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We present a calculation of the decays ;) — z*z~y*) at the one-loop level up to and including next-to-
next-to-leading order (NNLO) in large-N, chiral perturbation theory. The numerical evaluation of the
results is performed successively at LO, NLO, and NNLO, fitting the relevant low-energy constants to the
available experimental data. We discuss the widths and decay spectra of #() — ztz7y as well as

n") =zt T, with [ = e, p.
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I. INTRODUCTION

Theoretical and experimental interest in the decays () —
7t~y encompasses several aspects (see, e.g., Ref. [1] for
a review). First, the decays receive contributions from the
chiral box anomaly of quantum chromodynamics (QCD)
[2,3] and allow us to study the p — @ mixing mechanism in
terms of internal resonance contributions. Second, they can
be used in a dispersion-theoretical extraction of the form
factors for the two-photon interactions of the light pseudo-
scalar mesons (7[0, n, ') [4-6], which enter the calculation
of the hadronic light-by-light (HLbL) scattering contribut-
ing to the anomalous magnetic moment of the muon [7-9].
Furthermore, the decays #() — 7t z~y™*) provide a test of P
and CP violation [10-12] as well as facilitate a search for
beyond standard model physics, namely, the search for
axionlike particles [1].

In addition to this phenomenological relevance, the
decays n) = ztz=y*) allow us to investigate the sym-
metry-breaking mechanisms in QCD. In the low-energy
regime of QCD, an interplay occurs between dynamical
(spontaneous) breaking of chiral symmetry, the explicit
symmetry breaking by the quark masses, and the axial
U(1), anomaly. For vanishing up-, down-, and strange-
quark masses, the QCD Lagrangian at the classical level
exhibits a global U(3), x U(3), chiral symmetry, which is
dynamically broken down to SU(3), x U(1), in the
ground state (see, e.g., Ref. [13]). One would then expect
the appearance of nine massless pseudoscalar Goldstone
bosons [14]. However, quantum corrections destroy the
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U(1), symmetry, and the singlet axial-vector current is
no longer conserved [U(1), anomaly]. As a result, the
corresponding singlet Goldstone boson acquires a mass in
the chiral limit as well [15-17]. In the large-number-of-
colors limit (LN,) of QCD [18,19],i.e., N, — oo with ¢*N,
fixed, the divergence of the anomalous singlet axial-vector
current vanishes, and the singlet pseudoscalar becomes a
Goldstone boson in the combined chiral and LN, limits. In
total, this leads to a pseudoscalar nonet (7, K, 5, 177) as the
Goldstone bosons [16,20]. Therefore, we use massless LN,
QCD as a starting point for perturbative calculations and
treat the symmetry breaking by the U(1), anomaly and the
nonzero quark masses as corrections.

At leading order, the decays () — 7tz y*) are deter-
mined by the chiral box anomaly, which is contained in
the Wess-Zumino-Witten (WZW) effective action [2,3].
Corrections to the WZW prediction result from the axial
U(1), anomaly and the nonzero quark masses. These
mechanisms not only generate masses for the Goldstone
bosons but are also responsible for the 7 — 7’ mixing. These
effects can be systematically calculated in the framework of
large-N, chiral perturbation theory (LN .ChPT) [21-23],
which is an extension of conventional ChPT [24], where the
pseudoscalar singlet is included. The most general effective
Lagrangian of LN.ChPT is organized in a combined
expansion in momenta (derivatives), quark masses, and
1/N,.. Observables are calculated perturbatively, with a
power counting determined by a collective small expansion
parameter o [21].

In this work, we investigate the decays () — 7+ 7~y
at next-to-next-to-leading order (NNLO) in LN_.ChPT.
Since the dynamical range of the decay involving a real
photon, 4M2 < s,, < Mi(,), is far from the chiral limit,

higher-order corrections become important, motivating an
investigation of their influence. In Sec. II, we specify the
effective theory we use for our calculations by briefly
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describing the Lagrangians and the power counting. The
calculation of the invariant amplitude is explained in
Sec. III, including the # — #' mixing. Section IV contains
the numerical evaluation of the results at LO, NLO, and
NNLO. In Sec. V, the decays ) — ztz~I*I~ involving a
lepton pair are discussed, and we conclude with a summary
and an outlook of future work in Sec. VI.

II. LAGRANGIANS AND POWER COUNTING

In the framework of LN .ChPT, we perform a simulta-
neous expansion of (renormalized) Feynman diagrams
in terms of momenta p, quark masses m, and 1/ Nc.1
We introduce a collective expansion parameter 6 and count
the variables as small quantities of the order of [21]

p=0(8)., m=0@6), 1/N.=01). (1)
The most general Lagrangian of LN .ChPT is organized as
an infinite series in terms of derivatives, quark-mass terms,
and, implicitly, powers of 1/N,, with the scaling behavior
given in Eq. (1):

Log=LO+ LD+ L@ 42O 4 (2)

where the superscripts (i) denote the order in §. In Ref. [25],
we explain the power counting and present the relevant
Lagrangians that are used in this work. Here, we briefly
outline our approach and refer the reader to Ref. [25] for
further details.

At leading order, the decays ) — ztz~y*) are driven
by the chiral anomaly in terms of the WZW action [2,3],
which belongs to the odd-intrinsic-parity sector of the
effective field theory. Since our goal is a one-loop calcu-
lation of the decays n") = ztz~y®), which is NNLO in
the 6 counting, we employ the LO, NLO, and NNLO
Lagrangians of even intrinsic parity as given in Ref. [25].
From the WZW action, which starts contributing at O(5),
we obtain the lowest-order Lagrangian relevant for our
calculation,

1 ieN, , ,
Loty = 34z s e 9P 9P P07, (3)

where Q is the quark-charge matrix and

\/%’71 +\/L§778 V2nt 0
b=| VI S+ 0
0 0 \/%’71 _%7]8

"t is understood that dimensionful variables need to be small
in comparison with an energy scale.

