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We analyze the features of strongly interacting matter in the presence of nonzero isospin chemical
potential μI , within a nonlocal two-flavor Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model.
For a system at finite temperature T, we describe the behavior of various thermodynamic quantities and
study the phase diagram in the μI − T plane. In particular, it is found that for values of μI larger than the
pion mass and temperatures lower than a critical value of about 170 MeV the system lies in an isospin
symmetry broken phase signalled by the presence of a nonzero pion condensate. Our results for the phase
diagram are found to be in better agreement with those arising from lattice QCD calculations, as compared
to the predictions from other theoretical approaches like the local PNJL model.
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I. INTRODUCTION

The phase diagram of strongly interacting matter at finite
temperature and chemical potential has been extensively
studied along the past decades. In general, in the region of
very high temperatures and low densities it is known that
quantumchromodynamics (QCD)predicts the formationof a
quark-gluon plasma (QGP) [1]. Under these extreme con-
ditions quarks and gluons are expected to beweakly coupled,
and the phase diagram can be explored by means of first-
principle perturbative calculations based on expansions in
powers of the QCD coupling constant. On the other hand, at
vanishing baryon chemical potential μB one also expects a
transition from the hadronic phase to a QGP phase. Lattice
QCD (LQCD) calculations indicate that this passage should
occur in the form of a smooth crossover, at a pseudocritical
temperature Tpc ∼ 150–170 MeV. Unfortunately, LQCD
calculations at finite baryon chemical potential μB are not
accessible by Monte Carlo simulations, due to the presence
of a complex fermion determinant in the corresponding
partition function (the so-called sign problem). In this region,
which is not accessible either through lattice techniques or
first principles, most of the present theoretical knowledge on

the QCD phase diagram is obtained from the study of
effective models for strong interactions.
At sufficiently high densities and low temperatures, one

expects to find a “color-flavor locked” phase [2], in which
quarks are bound in color superconducting states analogous
to the Cooper pairs formed by electrons in an ordinary
superconductor. In the region of moderate values of μB the
description of the QCD phase diagram is presently an open
issue, and various possible scenarios have been discussed
in the past few decades. For low temperatures it has been
noted that the chiral symmetry restoration might occur
within a range of chemical potentials in which quarks are
still confined, giving rise to a so-called “quarkyonic” phase.
The presence of this phase has been conjectured for large-
NC QCD [3] and has been studied in the context of effective
models for strong interactions [4,5] (astrophysical conse-
quences of the quarkyonic matter state can be found e.g., in
Refs. [6,7]). In fact, it has been argued [8,9] that at zero
temperature there could be a continuous connection
between hadronic and quark phases of dense matter, instead
of the usual picture in which a first-order transition exists
between both phases at a given critical chemical potential
μc. Support in favor of this continuity scenario has also
been found on the basis of a Ginzburg-Landau analysis,
which leads to a first-order transition line that ends at a
critical endpoint before reaching the μB axis in the μB − T
phase diagram [10]. In addition, it has been claimed that for
large chemical potentials a transition to nonuniform phases
might be favored, leading to the presence of a Lifshitz point
where two homogeneous and one inhomogeneous phases
meet (see e.g., Refs. [11–14]).
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Taking into account the difficulties of applying LQCD
techniques to study the region of moderate and large
chemical potentials, the role played by effective models
in the understanding of the QCD phase diagram is
particularly relevant, and it is important to test their
reliability. This can be done by comparing the correspond-
ing predictions with those obtained from first-principle
calculations, in situations where the latter are available.
One obvious possibility is to consider the above mentioned
case of strong-interaction matter at finite temperature and
vanishing chemical potential, in which LCQD calculations
do not suffer from the sign problem. Another interesting
situation is the one in which the baryon chemical potential
μB is zero, but one has a nonzero isospin chemical potential
μI . In this case (both at zero and finite temperature) LQCD
simulations are feasible, since the functional determinant
turns out to be real [15]. Moreover, the study of the phase
diagram at finite μI becomes interesting in view of the
orbifold equivalence between large-NC QCD and “parent”
SOð2NCÞ and Spð2NCÞ Yang-Mills theories, at finite μB
[16,17]. As discussed in Ref. [18], on this basis one also
expects an connection between phase diagrams for QCD at
finite μB and at μB ¼ 0 and finite μI . This relation is
expected to hold even beyond the large Nc limit, as long as
baryon number symmetry is kept unbroken.
Following the early work in Refs. [19,20], several groups

have performed LQCD calculations at μI ≠ 0 using differ-
ent techniques, see e.g., Refs. [21–26]. One important
feature confirmed by these calculations is that at μI ≳mπ

