularities only
on the negative real axis, one can represent Dðk2Þ ¼ R

C
dζ
2πi

DðζÞ
ζ−k2,

where C is an arbitrary contour which separates the positive and
negative real axes. In this representation, Dðk2Þ, which has no
complex singularities, appears to have complex singularities on
the contour C.
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are not physical, should be confined according to some
confinement mechanism.
It is worthwhile considering implications in the Kugo-

Ojima BRST quartet mechanism [50]. Here, we assume
existence of a Hermitian nilpotent BRST operator QB:
Q2

B ¼ 0; Q†
B ¼ QB. Some issues on this existence are

mentioned in Sec. VI C. In this scenario, confined states
should belong to BRST quartets, i.e., BRST exact (BRST
daughter) or BRST noninvariant (BRST parent) states.
Thus, complex energy states, which lead to complex
singularities of the propagators, should belong to BRST
quartets.
In this section, we provide only a sketch of the argument.

Suppose that the gluon propagator has complex singular-
ities. Then, “one-gluon state” has complex energy states,
which is schematically expressed as

Aμð0Þj0i ¼ jEi þ jE�i þ � � � ; ð122Þ

where jEi and jE�i stand for a pair of complex energy
states, hE�jEi ≠ 0. Since jEi and jE�i should be excluded
from the physical state space constructed from the BRST
cohomology Ker QB=ImQB to make the theory physical,
we require that jEi and jE�i are either BRSTexact or BRST
noninvariant states.17

We can easily exclude a possibility that both jEi and jE�i
are BRST exact. Indeed, if they were BRST exact, jEi ¼
QBjγi and jE�i ¼ QBjγ�i, then the nonorthogonality
hE�jEi ≠ 0 contradicts with the nilpotency of the BRST
charge QB, Q2

B ¼ 0. Therefore, at least either jEi ∉ KerQB
or jE�i ∉ KerQB holds.
We assume further that a CPT (antiunitary) operator Θ

exists and satisfies

Θ2 ¼ 1; Θj0i ¼ j0i; ΘQBΘ ¼ QB;

ΘHΘ ¼ H; ΘAμð0ÞΘ ¼ −Aμð0Þ: ð123Þ

ΘAμð0ÞΘ ¼ −Aμð0Þ and Θj0i ¼ j0i implies

ΘjEi ¼ −jE�i; ΘjE�i ¼ −jEi: ð124Þ

When either jEi ∉ KerQB or jE�i ∉ KerQB holds, the
possibilities are (i) jEi ∉ KerQB and jE�i ∈ ImQB,
(ii) jEi ∈ ImQB and jE�i ∉ KerQB, and (iii) jEi ∉ KerQB
and jE�i ∉ KerQB. The first two possibilities (i) and (ii) can
be excluded by (124) and QBΘ ¼ ΘQB, namely,
jEi ∈ KerQB ⇔ jE�i ∈ KerQB. Thus, the only possibility
is (iii); both complex energy states are BRST noninvariant.

Hence, existence of a CPT operator and nonexistence of
complex energy states in the physical state space implies
that both jEi and jE�i should contain BRST parent states.
In the simplest possibility, complex energy states form a
double-BRST quartet.
As a consequence, since QBjEi ¼ jE; ci ≠ 0 and

QBjE�i ¼ jE�; ci ≠ 0, we have

ðDμCÞð0Þj0i ¼ QBAμð0Þj0i ¼ jE; ci þ jE�; ci þ � � � :
ð125Þ

Since the ghost propagator seems to have no complex
singularity according to recent analyses, e.g., [9,12,13,
18,21,24,25], this implies that the gluon-ghost bound state
should contain complex energy states whose energies are
equal to those of the gluon. Therefore, a propagator of the
gluon-ghost bound state should have complex singularities
at the same position as the gluon propagator.
Let us summarize the discussion above. Complex energy

states should be “eliminated” from the physical state space
by some confinement mechanism. In the Kugo-Ojima
scenario, they should be in BRST quartets. For complex
singularities in the gluon propagator, the “one-gluon state”
should have complex conjugate energy states (122), jEi
and jE�i. The other discussion in this section can be
summarized as the following claim.
Claim 4.—Suppose that jEi and jE�i of the “one-gluon

state” with hEjE�i ≠ 0 are in BRST quartets. Then, either
jEi or jE�i is not a BRST daughter state. Moreover, with
the additional assumption of the existence of the CPT
operator, both jEi and jE�i contain BRST parent states.
This claim predicts that a propagator of the gluon-ghost

bound state should have complex singularities at the same
positions as those of the gluon propagator.

D. Complex singularities and gauge-invariant
propagators

Regarding complex singularities of the gluon propagator,
a natural question is how complex singularities are “can-
celed out” in the physical gauge-invariant propagators, e.g.,
the glueball propagators. Here, we make some comments
on this issue.
First, we can see that gauge-invariant propagators have

no complex singularity in the BRST formalism if all
complex spectra are in BRST quartets. To this end, let
us consider the following two-point function of a gauge-
invariant operator OðxÞ, e.g., OðxÞ ¼ Fa

μνFaμν for the 0þþ
glueball,

h0jOðxÞOð0Þj0i ¼ h0jOð0Þe−iP·xOð0Þj0i: ð126Þ

Since OðxÞ is gauge invariant, it is BRST invariant;
therefore QBOðxÞj0i ¼ 0. Assuming the completeness
relation, we write

17Notice that, if the complex energy states are confined
correctly, asymptotic states in the physical state space are
expected to be well defined. Therefore, if such a confinement
mechanism works well, the nontemperedness of the Wightman
function and the ill definedness of the asymptotic states would not
provide any physical issue.
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h0jOðxÞOð0Þj0i ¼
X
n;n0

η−1n;n0e
−ipn·xh0jOð0Þjnihn0jOð0Þj0i:

ð127Þ

As we have seen, if some states with complex energies
ðpnÞ0 contribute, this two-point function has complex
singularities. In order to prevent complex-energy states
to appear in the physical state space KerQB=ImQB, we
assume that such complex-energy states are in BRST
quartets. Note that a BRST parent-parent pair does not
appear in the completeness relation due to the nilpotency,

0 ¼ Q2
B ¼

X
n;n0∈fparentsg

η−1n;n0QBjnihn0jQB; ð128Þ

which yields η−1n;n0 ¼ 0 for n; n0 ∈ fparentsg, where
fparentsg denotes a basis of a complementary space of
KerQB. Thus, every quartet in the completeness relation
satisfies jni ∈ ImQB or jn0i ∈ ImQB. This implies
h0jOð0Þjni ¼ 0 or hn0jOð0Þj0i ¼ 0, which is case (1) of
Claim 3. Therefore, with those assumptions, the gauge-
invariant propagator has no complex singularity.
The above discussion indicates that complex-energy

intermediate states are “canceled out” due to the BRST
invariance of the operator O. For example, this suggests
that possible complex singularities of the ð∂μAa

ν − ∂νAa
μÞ2

propagator should disappear in the full ðFa
μνÞ2 propagator.