Counting F as O(y/N,), the meson fields as O(y/N,.), the
derivatives as O(p), and the external photon field as O(p),
the Lagrangian of Eq. (3) is indeed of O(§). In addition to the
WZW action, we need the NLO and NNLO Lagrangians
from the odd-intrinsic-parity sector, resulting in

Lo= Ly, +L8+ ), (4)

where the superscripts (7) refer to the order in . Again, the
explicit expressions for the Lagrangians are displayed in
Ref. [25]. Only the terms of the O( p®) Lagrangian need to be
updated to those which are specific for the processes of this
work. We present them in Table I in terms of the building
blocks provided in Ref. [25].

III. CALCULATION OF THE INVARIANT
AMPLITUDE

The invariant amplitude for the decay P(p)—

7t (p))a=(p2)r™)(q) of a pseudoscalar meson P can be
parametrized by

M = —l-er(S,m, Z, u)eﬂy(l/}e”*p‘fpgqﬁ, (5)

where €/ denotes the polarization vector of the photon, e is
the electric charge, and s,, = (p; + p2)% t = (p — p1)%,
u=(p—p,)?* are the Mandelstam variables, satisfying
Sgr+1+u=M3+2M3 + g*. Because of the charge-
conjugation invariance of the strong and the electro-
magnetic interactions, the form factor Fp satisfies
Fp(Sgqst,u) = Fp(8,,, u, t). To obtain the invariant ampli-
tude up to and including NNLO, we have to evaluate the
Feynman diagrams shown in Fig. 1, where the vertices are
obtained from the Lagrangians given in Sec. II and in
Ref. [25].

The coupling to the electromagnetic field is described
by introducing an external field which couples to the
electromagnetic current operator

T =qQr'q. (6)

where Q is the quark-charge matrix. For N. = 3, the quark-
charge matrix is given by

0(3) = diag(%,—%,-%), )

However, Bir and Wiese pointed out [26] that in order for
the Standard Model to be consistent for arbitrary N, the
ordinary quark-charge matrix should be replaced by (see
also Ref. [27])
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TABLE I. Relevant terms of EEZ’N”I’(’) and £ ”).

Lagrangian LEC Operator SU@3)
L&V L9 () {(H)  (DU)_(DgU)_ + rev} e’ X
g ((1)-A(G) 4 (DU)_(DyU)_ —rev})e X
Lg* ((0)-(DLU) (Gya) 4 (DgU) )& X
LYy ((Guw) {(D'D,U)L(DyU)_(D;U)_ = rev})ere” X
LYy ((Gw) {(D;D,U)L(D*U) _(DyU)_ —rev})er X
£&" L3¢ () (DU)Y(DU)_(Hyp) ) X
Lge ()NG4 (DU)_(DyU) _)ere? X
Loy i (N f gty ity) ()
Loog i (Vo f upuy)(u,) + Hee.
Ly i (f . "hy,u;)(u,) + H.c.
Lo3o i€ (f h; ug)(u,) + Hee.
Loy i (V) (1,131,
Loy i 3, 0,y
Loy 0 1, (1, i) + Hc.
Loss M (f ) (it -)
Lass 0 f it 1) + Hee.
Adz7 (w +0) (1" (f ux yuu,) +He.)
Adzg i€ (w + O)(f s ttix u,)
Q(N,) = ldiag (L +1, 1_ 1, 1 _ 1) Furthermore, we take into account the # — 7' mixing at
2 N, N, N, NNLO, following the detailed derivation of the mixing in
1 1 1 Ref. [29]. We start by calculating the coupling of the
6]] T3 /13 W 2\/— ﬂ (8) pions and the photon to the octet and singlet fields ¢,

collected in the doublet 7, = (ng,7;)7, at the one-loop
Therefore, we use Q(N,.) for the calculation of the invariant ~ level up to and including NNLO in the & counting.
amplitude. However, in the evaluation of the Feynman  The result, which should be interpreted as a Feynman
diagrams, it turns out that, due to the flavor structure, the  rule, is given by the “matrix elements” ), = (z"z7y*|b).
N.-dependent part of Q(N,) gives no contribution to the ~ Then, we transform the bare fields 74 to the
matrix element. The Feynman diagrams are calculated  physical states using the transformation T in Eq. (51)

using the MATHEMATICA package FEYNCALC [28]. in Ref. [29]:
AN AN -
N N \
\ \ AN
/
/
A
, -
/@\/\/W -— - - -7
1/ X A N 4 @
N / ! / | ) ' /
—_— - — — _\ AN —_— - -
N O - @\/\/\/\, @—\’\1
N = ~ \
N\ \ \ \
AN \ \

FIG. 1. Feynman diagrams for ) — z*z"y* up to and including NNLO. The dashed lines refer to pseudoscalar mesons and the
wiggly lines to photons. The numbers k in the interaction blobs refer to vertices derived from the corresponding Lagrangians £*)
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)= m)G) o
m Ty, Ty n

The resulting (“physical”) matrix elements are then
obtained from

()= E)
Fy Tgy Ty Fi

For the calculation of the loop diagrams, we employ the
LO mixing.

Up to and including LO and NLO, the form factors Fp
are given by

1 .
I = A ) - V2sin(6)],  (11)
1
LO _ in(9l0) (0]
Fy 4372 F3 sin(®7) + \/ECOS(Q S

NLO _ 1
1 4\/§7[2Fi
X (14 c1aM} + c13M3 — ¢14q* + €155,,)

{[cos(6M) = v/2 sin(6!])]

—VZsin(@)e, ), (13)
1
FNLO = ——  fIsin(911) 4 /2 cos(O1)
O = e 01+ Vacos(o)
x (1+ c14M;f;, + c13sM; = €14q” + €15521)
+v2cos(0M)ec, }, (14)
where
A
L6,€
crs = =024 (L85 + 28y + 137+ 50,

ciy = S122°L%,

c1s = 51222 (2L + L8, (15)

and 6 is the corresponding mixing angle at LO (NLO),
given in Eq. (49) in Ref. [29]. The parameter c, represents a
QCD-scale-invariant combination of parameters violating
the Okubo-Zweig-lizuka (OZI) rule [23]. Let us remark
on the power counting of the form factors Fp. The LO
form factors of Eqs. (11) and (12) are of O(6) because
F, = O(y/N,), and the expression also involves a factor
N./3 evaluated at N, = 3. In combination with the factor
€uap P p3q” = O(p*), the LO invariant amplitude M
of Eq. (5) is of O(&). This is consistent with assigning the
order 6 to the WZW Lagrangian of Eq. (3) because the

product of three meson fields counts as N%c = §72, such that
the order of M is given by 1+ 3 = 3 [29]. Moreover, for
consistency, the LO amplitudes need to be calculated with
the LO mixing angle. On the other hand, the NLO results
of Egs. (13) and (14) receive corrections that are either
explicitly down by one order of p? or of 1/N, or implicitly
down by the use of the NLO mixing angle. Using, for
simplicity, the NLO mixing angle for the complete expres-
sion amounts to introducing an error of NNLO which is
beyond the accuracy of a NLO calculation.