one finds the onset of a Bose-Einstein pion condensation
phase, as previously conjectured in Ref. [27]. For a recent
review on meson condensation triggered by a large isospin
imbalance see Ref. [28], where references to various
theoretical approaches for the analysis of associated phase
transitions can be found. In this work we consider the
properties of quark matter at finite isospin chemical
potential using a particular class of effective theories,
viz. the nonlocal Polyakov-loop extended Nambu–Jona-
Lasinio (nlPNJL) models [29–34]. In the nlPNJL approach
the quarks move in a background color field and interact
through covariant nonlocal chirally symmetric four-point
couplings, which are separable in momentum space. At
vanishing μB and finite temperature these models provide a
plausible description of chiral restoration and deconfine-
ment transitions, in good agreement with LQCD results
[35]. In general, it can be considered that they represent an
improvement over the local Polyakov-loop extended
Nambu—Jona-Lasinio (PNJL) model [36–42]. In fact,
nonlocal interactions arise naturally in the context of
several successful approaches to low-energy quark dynam-
ics, and lead to a momentum dependence in quark
propagators that can be made consistent [43] with lattice
results. Moreover, it can be seen that nonlocal extensions of
the NJL model do not show some of the known incon-
veniences that are present in the local theory. Well-behaved

nonlocal form factors can regularize the loop integrals in
such a way that anomalies are preserved [44] and charges
are properly quantized. In addition, one can avoid the
introduction of various sharp cutoffs to deal with higher-
order loop integrals [45], improving in this way the
predictive power of the models.
Within the aforementioned framework, the aim of the

present work is to provide a comparison, both at zero and
finite temperature, between the results obtained within the
nlPNJL model and those arising from other theoretical
approaches. In particular, we consider the results from the
local NJL model [46,47], its PNJL extension [48,49], chiral
perturbation theory (ChPT) [50–52], and recent LQCD
calculations [25,26]. As shown below, our predictions for
the border of the pion condensation phase are in good
agreement with available results from lattice QCD, whereas
they differ significantly from the predictions obtained in the
framework of ChPT and from those found within the local
PNJL model.
This article is organized as follows. In Sec. II we present

the general formalism to describe a two-flavor nonlocal
PNJL model at finite temperature and nonvanishing isospin
chemical potential. In Sec. III we quote and discuss our
numerical results, including the comparison with the out-
comes from alternative effective approaches and LQCD
simulations. Finally, in Sec. IV we summarize our results
and present our main conclusions.

II. THEORETICAL FORMALISM

We start by considering the Euclidean action of a two-
flavor quark model that includes nonlocal scalar and
pseudoscalar quark-antiquark currents. One has

SE ¼
Z

d4x

�
ψ̄ðxÞð−i∂ þ m̂ÞψðxÞ − G

2
jaðxÞjaðxÞ

�
; ð1Þ

where ψ ¼ ðψuψdÞT stands for the u, d quark-field doublet,
and m̂ ¼ diagðmu;mdÞ is the current quark-mass matrix. In
what follows we assume that the current masses of u and d
quarks are equal, denoting mc ≡mu ¼ md. The nonlocal
currents jaðxÞ in Eq. (1) are given by

jaðxÞ ¼
Z

d4zGðzÞψ̄
�
xþ z

2

�
Γaψ

�
x −

z
2

�
; ð2Þ

where we have defined Γa ¼ ð1; iγ5τ⃗Þ with τi being Pauli
matrices that act on flavor space. The function GðzÞ is a
form factor responsible for the nonlocal character of the
four-point interactions.
To study strong-interaction matter at finite temperature

and/or chemical potential we introduce the partition func-
tion of the system, given by Z ¼ R

Dψ̄Dψ exp½−SE�. As
stated, we are interested in dealing with isospin asymmetric
matter. This is effectively implemented by introducing
quark chemical potentials μu and μd, which in principle
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can be different from each other. Thus, in the effective
action we perform the replacement

� ∂4 0

0 ∂4

�
→

� ∂4 − μu 0

0 ∂4 − μd

�
: ð3Þ

The quark chemical potentials can be written in terms of
average and isospin chemical potentials μ and μI as

μu ¼ μþ μI
2
; μd ¼ μ −

μI
2
; ð4Þ

where μ ¼ μB=3, with μB being the baryon chemical
potential. For the nonlocal model under consideration, to
obtain the appropriate conserved currents the replacement
in Eq. (3) has to be complemented with a modification of
the nonlocal currents appearing in Eq. (2), namely [53,54]

ψðx − z=2Þ → Wðx; x − z=2Þψðx − z=2Þ;
ψ̄ðxþ z=2Þ → ψ̄ðxþ z=2Þγ0Wðxþ z=2; xÞγ0: ð5Þ

In the present case the transport functions W are simply
given by

Wðx; x − z=2Þ ¼ Wðxþ z=2; xÞ ¼ exp
�
z4
2
μ̂

�
; ð6Þ

where μ̂ ¼ diagðμu; μdÞ.
It is convenient to perform a standard bosonization of the

fermionic action [55], introducing auxiliary mesonic fields
σ and πi, i ¼ 1, 2, 3, and integrating out the fermion fields.
We consider here the mean field approximation (MFA), in
which the bosonic fields are replaced by their vacuum
expectation values (VEVs), σ̄ and π̄i. Though this is a
widely used approach, it is important to keep in mind that
quantum fluctuations may be significant for a precise
determination of the behavior of thermodynamic quantities
and the features of the phase diagram. Estimations of these
effects have been studied taking into account the functional
renormalization group and the presence of mesonic fluc-
tuations, in the framework of the NJL and the quark-meson
models (see e.g., Refs. [34,56–59]). It can be seen that
fluctuations lead to a softening of the chiral restoration
transition and tend to shift to lower temperatures the critical
end point in the T − μB phase diagram.
Let us recall that, for μI ¼ 0, in the chiral limit (mc ¼ 0)

