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We present a calculation of the decays ηð0Þ → πþπ−γð�Þ at the one-loop level up to and including next-to-
next-to-leading order (NNLO) in large-Nc chiral perturbation theory. The numerical evaluation of the
results is performed successively at LO, NLO, and NNLO, fitting the relevant low-energy constants to the
available experimental data. We discuss the widths and decay spectra of ηð0Þ → πþπ−γ as well as
ηð0Þ → πþπ−lþl−, with l ¼ e, μ.
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I. INTRODUCTION

Theoretical and experimental interest in the decays ηð0Þ →
πþπ−γð�Þ encompasses several aspects (see, e.g., Ref. [1] for
a review). First, the decays receive contributions from the
chiral box anomaly of quantum chromodynamics (QCD)
[2,3] and allow us to study the ρ − ω mixing mechanism in
terms of internal resonance contributions. Second, they can
be used in a dispersion-theoretical extraction of the form
factors for the two-photon interactions of the light pseudo-
scalar mesons (π0, η, η0) [4–6], which enter the calculation
of the hadronic light-by-light (HLbL) scattering contribut-
ing to the anomalous magnetic moment of the muon [7–9].
Furthermore, the decays ηð0Þ → πþπ−γð�Þ provide a test of P
and CP violation [10–12] as well as facilitate a search for
beyond standard model physics, namely, the search for
axionlike particles [1].
In addition to this phenomenological relevance, the

decays ηð0Þ → πþπ−γð�Þ allow us to investigate the sym-
metry-breaking mechanisms in QCD. In the low-energy
regime of QCD, an interplay occurs between dynamical
(spontaneous) breaking of chiral symmetry, the explicit
symmetry breaking by the quark masses, and the axial
Uð1ÞA anomaly. For vanishing up-, down-, and strange-
quark masses, the QCD Lagrangian at the classical level
exhibits a global Uð3ÞL × Uð3ÞR chiral symmetry, which is
dynamically broken down to SUð3ÞV × Uð1ÞV in the
ground state (see, e.g., Ref. [13]). One would then expect
the appearance of nine massless pseudoscalar Goldstone
bosons [14]. However, quantum corrections destroy the

Uð1ÞA symmetry, and the singlet axial-vector current is
no longer conserved [Uð1ÞA anomaly]. As a result, the
corresponding singlet Goldstone boson acquires a mass in
the chiral limit as well [15–17]. In the large-number-of-
colors limit (LNc) of QCD [18,19], i.e.,Nc → ∞with g2Nc
fixed, the divergence of the anomalous singlet axial-vector
current vanishes, and the singlet pseudoscalar becomes a
Goldstone boson in the combined chiral and LNc limits. In
total, this leads to a pseudoscalar nonet (π, K, η8, η1) as the
Goldstone bosons [16,20]. Therefore, we use massless LNc
QCD as a starting point for perturbative calculations and
treat the symmetry breaking by the Uð1ÞA anomaly and the
nonzero quark masses as corrections.
At leading order, the decays ηð0Þ → πþπ−γð�Þ are deter-

mined by the chiral box anomaly, which is contained in
the Wess-Zumino-Witten (WZW) effective action [2,3].
Corrections to the WZW prediction result from the axial
Uð1ÞA anomaly and the nonzero quark masses. These
mechanisms not only generate masses for the Goldstone
bosons but are also responsible for the η − η0 mixing. These
effects can be systematically calculated in the framework of
large-Nc chiral perturbation theory (LNcChPT) [21–23],
which is an extension of conventional ChPT [24], where the
pseudoscalar singlet is included. The most general effective
Lagrangian of LNcChPT is organized in a combined
expansion in momenta (derivatives), quark masses, and
1=Nc. Observables are calculated perturbatively, with a
power counting determined by a collective small expansion
parameter δ [21].
In this work, we investigate the decays ηð0Þ → πþπ−γð�Þ

at next-to-next-to-leading order (NNLO) in LNcChPT.
Since the dynamical range of the decay involving a real
photon, 4M2

π ≤ sππ ≤ M2
ηð0Þ, is far from the chiral limit,

higher-order corrections become important, motivating an
investigation of their influence. In Sec. II, we specify the
effective theory we use for our calculations by briefly
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describing the Lagrangians and the power counting. The
calculation of the invariant amplitude is explained in
Sec. III, including the η − η0 mixing. Section IV contains
the numerical evaluation of the results at LO, NLO, and
NNLO. In Sec. V, the decays ηð0Þ → πþπ−lþl− involving a
lepton pair are discussed, and we conclude with a summary
and an outlook of future work in Sec. VI.

II. LAGRANGIANS AND POWER COUNTING

In the framework of LNcChPT, we perform a simulta-
neous expansion of (renormalized) Feynman diagrams
in terms of momenta p, quark masses m, and 1=Nc.

1

We introduce a collective expansion parameter δ and count
the variables as small quantities of the order of [21]

p ¼ Oð
ffiffiffi
δ

p
Þ; m ¼ OðδÞ; 1=Nc ¼ OðδÞ: ð1Þ

The most general Lagrangian of LNcChPT is organized as
an infinite series in terms of derivatives, quark-mass terms,
and, implicitly, powers of 1=Nc, with the scaling behavior
given in Eq. (1):

Leff ¼ Lð0Þ þ Lð1Þ þ Lð2Þ þ Lð3Þ þ…; ð2Þ

where the superscripts (i) denote the order in δ. In Ref. [25],
we explain the power counting and present the relevant
Lagrangians that are used in this work. Here, we briefly
outline our approach and refer the reader to Ref. [25] for
further details.
At leading order, the decays ηð0Þ → πþπ−γð�Þ are driven

by the chiral anomaly in terms of the WZW action [2,3],
which belongs to the odd-intrinsic-parity sector of the
effective field theory. Since our goal is a one-loop calcu-
lation of the decays ηð0Þ → πþπ−γð�Þ, which is NNLO in
the δ counting, we employ the LO, NLO, and NNLO
Lagrangians of even intrinsic parity as given in Ref. [25].
From the WZW action, which starts contributing at OðδÞ,
we obtain the lowest-order Lagrangian relevant for our
calculation,

Lð1Þ
ϕϕϕγ ¼ −

ieNc

24π2F3
ϵμνρσh∂μϕ∂νϕ∂ρϕQiAσ; ð3Þ

where Q is the quark-charge matrix and

ϕ ¼

0
BBBBBB@

ffiffi
2
3

q
η1 þ 1ffiffi

3
p η8

ffiffiffi
2

p
πþ 0ffiffiffi

2
p

π−
ffiffi
2
3

q
η1 þ 1ffiffi

3
p η8 0

0 0
ffiffi
2
3

q
η1 − 2ffiffi

3
p η8

1
CCCCCCA
:

Counting F as Oð ffiffiffiffiffiffi
Nc

p Þ, the meson fields as Oð ffiffiffiffiffiffi
Nc

p Þ, the
derivatives as OðpÞ, and the external photon field as OðpÞ,
the Lagrangian of Eq. (3) is indeed ofOðδÞ. In addition to the
WZW action, we need the NLO and NNLO Lagrangians
from the odd-intrinsic-parity sector, resulting in

Lϵ ¼ Lð1Þ
ϕϕϕγ þ Lð2Þ

ϵ þ Lð3Þ
ϵ ; ð4Þ

where the superscripts (i) refer to the order in δ. Again, the
explicit expressions for the Lagrangians are displayed in
Ref. [25].Only the terms of theOðp6ÞLagrangian need to be
updated to those which are specific for the processes of this
work. We present them in Table I in terms of the building
blocks provided in Ref. [25].