Since the expressions at NNLO are very long, we only
display the loop corrections, corresponding to the loop
diagrams in Fig. 1, in Appendix A. However, the tree-level
contributions can be provided as a MATHEMATICA note-
book. At NNLO, we have to deal with a proliferation of
LECs and the fact that the O(p?) Lagrangian, which should
be taken into account according to our power counting, has
not been constructed. Therefore, we make the following
ansatz for the form factors up to and including NNLO:

1
FYNLO(5 ) — FLO 4 W (by + CySan + dySiz)
+1o0ps, (5,). (16)
1
NNLO — Lo 2
F'7/ (S;m) = F71/ + m (bn/ + CyfSan + dn«s,m)

+ loops,, (Szr), (17)

where FXO are the LO form factors given in Egs. (11) and
(12), and the expression loopsp(s,,) refers to the s,,-
dependent parts of the loop corrections. The parameters
bp and cp receive contributions from the higher-order
Lagrangians in Sec. II and Ref. [25] as well as from, in
principle, the O(p®) Lagrangian. In addition, the LECs and
loop contributions originating from the # — 7’ mixing are
also absorbed in bp and cp. The parameters dp consist
solely of terms from the O(p®) Lagrangian. However, the
most general form factor at NNLO could depend on a
second kinematic variable 7 or u and is symmetric under the
exchange ¢ <> u. This dependence would be introduced by
the O(p®) Lagrangian. On the basis of a vector-meson-
exchange picture, where only the s, .-channel exchange of a
neutral p meson can contribute, we neglect, for simplicity,
any t or u dependence and employ the ansatz in Egs. (16)
and (17).

A measurable observable of the decay is provided by the
differential cross section as a function of the photon energy

1 s
=—(Mp,-22), 18
o= (M- 32) (18)

which takes the form [30]
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do 38473

4M?
M2 —2M pw

|[Fpl*.
(19)

The full decay width can then be obtained by integration,

H(Mp—4Mz/Mp) dar
T, = /O do . (20)

IV. NUMERICAL ANALYSIS

To evaluate our results numerically, we need to fix the
LECs. This is done in a successive way, starting at LO and
proceeding to NLO and, finally, to NNLO.

A.LO

At LO, we can directly calculate the decay widths by
using Eq. (20) together with the form factors in Eqgs. (11)
and (12). For the mixing angle, we employ the LO value
0 = —19.6 deg. The LO results are

Uyniny =36eV, (21)
F'i/—’ﬂ'+ﬂ_7 =34 keV, (22)

which, in particular for the #/, are a lot smaller than the
experimental values I, ;+,-, = (55.3 +2.4) eV [31] and
Cyrizy = (55.5£1.9) keV [31]. Employing Eq. (19)
with the LO form factors, we also determine the spectra
at LO and compare them to the experimental data. Since the
data are provided in arbitrary units, we multiply our LO
results for the spectra by a normalization constant Ap,
P =1#,7/, and determine this constant through a fit to the
data. For n — 772~y we use the full photon-energy spec-
trum provided by Ref. [32], and for #' — z 7~y we fit our

gooof .
6000

4000

[arb. units]

2000

0.00 0.05 0.10 0.15 0.20
w [GeV]

results to the # 7~ invariant-mass spectrum, measured in
Ref. [33], up to 0.59 GeV. The results are shown in Fig. 2. As
one can clearly see, the LO description is very poor, and it is
crucial to take higher-order corrections into account.

B. NLO

At NLO, we determine the LECs through a fit to the
experimental spectra of the decays. It is not possible to
independently determine all NLO LECs in the expressions
for the NLO form factors in Egs. (13) and (14). We are only
able to fix those linear combinations of LECs which
accompany independent s, structures. The NLO form
factors in terms of these linear combinations of LECs are
given by

Fy(50r) = M{[wsw“h ~ V2sin(6")

X (1 + clSSJm) + C3}7 (23)
Fy(sns) = mﬁ {[sin(6") + vZ cos(ol1)]
X (14 ¢158.2) + €4}, (24)

where 6'! is the mixing angle calculated up to and including
NLO, given in Eq. (49) in Ref. [29], and
c3 = [cos(01) = v2sin(61)](c1sM3 + c1aMy)
— V2sin(61)c,,
cq = [sin(6")) + V2 cos(0M)] (e 13M3 + c1aMy)
+ V2 cos(8M)c,. (25)

We now have to determine four parameters cs, ¢4, ¢35, and

the NLO mixing angle 6!'l. For 4!!, we employ the value
from the NLO analysis in Table IV in Ref. [29], labeled

N>y
30000 T .

250001
200001
15000
10000

5000

[arb. units]

0.4 0.5 0.6 0.7
Sqe [GeV]

FIG. 2. Left: photon-energy spectrum of 7 — z" 7~y at LO (dotted, gray) and NLO (solid, blue). The blue band is the 1¢ error band.
The experimental data are taken from Ref. [32]. Right: invariant-mass spectrum of the "z~ system in 7/ — 7z 7~y at LO (dotted, gray)
and NLO (blue) fitted up to 0.59 GeV (dash-dotted), 0.64 GeV (dashed), and 0.72 GeV (solid). The experimental data are taken from

Ref. [33].
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TABLE II. Fit parameters at NLO.