the action in Eq. (1) is invariant under global Uð1ÞB ⊗
SUð2ÞI ⊗ SUð2ÞIA transformations. The group Uð1ÞB is
associated to baryon number conservation, while the chiral
group SUð2ÞI ⊗ SUð2ÞIA corresponds to the symmetries
under isospin and axial-isospin transformations. At zero
temperature the SUð2ÞIA symmetry is expected to be
spontaneously broken by a large value of σ̄ (which leads
to large constituent quark masses), while at high temper-
atures one expects to have σ̄ ¼ 0, which implies a

restoration of the chiral symmetry. In the presence of finite
quark masses one has an explicit breakdown of SUð2ÞIA
(and also of SUð2ÞI , if current u and d quark masses are
different to each other), hence the chiral symmetry is
expected to be only partially restored at high T. Now, in
the presence of a nonzero isospin chemical potential the full
chiral symmetry group is explicitly broken down to the
Uð1ÞI3 ⊗ Uð1ÞI3A subgroup. At T ¼ 0 it might happen that,
similarly to theμI ¼ 0 case,Uð1ÞI3A is spontaneously broken
by a large value of σ̄. Moreover, while for finite current quark
masses one has π̄3 ¼ 0 [60], it can happen that nonvanishing
VEVs for π1 and π2 be developed, leading to a spontaneous
breakdown of the remaining Uð1ÞI3 symmetry. Since the
action is still invariant under Uð1ÞI3 transformations, without
loss of generality one can choose π̄i ¼ δi1Δ̄.
We consider the above described general situation in

which both σ̄ and Δ̄ can be nonvanishing. At zero temper-
ature, the mean field thermodynamic potential is found to
be given by

ΩMFAðT ¼ 0Þ¼ σ̄2þ Δ̄2

2G

−Tr ln

�
puþMðpuÞ iγ5ρðp̄Þ
iγ5ρðp̄Þ pdþMðpdÞ

�
; ð7Þ

where

MðpÞ ¼ mc þ gðpÞσ̄; ρðpÞ ¼ gðpÞΔ̄: ð8Þ

Here we have defined pν
f ≡ ðp⃗; p4 þ iμfÞ, with f ¼ u, d,

and p̄ ¼ ðpu þ pdÞ=2. The function gðpÞ is the Fourier
transform of the form factor GðzÞ in Eq. (2).
Let us consider the extension of the model to the case of

finite temperature, which can be addressed by using the
standard Matsubara formalism. In order to account for
confinement effects, we include the coupling of fermions to
the Polyakov loop (PL). This is done by replacing the
derivative in the kinetic term in Eq. (1) by the covariant
derivative ∂μ − igλaGμa=2, where Gμa are SU(3) color
gauge fields, and assuming that quarks move on a uniform
color background field ϕ ¼ gG4aλa=2. Neglecting spacial
components of gluon fields, we consider the so-called
Polyakov gauge, in which G4a is static (∂G4a=∂x4 ¼ 0)
and ϕ can be rotated to a diagonal representation
ϕ ¼ diagðϕr;ϕg;ϕbÞ ¼ ϕ3λ3 þ ϕ8λ8. In this framework,
we take the traced Polyakov loop Φ ¼ 1

3
Tr expðiϕ=TÞ as

an order parameter of the confinement/deconfinement tran-
sition. In addition, to account for effective gauge field self-
interactions we introduce a mean field Polyakov-loop
potential U that depends on the traced PL, its conjugate Φ̄
and the temperature. The resulting scheme is referred to as a
nonlocal Polyakov-loop extended Nambu-Jona-Lasinio
model [29–34].
Concerning the PL potential, its functional form can be

proposed on the basis of pure gauge QCD properties. Let us
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consider a potential given by a polynomial function based
on a Ginzburg-Landau ansatz [39,61], namely

UpolyðΦ;Φ̄;TÞ
T4

¼−
b2ðTÞ
2

Φ̄Φ−
b3
6
ðΦ3þ Φ̄3Þþb4

4
ðΦ̄ΦÞ2;

ð9Þ

where

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

þ a3

�
T0

T

�
3

: ð10Þ

The parameters ai and bi can be fitted to pure gauge lattice
QCD results imposing the presence of a first-order phase
transition at the reference temperature T0, which is a further
parameter of the model. In the absence of dynamical
quarks, T0 is the critical temperature for deconfinement,
and from lattice QCD calculations one expects it to be
approximately equal to 270 MeV. However, it has been
argued that in the presence of light dynamical quarks T0

should be rescaled to about 210 MeVand 190 MeV for the
case of two and three flavors, respectively, with an
uncertainty of about 30 MeV [62,63]. The numerical values
for the PL potential parameters are [39]

a0 ¼ 6.75; a1 ¼ −1.95; a2 ¼ 2.625; a3 ¼ −7.44; b3 ¼ 0.75; b4 ¼ 7.5: ð11Þ

As an alternative form for the PL potential, often used in the literature, one can take a logarithmic expression based on the
Jacobi determinant that arises from the integration of the nondiagonal piece of the SU(3) color group [40]. The effect of
choosing this alternative form is discussed in Sec. III B.
After the inclusion of PL interactions, the grand canonical thermodynamic potential of the system is given by