III. CALCULATION OF THE INVARIANT
AMPLITUDE

The invariant amplitude for the decay PðpÞ →
πþðp1Þπ−ðp2Þγð�ÞðqÞ of a pseudoscalar meson P can be
parametrized by

M ¼ −ieFPðsππ; t; uÞϵμναβϵμ�pν
1p

α
2q

β; ð5Þ

where ϵμ denotes the polarization vector of the photon, e is
the electric charge, and sππ ¼ ðp1 þ p2Þ2, t ¼ ðp − p1Þ2,
u ¼ ðp − p2Þ2 are the Mandelstam variables, satisfying
sππ þ tþ u ¼ M2

P þ 2M2
π þ q2. Because of the charge-

conjugation invariance of the strong and the electro-
magnetic interactions, the form factor FP satisfies
FPðsππ; t; uÞ ¼ FPðsππ; u; tÞ. To obtain the invariant ampli-
tude up to and including NNLO, we have to evaluate the
Feynman diagrams shown in Fig. 1, where the vertices are
obtained from the Lagrangians given in Sec. II and in
Ref. [25].
The coupling to the electromagnetic field is described

by introducing an external field which couples to the
electromagnetic current operator

Jμ ¼ q̄Qγμq; ð6Þ

whereQ is the quark-charge matrix. For Nc ¼ 3, the quark-
charge matrix is given by

Qð3Þ ¼ diag

�
2

3
;−

1

3
;−

1

3

�
: ð7Þ

However, Bär and Wiese pointed out [26] that in order for
the Standard Model to be consistent for arbitrary Nc, the
ordinary quark-charge matrix should be replaced by (see
also Ref. [27])

1It is understood that dimensionful variables need to be small
in comparison with an energy scale.
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QðNcÞ ¼
1

2
diag

�
1

Nc
þ 1;

1

Nc
− 1;

1

Nc
− 1

�

¼ −
1

6
1þ 1

2
λ3 þ

1

2
ffiffiffi
3

p λ8 þ
1

2Nc
1: ð8Þ

Therefore, we useQðNcÞ for the calculation of the invariant
amplitude. However, in the evaluation of the Feynman
diagrams, it turns out that, due to the flavor structure, the
Nc-dependent part of QðNcÞ gives no contribution to the
matrix element. The Feynman diagrams are calculated
using the MATHEMATICA package FEYNCALC [28].

Furthermore, we take into account the η − η0 mixing at
NNLO, following the detailed derivation of the mixing in
Ref. [29]. We start by calculating the coupling of the
pions and the photon to the octet and singlet fields ϕb,
collected in the doublet ηA ≡ ðη8; η1ÞT , at the one-loop
level up to and including NNLO in the δ counting.
The result, which should be interpreted as a Feynman
rule, is given by the “matrix elements” F b ¼ hπþπ−γ�jbi.
Then, we transform the bare fields ηA to the
physical states using the transformation T in Eq. (51)
in Ref. [29]:

FIG. 1. Feynman diagrams for ηð0Þ → πþπ−γ� up to and including NNLO. The dashed lines refer to pseudoscalar mesons and the
wiggly lines to photons. The numbers k in the interaction blobs refer to vertices derived from the corresponding Lagrangians LðkÞ.

TABLE I. Relevant terms of Lð2;Ncp6Þ
ϵ and Lð3;p6Þ

ϵ .

Lagrangian LEC Operator SU(3)

Lð2;Ncp6Þ
ϵ L6;ϵ

1
hðχÞþfðHμνÞþðDαUÞ−ðDβUÞ− þ revgiϵμναβ x

L6;ϵ
5

hðχÞ−fðGμνÞþðDαUÞ−ðDβUÞ− − revgiϵμναβ x

L6;ϵ
6

hðχÞ−ðDμUÞ−ðGναÞþðDβUÞ−iϵμναβ x

L6;ϵ
13

hðGμνÞþfðDλDαUÞs−ðDβUÞ−ðDλUÞ− − revgiϵμναβ x

L6;ϵ
14

hðGμνÞþfðDλDαUÞs−ðDλUÞ−ðDβUÞ− − revgiϵμναβ x

Lð3;p6Þ
ϵ L6;ϵ

2
hðχÞþðDμUÞ−ihðDνUÞ−ðHαβÞþiϵμναβ x

L6;ϵ
7

hðχÞ−ihðGμνÞþðDαUÞ−ðDβUÞ−iϵμναβ x

L227 iϵμνλρh∇σfþμσuνuλihuρi � � �
L228 iϵμνλρh∇σfþμνuσuλihuρi þ H:c: � � �
L229 iϵμνλρhfþμ

σhνσuλihuρi þ H:c: � � �
L230 iϵμνλρhfþμνhλσuσihuρi þ H:c: � � �
L233 iϵμνλρh∇σfþμσihuνuλuρi � � �
L234 iϵμνλρhfþμ

σihuνuλhρσi � � �
L242 ϵμνλρhuμihuνf−λρχþi þ H:c: � � �
L254 ϵμνλρhfþμνihuλuρχ−i � � �
L255 ϵμνλρhfþμνχ−uλihuρi þ H:c: � � �
Λ437 ðψ þ θÞðiϵμνλρhfþμνχþuλuρi þ H:c:Þ � � �
Λ438 iϵμνλρðψ þ θÞhfþμνuλχþuρi � � �
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�
η8