Second, although checking this scenario by a concrete
calculation is an interesting topic, it is a highly difficult
task. Indeed, the connection between the full gluon
propagator and the full glueball propagator is very com-
plicated. For example, one has to maintain all of the
composite operators ∂A∂A; AA∂A; AAAA to preserve the
BRST symmetry.
Third, let us mention some calculations on the glueball

propagator from the (refined-)Gribov-Zwanziger propaga-
tor. The lowest-order calculation leads to complex branch
cuts [28,51]. Note that, because of the soft breaking of the
BRST symmetry of the Gribov-Zwanziger model, the
composite operator ðFa

μνÞ2 can mix with BRST noninvar-
iant operators. One can hope that such mixing would
somehow eliminate unphysical complex singularities of the
glueball propagator, which is expected in the i particle
scenario [47]. In terms of the i particle, it is possible to
construct a composite operator whose propagator has only
timelike cut at the lowest order. However, a systematic
mechanism behind this scenario in the Gribov-Zwanziger
model is still far from clear.
Finally, in relation to this topic, it is worthwhile noting

that the reflection positivity for gauge-invariant quantities
was proven in the lattice gauge theory [52]. This is of
extreme importance from a viewpoint of the reconstruction
from Euclidean field theories. This could lead to the

spectral condition and positivity in the physical state space
KerQB=ImQB, which have been just assumed.

V. SUMMARY

Let us summarize our findings. In Sec. II, we have
presented a sketch of the discussion emphasizing that
complex singularities of propagators on the complex
squared momentum plane differ depending on whether
the propagator is Euclidean one or Minkowski one. This is
an important remark for determining a starting point toward
considering the reconstruction. We have to regard “com-
plex singularities” as those of Euclidean propagator and
consider the reconstruction carefully.
The main part of this paper consists of general properties

of Wightman functions in Sec. III and implications on state
spaces in Sec. IV.
In Sec. III, we have defined complex singularities and

reconstructed Wightman functions from Schwinger func-
tions with complex singularities. We have obtained the
following general properties on this reconstruction as stated
in the Introduction:
(A) Violation of the reflection positivity of the

Schwinger functions (Theorem 6)
(B) Holomorphy in the tube (Theorem 3) and existence

of the boundary value as a distribution (Theorem 4)
(C) Violation of the temperedness (Theorem 5) and the

positivity condition in DðR4Þ (Theorem 7)
(D) Validity of Lorentz symmetry (Theorem 8

and Theorem 9) and spacelike commutativity
(Theorem 10)

The organization of our proofs of these theorems is
depicted in Fig. 3. See Appendix C for a summary of
violated axioms.
In Sec. IV, we have considered a possible state-

space structure in the presence of complex singula-
rities. Consequently, a quantum mechanical observation
(Sec. IVA) suggests the following:
(E) Complex singularities correspond to zero-norm

states with complex energy eigenvalues
Indeed, we have first argued the necessity of nonreal
spectra by proving Claim 1. Secondly, Claim 2 implies
that the complex-energy states have zero-norm and form
complex conjugate pairs. Third, Claim 3, which asserts that
a pair of zero-norm eigenstates of complex conjugate
energies yield a pair of complex conjugate poles in
(0þ 1)-dimensional theory, indicates that complex singu-
larities correspond to pairs of zero-norm eigenstates of
complex conjugate energies.
Moreover, we have discussed an example of a relativistic

QFT having propagators with complex poles which is
called the Lee-Wick model. This model also supports the
correspondence between complex singularities and pairs of
zero-norm states. Incidentally, we have argued that the field
operator of the Lee-Wick model can be understood as a
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counterpart in the covariant operator formalism of the so-
called i particle [47].
Finally, we have discussed implications of complex

singularities in the BRST formalism. Under assumptions
that the Kugo-Ojima quartet mechanism works well and
that the CPT operator exists, we have argued that both
complex conjugate energy states of the “one-gluon state”
Aμð0Þj0i contain BRST parent states. This predicts that
complex singularities of a propagator of the gluon-ghost
composite operator should appear at the same locations as
those of the gluon propagator.

VI. DISCUSSION

In this section, some remarks are made on related topics.

A. On other interpretation of complex singularities

Let us make comments on another interpretation of
complex singularities. We have reconstructed Wightman
functions from Schwinger functions based on (A23) and
(A25). As remarked in Sec. II, this is different from a naive
inverse Wick rotation on the complex momentum plane. An
interpretation using the inverse Wick rotation is often
discussed, e.g., in [29–31]. In these references, it is claimed
that complex poles lead to (a) short-lived gluonic particles,
(b) no free limits, (c) violation of causality (in short range),
(d) violation of reflection positivity, (e) asymptotic incom-
pleteness, and (f) violation of unitarity (in short range).
In our reconstruction method, there are some differences

on (a) short-lived particle, (c) violation of causality, and
(f) unitarity: (a) Instead of finite lifetime, the reconstructed
Wightman function grows exponentially. (c) The causality
as the spacelike commutativity is kept as mentioned in
Sec. III B 7. (f) The Hermiticity of Hamiltonian can be
consistent with complex poles in an indefinite metric state
space as discussed in Sec. IV.

B. On the superconvergence relation

Oehme and Zimmermann derived the superconvergence
relation for the gluon spectral function ρðσ2Þ [41],Z

∞

0

dσ2ρðσ2Þ ¼ 0: ð129Þ

The core idea of the Oehme-Zimmermann argument is to
obtain the exact asymptotic form of the gluon propagator in
the complex plane by using the asymptotic freedom and
renormalization group. In particular, if the gluon anoma-
lous dimension is negative, the gluon propagator Dðk2Þ
tends to vanish faster than 1=k2. If the Källén-Lehmann
spectral representation is assumed, the asymptotic form
yields the well-known superconvergence relation.
In the presence of complex singularities, the Källén-

Lehmann spectral representation is invalidated. Therefore,
the superconvergence relation (129) does not hold. In order

to obtain the correct asymptotic form determined by the
perturbative renormalization group, the superconvergence
relation is modified by complex singularities [18].
Here, we see how this relation is modified with the

following assumptions:
(i) The generalized spectral representation (13) for

Dðk2Þ holds.
(ii) Dðk2Þ has the asymptotic behavior jk2jjDðk2Þj →

0ðjk2j → ∞Þ. For the gluon propagator, the pertur-
bative renormalization group and asymptotic free-
dom implyDðk2Þ ∼ 1

k2ðln jk2jÞγ0=β0, where γ0 and β0 are,
respectively, the first coefficients of the gluon
anomalous dimension and the beta function. This
assumption is satisfied when both γ0 and β0 are
negative.