ΩMFA ¼ σ̄2 þ Δ̄2

2G
− 2T

X∞
n¼−∞

X
c¼r;g;b

Z
d3p
ð2πÞ3 lnfE

2
nucE2

ndc

− ρðp̄ncÞ2½ðMðpnucÞ −MðpndcÞÞ2 − ðμu − μdÞ2�g þ UpolyðΦ; Φ̄; TÞ; ð12Þ

where we have introduced the definitions p̄nc ¼ ðpnuc þ pndcÞ=2 and E2
nfc ¼ MðpnfcÞ2 þ p2

nfc þ ρðp̄ncÞ2, with
pnfc ≡ ðp⃗; ð2nþ 1ÞπT þ iμf − ϕcÞ. As usual in this type of model, it is seen that ΩMFA turns out to be divergent, thus
it has to be regularized. We adopt here a prescription similar as the one considered e.g., in Ref. [64], viz.

ΩMFA;reg ¼ ΩMFA −Ωfree
q þ Ωfree;reg

q þ Ω0: ð13Þ

Here the “free” potential keeps the interaction with the PL, while σ̄ and Δ̄ are set to zero. A constant termΩ0 is also added so
as to fix ΩMFA;reg ¼ 0 at μB ¼ μI ¼ T ¼ 0. For the regularized form of the free piece, the Matsubara sum can be performed
analytically. One has

Ωfree;reg
q ¼ −2T

X
f¼u;d

X
c¼r;g;b

X
s¼�1

Z
d3p⃗
ð2πÞ3 Re ln

�
1þ exp

�
−
ϵf þ sðμf þ iϕcÞ

T

��
; ð14Þ

where ϵf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

f

q
.

The mean field values σ̄ and Δ̄, as well as the values of ϕ3 and ϕ8, can now be obtained from a set of four coupled “gap
equations” that follow from the minimization of the regularized thermodynamic potential, namely

∂ΩMFA;reg

∂σ̄ ¼ 0;
∂ΩMFA;reg

∂Δ̄ ¼ 0;
∂ΩMFA;reg

∂ϕ3

¼ 0;
∂ΩMFA;reg

∂ϕ8

¼ 0: ð15Þ

In addition, it is interesting to study the behavior of quark condensates. As usual, we consider the scalar condensate
Σ ¼ Σu þ Σd, where Σf ¼ hψ̄fψfi. The corresponding expressions can be obtained by differentiatingΩMFA;reg with respect
to the current up and down current quark masses, i.e.,

Σf ¼ ∂ΩMFA;reg

∂mf
: ð16Þ
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Another relevant quantity is the charged pion condensateΠ,
which is expected to be nonvanishing for μI ≠ 0. According
to our choice π̄i ¼ δi1Δ̄, we get

Π ¼ hψ̄iγ5τ1ψi: ð17Þ

The analytical expression for this condensate can be
obtained by taking the derivative of the regularized
thermodynamic potential with respect to an auxiliary
parameter added to ρðp̄Þ in Eq. (7), and then set to zero
after the calculation.
To study the phase transitions, we also introduce the

susceptibilities associated to the Σ and Π condensates [65]
and the Polyakov loop. These are given by

χch ¼ −
∂Σ
∂mc

; χΠ ¼ ∂Π
∂mc

; χΦ ¼ dΦ
dT

: ð18Þ

Finally, from the regularized potential one can calculate
various thermodynamic quantities, such as the pressure p,
the energy and entropy densities ε and s, and the particle
number densities nI and nB. The corresponding expressions
are

p ¼ −ΩMFA;reg;

ε ¼ ΩMFA;reg þ Tsþ nIμI þ nBμB;

s ¼ −
∂ΩMFA;reg

∂T ;

nI ¼ −
∂ΩMFA;reg

∂μI ;

nB ¼ −
∂ΩMFA;reg

∂μB : ð19Þ

In this work we restrict to the case of μB ¼ 0, focusing
on the effect of finite isospin chemical potential μI . As
stated in the Introduction, in this situation the results from
effective models can be compared with existing lattice
QCD calculations [25,26,66–68], which do not suffer from
the sign problem. Since the thermodynamic potential turns
out to be real, one gets Φ ¼ Φ̄, ϕ8 ¼ 0, and the last of
Eqs. (15) is trivially satisfied.

III. NUMERICAL RESULTS

To fully define the model it is necessary to specify the
form factor entering the nonlocal fermion current in Eq. (2).
In this work we consider an exponential momentum
dependence for the form factor in momentum space,

gðpÞ ¼ expð−p2=Λ2Þ: ð20Þ

This form, which is widely used, guarantees a fast ultra-
violet convergence of quark loop integrals. Notice that the
energy scale Λ, which acts as an effective momentum

cutoff, has to be taken as an additional parameter of the
model. Other functional forms, e.g., Lorentzian form
factors with integer [54] or fractional [69] momentum
dependences, have also been considered in the literature. In
any case, it is seen that the form factor choice does not have
in general major impact in the qualitative predictions for the
relevant thermodynamic quantities [70].
Given the form factor shape, the model parametersmc,G,

andΛ can be fixed by requiring that the model reproduce the
phenomenological values of some selected physical quan-
tities. If we take as inputs the pion massmπ ¼ 138 MeV, the
pion weak decay constant fπ ¼ 92.4 MeV and the quark
condensates Σu ¼ Σd ¼ −ð240 MeVÞ3, one has mc ¼
5.67 MeV, Λ ¼ 752 MeV, and g ¼ GΛ2 ¼ 20.67 [53].