η1

�
¼

�
T8η T8η0

T1η T1η0

��
η

η0

�
: ð9Þ

The resulting (“physical”) matrix elements are then
obtained from

�
Fη

Fη0

�
¼

�
T8η T1η

T8η0 T1η0

��
F 8

F 1

�
: ð10Þ

For the calculation of the loop diagrams, we employ the
LO mixing.
Up to and including LO and NLO, the form factors FP

are given by

FLO
η ¼ 1

4
ffiffiffi
3

p
π2F3

π

½cosðθ½0�Þ −
ffiffiffi
2

p
sinðθ½0�Þ�; ð11Þ

FLO
η0 ¼ 1

4
ffiffiffi
3

p
π2F3

π

½sinðθ½0�Þ þ
ffiffiffi
2

p
cosðθ½0�Þ�; ð12Þ

FNLO
η ¼ 1

4
ffiffiffi
3

p
π2F3

π

f½cosðθ½1�Þ −
ffiffiffi
2

p
sinðθ½1�Þ�

× ð1þ c14M2
η þ c13M2

π − c14q2 þ c15sππÞ
−

ffiffiffi
2

p
sinðθ½1�Þc2g; ð13Þ

FNLO
η0 ¼ 1

4
ffiffiffi
3

p
π2F3

π

f½sinðθ½1�Þ þ
ffiffiffi
2

p
cosðθ½1�Þ�

× ð1þ c14M2
η0 þ c13M2

π − c14q2 þ c15sππÞ
þ

ffiffiffi
2

p
cosðθ½1�Þc2g; ð14Þ

where

c2 ¼ −48π2L̃1 −
Λ1

2
;

c13 ¼ −1024π2
�
L6;ϵ
13 þ L6;ϵ

14 þ L6;ϵ
5 þ L6;ϵ

6

2

�
;

c14 ¼ 512π2L6;ϵ
13 ;

c15 ¼ 512π2ð2L6;ϵ
13 þ L6;ϵ

14 Þ; ð15Þ

and θ½i� is the corresponding mixing angle at LO (NLO),
given in Eq. (49) in Ref. [29]. The parameter c2 represents a
QCD-scale-invariant combination of parameters violating
the Okubo-Zweig-Iizuka (OZI) rule [23]. Let us remark
on the power counting of the form factors FP. The LO
form factors of Eqs. (11) and (12) are of Oðδ1

2Þ because
Fπ ¼ Oð ffiffiffiffiffiffi

Nc
p Þ, and the expression also involves a factor

Nc=3 evaluated at Nc ¼ 3. In combination with the factor
ϵμναβϵ

μ�pν
1p

α
2q

β ¼ Oðp4Þ, the LO invariant amplitude M

of Eq. (5) is of Oðδ5
2Þ. This is consistent with assigning the

order δ to the WZW Lagrangian of Eq. (3) because the

product of three meson fields counts as N
3
2
c ¼ δ−

3
2, such that

the order of M is given by 1þ 3
2
¼ 5

2
[29]. Moreover, for

consistency, the LO amplitudes need to be calculated with
the LO mixing angle. On the other hand, the NLO results
of Eqs. (13) and (14) receive corrections that are either
explicitly down by one order of p2 or of 1=Nc or implicitly
down by the use of the NLO mixing angle. Using, for
simplicity, the NLO mixing angle for the complete expres-
sion amounts to introducing an error of NNLO which is
beyond the accuracy of a NLO calculation.
Since the expressions at NNLO are very long, we only

display the loop corrections, corresponding to the loop
diagrams in Fig. 1, in Appendix A. However, the tree-level
contributions can be provided as a MATHEMATICA note-
book. At NNLO, we have to deal with a proliferation of
LECs and the fact that theOðp8Þ Lagrangian, which should
be taken into account according to our power counting, has
not been constructed. Therefore, we make the following
ansatz for the form factors up to and including NNLO:

FNNLO
η ðsππÞ ¼ FLO

η þ 1

4
ffiffiffi
3

p
π2F3

π

ðbη þ cηsππ þ dηs2ππÞ

þ loopsηðsππÞ; ð16Þ

FNNLO
η0 ðsππÞ ¼ FLO

η0 þ 1

4
ffiffiffi
3

p
π2F3

π

ðbη0 þ cη0sππ þ dη0s2ππÞ

þ loopsη0 ðsππÞ; ð17Þ

where FLO
P are the LO form factors given in Eqs. (11) and

(12), and the expression loopsPðsππÞ refers to the sππ-
dependent parts of the loop corrections. The parameters
bP and cP receive contributions from the higher-order
Lagrangians in Sec. II and Ref. [25] as well as from, in
principle, theOðp8Þ Lagrangian. In addition, the LECs and
loop contributions originating from the η − η0 mixing are
also absorbed in bP and cP. The parameters dP consist
solely of terms from the Oðp8Þ Lagrangian. However, the
most general form factor at NNLO could depend on a
second kinematic variable t or u and is symmetric under the
exchange t ↔ u. This dependence would be introduced by
the Oðp8Þ Lagrangian. On the basis of a vector-meson-
exchange picture, where only the sππ-channel exchange of a
neutral ρ meson can contribute, we neglect, for simplicity,
any t or u dependence and employ the ansatz in Eqs. (16)
and (17).
A measurable observable of the decay is provided by the

differential cross section as a function of the photon energy

ω ¼ 1

2

�
MP −

sππ
MP

�
; ð18Þ

which takes the form [30]
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dΓ
dω

¼MPω
3ðM2

P−4M2
π−2MPωÞ

384π3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4M2
π

M2
P−2MPω

s
jFPj2:

ð19Þ

The full decay width can then be obtained by integration,

ΓP→πþπ−γ ¼
Z

1
2
ðMP−4M2

π=MPÞ

0

dω
dΓ
dω

: ð20Þ

IV. NUMERICAL ANALYSIS

To evaluate our results numerically, we need to fix the
LECs. This is done in a successive way, starting at LO and
proceeding to NLO and, finally, to NNLO.

A. LO

At LO, we can directly calculate the decay widths by
using Eq. (20) together with the form factors in Eqs. (11)
and (12). For the mixing angle, we employ the LO value
θ½0� ¼ −19.6 deg. The LO results are

Γη→πþπ−γ ¼ 36 eV; ð21Þ

Γη0→πþπ−γ ¼ 3.4 keV; ð22Þ

which, in particular for the η0, are a lot smaller than the
experimental values Γη→πþπ−γ ¼ ð55.3� 2.4Þ eV [31] and
Γη0→πþπ−γ ¼ ð55.5� 1.9Þ keV [31]. Employing Eq. (19)
with the LO form factors, we also determine the spectra
at LO and compare them to the experimental data. Since the
data are provided in arbitrary units, we multiply our LO
results for the spectra by a normalization constant AP,
P ¼ η; η0, and determine this constant through a fit to the
data. For η → πþπ−γ we use the full photon-energy spec-
trum provided by Ref. [32], and for η0 → πþπ−γ we fit our

results to the πþπ− invariant-mass spectrum, measured in
Ref. [33], up to 0.59GeV. The results are shown in Fig. 2. As
one can clearly see, the LO description is very poor, and it is
crucial to take higher-order corrections into account.