Fit A, [101] Ay [108] c ¢4 c15[GeV~?] MSE
I 1.43 +£0.06 —0.85 £ 0.07 —0.68 £0.04 —0.86 £0.02 5.78 £0.23 7.58
I 1.43 +£0.06 —-1.32£0.11 —0.68 £0.04 —1.24 £0.01 5.78 £0.23 29.89
111 1.43 £0.06 -3.06 £ 0.25 —0.68 £0.04 —1.89 £0.03 5.78 £0.23 221.96

NLO 1, namely, 0"/ = —11.1 deg. The constants cs, ¢4, and
15 are determined through a fit to experimental data. We use
the decay width of # — z" 77y, the photon-energy spectrum
of the 7 decay, and the z z~ invariant-mass spectrum of the
' decay. Since we are not able to describe the full #
spectrum, we do not include the ' decay width in our fit. We
perform three simultaneous fits to the data for the 5 decay
width [31], the full # spectrum from Ref. [32], and to the #/
spectrum from Ref. [33] up to 0.59 GeV (1), 0.64 GeV (ID),
and 0.72 GeV (III). Since the experimental spectra are
provided in arbitrary units, we multiply our fit functions, i.e.,
Eq. (19) with the form factors from Eqgs. (23) and (24),
by normalization constants Ap. The results for the fit
parameters are given in Table II, where the errors are
the ones provided by the MATHEMATICA fit routine
NonlinearModelFit. In all fits, in the calculation of the fit
parameter errors, we only take the experimental errors into
account. To that end, the estimated variance, corresponding
to the reduced y?, is set to 1. In order to evaluate the quality of
the fits, we display the mean squared error denoted by MSE
in the tables for the fit parameters. The MSE can be obtained
from the ANOVATable in MATHEMATICA and is defined as

MSE =

1 i (yi = )71')2 ’ (26)

2
Ngot <=7 Ay;

where ng.r is the number of degrees of freedom, N the
number of data points, y; the value of the ith data point, Ay;
its error, and y; the corresponding model prediction.
Furthermore, we do not consider the errors caused by
neglecting higher-order terms. In principle, a systematic
error of at least 10%, corresponding to 6> = 1/9, should be
added to all quantities determined up to and including NLO.

30000

30000

The parameters A, and c3 appear only in the 7 form
factor and are therefore fixed by the # data. Because the fit
range of these data remains the same in the three cases, the
parameters do not change. Also ¢5, which appears in both
the expression for the # and the #' form factor, seems to be
determined by the 5 spectrum since it does not depend on
the fit range of the #' spectrum. The variation of the 7 fit
range is then reflected in the variation of A, and c4. A
vector-meson-dominance (VMD) estimate from SU(3)
ChPT predicts ¢;5 = 2.53 GeV~2 [30]. Our value for c,s
is more than twice as large.

The NLO results for the 7 and #' spectra are shown in
Fig. 2 together with the LO results obtained in Sec. IVA
and the experimental data. The 1o error bands of the fits of
the " spectra are displayed in Fig. 3. For both the # and the
7' spectrum, the NLO description is a clear improvement
compared to the LO result. At NLO, increasing the fit range
of the #' spectrum leads to a better description of the data at
higher s,,, but it worsens at lower s,,. The error bands for
the 7 spectra are so small that they coincide with the line
thickness. This is caused by the fact that the fit errors are
calculated only from the experimental errors which are very
small. From our analysis of the 7 decay we conclude that a
NLO calculation should not be applied to data with /s,
larger than 0.6 GeV, which motivates going to NNLO.

C. NNLO

At NNLO, we employ the ansatz for the form factors in
Eqgs. (16) and (17). Since the form factors for 7 and #' each
have their specific set of LECs, we perform the fits to the
corresponding data separately. The normalization A, and
the LECs b,, ¢,, d,, are fixed through a simultaneous fit to
the n decay width [31] and the photon-energy spectrum
[32]. We consider four different scenarios. The first is the

25000}
20000}
15000F
10000} ~

25000
20000f
15000

[arb. units]
[arb. units]

o i & 10000} 3 »
5000 / 5000} ] 5000F
0 E 0 d 0

30000
25000¢
20000
15000
10000

[arb. units]

0.4 0.5 0.6 0.7 0.4

Vs [GeV]

FIG. 3.

Vs 1GeV]

Invariant-mass spectrum of the z*z~ system in 5’ — z "7~y with the 1o error band, coinciding with the line thickness, at NLO

0.6 0.7 0.4 0.5 0.6 0.7

s [GeV]

fitted up to 0.59 GeV (left), 0.64 GeV (middle), and 0.72 GeV (right). The experimental data are taken from Ref. [33].
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full NNLO calculation (Full).2 In a next step, we switch
off the loop contributions (Without loops). Finally, we put
the d,, term to zero, and we also discuss the case without d,,
and without loop contributions. The results are shown in
Table V in Appendix B. Then, all four scenarios are
discussed for the #'. Since we cannot describe the full #’
spectrum, we do not include the decay width in the fit. As a
result, when the loop contributions are switched off, we are
not able to extract the overall normalization separately. In
those cases, we can only fit the spectrum induced by the
form factor

NNLO LO pa)
Fn’ (szm) F 4\/— 2F3 ( Sz + dn’szm) (27)
multiplied by a normalization constant An" The relation to
the parameters given in Eq. (17), without loopsp(s,,) and
with the original normalization A,/, takes the form

— sin(@ 0])+\/§cos N+ b,
Ay = VA,

sin(61%) + /2 cos( 0[0
_ sin(01%) + /2 cos (6%

C,) = /y
" sin(0P) + V2 cos(0) + b, n

~ i 2 cos (Ol
dr/ _ : Sln( ) + \/_COS( ) dﬂ’, (28)
sin(0) + 2 cos(61%) + b,
where 0°) = —19.6 deg is the LO mixing angle. In the

scenarios including loops, the loop contributions provide
additional independent s,, structures, so we can try to
extract the LECs and the overall normalization separately.
The results with and without loops are provided in
Tables VI and VII in Appendix B, respectively.

Figure 4 shows our LO, NLO, and NNLO predictions for
the n spectrum together with the experimental data. As
expected, the description of the spectrum improves gradu-
ally from LO to NLO to NNLO. We find that the
contributions of the loops to the shape of the spectrum
are very small and can be compensated by a change of the
LECs. The improved description of the data from NLO to
NNLO is due to the inclusion of the s2, term.