A. Zero temperature

At zero temperature the Polyakov loop decouples from
the fermions, and the thermodynamic potential within the
nonlocal NJL (nlNJL) model is given by the expression in
Eq. (7), properly regularized. In Fig. 1 we show our
numerical results for the normalized mean field conden-
sates Σ=Σ0 and Π=Σ0, where Σ0 ≡ ΣðμI ¼ 0Þ, as functions
of the isospin chemical potential. The solid red lines
correspond to the parametrization described above, which
leads to Σ0 ¼ −ð240 MeVÞ3. To provide an estimation of
the parametrization dependence, we show with a red-
shaded band the results covered by a parameter range such
that Σ0 lies between −ð230 MeVÞ3 and −ð250 MeVÞ3. The
right panel of Fig. 1 just extends the results given in the left
panel, covering a broader range of values of the scaled
isospin chemical potential μI=mπ . For comparison, in both
panels we include the results obtained from several alter-
native approaches. The green band (partially hidden by the
red one) corresponds to the results from the local NJL, for
parametrizations leading to a quark condensate in the range
between −ð240 MeVÞ3 and −ð250 MeVÞ3. The dashed
(green) lines, the dotted (brown) lines and the dashed-dotted
(blue) lines correspond to the results obtained within the
linear sigma model (LSM) in Ref. [46], the NJL model in
Ref. [47] (where a medium separation regularization scheme
is used) and the chiral perturbation theory (ChPT) approach
in Ref. [51], respectively. In addition, the fat dots denote the
results from lattice QCD obtained in Ref. [26].
As expected, for μI < mπ one has Σ ¼ Σ0 and Π ¼ 0.

Indeed, for both local and nonlocal NJL models it can be
analytically shown that the onset of the pion condensation
at T ¼ 0 occurs at μI ¼ mπ. For larger isospin chemical
potentials, as shown in Fig. 1, the chiral condensate
decreases monotonically and the charged pion condensate
gets strongly increased. In this way, for μI ≥ mπ the isospin
symmetry Uð1ÞI3 gets spontaneously broken, while one
finds a partial restoration of the Uð1ÞI3A symmetry for large
values of μI . From the left panel of Fig. 1 it is also seen that
there is an overall agreement between most theoretical
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approaches up to μI ≃ 2mπ . On the other hand, as shown in
the right panel of the figure, for larger values of μI there is
some splitting between the predictions from different
models.
The results for the chiral and pion condensate suscep-

tibilities as functions of μI are displayed in Fig. 2. It can be
seen that the chiral susceptibility χch (solid line, left panel)
is approximately zero for low values of μI , showing a jump
to a high value at μI ¼ mπ and remaining relatively large
for μI > mπ. This signals that at μI ¼ mπ one has the onset
of a smooth transition from a phase in which the Uð1ÞI3A
symmetry is spontaneously broken to a region in which it
becomes (partially) restored. It is found that the height of

the jump at μI ¼ mπ gets increased if the current quark
mass mc is reduced. The pion condensate susceptibility is
given by the solid line in the right panel of Fig. 2. It is seen
that χΠ is zero for low values of μI, and has a divergence at
μI ¼ mπ. This is the signature of a second-order phase
transition leading to the appearance of the pion condensate,
as shown in Fig. 1. The behavior of the susceptibilities is
similar to the one found in the local NJL model,
see Ref. [65].
It is interesting to compare the above results with those

arising from chiral perturbation theory. At the lowest order
in the chiral expansion, it is found that for μI ≥ mπ the
condensates satisfy the relations [71]

FIG. 2. (Color online) Chiral and pion susceptibilities as functions of the isospin chemical potential. Solid and dashed lines correspond
to the results from nlNJL model calculations and lowest-order ChPT expressions, respectively.

FIG. 1. (Color online) Normalized Σ and Π condensates as functions of the isospin chemical potential. The solid red line and the red
band correspond to the numerical results obtained within the nlNJL model. Results from other theoretical approaches (see text) are
included for comparison.
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Σ
Σ0

¼ m2
π

μ2I
;

Π
Σ0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
π

μ2I

s
: ð21Þ

In this way one has

�
Σ
Σ0

�
2

þ
�
Π
Σ0

�
2

¼ 1; ð22Þ

which defines the so-called “chiral circle”. The relation in
Eq. (22) is approximately satisfied in local and nonlocal

NJL models, as can be seen from Fig. 1. In fact, the
agreement is very good up to μI ≃ 2mπ , where the
prediction from ChPT is trustable. Moreover, with
the aid of the Gell-Mann-Oakes-Renner relation one can
find simple analytical expressions for the susceptibilities,
namely