B. NLO

At NLO, we determine the LECs through a fit to the
experimental spectra of the decays. It is not possible to
independently determine all NLO LECs in the expressions
for the NLO form factors in Eqs. (13) and (14). We are only
able to fix those linear combinations of LECs which
accompany independent sππ structures. The NLO form
factors in terms of these linear combinations of LECs are
given by

FηðsππÞ ¼
1

4
ffiffiffi
3

p
π2F3

π

f½cosðθ½1�Þ −
ffiffiffi
2

p
sinðθ½1�Þ�

× ð1þ c15sππÞ þ c3g; ð23Þ

Fη0 ðsππÞ ¼
1

4
ffiffiffi
3

p
π2F3

π

f½sinðθ½1�Þ þ
ffiffiffi
2

p
cosðθ½1�Þ�

× ð1þ c15sππÞ þ c4g; ð24Þ

where θ½1� is the mixing angle calculated up to and including
NLO, given in Eq. (49) in Ref. [29], and

c3 ¼ ½cosðθ½1�Þ −
ffiffiffi
2

p
sinðθ½1�Þ�ðc13M2

π þ c14M2
ηÞ

−
ffiffiffi
2

p
sinðθ½1�Þc2;

c4 ¼ ½sinðθ½1�Þ þ
ffiffiffi
2

p
cosðθ½1�Þ�ðc13M2

π þ c14M2
η0 Þ

þ
ffiffiffi
2

p
cosðθ½1�Þc2: ð25Þ

We now have to determine four parameters c3, c4, c15, and
the NLO mixing angle θ½1�. For θ½1�, we employ the value
from the NLO analysis in Table IV in Ref. [29], labeled

FIG. 2. Left: photon-energy spectrum of η → πþπ−γ at LO (dotted, gray) and NLO (solid, blue). The blue band is the 1σ error band.
The experimental data are taken from Ref. [32]. Right: invariant-mass spectrum of the πþπ− system in η0 → πþπ−γ at LO (dotted, gray)
and NLO (blue) fitted up to 0.59 GeV (dash-dotted), 0.64 GeV (dashed), and 0.72 GeV (solid). The experimental data are taken from
Ref. [33].
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NLO1, namely, θ½1� ¼ −11.1 deg. The constants c3, c4, and
c15 are determined through a fit to experimental data.We use
the decay width of η → πþπ−γ, the photon-energy spectrum
of the η decay, and the πþπ− invariant-mass spectrum of the
η0 decay. Since we are not able to describe the full η0
spectrum, we do not include the η0 decaywidth in our fit. We
perform three simultaneous fits to the data for the η decay
width [31], the full η spectrum from Ref. [32], and to the η0
spectrum from Ref. [33] up to 0.59 GeV (I), 0.64 GeV (II),
and 0.72 GeV (III). Since the experimental spectra are
provided in arbitrary units, wemultiply our fit functions, i.e.,
Eq. (19) with the form factors from Eqs. (23) and (24),
by normalization constants AP. The results for the fit
parameters are given in Table II, where the errors are
the ones provided by the MATHEMATICA fit routine
NonlinearModelFit. In all fits, in the calculation of the fit
parameter errors, we only take the experimental errors into
account. To that end, the estimated variance, corresponding
to the reduced χ2, is set to 1. In order to evaluate the quality of
the fits, we display the mean squared error denoted by MSE
in the tables for the fit parameters. TheMSE can be obtained
from the ANOVATable in MATHEMATICA and is defined as

MSE ¼ 1

ndof

XN
i¼1

ðyi − ŷiÞ2
Δy2i

; ð26Þ

where ndof is the number of degrees of freedom, N the
number of data points, yi the value of the ith data point,Δyi
its error, and ŷi the corresponding model prediction.
Furthermore, we do not consider the errors caused by
neglecting higher-order terms. In principle, a systematic
error of at least 10%, corresponding to δ2 ¼ 1=9, should be
added to all quantities determined up to and including NLO.

The parameters Aη and c3 appear only in the η form
factor and are therefore fixed by the η data. Because the fit
range of these data remains the same in the three cases, the
parameters do not change. Also c15, which appears in both
the expression for the η and the η0 form factor, seems to be
determined by the η spectrum since it does not depend on
the fit range of the η0 spectrum. The variation of the η0 fit
range is then reflected in the variation of Aη0 and c4. A
vector-meson-dominance (VMD) estimate from SU(3)
ChPT predicts c15 ¼ 2.53 GeV−2 [30]. Our value for c15
is more than twice as large.
The NLO results for the η and η0 spectra are shown in

Fig. 2 together with the LO results obtained in Sec. IVA
and the experimental data. The 1σ error bands of the fits of
the η0 spectra are displayed in Fig. 3. For both the η and the
η0 spectrum, the NLO description is a clear improvement
compared to the LO result. At NLO, increasing the fit range
of the η0 spectrum leads to a better description of the data at
higher sππ, but it worsens at lower sππ. The error bands for
the η0 spectra are so small that they coincide with the line
thickness. This is caused by the fact that the fit errors are
calculated only from the experimental errors which are very
small. From our analysis of the η0 decay we conclude that a
NLO calculation should not be applied to data with

ffiffiffiffiffiffi
sππ

p
larger than 0.6 GeV, which motivates going to NNLO.

C. NNLO

At NNLO, we employ the ansatz for the form factors in
Eqs. (16) and (17). Since the form factors for η and η0 each
have their specific set of LECs, we perform the fits to the
corresponding data separately. The normalization Aη and
the LECs bη, cη, dη are fixed through a simultaneous fit to
the η decay width [31] and the photon-energy spectrum
[32]. We consider four different scenarios. The first is the

TABLE II. Fit parameters at NLO.

Fit Aη ½1010� Aη0 ½108� c3 c4 c15 ½GeV−2� MSE

I 1.43� 0.06 −0.85� 0.07 −0.68� 0.04 −0.86� 0.02 5.78� 0.23 7.58
II 1.43� 0.06 −1.32� 0.11 −0.68� 0.04 −1.24� 0.01 5.78� 0.23 29.89
III 1.43� 0.06 −3.06� 0.25 −0.68� 0.04 −1.89� 0.03 5.78� 0.23 221.96

FIG. 3. Invariant-mass spectrum of the πþπ− system in η0 → πþπ−γ with the 1σ error band, coinciding with the line thickness, at NLO
fitted up to 0.59 GeV (left), 0.64 GeV (middle), and 0.72 GeV (right). The experimental data are taken from Ref. [33].
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full NNLO calculation (Full).2 In a next step, we switch
off the loop contributions (Without loops). Finally, we put
the dη term to zero, and we also discuss the case without dη
and without loop contributions. The results are shown in
Table V in Appendix B. Then, all four scenarios are
discussed for the η0. Since we cannot describe the full η0
spectrum, we do not include the decay width in the fit. As a
result, when the loop contributions are switched off, we are
not able to extract the overall normalization separately. In
those cases, we can only fit the spectrum induced by the
form factor