Figure 5 shows the results of the fits of the NNLO
expression for the #' spectrum to the experimental data
without the s2, term in the three different fit ranges. The
correspondlng error bands are displayed in Fig. 9 in
Appendix C. Here, we observe a better description of
the data compared to the NLO calculation due to the
inclusion of the loop corrections and the appearance of an
additional parameter because the LEC multiplying the s,
term, i.e., ¢, is now independent from the » decay. Taking

2By full NNLO calculation, we refer to our ansatz for the
NNLO result without the knowledge of the O(p?) Lagrangian.

8000

6000

4000

[arb. units]

2000

0.00 0.05 0.10 0.15 0.20
w [GeV]

FIG. 4. Photon-energy spectrum of n - z 2~y at LO (dotted,
gray), NLO (dashed, blue), and NNLO (solid, red). For the NLO
and NNLO results the corresponding 1o error bands are shown.
The experimental data are taken from Ref. [32].

30000

250001

200001

150001
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FIG. 5. Invariant-mass spectrum of the zz~ system in
7 — ztay at NNLO with d; =0, fitted up to 0.59 GeV
(dash-dotted), 0.64 GeV (dashed), and 0.72 GeV (solid). The
experimental data are taken from Ref. [33].

the 52, term into account in the full NNLO expression tends
to make the fit unstable, in particular, in the cases where
the fit range is small. Therefore, we discuss here only the
results of the fits up to 0.72 GeV (III), and the results of the
other fits are shown in Fig. 10 in Appendix C. Figure 6
shows a comparison of our NLO, NNLO without the dﬂ/
term, and full NNLO results for the " spectrum fitted up to
0.72 GeV. At such high values of s,,, the inclusion of the
d,y term yields a better description of the data compared to
NNLO with d,; = 0. However, as can be seen in Fig. 6,
even the full NNLO result is not able to describe the whole
spectrum. This problem originates from the fact that, since
the invariant mass of the pion pair reaches values as high as
0.8 GeV, vector-meson degrees of freedom become impor-
tant. Since we do not consider vector mesons as explicit
degrees of freedom in our calculation, we cannot reproduce
the whole spectrum correctly.
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FIG. 6. Invariant-mass spectrum of the z* 7z~ system in ' — z* 7~y at NLO (dashed, blue), NNLO with d,; = 0 (dash-dotted, purple),
and full NNLO (solid, red) fitted up to 0.72 GeV. The left plot shows the spectrum up to 0.75 GeV and the right plot the full spectrum.

The experimental data are taken from Ref. [33].

1. Comparison with other works

The decay 7 — 77~y has been studied in one-loop ChPT
using the LO 7 — / mixing in Refs. [30,34]. It was found that
O(p®) corrections are crucial to describe the data and that
the contributions of the contact terms dominate over the loop
corrections. We agree with these findings. Reference [35]
investigates the decays () — ztz~y in an approach that
combines ChPT with a coupled-channel Bethe-Salpeter
equation which generates vector mesons dynamically.
The importance of O(p®) contact terms for describing the
data for the 7 decay was also observed. The 7 data, however,
cannot be described by simply adjusting the O(p®) contact
terms. In the decay ' — z" 7y, vector mesons play an
important role and, after the inclusion of the coupled-
channel approach, the experimental 7/ spectrum can be
reproduced. The effects of vector mesons have been taken
into account by a momentum-dependent vector-meson-
dominance model [36] or, in a more elaborate way, in the
context of hidden local symmetries [37,38]. In Ref. [39],
axial-vector mesons and their mixing with pseudoscalars
have also been considered. References [40,41] apply an
Omnes function on top of the one-loop results to include the
effects of p-wave pion scattering. Another approach com-
bines ChPT with dispersion theory, allowing for a controlled
inclusion of resonance physics [4]. Because of the inclusion
of pion-pion rescattering in the final state, both the 7 and the
1 spectrum can be described well. Reference [5] augments
this analysis of the # — #7727y decay by the a, tensor
meson. Finally, Ref. [42] performs an amplitude analysis of
the decay ' — n* 7~y based on the latest BESIII data [33],
taking into account p — @ mixing.

V.q') s ata-1*1-

In the following, we investigate the decays involving a
virtual photon #() — z*z~y*, which are connected to the
decays n() — zta~I71-, with a lepton pair [ = e, . The
matrix element for the decay #() — z*z~y* is given by

M= _iFPe,uuaﬂeppl—/«—p(iqﬂ’ (29)
where ¢" and ¢ denote the momentum and polarization
vector of the photon, respectively, and where p’i, pt are the
momenta of the pions. The decay 5! — ztz~I*I~ pro-
ceeds via a two-step mechanism [43,44]. The first decay is
n") = ztz~y* which is followed by y* — [TI~. We can
obtain the invariant amplitude for ) — ztz~I*1~ from a
modification of the one in Eq. (29). The photon is now
off shell, and we replace its polarization vector e by
(e/q?)i(k)y*v(k"), where k* are the lepton momenta.
After this modification, the invariant amplitude reads

; v opa € -
M= —leeﬂm/;p+P_qﬁ [?M(k )]/Ml}(k+):| : (30)

The form factors Fp have been calculated in Sec. IIL
We can then calculate the differential decay rates of
n") - ztz7It]~ in terms of the normalized invariant
mass of the pion pair x = (p* + p7)?/M3% =s,,/M>
and the normalized invariant mass of the lepton pair
y = (kT +k7)?/M% = g*/ M3, where P = 5, 7. The dif-
ferential decay width is given by [43]

&2T B e2M} /13/2(1,x, y>/11/2(y’yz,yz)/p/z(x“uz’ﬂz)
dxdy 18(4x)’ x’y?
1 2
— 4+ —)|Fp%, 31
(o) o

where A(x,y,z) = x> + y* + 2> — 2xy — 2xz — 2yz is the
Kallén function, y = M,/Mp, and v = m;/Mp. The spec-
trum with respect to x is obtained by integrating over y,

dF_

1-2/x+x J a’r
dx  Jam e

- 32
Y dxdy (32)

whereas the integration over x leads to the spectrum with
respect to y,
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TABLE III. Results for the fit parameters.
Fit Cy c14 [GeV~?]
NLO I —0.86 -3.92+3.19
NLO I —1.24 -7.45+3.11
NLO III —1.89 —13.24 £ 3.00
dr 1-2\5+y  d?T
2= / dx i (33)
y M2 /M3, xay

The full decay width of 5) — zTz~I*1" is given by

1-2x+x 4’7
dx / dy .
4m? /M3 dxdy

(34)

1=2+/4m? | M2 +-4m? | M7,
Dpoptniri- =
4

M2/M?