χch ¼ −
Σ0

mc

m2
π

μ2I
; χΠ ¼ −

Σ0

mc

m4
π

μ4I

1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − m4

π

μ4I

q ; ð23Þ

FIG. 3. (Color online) Numerical results for the normalized pressure, energy density and isospin particle density as functions of the
isospin chemical potential. Besides the local and nonlocal NJL models, the graphs include the results obtained from the ChPT approach
in Ref. [51], the linear sigma model in Ref. [46], and LQCD calculations in Refs. [26,47].
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where it has been assumed that the ratio Σ0=f2π is
approximately independent of mc. In Eqs. (23), it can be
seen that χΠ diverges at μI ¼ mπ , while χch is finite and
only becomes divergent in the chiral limit. The behavior of
the susceptibilities as functions of μI obtained from these
equations are shown by the dashed lines in Fig. 2. It can be
seen that they match nicely the results arising from the
nlNJL model.
Next, in Fig. 3 we show the results obtained within the

nlNJL model for the normalized pressure, energy density,
and isospin particle density as functions of μI=mπ . Results
from other theoretical approaches are also included for
comparison (lines and bands for NJL and nlNJL models are
defined in the same way as in Fig. 1). In the left panels we
consider a range of μI from mπ to 2mπ , for which LQCD
estimations have been obtained in Refs. [26,47] (short-
dashed black lines and fat dots in the figure). In the right
panels we include the results for the same quantities using a
different scale that covers values of the isospin chemical

potential up to 5mπ . Notice that all three quantities are zero
for 0 ≤ μI ≤ mπ. From the left panels it can be seen that in
general there is a good agreement between the predictions
of effective models—which do not differ significantly from
each other—and LQCD results. On the other hand, for
larger values of μI the splitting between the results from
various theoretical approaches becomes appreciably large.
Unfortunately, no LQCD results are currently available
within this enlarged range. The behavior of the studied
quantities for the nonlocal approach (solid red lines, red
bands) is found to be qualitatively similar to the one
obtained within the local NJL model (green bands),
showing a monotonic growth when μI gets increased.
Notice that the dependence on the parametrization turns
out to be relatively low.
Another interesting magnitude to be analyzed is the

interaction energy, or trace anomaly, ϵ − 3p. The behavior
of this quantity (normalized by μ4I ) as a function of μI=mπ ,
is shown in Fig. 4. It is seen that the results obtained within

FIG. 4. (Color online) Numerical results for the interaction energy as function of the isospin chemical potential. The graphs include the
values obtained from local and nonlocal NJL models, ChPT [51] and LQCD calculations [26,47].

FIG. 5. (Color online) Numerical results for the equation of state. The graphs include the results obtained from local and nonlocal NJL
models, the linear sigma model [46], ChPT [51] and LQCD calculations [26,47].
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the nlNJL model are similar to those found in other
theoretical approaches. In particular, the so-called “con-
formal point”, for which ϵ ¼ 3p, is reached at a value of
μI=mπ in the range between 1.75 and 1.77 (depending on
the parametrization), in good agreement with the analytical
result μI=mπ ¼

ffiffiffi
3

p
arising from leading-order ChPT [72].

To conclude this subsection, in Fig. 5 we plot the
numerical results obtained for the equation of state, i.e.,
the behavior of the energy density as a function of the
pressure (here the isospin chemical potential μI is an
underlying parameter). The notation for the curves obtained
within the nonlocal NJL approach and other models, as
well as those arising from lattice QCD calculations, are the
same as in Figs. 3 and 4. Once again, the results from the
nonlocal approach are qualitatively similar to those
obtained in the local NJL model, and are consistent with
LQCD results in the low-energy region (where LQCD data
are available).

B. Finite temperature

We present here our numerical results at finite temper-
ature for the quantities defined in Sec. II. As discussed
above, we include the interaction between the fermions and
a background color field, considering the Polyakov loop
potential in Eq. (9). The parameter T0 entering this
potential is taken to be 200 MeV, following the estimations
carried out for the case of two dynamical quarks [62,63].
Let us start by studying the thermal behavior of the

normalized mean field condensates and the traced PL for
some representative values of μI within the range
0 ≤ μI ≤ 2mπ . Our results are shown in Fig. 6. On the
left panels we plot the condensates Σ and Π, normalized by
Σ0 (solid and dashed lines, respectively), together with the
traced PL Φ (dashed-dotted lines). The results are given as
functions of the temperature, normalized to the critical
temperature for μI ¼ 0, viz. T0

c ¼ 174 MeV. We also
include the curves for the normalized combined quantity
R, defined by