First, let us consider a simple example with one pair of
complex conjugate poles,

Dðk2Þ ¼
Z

∞

0

dσ2
ρðσ2Þ
σ2 þ k2

þ Z
M2 þ k2

þ Z�

ðM�Þ2 þ k2
: ð130Þ

From assumption (ii), by taking the limit jk2j → ∞ (or
evaluating a contour integral along a semicircle [ [18],
Sec. II C]18), we have

2ReZ þ
Z

∞

0

dσ2ρðσ2Þ ¼ 0: ð131Þ

For a more general case with assumption (i), we obtain the
modified superconvergence relation by the same evaluation,

XNp

l¼1

Zð1Þ
l þ

XNc

k¼1

Z
Ck

dζρkðζÞ þ
Z

∞

0

dσ2ρðσ2Þ ¼ 0: ð132Þ

C. BRST symmetry, confinement, and
complex singularities

Finally, let us add some comments on BRST symmetry
and confinement in relation to complex singularities.
First, we have assumed a nilpotent BRST charge in

Sec. IV C. Since the Kugo-Ojima quartet mechanism is a
promising way to construct the physical state space in
gauge-fixed pictures, it would be natural to hope the
existence of a nilpotent BRST charge. However, part of

18Again, note that our previous works [18,20,23] have mis-
leading Minkowskian notations, which should be Euclidean.
Incidentally, in the presence of complex singularities, note also
that the Oehme-Zimmermann renormalization group analysis
should be implemented in Euclidean theories, since the renorm-
alization condition for the real-time propagator cannot be
imposed due to the nontemperedness.
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the evidence for complex singularities in the Landau-gauge
gluon propagator relies on numerical lattice calculations in
the minimal Landau gauge, where the usual BRST sym-
metry is not guaranteed. At the present situation, the “best-
case scenario” is that the gluon propagator of the minimal
Landau gauge would be a good approximation of some
gauge with a nilpotent BRST symmetry. Developing the
lattice Landau gauge preserving the standard BRST sym-
metry in the continuum limit overcoming the Neuberger
zero [53–55] would be an important future prospect.
Second, since complex singularities cause a problem on

the asymptotic completeness as mentioned in Sec. III B 3 in
the “full” state space, the Kugo-Ojima arguments could be
modified. It would be interesting to explore this possibility.
Third, there are few theoretical developments of the

axiomatic method without the spectral condition and
positivity to our knowledge. Such studies could yield some
constraints on complex singularities and are therefore
interesting.
Fourth, Claim 4 predicts complex gluon-ghost bound

states with the same energy as that of the gluon.
Conversely, the appearance of complex singularities in a
propagator of the gluon-ghost composite operator would be
a necessary condition for the BRST formalism to “work
well” if the gluon propagator has complex singularities.
Thus, seeking such a complex gluon-ghost bound state
would be interesting. Remarkably, the Bethe-Salpeter
equation for the gluon-ghost bound state has been studied
in light of BRST quartets in [56].
Fifth, while one can expect that complex singularities of

field correlators have something to do with a confinement
mechanism, we ought to note that complex singularities
could be trivial gauge artifacts. Although the complex
singularities yield a violation of (reflection) positivity, this
violation is itself neither necessary nor sufficient for the
confinement of a particle corresponding to the field, e.g.,
the gluon confinement. Indeed, this is not sufficient
because this violation only indicates that the field involves
some negative-norm states and does not deny the existence
of asymptotic physical states. This violation is not a
necessary condition because BRST parent states can be
positive norm, for example. Similarly, although complex
singularities correspond to confined states, their existence
is neither necessary nor sufficient for the confinement of the
corresponding particle. Moreover, such “confined states”
corresponding to complex singularities could only be
members of BRST quartets that are irrelevant to the
confinement mechanism like the timelike photon. There
are still many possibilities because understanding a

confining theory as a quantum theory is far from being
achieved. Further studies are needed for clarification of
relations between complex singularities and confinement
mechanism.
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APPENDIX A: NOTATIONS AND AXIOMS

In this section, we introduce notations required formathe-
matical discussions and review the standard Osterwalder-
Schrader axiom for Euclidean field theories [37].

1. Notations and conventions

We use the notation x ¼ ðx⃗; x4Þ ¼ ðx1; x2; x3; x4Þ for a
four-vector and Euclidean inner product xy ¼ xμyμ (and
Lorentzian inner product only when explicitly mentioned).
When only one four vector is relevant as in the main text,
we also use the lower indices x ¼ ðx1; x2; x3; x4Þ. We call
the direction of e4 ≔ ð0⃗; 1Þ “(imaginary-)time direction”.
We also use the multi-index notation: for a multi-index
α ¼ ðα1;1; α1;2;…; αn;4Þ ∈ Z4n

≥0, Dα denotes

Dα ¼
∂ jαj

ð∂x11Þα1;1ð∂x21Þα1;2 � � � ð∂x4nÞαn;4 ; ðA1Þ

where jαj ¼ α1;1 þ � � � þ αn;4.
The Schwartz’s space on Rn is denoted by S ðRnÞ.

Its dual space, the space of tempered distributions, is
denoted by S 0ðRnÞ. We also define DðRnÞ ≔
ffðξÞ; fðξÞis a C∞function with a compact supportg and
its dual space D 0ðRnÞ. We can regard S 0ðR4Þ ⊂
D 0ðR4Þ. An element of D 0ðR4Þ can be beyond polynomial
growth unlike S 0ðR4Þ. An element of D 0ðR4Þ that cannot
be regarded as a tempered distribution is called a non-
tempered distribution.
The important test function spaces are listed as follows.

These spaces are equipped with the topologies in the same
way as [ [37], Sec. 2].

(i) Space of test functions on noncoincident points,

0S ðR4nÞ ≔
8<
:f ∈ S ðR4nÞ; D

αfðx1;…; xnÞ ¼ 0 for any α ∈ Z4n
≥0

if xi ¼ xj for some 1 ≤ i < j ≤ n

9=
;: ðA2Þ
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(ii) Space of test functions with (imaginary-)time-ordered supports,

SþðR4nÞ ¼
�
f ∈ S ðR4nÞ; D

αfðx1;…; xnÞ ¼ 0 for any α ∈ Z4n
≥0

unless 0 < x41 < x42 < � � � < x4n

	
; ðA3Þ

S<ðR4nÞ ¼
�
f ∈ S ðR4nÞ; D

αfðx1;…; xnÞ ¼ 0 for any α ∈ Z4n
≥0

unless x41 < x42 < � � � < x4n

	
: ðA4Þ

(iii) Space of test functions with supports of positive (imaginary-)time.
For functions of one variable, SþðRÞ ≔ ffðsÞ ∈ S ðRÞ; supp f ⊂ ½0;∞Þg and also S −ðRÞ ≔ ffðsÞ ∈

S ðRÞ; supp f ⊂ ð−∞; 0�g. We define

S ðR4þÞ ≔ S ðR3Þ⊗̂SþðRÞ; S ðR4nþ Þ ≔ ⊗̂nS ðR4þÞ; ðA5Þ

where ⊗̂ denotes the completed topological tensor product and ⊗̂n the n-fold one.
(iv) Space of test functions on “non-negative (imaginary-)time”.