FNNLO
η0 ðsππÞ ¼ FLO

η0 þ 1

4
ffiffiffi
3

p
π2F3

π

ðc̃η0sππ þ d̃η0s2ππÞ ð27Þ

multiplied by a normalization constant Ãη0 . The relation to
the parameters given in Eq. (17), without loopsPðsππÞ and
with the original normalization Aη0 , takes the form

ffiffiffiffiffiffi
Ãη0

q
¼ sinðθ½0�Þ þ ffiffiffi

2
p

cosðθ½0�Þ þ bη0

sinðθ½0�Þ þ ffiffiffi
2

p
cosðθ½0�Þ

ffiffiffiffiffiffi
Aη0

p
;

c̃η0 ¼
sinðθ½0�Þ þ ffiffiffi

2
p

cosðθ½0�Þ
sinðθ½0�Þ þ ffiffiffi

2
p

cosðθ½0�Þ þ bη0
cη0 ;

d̃η0 ¼
sinðθ½0�Þ þ ffiffiffi

2
p

cosðθ½0�Þ
sinðθ½0�Þ þ ffiffiffi

2
p

cosðθ½0�Þ þ bη0
dη0 ; ð28Þ

where θ½0� ¼ −19.6 deg is the LO mixing angle. In the
scenarios including loops, the loop contributions provide
additional independent sππ structures, so we can try to
extract the LECs and the overall normalization separately.
The results with and without loops are provided in
Tables VI and VII in Appendix B, respectively.
Figure 4 shows our LO, NLO, and NNLO predictions for

the η spectrum together with the experimental data. As
expected, the description of the spectrum improves gradu-
ally from LO to NLO to NNLO. We find that the
contributions of the loops to the shape of the spectrum
are very small and can be compensated by a change of the
LECs. The improved description of the data from NLO to
NNLO is due to the inclusion of the s2ππ term.
Figure 5 shows the results of the fits of the NNLO

expression for the η0 spectrum to the experimental data
without the s2ππ term in the three different fit ranges. The
corresponding error bands are displayed in Fig. 9 in
Appendix C. Here, we observe a better description of
the data compared to the NLO calculation due to the
inclusion of the loop corrections and the appearance of an
additional parameter because the LEC multiplying the sππ
term, i.e., cη0 , is now independent from the η decay. Taking

the s2ππ term into account in the full NNLO expression tends
to make the fit unstable, in particular, in the cases where
the fit range is small. Therefore, we discuss here only the
results of the fits up to 0.72 GeV (III), and the results of the
other fits are shown in Fig. 10 in Appendix C. Figure 6
shows a comparison of our NLO, NNLO without the dη0
term, and full NNLO results for the η0 spectrum fitted up to
0.72 GeV. At such high values of sππ, the inclusion of the
dη0 term yields a better description of the data compared to
NNLO with dη0 ¼ 0. However, as can be seen in Fig. 6,
even the full NNLO result is not able to describe the whole
spectrum. This problem originates from the fact that, since
the invariant mass of the pion pair reaches values as high as
0.8 GeV, vector-meson degrees of freedom become impor-
tant. Since we do not consider vector mesons as explicit
degrees of freedom in our calculation, we cannot reproduce
the whole spectrum correctly.

FIG. 4. Photon-energy spectrum of η → πþπ−γ at LO (dotted,
gray), NLO (dashed, blue), and NNLO (solid, red). For the NLO
and NNLO results the corresponding 1σ error bands are shown.
The experimental data are taken from Ref. [32].

FIG. 5. Invariant-mass spectrum of the πþπ− system in
η0 → πþπ−γ at NNLO with dη0 ¼ 0, fitted up to 0.59 GeV
(dash-dotted), 0.64 GeV (dashed), and 0.72 GeV (solid). The
experimental data are taken from Ref. [33].

2By full NNLO calculation, we refer to our ansatz for the
NNLO result without the knowledge of the Oðp8Þ Lagrangian.
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1. Comparison with other works

The decay η → πþπ−γ has been studied in one-loopChPT
using theLO η − η0mixing inRefs. [30,34]. It was found that
Oðp6Þ corrections are crucial to describe the data and that
the contributions of the contact terms dominate over the loop
corrections. We agree with these findings. Reference [35]
investigates the decays ηð0Þ → πþπ−γ in an approach that
combines ChPT with a coupled-channel Bethe-Salpeter
equation which generates vector mesons dynamically.
The importance of Oðp6Þ contact terms for describing the
data for the η decaywas also observed. The η0 data, however,
cannot be described by simply adjusting the Oðp6Þ contact
terms. In the decay η0 → πþπ−γ, vector mesons play an
important role and, after the inclusion of the coupled-
channel approach, the experimental η0 spectrum can be
reproduced. The effects of vector mesons have been taken
into account by a momentum-dependent vector-meson-
dominance model [36] or, in a more elaborate way, in the
context of hidden local symmetries [37,38]. In Ref. [39],
axial-vector mesons and their mixing with pseudoscalars
have also been considered. References [40,41] apply an
Omnes function on top of the one-loop results to include the
effects of p-wave pion scattering. Another approach com-
bines ChPTwith dispersion theory, allowing for a controlled
inclusion of resonance physics [4]. Because of the inclusion
of pion-pion rescattering in the final state, both the η and the
η0 spectrum can be described well. Reference [5] augments
this analysis of the η → πþπ−γ decay by the a2 tensor
meson. Finally, Ref. [42] performs an amplitude analysis of
the decay η0 → πþπ−γ based on the latest BESIII data [33],
taking into account ρ − ω mixing.

V. ηð0Þ → π +π − l + l −

In the following, we investigate the decays involving a
virtual photon ηð0Þ → πþπ−γ�, which are connected to the
decays ηð0Þ → πþπ−lþl−, with a lepton pair l ¼ e, μ. The
matrix element for the decay ηð0Þ → πþπ−γ� is given by

M ¼ −iFPϵμναβϵ
μpνþpα

−qβ; ð29Þ

where qμ and ϵμ denote the momentum and polarization
vector of the photon, respectively, and where pμ

þ, pμ
− are the

momenta of the pions. The decay ηð0Þ → πþπ−lþl− pro-
ceeds via a two-step mechanism [43,44]. The first decay is
ηð0Þ → πþπ−γ� which is followed by γ� → lþl−. We can
obtain the invariant amplitude for ηð0Þ → πþπ−lþl− from a
modification of the one in Eq. (29). The photon is now
off shell, and we replace its polarization vector ϵμ by
ðe=q2Þūðk−ÞγμvðkþÞ, where k� are the lepton momenta.
After this modification, the invariant amplitude reads

M ¼ −iFPϵμναβpνþpα
−qβ

�
e
q2

ūðk−ÞγμvðkþÞ
�
: ð30Þ

The form factors FP have been calculated in Sec. III.
We can then calculate the differential decay rates of
ηð0Þ → πþπ−lþl− in terms of the normalized invariant
mass of the pion pair x ¼ ðpþ þ p−Þ2=M2