A. Numerical analysis

While at LO the numerical evaluation of the results can
be performed directly, at NLO we need to fix four
constants: c3, ¢4, €15, and c4. For the parameters c3, ¢y,
c15 we employ the values determined from the decays to
real photons 5() — ztz~y at NLO in Table II. The

n-tnete”
15F " "
S
2,
x
)
—
©
0.0' . N L L L
0.6 0.7 0.8 0.9 1.0
S [ My?
n-nete”
0.8F" ' ' ' '
< 06
O
=3
I; 04
E
5 0.2
0.0 .

03 04 05 06 07 08 09 1.0
\ Sy My

FIG.7.

parameter ¢4 is multiplied by the photon virtuality ¢>
and needs to be fixed to the decays n() — ztz ITI~
involving a virtual photon. The available data for these
decays are the decay widths for () — 7tz ete™ [31] and
7 — ntx utu~ [45], whereas for the decay width of
n — a"x~putp~ only an upper limit exists [31]. The spectra
of these decays have not been measured. Since we are not
able to describe the full ' - 72~y spectrum due to the
importance of resonant contributions, we expect that the
description of the 7' = ztz~e™ e~ decay is not appropriate
in our framework. However, in the decay ' — zt 7z~ utu~,
both a pion pair and a muon pair have to be created, such
that their invariant masses do not reach values where the
contributions of vector mesons start dominating. Therefore,
we can use the decay widths of n - #7727 eTe™ and ' —
xtnutp to determine ¢y4. The LEC ¢y is set to the three
different values determined in Table II, corresponding
to the different fit ranges for the ' — z" 2~y spectrum.
We then fix ¢4 through a fit to the experimental data
F”_,,[+,,—e+e— = (351 + 20) meV [31] and Fn’—vz*n‘;ﬁy‘ =
(3.70 £ 0.98) eV [45]. The results for ¢4 are displayed in
Table III. As the absolute value of ¢, increases, the absolute
value of ¢4 gets larger as well. A naive VMD estimate for
c14 is given by ¢4 = —2.53 GeV~2 [30], which is roughly
of the same order of magnitude as our values.

N0 TPty
030 — , —
025} ’
2
|; 0.15¢
E 0.10}
0.05}
0.00{”_, ‘ ‘ ‘ ‘
052 054 056 058 0.60
\ Sy My?
N1y
20F ' '
151

dr/dvx [eV]
=

a

o

Invariant-mass spectra of the z 7~ system at LO (dotted, gray), NLO I (solid, blue), NLO II (dashed, blue), and NLO III (dash-

dotted, blue). The bands correspond to the fit error of ¢4 for NLO 1.
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In Figs. 7 and 8, we show the predictions for the
invariant-mass spectra of the ztz~ and [T]~ systems at
NLO for all four decays #() — ztz~ 171", respectively. The
spectra are plotted for the three different sets of parameters
in Table III and are compared to the LO results. To assess
the uncertainty in ¢4, for the NLO I fit, we display the error
bands resulting from the fit error of cy4.

In general, the LO and NLO spectra differ greatly. The
NLO corrections tend to produce steeper and larger peaks
compared to the LO predictions. For the decays involving
an et e™ pair, variations of ¢, have only a minor influence
because the error bands coincide with the line thickness in
Fig. 7. A larger effect can be seen in the invariant-mass
spectra of the [T/~ system in Fig. 8. The error bands are
much larger for the decays to u*u~. Because of the larger
invariant mass of the muon pair, the photon virtuality
is increased and the decays are more sensitive to cyy.
Since the fits are performed to the decay width of
7 — ata~ptu~, the three NLO curves are close together,
whereas in # - zTx~utu~ the effect of the different ¢4
values can be seen and in 4/ — 77~ e e~ the influence of
¢4 can be observed.

At NNLO, in addition to the parameters determined from
n") = z* 72"y, more unknown LECs appear, multiplying
possible structures in the form factors like (¢*)? or ¢2s,,.

n->rtete”

y dr/dvy [meV]
O =~ N W N OO0 O

y dr/dvy [eV]
N

0

00 01 02 03 04 05 06 07
'qZ/Mn‘z

FIG. 8.

Therefore, we do not numerically evaluate the full NNLO
expressions. At this order, the loops start contributing. For
completeness, in order to provide an estimate of the size of
the loop corrections, we evaluate the scenario where we just
add the loops to the LO expressions. The corresponding
spectra are shown in Figs. 11 and 12 in Appendix C. We
observe rather large effects of the loops on the spectra,
comparable in size to the NLO corrections.

Finally, we integrate the spectra and obtain predictions for
the full decay widths of #' — z*z~["[~. The results are
displayed in Table IV. Since this is only a first study of
the decays () — 7tz [T~ to obtain a rough estimate of the
higher-order corrections, we do not provide errors for the
results of the decay widths. The widths of  — 7777 eT e
and 7' — T x~utu~ are very well described by the NLO
I-IIT fits. In general, the LO values for all decays are quite
small, and the NLO corrections provide increased results.
For both 5 decay widths the loop corrections lead to a
decrease of about 25% compared to the LO values, whereas
the loops add large positive contributions to the LO results
for the 5’ decay widths. The LO value for I, ;+ -+~ i8
very small. The NLO results depend quite strongly on the
different values determined for ¢4 and are only up to 50% of
the experimental value. This is related to the importance
of vector mesons, which we have not taken into account

N> ut
0.07F .= ' ' ' 7
0.06f /'
0.05} |
0.04F;
0.03 Fiff
0.02
0.01}
0.00¢

y dr/dvy [meV]

y dr/dy [eV]

Invariant-mass spectra of the [/~ system at LO (dotted, gray), NLO I (solid, blue), NLO II (dashed, blue), and NLO III (dash-

dotted, blue). The bands correspond to the fit error of ¢4 for NLO 1.
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TABLE IV. Results for the decay widths of () — ztz= 17",