S ðR̄þÞ denotes the space of test functions on the non-negative real half line:S ðR̄þÞ ≔ S ðRÞ=S −ðRÞ. Note that
its dual space can be identified as S 0ðR̄þÞ ≃ fF ∈ S 0ðRÞ; suppF ⊂ ½0;∞Þg. We define as above

S ðR̄4þÞ ≔ S ðR3Þ⊗̂S ðR̄þÞ; S ðR̄4nþ Þ ≔ ⊗̂nS ðR̄4þÞ: ðA6Þ

We introduce the sets of terminating sequences S ;Sþ;S<, and S ðR̄4þÞ over the spaces S ðR4nÞ;SþðR4nÞ;
S<ðR4nÞ, and S ðR̄4nþ Þ, respectively. An element f of one of the spaces S �ð¼ S ;Sþ;S<;S ðR̄4þÞÞ over
S n�ð¼ S ðR4nÞ;SþðR4nÞ;S<ðR4nÞ;S ðR̄4nþ ÞÞ is a terminating sequence f ≔ ðf0; f1; � � �Þ with f0 ∈ C; fn ∈
S n�ðn ¼ 1; 2;…Þ, i.e.,

S � ≔ ⨁
∞

n¼1

S n�; ðA7Þ

with S 0� ≔ C.
Next, we define some operations ×, ·⋆, and Θ on these spaces.

(a) For f ¼ ðf0; f1; � � �Þ; g ¼ ðg0; g1; � � �Þ ∈ S �, f × g is defined as

f × g ¼ ððf × gÞ0; ðf × gÞ1; ðf × gÞ2; � � �Þ;

ðf × gÞnðx1; x2;…; xnÞ ¼
Xn
k¼0

ðfn−k × gkÞðx1; x2;…; xnÞ

¼
Xn
k¼0

fn−kðx1; x2;…; xn−kÞgkðxn−kþ1; xn−kþ2;…; xnÞ; ðA8Þ

(b) For f ¼ ðf0; f1; � � �Þ ∈ S �,

f⋆ ¼ ðf⋆0 ; f⋆1 ; � � �Þ; f⋆nðx1; x2;…; xnÞ ≔ f̄nðxn; xn−1;…; x1Þ; ðA9Þ

Θf ¼ ððΘfÞ0; ðΘfÞ1; � � �Þ; ðΘfÞnðx1; x2;…; xnÞ ≔ fnðϑx1; ϑx2;…; ϑxnÞ; ðA10Þ

where ·̄ is complex conjugation in this appendix (to distinguish from ·⋆) and ϑx ¼ ðx⃗;−x4Þ. In the main text, the
complex conjugation is denoted by ·�.
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(c) For an element of the Euclidean group ða; RÞ ∈
R4⋊SOð4Þ and f ∈ S n� ,

fða;RÞðx1;…; xnÞ ≔ fðRx1 þ a;…; Rxn þ aÞ: ðA11Þ

For the spectral function, we define tempered distribu-
tion on a compactified set ½0;∞� [ [40], Sec. A. 3.]. We
introduce the space of test functions on ½0;∞� as

S ð½0;∞�Þ ≔ ffðλÞ ¼ gð−ð1þ λÞ−1Þ;
g is aC∞ function on ½−1; 0�g; ðA12Þ

equipped with the topology characterized by the countable

norm family19 kfðλÞk½0;∞�
n ≔ maxk∈f0;1;…;ngsupλ≥0

jðð1þ λÞ2 ∂
∂λÞkfðλÞj for n ∈ Z≥0. Its dual space, namely,

the space of continuous linear functions of S ð½0;∞�Þ, is
denoted by S 0ð½0;∞�Þ. Elements of this space are called
tempered distributions on ½0;∞�. With this definition, for

ρðσ2Þ ∈ S 0ð½0;∞�Þ, the “integral” R∞
0 dσ2 ρðσ2Þ

k2þσ2
is formally

well defined.

2. Osterwalder-Schrader Axioms

Using the above notations, we state the standard
Osterwalder-Schrader axioms, for simplicity, for the scalar
field. fSng∞n¼0 is a sequence of distributions Snðx1;…; xnÞ,
called Schwinger functions, satisfying

[OS0] (Temperedness):

S0 ¼ 1; Sn ∈ 0S 0ðR4nÞ: ðA13Þ

[OS1] (Euclidean Invariance): for all ða; RÞ ∈
R4⋊SOð4Þ and f ∈ 0S ðR4nÞ,

SnðfÞ ¼ Snðfða;RÞÞ: ðA14Þ

[OS2] (Reflection Positivity): for all f ¼
ðf0; f1 � � �Þ ∈ Sþ,

X
n;m

SnþmðΘf⋆n × fmÞ ≥ 0: ðA15Þ

[OS2] (Symmetry):

Snðx1;…; xnÞ ¼ Snðxπð1Þ;…; xπðnÞÞ; ðA16Þ

for any pertumutation πð·Þ of n items
[OS4] (Cluster Property): for all f ¼ ðf0; f1 � � �Þ; g ¼
ðg0; g1 � � �Þ ∈ Sþ and a ¼ ða⃗; 0Þ,

lim
λ→∞

X
n;m

½SnþmðΘf⋆n × gm;ðλa;1ÞÞ

− SnðΘf⋆nÞSmðgmÞ� ¼ 0: ðA17Þ

[OS0′] (Laplace Transform Condition)20: From the
translational invariance [OS1], we can write

Snðx1;…; xnÞ as Sn−1ðξ1;…; ξn−1Þ ∈ S 0ðR4ðn−1Þ
þ Þ,

i.e., Snðx1;…; xnÞ≕ Sn−1ðx2 − x1; x3 − x2;…; xn −
xn−1Þ for x41 < x42 < � � � < x4n. This condition means
that there exists, for every n, a Schwarz seminorm

k · kS on S ðR̄4ðn−1Þ
þ Þ so that

jSn−1ðfÞj ≤ kfLkS for all f ∈ S ðR4ðn−1Þ
þ Þ; ðA18Þ

where fL denotes the Laplace-Fourier transform
defined by

fLðq1;…; qn−1Þ

≔
Z

dn−1ξfðξ1;…; ξn−1Þe
P

n
k¼1

ð−q4kx4kþiq⃗k·x⃗kÞ
����
q4k≥0

∈ S ðR̄4ðn−1Þ
þ Þ: ðA19Þ

Let us comment on the standard axiom of Euclidean field
theories.
(a) For f; g ∈ Sþ, Θf⋆ × g ∈ S<, which appears in

[OS2] and [OS4].
(b) As a special case of [OS2], f ¼ ð0; f; 0; 0;…Þ ∈ Sþ,

we have the reflection positivity for the two-
point function. For any fðxÞ ∈ SþðR4Þ ¼
ff ∈ S ðR4Þ; supp f ⊂ R3 × ½0;∞Þg,Z

d4xd4yf̄ðϑxÞfðyÞS2ðx; yÞ ≥ 0; ðA20Þ

19Note that this norm can be written in terms of gðuÞ
on ½−1; 0� by identifying u ¼ − 1

1þλ as kfðλÞk½0;∞�
n ¼

maxk∈f0;1;…;ngu∈½−1;0�j ∂
kg

∂uk j, which is clearly finite for
f ∈ S ð½0;∞�Þ.