P ≡ sππ=M2
P

and the normalized invariant mass of the lepton pair
y ¼ ðkþ þ k−Þ2=M2

P ≡ q2=M2
P, where P ¼ η; η0. The dif-

ferential decay width is given by [43]

d2Γ
dxdy

¼ e2M7
P

18ð4πÞ5
λ3=2ð1; x; yÞλ1=2ðy; ν2; ν2Þλ3=2ðx; μ2; μ2Þ

x2y2

×

�
1

4
þ ν2

2y

�
jFPj2; ð31Þ

where λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2xz − 2yz is the
Källén function, μ ¼ Mπ=MP, and ν ¼ ml=MP. The spec-
trum with respect to x is obtained by integrating over y,

dΓ
dx

¼
Z

1−2
ffiffi
x

p þx

4m2
l =M

2
P

dy
d2Γ
dxdy

; ð32Þ

whereas the integration over x leads to the spectrum with
respect to y,

FIG. 6. Invariant-mass spectrum of the πþπ− system in η0 → πþπ−γ at NLO (dashed, blue), NNLO with dη0 ¼ 0 (dash-dotted, purple),
and full NNLO (solid, red) fitted up to 0.72 GeV. The left plot shows the spectrum up to 0.75 GeV and the right plot the full spectrum.
The experimental data are taken from Ref. [33].
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dΓ
dy

¼
Z

1−2 ffiffi
y

p þy

4M2
π=M2

P

dx
d2Γ
dxdy

: ð33Þ

The full decay width of ηð0Þ → πþπ−lþl− is given by

ΓP→πþπ−lþl− ¼
Z

1−2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

l =M
2
P

p
þ4m2

l =M
2
P

4M2
π=M2

P

dx
Z

1−2
ffiffi
x

p þx

4m2
l =M

2
P

dy
d2Γ
dxdy

:

ð34Þ

A. Numerical analysis

While at LO the numerical evaluation of the results can
be performed directly, at NLO we need to fix four
constants: c3, c4, c15, and c14. For the parameters c3, c4,
c15 we employ the values determined from the decays to
real photons ηð0Þ → πþπ−γ at NLO in Table II. The

parameter c14 is multiplied by the photon virtuality q2

and needs to be fixed to the decays ηð0Þ → πþπ−lþl−
involving a virtual photon. The available data for these
decays are the decay widths for ηð0Þ → πþπ−eþe− [31] and
η0 → πþπ−μþμ− [45], whereas for the decay width of
η → πþπ−μþμ− only an upper limit exists [31]. The spectra
of these decays have not been measured. Since we are not
able to describe the full η0 → πþπ−γ spectrum due to the
importance of resonant contributions, we expect that the
description of the η0 → πþπ−eþe− decay is not appropriate
in our framework. However, in the decay η0 → πþπ−μþμ−,
both a pion pair and a muon pair have to be created, such
that their invariant masses do not reach values where the
contributions of vector mesons start dominating. Therefore,
we can use the decay widths of η → πþπ−eþe− and η0 →
πþπ−μþμ− to determine c14. The LEC c4 is set to the three
different values determined in Table II, corresponding
to the different fit ranges for the η0 → πþπ−γ spectrum.
We then fix c14 through a fit to the experimental data
Γη→πþπ−eþe− ¼ ð351� 20Þ meV [31] and Γη0→πþπ−μþμ− ¼
ð3.70� 0.98Þ eV [45]. The results for c14 are displayed in
Table III. As the absolute value of c4 increases, the absolute
value of c14 gets larger as well. A naive VMD estimate for
c14 is given by c14 ¼ −2.53 GeV−2 [30], which is roughly
of the same order of magnitude as our values.

TABLE III. Results for the fit parameters.

Fit c4 c14 ½GeV−2�
NLO I −0.86 −3.92� 3.19
NLO II −1.24 −7.45� 3.11
NLO III −1.89 −13.24� 3.00

FIG. 7. Invariant-mass spectra of the πþπ− system at LO (dotted, gray), NLO I (solid, blue), NLO II (dashed, blue), and NLO III (dash-
dotted, blue). The bands correspond to the fit error of c14 for NLO I.
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In Figs. 7 and 8, we show the predictions for the
invariant-mass spectra of the πþπ− and lþl− systems at
NLO for all four decays ηð0Þ → πþπ−lþl−, respectively. The
spectra are plotted for the three different sets of parameters
in Table III and are compared to the LO results. To assess
the uncertainty in c14, for the NLO I fit, we display the error
bands resulting from the fit error of c14.
In general, the LO and NLO spectra differ greatly. The

NLO corrections tend to produce steeper and larger peaks
compared to the LO predictions. For the decays involving
an eþe− pair, variations of c14 have only a minor influence
because the error bands coincide with the line thickness in
Fig. 7. A larger effect can be seen in the invariant-mass
spectra of the lþl− system in Fig. 8. The error bands are
much larger for the decays to μþμ−. Because of the larger
invariant mass of the muon pair, the photon virtuality
is increased and the decays are more sensitive to c14.
Since the fits are performed to the decay width of
η0 → πþπ−μþμ−, the three NLO curves are close together,
whereas in η → πþπ−μþμ− the effect of the different c14
values can be seen and in η0 → πþπ−eþe− the influence of
c4 can be observed.
At NNLO, in addition to the parameters determined from

ηð0Þ → πþπ−γ, more unknown LECs appear, multiplying
possible structures in the form factors like ðq2Þ2 or q2sππ.

Therefore, we do not numerically evaluate the full NNLO
expressions. At this order, the loops start contributing. For
completeness, in order to provide an estimate of the size of
the loop corrections, we evaluate the scenario where we just
add the loops to the LO expressions. The corresponding
spectra are shown in Figs. 11 and 12 in Appendix C. We
observe rather large effects of the loops on the spectra,
comparable in size to the NLO corrections.
Finally, we integrate the spectra and obtain predictions for

the full decay widths of η0 → πþπ−lþl−. The results are
displayed in Table IV. Since this is only a first study of
the decays ηð0Þ → πþπ−lþl− to obtain a rough estimate of the
higher-order corrections, we do not provide errors for the
results of the decay widths. The widths of η → πþπ−eþe−

and η0 → πþπ−μþμ− are very well described by the NLO
I-III fits. In general, the LO values for all decays are quite
small, and the NLO corrections provide increased results.
For both η decay widths the loop corrections lead to a
decrease of about 25% compared to the LO values, whereas
the loops add large positive contributions to the LO results
for the η0 decay widths. The LO value for Γη0→πþπ−eþe− is
very small. The NLO results depend quite strongly on the
different values determined for c4 and are only up to 50% of
the experimental value. This is related to the importance
of vector mesons, which we have not taken into account

FIG. 8. Invariant-mass spectra of the lþl− system at LO (dotted, gray), NLO I (solid, blue), NLO II (dashed, blue), and NLO III (dash-
dotted, blue). The bands correspond to the fit error of c14 for NLO I.
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explicitly. Furthermore, the full NNLO contributions might
further improve our result. For η → πþπ−μþμ−, the exper-
imental limit is 5 orders of magnitude larger than our
determinations.