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ2 þ Π2

p

Σ0

: ð24Þ

In the right panels of Fig. 6 we plot the susceptibilities
associated to the chiral and pion condensates and the traced
Polyakov loop (solid, dashed, and dashed-dotted lines,
respectively), defined in Eq. (18). As usual, the peaks of
the curves for χch and χΦ are used in order to define the
chiral restoration and deconfinement transition critical
temperatures.
From the left panels of Fig. 6 it is seen that for μI ¼ 0 the

chiral restoration and deconfinement transitions proceed as
a smooth crossovers at temperatures T ≃ T0

c, while the pion
condensate vanishes for all T. The situation remains
basically the same up to values of μI approaching mπ .
Then, for a small region of values of μI just below mπ (as

shown explicitly for the case of μI=mπ ¼ 0.99) the pion
condensate vanishes for all T except for a short range of
temperatures slightly below the critical value Tc that
characterizes the (almost simultaneous) chiral restoration
and deconfinement crossover transitions. On the other
hand, for μI > mπ, at low temperatures the pion condensate
gets nonzero values, showing the spontaneous breakdown
of isospin symmetry. These values of Π are approximately
independent of the temperature up to T ≃ T0

c, where one
finds a second-order transition to a Uð1ÞI3 symmetry
restored phase. In addition, it can be seen that these values
of Π get increased with μI, while the values of the chiral
condensate Σ decrease, in such a way that R is approx-
imately constant. We recall that, as discussed in the
previous subsection, from lowest-order ChPT one gets at
T ¼ 0 a constant value R ¼ 1 for all values of μI .
Moreover, as noted in Ref. [46], the behavior of R as a
function of T is very similar to that found for Σ=Σ0 when
pion condensation is not considered. Concerning the
deconfinement transition, the graphs on the left panel of
Fig. 6 show that it proceeds as a smooth crossover at an
approximately constant temperature T ≲ T0

c for the con-
sidered range of values of the isospin chemical potential.
Taking now into account the plots in the right panels of

Fig. 6, it can be seen that the PL susceptibility (green
dashed-dotted lines) shows clear peaks that indicate a
crossover-like deconfinement transition at a temperature
slightly lower than T0

c and approximately independent of
μI . In the case of the chiral susceptibility (red solid lines in
the right panels of Fig. 6), for μI ¼ 0 one finds a peak that
defines the critical temperature, T0

c ¼ 174 MeV. Notice
that for μI larger than mπ the susceptibility χch is relatively
large at low temperatures. This is in agreement with the
behavior shown in Fig. 2, and it can be attributed to the
presence of a nonzero pion condensate. The same effect
occurs for values of μI slightly below mπ and temperatures
T ≲ T0

c, owing to the existence of the already mentioned
nonzero value of Π in this region (see the panels of the
second row in Fig. 6). Finally, the pion condensate
susceptibility (dashed lines in the right panels of Fig. 6)
is also found to be nonzero in the presence of the pion
condensate. Moreover, as expected, it becomes divergent at
the temperatures in which one finds the second-order phase
transition into the isospin symmetry restored phase. These
temperatures are slightly lower than T0

c and basically
coincide with the ones corresponding to the deconfinement
transition. For completeness, we show in Fig. 7 the
behavior of the Σ and Π susceptibilities as functions of
the isospin chemical potential, for T ¼ 0 and temperatures
slightly below and above T0

c. In fact, it is seen that the
behavior of χch and χΠ found for T ¼ 0 (see Fig. 2) does not
change qualitatively up to the critical isospin symmetry
restoration temperature. Notice that for temperatures just
below T0

c the position of the discontinuity is shifted to
μI=mπ slightly smaller than one. It is also worth noticing
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that the curves for T ≲ T0
c are quite different from the ones

obtained in the framework of the local PNJL model, for
which the discontinuity is found to occur at significantly
larger values of μI=mπ (see Fig. 3 of Ref. [65]).
Through the analysis of the quantities in Fig. 6 one can

sketch the phase diagram in the μI − T plane. This is shown
in Fig. 8, where the temperature and the isospin chemical
potential are normalized to T0

c and mπ , respectively. As
expected, for low values of T and μI the system lies in a
“normal matter” (NM) phase, i.e., a Uð1ÞI3A symmetry
broken phase inwhich the scalar quark-antiquark condensate
Σ is large and the pion condensateΠ is zero.By increasing the

temperature one reaches a transition to a “quark gluon
plasma” (QGP) phase, in which quarks deconfine and the
chiral symmetry becomes partially restored. Both chiral
restoration and deconfinement transitions occur as smooth
crossovers, at approximately a common temperature that
does not depend significantly on μI. The corresponding
curves, obtained from the peaks of χch and χΦ susceptibil-
ities, are shown by the solid and dash-dotted lines in the
figure, respectively. The results are found to be similar to
those obtained from lattice QCD calculations in Ref. [25],
shown by the gray and blue bands. On the other hand, for
temperatures below the critical value T0

c, by increasing the
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FIG. 6. (Color online) Left: numerical results for the normalized Σ and Π condensates, the traced Polyakov loop Φ and the quantity R
as functions of the temperature, for some fixed values of μI=mπ . Right: numerical results for the susceptibilities associated to the chiral
and pion condensates and the Polyakov loop, as functions of T=T0

c.
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isospin chemical potential one reaches a second-order phase
transition to a pion-condensate (πC) region in which the
condensate Π is nonvanishing and therefore the Uð1ÞI3
symmetry is broken. The onset of this phase, shown by
the dashed line inFig. 8, occurs approximately atμI ¼ mπ for
all temperature values up to T0

c, in agreement with lattice
QCD calculations (red band in the figure) [25]. Then, for
μI > mπ , at a given critical temperature there is a second-
order phase transition from the πC phase to the QGP
phase. As discussed above, this critical temperature is
slightly lower than T0