20Contrary to the original expectation, temperedness of the
(higher-point) Wightman functions would not be guaranteed by
[OS0]–[OS4] [38,57]. For the two-point sector, this condition is
irrelevant since the temperedness of the Wightman function can
be derived by the other conditions. However, it should be noted
that complex singularities also violate this condition. Note also
that this condition can be replaced by, e.g., a slight stronger
condition, “linear-growth condition”, which controls growth of
Sn in n [38]. Since the aim of imposing this condition is to control
behavior of the higher-point functions, we do not go far into this
condition in this paper.
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which is equivalent to, in terms of S1ðy − xÞ ≔
S2ðx; yÞ and Fourier transforms of S1 and f in the
spatial directions,

Z
dx4dy4

Z
d3p⃗
ð2πÞ3 f̄ðp⃗; x

4Þfðp⃗; y4ÞS1ðp⃗;−x4 − y4Þ

≥ 0: ðA21Þ

(c) Usually, S1ðp⃗; τÞ is an ordinary function. In this case,
the reflection positivity is often checked by a neces-
sary condition,

S1ðp⃗; τÞ ≥ 0 for all τ > 0; p⃗: ðA22Þ

If not, there exists ðp⃗�; τ�Þ such that S1ðp⃗�; τ�Þ < 0,
and we can choose a test function fðp⃗; τÞ with its
support sufficiently close to ðp⃗�; τ�=2Þ so that the left-
hand side of (A21) is negative. Observing the sign of
S1ðp⃗; τÞ is relatively easy but is not enough to test the
reflection positivity completely even in the two-point
sector. For example, a propagator with complex poles
and largely positive spectral function will not show the
negativity of S1ðp⃗; τÞ, while the reflection positivity
itself is violated as proven in Theorem 6.

(d) The Schwinger function Sn−1ðξ1;…; ξn−1Þ ∈
S 0ðR4ðn−1Þ

þ Þ, i.e., Snðx1;…; xnÞ≕ Sn−1ðx2 − x1; x3 −
x2;…; xn − xn−1Þ for x41 < x42 < � � � < x4n is regarded
as the “values” of the Wightman function at pure
imaginary times or Euclidean points,21

Wn−1ðð−iτ1; ξ⃗1Þ; ð−iτ2; ξ⃗2Þ;…; ð−iτn−1; ξ⃗n−1ÞÞ
¼ Sn−1ððξ⃗1; τ1Þ; ðξ⃗2; τ2Þ;…; ðξ⃗n−1; τn−1ÞÞ: ðA23Þ

One expects that the Wightman function is holomor-
phic in the (extended) holomorphic tube and that the
holomorphic Wightman function provides the vacuum
expectation value of the fields as its boundary value as
the usual case [36],

Wn−1ðξ1;…; ξn−1Þ
¼ lim

η1;���ηn−1→0
η1 ;���ηn−1∈Vþ ;

Wn−1ðξ1 − iη1;…; ξn−1 − iηn−1Þ; ðA24Þ

where Vþ denotes the forward light cone. Therefore,
the Wightman function is reconstructed from
the Schwinger function analytically continued to
Reτk > 0,

Wn−1ððt1; ξ⃗1Þ; ðt2; ξ⃗2Þ;…; ðtn−1; ξ⃗n−1ÞÞ
¼ lim

τ1;…;τn−1→þ0
Sn−1ððξ⃗1; τ1 þ it1Þ;

ðξ⃗2; τ2 þ it2Þ;…; ðξ⃗n−1; τn−1 þ itn−1ÞÞ; ðA25Þ

since ðð−iðτ1 þ it1Þ; ξ⃗1Þ; ð−iðτ2 þ it2Þ; ξ⃗2Þ;…;
ð−iðτn−1 þ itn−1Þ; ξ⃗n−1Þ for τ1;…; τn−1 > 0 is in the
tube R4ðn−1Þ − iVn−1þ . Note that the spacelike com-
mutativity of the Wightman functions follows from
the permutation symmetry [OS3] and expected
holomorphy of the analytically continued Schwinger
functions Sn−1 in the extended tube.

(e) A generalization of the Osterwalder-Schrader axiom
without the reflection positivity was proposed in [58].
However, the new axiom (“Hilbert space structure
condition” with “S continuity”, where the latter is
introduced for a convenient purpose) is strong enough
to derive the Laplace transform condition and prohibit
complex singularities.

APPENDIX B: PROOF OF VIOLATION OF THE
REFLECTION POSITIVITY IN THE PRESENCE

OF COMPLEX SINGULARITIES

For the proof of violation of the reflection positivity
(Theorem 6), the goal of this section is to prove Theorem 11
that the reflection positivity leads to temperedness of a
reconstructed two-point Wightman function. Consequently,
violation of the reflection positivity in the presence of
complex singularities follows from the nontemperedness
(Theorem 5).
This proof is essentially a simplified version of steps (a)

and (b) of the Osterwalder-Schrader Theorem [37].
Lemma 4.—Suppose that the two-point Schwinger

function S2 satisfies
(i) temperedness, S2 ∈ 0S 0ðR4·2Þ,
(ii) translational invariance, S2ðx1 þ a; x2 þ aÞ ¼

S2ðx1; x2Þ for all a ∈ R4,
(iii) the reflection positivity for the two-point sec-

tor (A20),
which follow from [OS0] temperedness, [OS1] Euclidean
invariance, and [OS2] reflection positivity, respectively.
Then, S1ðx2 − x1Þ ≔ Snðx1; x2Þ (after smearing the spa-

tial directions) can be analytically continued to the right-
half plane (Reðx42 − x41Þ > 0), and its analytic continuation
can be regarded as a tempered distribution on the half-
plane and the spatial directions. More precisely, for any
hðξ⃗Þ ∈ S ðR3Þ, there exists a holomorphic function S1ðτ þ
isjhÞ on the right-half plane (τ > 0) such that
(a) On the real axis, S1ðτjhÞ ¼

R
d3ξ⃗S1ðξ⃗; τÞhðξ⃗Þ.

(b) S1ðτ þ isjhÞ can be regarded as an element of
½S ðRþÞ⊗̂S ðRÞ�0, the dual space of S ðRþÞ⊗̂S ðRÞ.

(c) S1ðτ þ isjhÞ is continuous in hðξ⃗Þ ∈ S ðR3Þ.

21More generally, the Schwinger functions at noncoincident
points are regarded as the “values” at Euclidean points of the
holomorphic Wightman function defined on the permuted ex-
tended tube (see [[37], Sec 4.5]).
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Proof.—First of all, using (i) temperedness and (ii) trans-
lational invariance, there exists S1ðξÞ ∈ S 0ðR4þÞ such that
S2ðx1; x2Þ ¼ S1ðx2 − x1Þ for x41 < x42.
We prove the claim with the following steps:
Step 1. Constructing a Hilbert space with the form (A20)
Step 2. Defining spatial and (imaginary-)temporal trans-
lation operator and “Hamiltonian”

Step 3. Analytic continuation using the holomorphic
semigroup generated by the “Hamiltonian”

Step 1. Defining a Hilbert space with the form (A20)
Let us first begin with constructing a Hilbert space.