1. Comparison with other works

In Table IV, we compare our results for the decay widths
with other theoretical predictions. In Ref. [43], the decay
η → πþπ−eþe− has been studied in a chiral model that
incorporates vector mesons explicitly. Reference [46] cal-
culated various decays of light unflavored mesons using a
meson-exchange model based on VMD. A chiral unitary
approach that combines ChPT with a coupled-channel
Bethe-Salpeter equation has been applied to the decays
ηð0Þ → πþπ−lþl− in Ref. [44]. Reference [47] investigates
the decays within the hidden gauge and a modified VMD
model. The results of Refs. [44,47] agree within their errors
which are quite large in some cases, and the agreement is
better for the decays involving eþe− than for those with
μþμ−. The results of Ref. [46] show larger deviations. Our
NLO results for Γη→πþπ−eþe− are smaller than the other
theoretical values which are larger than the experimental
value. The other theoretical predictions agree within errors
with the experimental value for Γη0→πþπ−eþe− ; however,
they are slightly smaller, and Ref. [46] shows the greatest
deviation. All theoretical values for Γη→πþπ−μþμ− are
below the experimental limits, while the predictions for
Γη0→πþπ−μþμ− are larger than the experimental value in some
cases, but all of them agree within errors. In general, our
NLO results forΓη0→πþπ−eþe− are substantially lower than the
other theoretical predictions. This can be explained by the
fact that, as opposed to the other works, we have not taken
the explicit contributions of vector mesons into account.
References [43,44,47] also provide plots of their pre-

dicted spectra. The invariant-mass spectra of the πþπ− and
eþe− systems in η → πþπ−eþe− agree with each other and
with our NLO results for the spectra. For the spectra of

η → πþπ−μþμ− with respect to
ffiffiffiffiffiffi
sππ

p
and

ffiffiffiffiffi
q2

p
, we find

qualitative agreement of our NLO results with
Refs. [44,47], with the difference that our peaks are a little
bit higher than those of the other works. Our NLO πþπ−
invariant-mass spectrum of η0 → πþπ−eþe− is much broader
and lower than those in Refs. [44,47], which exhibit a steep
peak around 750 MeV. Less pronounced is the behavior
in the eþe− invariant-mass spectrum, but also there, our peak
is broader and lower. Here, the influence of the explicit
vector mesons which are included in Refs. [44,47] can be
clearly seen. With regard to the spectra for η0 → πþπ−μþμ−,
our results agree quite well with Ref. [44], except that our
peak in the invariant-mass spectrum of the μþμ− system is
broader than in Ref. [44].
In order to test the different approaches to the decays

ηð0Þ → πþπ−lþl−, more experimental data on the decays
are highly desirable. Experimental data on the differential
decay spectra of any of the decays ηð0Þ → πþπ−lþl−
or the decay width of η → πþπ−μþμ− would allow for
an improved determination of the parameter c14 and
might even facilitate the determination of LECs at
NNLO.

VI. SUMMARY AND OUTLOOK

We have investigated the decays ηð0Þ → πþπ−γð�Þ at the
one-loop level up to and including NNLO in LNcChPT.
Besides the loop corrections, all contact terms up to and
including NNLO have been taken into account. To this end,
possible structures from the Oðp8Þ Lagrangian, which
has not been constructed yet, have been introduced phe-
nomenologically, together with free parameters. In addi-
tion, the η − η0 mixing has been consistently included. We
have numerically evaluated the decays successively at LO,
NLO, and NNLO. For ηð0Þ → πþπ−γ, the LECs from the
odd-intrinsic-parity sector were determined through fits to
the decay width and the full decay spectrum of the η and to
parts of the η0 decay spectrum, since we are not able

TABLE IV. Results for the decay widths of ηð0Þ → πþπ−lþl−.

Γη→πþπ−eþe− Γη0→πþπ−eþe− Γη→πþπ−μþμ− Γη0→πþπ−μþμ−

½10−10 GeV� ½10−7 GeV� ½10−15 GeV� ½10−9 GeV�
LO 2.34 0.26 7.20 0.59
NLO I 3.48 2.38 7.91 3.72
NLO II 3.50 1.88 10.44 3.71
NLO III 3.53 1.18 15.38 3.69
LOþ Loops 1.81 1.13 5.16 2.50

Experiment [31,45] 3.5� 0.2 4.5� 2.4 < 4.7 × 105 3.7� 1.0

VMD [43] 3.8 � � � � � � � � �
[46] 4.72 3.56 15.72 3.96
CC [44] 3.89þ0.10

−0.13 4.31þ0.38
−0.64 9.8þ5.8

−3.5 3.2þ2.0
−1.6

Hidden gauge [47] 4.11� 0.27 4.3� 0.46 11.33� 0.67 4.36� 0.63
Modif. VMD [47] 3.96� 0.22 4.49� 0.33 11.32� 0.54 4.77� 0.54
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to adequately describe the full η0 spectrum. In general, the
results for the spectra gradually improve from LO, which is
far off, to NLO and NNLO. In the case of the η, the
experimental data are well described at NNLO, mainly due
to the higher-order contact terms, while the loop corrections
have only a very small influence. For the η0 decay, the loops
are more important, and the s2ππ term is only relevant at high
values of the πþπ− invariant mass, leading to a good
description of the η0 spectrum up to

ffiffiffiffiffiffi
sππ

p ¼ 0.7 GeV.
Here, our approach reaches its limit since resonant con-
tributions of vector mesons become important. Finally, we
have considered the decays ηð0Þ → πþπ−lþl−, l ¼ e, μ. At
NLO, the LEC c14, which accompanies the photon vir-
tuality, could be fixed to the decay widths of η →
πþπ−eþe− and η0 → πþπ−μþμ−. We have then evaluated
the decay spectra of all four decays with respect to the
invariant masses of the πþπ− and lþl− systems at NLO. The
NLO corrections modify the spectra substantially in com-
parison with the LO results. Unfortunately no experimental
data for the spectra are available. We have compared our
results with other theoretical determinations and found
agreement in some cases. Discrepancies arise when vector-
meson degrees of freedom play a role, which have been
taken into account in the other works. At NNLO, due to the
appearance of additional unknown LECs, we only evalu-
ated the spectra for the scenario where the loop corrections
were added to the LO results. We have found that the loop

contributions are of the same order of magnitude as the
NLO corrections. To further test the various theoretical
approaches, more experimental information on the differ-
ential spectra of any of the four decays or on the decay
widths of η → πþπ−μþμ− would be very helpful, since this
would allow for a better determination of the LECs at NLO
and maybe even at NNLO.
Our results show the limitations of a perturbative

chiral and large Nc expansion, especially in the case of the
η0 → πþπ−γ spectrum. While the extension to higher
orders might further improve the description of the data,
the number of unknown LECs increases, thus making the
gain in physical insight questionable. However, the
inclusion of vector mesons as explicit degrees of freedom
might extend the range of applicability of the effective
theory.
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APPENDIX A: ADDITIONAL EXPRESSIONS

The loop contributions to the form factors of the decays
ηð0Þ → πþπ−γ� given by the loop diagrams in Fig. 1 read