c and remains approximately constant

for all considered values of μI above the pion mass. The
location of the pseudotriple point where NM, QGP, and πC
phases meet is found to be in good agreement with the result
obtained in lattice QCD calculations, given by the black
square. Concerning the Uð1ÞI3A symmetry within the πC
phase, it is seen that for a given temperature T lower than T0

c
the values of the quark condensates decrease steadily if μI
gets increased beyondmπ. This can be read from thevalues of
Σ=Σ0 shown in the left panels of Fig. 6. Notice that for μI ≃
1.4mπ the value ofΣ is found to be reduced to approximately
one half of theμI ¼ 0valueΣ0. In addition, in Fig. 8we show
for comparison the πC − NM transition curves correspond-
ing to the local PNJL model and leading-order chiral
perturbation theory [50] (thin dashed and short-dashed lines,
respectively). As anticipated in the discussion concerning
Fig. 7, it is seen that there is a substantial difference between
nonlocal and local PNJL-like approaches. This situation does
not change significantly if one considers the NJL model
omitting the interaction with the Polyakov loop.
Finally, we have considered the case of a logarithmic PL

potential (as proposed e.g., in Ref. [40]), analyzing its effects
on the μI − T phase diagram. It is worth noticing that, in
general, the logarithmic potential leads to a sharper chiral
restoration transition [35]. Consequently, for parametriza-
tions leading to a quark condensate jΣ0j≲ ð240 MeVÞ3 this
transition is found to be of first order at μI ¼ 0 for
T0 ¼ 210 MeV. Taking a parametrization for which
Σ0 ¼ −ð250 MeVÞ3, it is seen that the agreement with
LQCD results—in particular, for the case of the NM-πC
transition line—is similar to the one shown in Fig. 8 for the
polynomial PL potential.

IV. CONCLUSIONS

We have analyzed the phase diagram of strongly inter-
acting matter within a nonlocal two-flavor PNJL model,

FIG. 8. (Color online) Phase diagram in the μI − T plane for the
nonlocal PNJL model. NM, QGP and πC stand for normal matter,
quark gluon plasma and pion condensation phases, respectively.
Solid (black), dashed (red) and dash-dotted (blue) lines corre-
spond to chiral restoration, pion condensation and deconfinement
transitions, while the shaded bands indicate the transition regions
obtained from LQCD results in Ref. [25]. The thin dashed and
short-dashed lines indicate the NM-πC transition curves arising
from the local PNJL model and leading-order ChPT, respectively.

FIG. 7. (Color online) Chiral (left) and pion (right) condensate susceptibilities as functions of the isospin chemical potential, for some
representative values of the temperature.
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considering both zero and finite temperature and nonzero
isospin chemical potential. In this context, we have studied
the quark deconfinement and the breakdown/restoration of
chiral and isospin symmetries, together with the corre-
sponding footprints on various thermodynamic quantities.
At zero temperature, for μI ¼ mπ one finds the onset of a

phase in which isospin symmetry is broken by the presence
of a nonzero pion condensate. Up to μI ≃ 2mπ , one
observes a rapid growth of this condensate, in overall
agreement with the predictions from other effective model
analyses and LQCD calculations. The agreement is also
good for various thermodynamic quantities, as the pressure,
energy density, isospin particle density, and interaction
energy. For larger values of μI (where no LQCD data are
available up to now), although one finds some general
agreement in the qualitative behavior of these quantities,
there are significant quantitative discrepancies between the
results from different theoretical approaches.
In the case of a system at finite temperature, for low

values of μI the pion condensate is absent and one gets, as
expected, a transition from the usual “normal matter”
scenario into a quark-gluon plasma phase in which chiral
symmetry is restored and quarks are deconfined. This
transition proceeds as a smooth crossover signaled by
the behavior of chiral and Polyakov loop susceptibilities.
The critical temperature T0

c ≃ 174 MeV is approximately
the same for both chiral restoration and quark deconfine-
ment. For T ≤ T0

c, by increasing the isospin chemical
potential one finds a second-order transition into a pion
condensation (πC) phase, in which isospin symmetry is
spontaneously broken. The corresponding critical line
μIðTÞ is a primary result of our analysis. The critical value

μI ¼ mπ found at T ¼ 0 remains approximately constant
up to T ≃ T0

c, reaching a pseudotriple point in which NM,
QGP, and πC phases coexist. It can be seen that there is a
remarkable agreement between these results and those
obtained from lattice QCD calculations. On the other hand,
the πC-QGP transition occurs at a temperature of the order
of T0

c, which is approximately constant for μI > mπ. It is
worth noticing that our predictions for the border of the πC
phase region (and, in particular, for the location of the triple
point) are in good agreement with the available results from
lattice QCD, whereas they differ significantly from the
predictions obtained within chiral perturbation theory and
from those found in the framework of the local PNJL
model.
As a natural extension of this work, it would be worth

studying the phase diagram for the case of both nonzero
isospin and baryonic chemical potentials. In addition, it
would be interesting to consider in this context the
existence of pion stars, a potential new class of compact
objects formed by a Bose-Einstein condensate of charged
pions and a gas of leptons. We expect to report on these
issues in the near future.
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