For f; g ∈ SþðR4Þ, we define a sesquilinear form on
SþðR4Þ ×SþðR4Þ by

ðf; gÞ ≔ S2ðΘf⋆ × gÞ ¼
Z

d4xd4yf̄ðϑxÞgðyÞS1ðy − xÞ;

ðB1Þ

which is positive semidefinite: kfk2 ≔ ðf; fÞ ≥ 0 from
(A20). We introduce N as the space of all zero norm
vectors, i.e.,

N ≔ ff ∈ SþðR4Þ; kfk2 ¼ 0g: ðB2Þ

We then obtain a pre-Hilbert space SþðR4Þ=N and
denote its completion by K . Therefore, K is a Hilbert
space and contains SþðR4Þ=N as a dense subset D0,
namely, SþðR4Þ=N ≃D0 ⊂ K .
We denote the (continuous) natural map by

v∶SþðR4Þ → K , whose image is D0, and the inner
product on K by ð·; ·ÞK . It follows that, for
f; g ∈ SþðR4Þ,

ðvðfÞ; vðgÞÞK ¼ ðf; gÞ: ðB3Þ

Step 2. Constructing translation operators and
“Hamiltonian”
Next, we define translational operators on K .
For spatial directions, we define Ûsða⃗Þ on SþðR4Þ by

ðÛsða⃗ÞfÞðxÞ ≔ fðx − aÞ; ðB4Þ

for a ¼ ða⃗; 0Þ and f ∈ SþðR4Þ. Note that ðÛsða⃗Þf;
Ûsða⃗ÞgÞ ¼ ðf; gÞ. We then define the unitary operator
Usða⃗Þ on K by a continuous extension of Usða⃗Þ defined
on D0,

Usða⃗ÞvðfÞ ≔ vðÛsða⃗ÞfÞ: ðB5Þ

Similarly, for τ > 0, we define T̂τ on SþðR4Þ by

ðT̂τfÞðxÞ ≔ fðx⃗; x4 − τÞ: ðB6Þ

Note that τ > 0 is necessary to guarantee supp ðT̂τfÞ ⊂
R3 × ½0;∞Þ. Recalling (B1), we have

ðT̂τf; gÞ ¼ ðf; T̂τgÞ; ðB7Þ

for f; g ∈ SþðR4Þ and τ ≥ 0.
Next, let us derive the following bound: for any τ > 0,

f ∈ SþðR4Þ,

ðf; T̂τfÞ ≤ ðf; fÞ ¼ kfk2: ðB8Þ

Beforehand, we see that ðf; T̂τfÞ grows at most polyno-
mially in τ. Indeed, by the definition (B1),

ðf; T̂τfÞ ¼
Z

d4xd4yf̄ðxÞfðyÞS1ðy⃗ − x⃗; τ þ x4 þ y4Þ;

ðB9Þ

which shows ðf; T̂τfÞ increases at most polynomially as
τ → ∞ because of the temperedness of S1ðξÞ ∈ S 0ðR4þÞ.
Then, by using the Cauchy-Schwarz inequality and (B7)
recursively, we have

ðf; T̂τfÞ ≤ ðf; fÞ1=2ðT̂τf; T̂τfÞ1=2
¼ ðf; fÞ1=2ðf; T̂2τfÞ1=2
≤ ðf; fÞ1=2þ1=4ðT̂2τf; T̂2τfÞ1=4
¼ ðf; fÞ1=2þ1=4ðf; T̂4τfÞ1=4 ≤ � � �
≤ ðf; fÞ12þ1

4
þ���þ 1

2n exp ½2−n lnðf; T̂2nτfÞ�; ðB10Þ

for all positive integer n, positive real τ > 0, and
f ∈ S ðR4þÞ. As n → ∞, 2−n lnðf; T̂2nτfÞ → 0 due to (at
most) linear growth of lnðf; T̂2nτfÞ in n. Therefore, the
n → ∞ limit of (B10) gives the bound (B8).
In particular, for any f ∈ N , T̂τf is also zero-norm

T̂τf ∈ N , since

ðT̂τf; T̂τfÞ ¼ ðf; T̂2τfÞ ≤ ðf; fÞ ¼ 0: ðB11Þ

Thus, the natural map of T̂τ onS ðR4þÞ=N is well defined.
We define Tτ

0 to be the operator defined on D0,

Tτ
0vðfÞ ≔ vðT̂τfÞ: ðB12Þ

So far, Tτ
0 is defined on the dense domainD0, symmetric

from (B7), and bounded from (B8). Then, we can extend Tτ
0

to be defined on the whole K by continuity and have a
self-adjoint contraction22 Tτ on K . Note that the semi-
group fTτgτ≥0 is strongly continuous due to (1) the

22From (B8), the operator norm of Tτ is less than or equal to 1:
kTτkop ≤ 1. A bounded operator with this property is called a
contraction.
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boundedness kTτkop ≤ 1 from (B8) and (2) continuity for
points in D0, limτ↓0 kTτvðfÞ − vðfÞk ¼ 0 from the defi-
nition (B1).
Let us define the infinitesimal generator of the semi-

group fTτgτ≥0, “Hamiltonian”, by H. Formally,23

H ≔ lim
τ↓0

1

τ
ð1 − TτÞ: ðB14Þ

Since the family of self-adjoint operators fTτgτ≥0 sat-
isfies (i) kTτkop ≤ 1, (ii) fTτgτ≥0 form a semigroup, and
(iii) this semigroup is strongly continuous (iv) T0 ¼ 1, a
variant of Stone’s theorem yields that the infinitesimal
generator H is a self-adjoint operator, e.g., [ [59],
Theorem VIII. 8 and page 315]. Therefore, we can define
a strongly continuous one-parameter group of unitary
operators on K generated by H, fTis ≔ e−iHsgs∈R by
Stone’s theorem. Tis corresponds to the real-time trans-
lation operator.
Finally, we define a “holomorphic semigroup”,

fTτþis ≔ TτTis; τ > 0; s ∈ Rg: ðB15Þ

Step 3. Analytic continuation using the holomorphic
semigroup generated by the “Hamiltonian”
First, let us consider

ðvðfÞ; TisvðgÞÞK ; ðB16Þ

which is a continuous bilinear functional on ðf̄ðϑxÞ;
gðyÞÞ ∈ S −ðR4Þ ×SþðR4Þ, where S −ðR4Þ ≔ ffðϑxÞ;
fðxÞ ∈ SþðR4Þg. From the Schwartz nuclear theorem,
we can write this as a continuous linear functional of
Θf⋆ × g,

ðvðfÞ; TisvðgÞÞK ¼
Z

dxdyðΘf⋆ × gÞðx; yÞS2ðx; yjsÞ;

ðB17Þ

where S2ðx; yjsÞ is a distribution over the space
S −ðR4Þ⊗̂SþðR4Þ ≃ ffðx; yÞ ∈ S ðR4·2Þ; f ¼ 0 unless
x4 < 0 < y4g. Due to the translational invariance arising
from ½Usða⃗Þ; Tis� ¼ 0 and ½Ta4 ; Tis� ¼ 0, S2ðxþ a; yþ
ajsÞ ¼ S2ðx; yjsÞ for a ∈ R3 × ½0;∞Þ, from which
S2ðx; yjsÞ ¼ S1ðy − xjsÞ with S1ðy − xjsÞ ∈ S 0ðR4þÞ.