Fq—>ﬂ+ﬂ_8+8_ Fry’—»ﬂ‘ﬂ'e*e' Fﬂ—)ﬂ+ﬂ_ﬂ+ﬂ_ Fﬂ,—>ﬂ+ﬁ_[l+}l_

(10710 GeV] [10~7 GeV] (10715 GeV] 10~ GeV]
LO 2.34 0.26 7.20 0.59
NLO I 3.48 2.38 7.91 3.72
NLO II 3.50 1.88 10.44 3.71
NLO III 3.53 1.18 15.38 3.69
LO + Loops 1.81 1.13 5.16 2.50
Experiment [31,45] 35+0.2 45+24 <47 x10° 3.7£1.0
VMD [43] 38
[46] 4.72 3.56 15.72 3.96
CC [44] 3.89°019 4317038 9.813% 3.2432
Hidden gauge [47] 4.11 +£0.27 43+0.46 11.33 + 0.67 4.36 + 0.63
Modif. VMD [47] 3.96 +0.22 449 +0.33 11.32 £ 0.54 4.77 + 0.54

explicitly. Furthermore, the full NNLO contributions might
further improve our result. For 7 - ztz~u*u~, the exper-
imental limit is 5 orders of magnitude larger than our
determinations.

1. Comparison with other works

In Table IV, we compare our results for the decay widths
with other theoretical predictions. In Ref. [43], the decay
n— mtaete has been studied in a chiral model that
incorporates vector mesons explicitly. Reference [46] cal-
culated various decays of light unflavored mesons using a
meson-exchange model based on VMD. A chiral unitary
approach that combines ChPT with a coupled-channel
Bethe-Salpeter equation has been applied to the decays
n) — ata~ 11" in Ref. [44]. Reference [47] investigates
the decays within the hidden gauge and a modified VMD
model. The results of Refs. [44,47] agree within their errors
which are quite large in some cases, and the agreement is
better for the decays involving e*e™ than for those with
utp~. The results of Ref. [46] show larger deviations. Our
NLO results for T, +,-,+,- are smaller than the other
theoretical values which are larger than the experimental
value. The other theoretical predictions agree within errors
with the experimental value for I',_;+;-.+.-; however,
they are slightly smaller, and Ref. [46] shows the greatest
deviation. All theoretical values for I, .-+, are
below the experimental limits, while the predictions for
[z 7+, are larger than the experimental value in some
cases, but all of them agree within errors. In general, our
NLOresults for I’/ _, 7+ -+~ are substantially lower than the
other theoretical predictions. This can be explained by the
fact that, as opposed to the other works, we have not taken
the explicit contributions of vector mesons into account.

References [43,44,47] also provide plots of their pre-
dicted spectra. The invariant-mass spectra of the z*z~ and
ete systems inn — xtn~ete™ agree with each other and
with our NLO results for the spectra. For the spectra of

n— xtx utp~ with respect to /s, and V/¢%, we find
qualitative agreement of our NLO results with
Refs. [44,47], with the difference that our peaks are a little
bit higher than those of the other works. Our NLO z" 7z~
invariant-mass spectrum of '’ — 7z~ e™ e is much broader
and lower than those in Refs. [44,47], which exhibit a steep
peak around 750 MeV. Less pronounced is the behavior
in the e e invariant-mass spectrum, but also there, our peak
is broader and lower. Here, the influence of the explicit
vector mesons which are included in Refs. [44,47] can be
clearly seen. With regard to the spectra fory’ — 7z~ u~,
our results agree quite well with Ref. [44], except that our
peak in the invariant-mass spectrum of the ytu~ system is
broader than in Ref. [44].

In order to test the different approaches to the decays
n) — ata~1*1", more experimental data on the decays
are highly desirable. Experimental data on the differential
decay spectra of any of the decays n() — ztz~ It~
or the decay width of # - z" 7z~ utu~ would allow for
an improved determination of the parameter c;, and
might even facilitate the determination of LECs at
NNLO.

VI. SUMMARY AND OUTLOOK

We have investigated the decays #() — ztz—y*) at the
one-loop level up to and including NNLO in LN .ChPT.
Besides the loop corrections, all contact terms up to and
including NNLO have been taken into account. To this end,
possible structures from the O(p®) Lagrangian, which
has not been constructed yet, have been introduced phe-
nomenologically, together with free parameters. In addi-
tion, the 7 — #’ mixing has been consistently included. We
have numerically evaluated the decays successively at LO,
NLO, and NNLO. For ) - ztz"y, the LECs from the
odd-intrinsic-parity sector were determined through fits to
the decay width and the full decay spectrum of the # and to
parts of the #' decay spectrum, since we are not able
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to adequately describe the full ' spectrum. In general, the
results for the spectra gradually improve from LO, which is
far off, to NLO and NNLO. In the case of the #, the
experimental data are well described at NNLO, mainly due
to the higher-order contact terms, while the loop corrections
have only a very small influence. For the ' decay, the loops
are more important, and the s2, term is only relevant at high
values of the z"z~ invariant mass, leading to a good
description of the #' spectrum up to /5., = 0.7 GeV.
Here, our approach reaches its limit since resonant con-
tributions of vector mesons become important. Finally, we
have considered the decays #\) — zta~IT1~, | = e, p. At
NLO, the LEC cy4, which accompanies the photon vir-
tuality, could be fixed to the decay widths of #n —
rtn~eTe” and ¥ — ata~u" ™. We have then evaluated
the decay spectra of all four decays with respect to the
invariant masses of the z7z~ and [T~ systems at NLO. The
NLO corrections modify the spectra substantially in com-
parison with the LO results. Unfortunately no experimental
data for the spectra are available. We have compared our
results with other theoretical determinations and found
agreement in some cases. Discrepancies arise when vector-
meson degrees of freedom play a role, which have been
taken into account in the other works. At NNLO, due to the
appearance of additional unknown LECs, we only evalu-
ated the spectra for the scenario where the loop corrections
were added to the LO results. We have found that the loop

|

1
F=——
T 768\374FS

contributions are of the same order of magnitude as the
NLO corrections. To further test the various theoretical
approaches, more experimental information on the differ-
ential spectra of any of the four decays or on the decay
widths of 7 — 7z~ " u~ would be very helpful, since this
would allow for a better determination of the LECs at NLO
and maybe even at NNLO.