Fη ¼
1

768
ffiffiffi
3

p
π4F5

π

ð2 cosðθ½0�Þ½3ðq2 − 4M2
KÞB0ðq2;M2

K;M
2
KÞ

þ 2ðsππ − 4M2
KÞB0ðsππ;M2

K;M
2
KÞ þ ðsππ − 4M2

πÞB0ðsππ;M2
π;M2

πÞ
þ2A0ðM2

KÞ þ 22A0ðM2
πÞ þ 2ð−10M2

K − 2M2
π þ q2 þ sππÞ�

−
ffiffiffi
2

p
sinðθ½0�Þfðsππ − 4M2

KÞB0ðsππ;M2
K;M

2
KÞ þ 2½ðsππ − 4M2

πÞ
×B0ðsππ;M2

π;M2
πÞ − 2M2

K − 4M2
π þ sππ� þ 22A0ðM2

KÞ þ 44A0ðM2
πÞgÞ ðA1Þ

and

Fη0 ¼
1

768
ffiffiffi
3

p
π4F5

π

ð2 sinðθ½0�Þf3ðq2 − 4M2
KÞB0ðq2;M2

K;M
2
KÞ

þ 2ðsππ − 4M2
KÞB0ðsππ;M2

K;M
2
KÞ þ ðsππ − 4M2

πÞB0ðsππ;M2
π;M2

πÞ
þ2A0ðM2

KÞ þ 22A0ðM2
πÞ þ 2½−2ð5M2

K þM2
πÞ þ q2 þ sππ�g

þ
ffiffiffi
2

p
cosðθ½0�Þfðsππ − 4M2

KÞB0ðsππ;M2
K;M

2
KÞ þ 2½ðsππ − 4M2

πÞ
×B0ðsππ;M2

π;M2
πÞ − 2M2

K − 4M2
π þ sππ� þ 22A0ðM2

KÞ þ 44A0ðM2
πÞgÞ: ðA2Þ

The explicit expressions for the loop integrals read

A0ðm2Þ ¼ ð−16π2Þ
�
2m2λþ m2

8π2
ln

�
m
μ

��
; ðA3Þ
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B0ðp2; m2
1; m

2
2Þ ¼ ð−16π2Þ

�
2λþ

lnðm1

μ Þ
8π2

þ 1

16π2

×

�
−1þ p2 −m2

1 þm2
2

p2
ln

�
m2

m1

�
þ 2m1m2

p2
FðΩÞ

��
; ðA4Þ

where

λ ¼ 1

16π2

�
1

n − 4
−
1

2
½lnð4πÞ þ Γ0ð1Þ þ 1�

�
; ðA5Þ

Ω ¼ p2 −m2
1 −m2

2

2m1m2

; ðA6Þ

and

FðΩÞ ¼

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − 1

p
ln ð−Ω −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − 1

p
Þ for Ω ≤ −1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Ω2
p

arccos ð−ΩÞ for − 1 ≤ Ω ≤ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − 1

p
ln ðΩþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − 1

p
Þ − iπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − 1

p
for 1 ≤ Ω:

ðA7Þ

We evaluate the loop integrals at the renormalization scale μ ¼ 1 GeV.

APPENDIX B: FIT PARAMETERS

In the following, we provide additional results for the fit parameters determined in Sec. IV.

TABLE V. Fit parameters for the η spectrum at NNLO determined in Sec. IV.

Aη ½1010� bη cη ½GeV−2� dη ½GeV−4� MSE

Full 1.29� 0.05 0.09� 0.17 −4.60� 2.03 34.35� 6.05 1.10
Without loops 1.45� 0.06 −0.01� 0.16 −3.30� 1.92 31.49� 5.72 1.11
dη ¼ 0 1.28� 0.05 −2.03� 0.05 −8.41� 0.30 0:� 0: 1.88
Without loops ∧ dη ¼ 0 1.43� 0.06 −0.84� 0.04 7.24� 0.29 0:� 0: 1.94

TABLE VI. Fit parameters for the η0 spectrum at NNLO including loops determined in Sec. IV.

Aη0 ½1010� bη0 cη0 ½GeV−2� dη0 ½GeV−4� MSE

Full I −0.19� 0.00 4.57� 0.18 −0.69� 0.01 −1.11� 0.09 0.8
Full II −8.49� 0.03 1.55� 0.04 −1.02� 0.00 −0.88� 0.02 0.77
Full III −8.39� 0.02 1.78� 0.01 −1.01� 0.00 −0.99� 0.01 1.59
dη0 ¼ 0 I −8.05� 0.08 −0.96� 0.00 −0.48� 0.01 0:� 0: 0.83
dη0 ¼ 0 II −8.68� 0.02 −0.95� 0.00 −0.53� 0.00 0:� 0: 3.45
dη0 ¼ 0 III −8.78� 0.03 −0.92� 0.00 −0.68� 0.00 0:� 0: 73.16

TABLE VII. Fit parameters for the η0 spectrum at NNLO without loops determined in Sec. IV.

Ãη0 ½107� c̃η0 ½GeV−2� d̃η0 ½GeV−4� MSE

Without loops I −16.72� 1.12 −1.71� 0.23 13.71� 0.19 0.79
Without loops II −22.82� 0.91 −2.81� 0.10 14.66� 0.09 1.65
Witout loops III −46.73� 0.83 −4.49� 0.02 15.04� 0.06 16.51
Without loops ∧ d̃η0 ¼ 0 I −0.97� 0.08 20.48� 0.96 0:� 0: 11.58

Without loops ∧ d̃η0 ¼ 0 II −0.03� 0.01 −156.64� 30.47 0:� 0: 46.27

Without loops ∧ d̃η0 ¼ 0 III −15.07� 0.22 −9.84� 0.05 0:� 0: 323.05
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APPENDIX C: ADDITIONAL PLOTS

This appendix shows additional plots from the analyses in Secs. IV and V.

FIG. 9. Invariant-mass spectrum of the πþπ− system in η0 → πþπ−γ at NNLO with dη0 ¼ 0 fitted up to 0.59 GeV (left), 0.64 GeV
(middle), and 0.72 GeV (right) including the 1σ error bands, which partially coincide with the line thickness. The experimental data are
taken from Ref. [33].

FIG. 10. Upper-left plot: invariant-mass spectrum of the πþπ− system in η0 → πþπ−γ at NNLO fitted up to 0.59 GeV (dash-dotted),
0.64 GeV (dashed), and 0.72 GeV (solid). Upper-right plot: 1σ error band for the fit up to 0.59 GeV. Lower-left plot: 1σ error band for
the fit up to 0.64 GeV. Lower-right plot: 1σ error band for the fit up to 0.72 GeV. The experimental data are taken from Ref. [33].
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FIG. 11. Invariant-mass spectra of the πþπ− system at LO (dotted, gray), NLO I (dashed, blue), and LO with loops added (solid,
purple).
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