Note that S1ðξjsÞ satisfies

S1ðξj0Þ ¼ S1ðξÞ: ðB18Þ

Moreover, the unitarity of Tis provides the upper bound
on ðvðfÞ; TisvðgÞÞK in s. We can thus regard S1ðy − xjsÞ
∈ ½S ðR4þÞ⊗̂S ðRÞ�0.
Using S1ðξjsÞ, we also have

ðvðfÞ; TτþisvðgÞÞK
¼

Z
dxdyðΘf⋆ × gÞðx; yÞS1ðy⃗ − x⃗; y4 − x4 þ τjsÞ:

ðB19Þ

From the construction of Tτþis, the left-hand side is
holomorphic in τ þ is for τ > 0. Therefore, by using the
uniqueness of the Schwartz nuclear theorem, S1ðξ⃗; τjsÞ
satisfies the Cauchy-Riemann equation in the sense of a
distribution.
Now, we consider one smeared in the spatial directions,

S1ðτ; sjhÞ ≔
Z

d3ξ⃗S1ðξ⃗; τjsÞhðξ⃗Þ ∈ ½S ðRþÞ⊗̂S ðRÞ�0;

ðB20Þ

for hðξ⃗Þ ∈ S ðR3Þ. The Cauchy-Riemann equation of
S1ðτ; sjhÞ holds for τ > 0 (still in the sense of a distribu-
tion). From [60] [p. 31], S1ðτ; sjhÞ is a holomorphic
function in τ þ is for τ > 0.
S1ðτ; sjhÞ also satisfies the following:

(a) On the real axis s ¼ 0, S1ðτjhÞ ¼
R
d3ξ⃗S1ðξ⃗; τÞhðξ⃗Þ

from (B18).
(b) S1ðτ þ isjhÞ can be regarded as an element of

½S ðRþÞ⊗̂S ðRÞ�0 from the definition (B20).
(c) S1ðτ þ isjhÞ is continuous in hðξ⃗Þ ∈ S ðR3Þ from

S1ðy − xjsÞ ∈ ½S ðR4þÞ⊗̂S ðRÞ�0.
Hence, this holomorphic function is what we desire. This

completes the proof. ▪
Furthermore, we need the following lemma to guarantee

the existence and temperedness of the boundary value.
Lemma 5.—Let Sðτ þ isÞ be a holomorphic function

defined on the right-half plane τ > 0 that can be identi-
fied with an element of ½S ðRþÞ⊗̂S ðRÞ�0, the dual
space of S ðRþÞ⊗̂S ðRÞ. Then, the boundary value of
Sðτ þ isÞ at τ → 0 is a tempered distribution:
limτ↓0 Sðτ þ isÞ ∈ S 0ðRÞ. Moreover, if such a holomor-
phic function Sðτ þ isjhÞ is a continuous linear functional
of h on another function space for each τ > 0; s ∈ R, then
the smeared boundary value is also continuous in h.24

23In terms of the original space S ðR4þÞ, H can be regarded as
−∂4 ¼ − ∂

∂x4. Note that the reflection ϑ in (B1) makes − ∂
∂x4

Hermitian. More precisely,H can be defined on the dense domain
D0, and

HvðfÞ ¼ vð−∂4fÞ; ðB13Þ

for f ∈ S ðR4þÞ.
24This proof is based on Lemma 8.7 in [37] and Theorems

2–10 in [36].
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Proof.—We prove that, for any test function
fðsÞ ∈ S ðRÞ, the limit

lim
τ↓0

Z
dsSðτ þ isÞfðsÞ ðB21Þ

exists and is continuous in fðsÞ ∈ S ðRÞ, i.e.,
limτ↓0

R
dsSðτ þ isÞfðsÞ → 0 as f → 0 in S ðRÞ.

Let us proceed with the following steps:
Step 1. Polynomial growth in s and τ−1

Step 2. A bound for Sðτ þ isÞ smeared with a test
function

Step 1. Polynomial growth in s and τ−1

We show that the holomorphic function Sðτ þ isÞ grows
at most polynomially in s and τ−1.
Let τ0 þ is0 be an arbitrary point on the right-half plane.

The mean-value property yields

Sðτ0 þ is0Þ ¼
Z

2π

0

dφ
2π

Sðτ0 þ is0 þ reiφÞ; ðB22Þ

for arbitrary 0 < r < τ0. We may average this expression in
r with some weight. Let hðrÞ be a smooth function with
suppsupph ⊂ ½1

4
; 1
2
� satisfying R

∞
0 dr rhðrÞ ¼ 1. We define

h0ðrÞ ≔ τ−20 hðτ−10 rÞ, which satisfies
R∞
0 dr rh0ðrÞ ¼ 1

and supp h0 ⊂ ½τ0
4
; τ0
2
�ð⊂ ½0; τ0ÞÞ.

Therefore, we have

Sðτ0þ is0Þ ¼
Z

∞

0

drrh0ðrÞ
Z

2π

0

dφ
2π

Sðτ0þ is0þ reiφÞ

¼
Z

dτdsSðτþ isÞh0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ− τ0Þ2þðs− s0Þ2

q
Þ:

ðB23Þ

Since h0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ − τ0Þ2 þ ðs − s0Þ2

p
Þ ∈ S ðRþÞ⊗̂S ðRÞ due

to the compactness of supph0, there exist non-negative
integers M;N ∈ Z≥0, and a constant C > 0 such that

jSðτ0þ is0Þj≤Ckh0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ−τ0Þ2þðs−s0Þ2

q
ÞkM;N; ðB24Þ

where k · kM;N is the norm25 defined by

kfðτ;sÞkM;N ≔
X

k1 ;k2∈Z≥0
k1þk2≤M

X
l1 ;l2∈Z≥0
l1þl2≤N

sup
τ;s

����τk1sk2 ∂l1

∂τl1
∂l2

∂sl2 fðτ;sÞ
����:

ðB25Þ

The bound for jSðτ0 þ is0Þj can be evaluated as

jSðτ0 þ is0Þj ≤ Ckh0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ − τ0Þ2 þ ðs − s0Þ2

q
ÞkM;N

¼ Cτ−20
X

k1 ;k2∈Z≥0
k1þk2≤M

X
l1 ;l2∈Z≥0
l1þl2≤N

sup
τ;s

����τk1sk2 ∂l1

∂τl1
∂l2

∂sl2 hð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ=τ0 − 1Þ2 þ ðs=τ0 − s0=τ0Þ2