Our results show the limitations of a perturbative
chiral and large N, expansion, especially in the case of the
7' — ntx7y spectrum. While the extension to higher
orders might further improve the description of the data,
the number of unknown LECs increases, thus making the
gain in physical insight questionable. However, the
inclusion of vector mesons as explicit degrees of freedom
might extend the range of applicability of the effective
theory.
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APPENDIX A: ADDITIONAL EXPRESSIONS

The loop contributions to the form factors of the decays
n) — zta~y* given by the loop diagrams in Fig. 1 read

(2cos(0)[3(g* — 4M%)Bo(q*. M% . M%)

+ 2(Sr — AM%)Bo($7s M%, M%) + (87 — 4M2) B (8 5z, M2, M2)
+240(M%) +22A0(M2) +2(=10M% = 2M2 + ¢* + 5,,,)]
-V2 Sin(g[()]){(sim - 4M%<>BO<S7HZ’ M%(’ M%{) + 2[(Sﬂﬂ - 4M%)

and

1
F =
T 768374 F3

The explicit expressions for the loop integrals read

XBO(SﬂmM%? Mfzr) - ZM%( - 4M72r + Sm'r] + 22A0(M%{) + 44A0(M727)}) (Al)
(2 5in(61%) {3(? — 4M3) By (¢, M3, M3,)
+ 2(s7m - 4M%()BO(SIUZ’ M%(’ M%{) + (sim - 4M72[)BO(S7UL" M72z’ M721)
+2A0(M%) + 22A0(M2) + 2[-2(5M% + M2) + ¢* + 5.}
+ \/ECOS(Q[O]){(S,M - 4M%()B0(s7m’ M%(? M%{) + 2[(S7m - 4M125)
XBo(Saes Mz, M7) = 2My =AM + 5,,] + 22A0 (M) + 44A0 (M) }). (A2)
(A3)

Ao(m?) = (~162%) {2m2,1 + 8m—”221n (ﬁ)} :

H
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Bo(p?,m3,m3) = (—1671'2){2/1 +

872

(%) 1

+ 1672

2 2 2
—mj+m m 2mym
x {—1 + pi‘len (—2> + 2 F(Q)} } (A4)
p nmy p
where
PRSI L WO W (AS)
=——<¢{———=|In(4n ,
167> \n—4 2
2 2 2
—mi—m
Q=L """ (A6)
2m] my
and
VQ2—1In(-Q-VQ?-1) for Q < -1
F(Q) = ¢ V1 —Q?arccos (—Q) for —1<Q<1 (A7)
VQ2—1ln(Q+VQ2-1)—invVQ*—1 for1 <Q.
We evaluate the loop integrals at the renormalization scale y = 1 GeV.
APPENDIX B: FIT PARAMETERS
In the following, we provide additional results for the fit parameters determined in Sec. IV.
TABLE V. Fit parameters for the  spectrum at NNLO determined in Sec. IV.
A, [10'] b, ¢, [GeV~] d, [GeV™] MSE
Full 1.29 +£0.05 0.09 £0.17 —4.60 £2.03 34.35 £ 6.05 1.10
Without loops 1.45 4+ 0.06 —-0.01 £0.16 -3.30+£1.92 31.49 £5.72 1.11
d, =0 1.28 £0.05 -2.03+£0.05 -8.41£0.30 0.+0. 1.88
Withoutloops A d, =0 1.43 +£0.06 —0.84 £0.04 7.24 £0.29 0.+0. 1.94
TABLE VI. Fit parameters for the 1’ spectrum at NNLO including loops determined in Sec. IV.
A, [10] by ¢, [GeV~] dy [GeV™] MSE
Full I —0.19 £ 0.00 4.57+0.18 —0.69 £ 0.01 —1.11 £ 0.09 0.8
Full II —8.49 £0.03 1.55+0.04 —1.02 £0.00 —0.88 £ 0.02 0.77
Full IIT —8.39 £0.02 1.78 £ 0.01 —1.01 £0.00 —-0.99 £ 0.01 1.59
dy =01 —8.05+£0.08 —0.96 £ 0.00 —-0.48 £0.01 0.+0. 0.83
dy; =01 —8.68 £0.02 —-0.95 £0.00 —-0.53 £0.00 0.£0. 3.45
dy =01 —8.78 £0.03 —-0.92 £ 0.00 —-0.68 £ 0.00 0.+0. 73.16
TABLE VIIL.  Fit parameters for the 5’ spectrum at NNLO without loops determined in Sec. IV.
A 107 ¢, [Gev7) , [Gev—] MSE
Without loops 1 -16.72 £ 1.12 -1.71£0.23 13.71 £0.19 0.79
Without loops 1I —22.82£091 -2.81£0.10 14.66 £ 0.09 1.65
Witout loops III —46.73 £0.83 —4.49 £ 0.02 15.04 + 0.06 16.51
Withoutloops A dy =01 —0.97 £ 0.08 20.48 £ 0.96 0.£0. 11.58
Withoutloops A d,; = 0 1I —-0.03 £0.01 —156.64 £+ 30.47 0.£0. 46.27
Withoutloops A d,; = 0 1II —15.07 £0.22 —9.84 £0.05 0.+0. 323.05
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APPENDIX C: ADDITIONAL PLOTS

This appendix shows additional plots from the analyses in Secs. IV and V.
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FIG. 9. Invariant-mass spectrum of the 7z~ system in 7' = z" 7~y at NNLO with d,; = 0 fitted up to 0.59 GeV (left), 0.64 GeV
(middle), and 0.72 GeV (right) including the 1o error bands, which partially coincide with the line thickness. The experimental data are
taken from Ref. [33].
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FIG. 10. Upper-left plot: invariant-mass spectrum of the z"z~ system in ' — 72~y at NNLO fitted up to 0.59 GeV (dash-dotted),
0.64 GeV (dashed), and 0.72 GeV (solid). Upper-right plot: 1o error band for the fit up to 0.59 GeV. Lower-left plot: 1o error band for
the fit up to 0.64 GeV. Lower-right plot: 1o error band for the fit up to 0.72 GeV. The experimental data are taken from Ref. [33].
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