q
Þ
����

¼ C
X

k1 ;k2∈Z≥0
k1þk2≤M

X
l1 ;l2∈Z≥0
l1þl2≤N

τk1þk2−l1−l2−2
0 sup

τ0;s0

����ð1þ τ0Þk1ðs0=τ0 þ s0Þk2 ∂l1

∂τ0l1
∂l2

∂s0l2 hð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ02 þ s02

p
Þ
����

¼ C
X

k1 ;k2∈Z≥0
k1þk2≤M

X
l1 ;l2∈Z≥0
l1þl2≤N

Xk2
m¼0

k2!
m!ðk2 −mÞ! τ

k1þk2−l1−l2−m−2
0 sm0 sup

τ0;s0

����ð1þ τ0Þk1ðs0Þk2−m ∂l1

∂τ0l1
∂l2

∂s0l2
hð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ02 þ s02

p
Þ
����:
ðB26Þ

Note that the last term of supτ0;s0 does not depend on τ0,
s0. Hence, we finally obtain that, for 0 < τ0 < τ� with an
arbitrary fixed τ�, there exists a polynomial Pðs0Þ and an
integer n ∈ Z such that

jSðτ0 þ is0Þj ≤ τ−n0 Pðs0Þ: ðB27Þ

Step 2. A bound for smeared Sðτ þ isÞ
So far, we have shown that jSðτ þ isÞj is of at most

polynomial growth in τ−1 as τ↓0. To prove the existence
and continuity of the limit (B21), we derive a stronger
bound for Sðτ þ isÞ smeared by a test function.
Let us consider Sðτ þ isÞ smeared by a test function

fðsÞ ∈ S ðRÞ,

Sðτ; fÞ ≔
Z

dsSðτ þ isÞfðsÞ: ðB28Þ25Recall that the topology of the spaces of test functions are
introduced with the family of these (semi-)norms.
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By the Cauchy-Riemann equation ∂
∂τ Sðτ þ isÞ ¼ −i ∂

∂s Sðτ þ isÞ, we have

∂nþ1

∂τnþ1
Sðτ; fÞ ¼

Z
dsSðτ þ isÞ

�
i
∂
∂s

�
nþ1

fðsÞ

¼ inþ1Sðτ; ∂nþ1
s fÞ; ðB29Þ

and therefore, for sufficiently small τ,���� ∂nþ1

∂τnþ1
Sðτ; fÞ

���� ≤
�Z

dsPðsÞ
� ∂
∂s

�
nþ1

fðsÞ
�
τ−n

¼ Cn;fτ
−n; ðB30Þ

where Cn;f > 0 is a positive constant, and we have used the result of the previous step (B27). Note that Cn;f → 0 as f → 0

in S ðRÞ.
Moreover, note that Sðτ; fÞ is represented by the iterative integration

Sðτ; fÞ ¼ ð−1Þnþ1

Z
τ�

τ
dτ1

Z
τ�

τ1

dτ2 � � �
Z

τ�

τn

dτnþ1

∂nþ1S
∂τnþ1

ðτnþ1; fÞ þ
Xn
k¼0

1

k!
ðτ − τ�Þk

∂kS
∂τk ðτ�; fÞ: ðB31Þ

Because of the estimate (B30), the limit τ → þ0 converges. Thus, the boundary value (B21) exists. For the continuity in
S ðRÞ, we obtain the bound

jSðτ; fÞj ≤ Cn;f

Z
τ�

τ
dτ1

Z
τ�

τ1

dτ2 � � �
Z

τ�

τn

dτnþ1τ
−n þ

Xn
k¼0

1

k!
jτ − τ�jk

���� ∂kS
∂τk ðτ�; fÞ

����; ðB32Þ

which implies

lim
τ↓0

jSðτ; fÞj ≤ Cn;f

Z
τ�

0

dτ1

Z
τ�

τ1

dτ2 � � �
Z

τ�

τn

dτnþ1τ
−n þ

Xn
k¼0

1

k!
jτ�jk

���� ∂kS
∂τk ðτ�; fÞ

����: ðB33Þ

Therefore, the right-hand side of (B33) tends to vanish as
f → 0 in S ðRÞ, which establishes the continuity of
the boundary value in S ðRÞ. Hence, the boundary value
of a given holomorphic function is a tempered distribution.
For the latter assertion, suppose the holomorphic

function Sðτ þ isjhÞ is a continuous linear functional on
another space of test functions h. Similarly to (B28), let
Sðτjh; fÞ denote the function smeared by a test function
fðsÞ ∈ S ðRÞ. From the assumed continuity, h → 0 yields
Sðτ þ isjhÞ → 0 for each τ > 0; s ∈ R. Thus, Cn;f and

j ∂kS∂τk ðτ�jh; fÞj tend to vanish as h → 0. Therefore, the
bound (B33) implies that the smeared boundary value
limτ↓0 Sðτjh; fÞ is continuous in h.
This completes the proof. ▪
Theorem 11.—Suppose that the two-point Schwinger

function S2 satisfies
(i) temperedness, S2 ∈ 0S 0ðR4·2Þ,

(ii) translational invariance, S2ðx1 þ a; x2 þ aÞ ¼
S2ðx1; x2Þ for all a ∈ R4, and

(iii) the reflection positivity for the two-point sec-
tor (A20).

Then, the reconstructed Wightman function is a tempered
distribution.
Proof.—It immediately follows from Lemmas 4 and 5

that the reconstructed Wightman function is a continuous
bilinear functional on ðf; hÞ ∈ S ðRÞ ×S ðR3Þ. We obtain
the reconstructed Wightman function as a tempered dis-
tribution W1ðξ0; ξ⃗Þ ¼ limτ↓0 S1ðξ⃗; τjξ0Þ ∈ S ðR4Þ by the
Schwartz nuclear theorem. ▪
Note that (i) the temperedness and (ii) the translational

invariance are assumed in the definition of complex
singularities; only (iii) the reflection positivity can be
invalid. From the nontemperedness of complex singular-
ities, we finally obtain Theorem 6.
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APPENDIX C: WHICH AXIOMS ARE
VIOLATED?

In this section, we summarize which axioms are violated
or not violated due to the existence of complex
singularities.

(I) Osterwalder-Schrader axioms for Schwinger func-
tions [37,38]:
[OS0] Temperedness (for the two-point function) is

assumed in the definition Sec. III A.
[OS1] Euclidean invariance (for the two-point func-

tion) is assumed in the definition Sec. III A.
[OS2] Reflection positivity is violated (Theorem 6).
[OS3] Symmetry (for the two-point function) is

assumed in the definition Sec. III A.
[OS4] Cluster property (for the two-point function)

depends on massless singularity (irrelevant to
complex singularities).

[OS 0’] Laplace transform condition is itself violated,
since this requires temperedness of the Wightman
function. (However, this condition is required only for
reconstructing higher-point functions [38].)

(II) Wightman axioms for Wightman functions [ [36],
Theorem 2–6]:
[W0] Temperedness is violated.
[W1] Poincaré symmetry (for the two-point

function) is valid [for test functions
in DðR4Þ].

[W2] Spectral condition is violated, since the spec-
tral condition requires the temperedness as a
prerequisite.

[W3] Spacelike commutativity (for the two-point
function) is valid [for test functions in
DðR4Þ].

[W4] Positivity is violated even for test functions
in DðR4Þ.

[W5] Cluster property (for the two-point function)
depends on massless singularity (irrelevant to
complex singularities).

Therefore, the axioms whose violations are proved are
[OS2] Reflection positivity, [OS0′] Laplace transform
condition, [W0] Temperedness, [W2] Spectral condition,
and [W4] Positivity.
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