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We compute the ghost spectral function in Yang-Mills theory by solving the corresponding Dyson-
Schwinger equation for a given input gluon spectral function. The results encompass both scaling and
decoupling solutions for the gluon propagator input. The resulting ghost spectral function displays a

particle peak at vanishing momentum and a negative scattering spectrum, whose infrared and ultraviolet
tails are obtained analytically. The ghost dressing function is computed in the entire complex plane, and its

salient features are identified and discussed.
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I. INTRODUCTION

The complete access to the hadronic bound state and
resonance structure, as well as to the nonperturbative
dynamics of QCD at finite temperature and density,
requires the computation of timelike correlation functions.
In functional approaches, such as the functional renorm-
alization group (fRG) and Dyson-Schwinger equations
(DSEs), the respective nonperturbative computations are
carried out numerically, and hence, demand a numerical
approach to timelike correlation functions.

Recently, the spectral DSE approach has been put forth
[1], based on the Killén-Lehmann (KL) representation of
correlation functions in terms of spectral functions. In
particular, in [1] the general properties of this novel
approach, including a consistent spectral renormalization
procedure, have been expounded and applied in the context
of a scalar ¢*-theory in 2 + 1 dimensions.

As a first step toward a full QCD treatment, we use this
spectral DSE for the ghost-gluon system in Yang-Mills
theory. In recent years, ghost and gluon spectral functions
have been reconstructed from numerical data of Euclidean
ghost and gluon propagators, see e.g. [2-6]. Also direct
computations have been put forward, either perturbatively,
e.g. [7,8], with nonperturbative analytically continued
DSEs [9,10], or in a spectral approach [11]. While these
direct computations unravel highly interesting structures,
they are still inconclusive.
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Specifically, in the gluon DSE one has to deal with a
rather complicated diagrammatic representation with
many nontrivial ingredients, ranging from the presence
of one- and two-loop diagrams, the dependence on ghost
and gluon propagators, as well as several vertices with
complicated momentum dependence. Consequently, some
properties of the gluon spectral functions, and in particular
the potential presence and location of complex conjugate
poles, are rather unstable under small variations of the
vertices involved; for a detailed recent discussion,
see [10].

Instead, the ghost DSE, see Fig. 1, requires far less
nontrivial input: apart from the ghost propagator, it depends
only on the gluon propagator or, equivalently, the gluon
spectral function, as well as the ghost-gluon vertex. The
latter is protected by nonrenormalization, and hence shows
a very mild momentum dependence. Accordingly, in the
present work we approximate this vertex by its classical
counterpart.

This leaves us with a rather stable set-up: the spectral
ghost DSE is solved on the basis of given input gluon
spectral functions, obtained by appropriately modifying
the result of [4], which was reconstructed under the
assumption of a KL representation of the gluon. We also
test the stability of the result under a variation of the input
by tuning the whole family of scaling and decoupling
solutions.

This work is organized as follows: In Sec. II we discuss
spectral properties of Yang-Mills theory. In Sec. III, the
spectral ghost DSE is set up, and the input gluon spectral
function is discussed. We present our results for the ghost
propagator and spectral function in Sec. IV, and discuss our
findings in Sec. V. The appendix includes some technical
details.

Published by the American Physical Society
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FIG. 1.
1-PI vertices. Internal lines stand for full propagators.

II. YANG-MILLS THEORY AND THE SPECTRAL
REPRESENTATION

We consider 3 4 1-dimensional Yang-Mills theory with
three colors, N. = 3, in the Landau gauge. The gauge-fixed
classical action including the ghost action reads,

1 1 _
SYM = /ZtrFﬂVFI“/ + 2_6 (aﬂAZ)z - C“@MDﬁbcb, (1)
X

where £ denotes the gauge fixing parameter and
J. = [d*x. The Landau gauge is achieved for &= 0.
Note that in (1) we have chosen a positive dispersion for
the ghost. The field strength, F',,, and covariant derivative,

0%
D,, in the adjoint representation are given by

a a a abc Ab Ac
Fi, = 0,A) — 0,A] + gf " A Ay,
Dzh — 5ahaﬂ _ gf“hCAC, (2)

with the structure constants f**¢ of SU(3).

Functional relations such as the flow equations in the
fRG or the DSEs are one- and two-loop exact relations for
the full correlation functions. For reviews see [12-17]
(fRG) and [18-24] (DSEs). The pivotal rdle in these
diagrammatic relations is played by the connected two-
point functions (¢¢)., the propagators of the theory. They
read

(b:i(P)9;(4))e = 2m)*6(p + a)T 4,4,(P)Gy,(p). (3)

where ¢ = (A, c,¢), and the tensor 7, (p) carries the
Lorenz and gauge group tensor structure. The scalar parts
of the propagators are given by G, = G, G, —G,. In the
Landau gauge, the gluon propagator is transverse,
[Taa(P)leh = 6T15, (p), where 1L, (p) = 8, — pup./ P*
denotes the standard transverse projection operator. The
scalar part of the gluon propagator reads

GulP) = =~ 4)

with the gluon dressing function 1/Z4(p). Similarly, for
the ghost we have 79 = §%, and the scalar part reads

Ge(p) =77~ (5)

Diagrammatic representation of the Dyson-Schwinger equation for of the inverse ghost propagator. Blue dots represent full

with the ghost dressing function 1/Z.(p). In what follows
we will compute (5) for timelike momenta. In fact, as we
will see below, our results permit the evaluation of G.(p)
for general complex momenta. Extensions of correlation
functions to the complex plane are particularly interesting,
in view of their relevance for the self-consistent treatment
of bound-state problems, see, e.g. [25-27].

If the KL spectral representation [28,29] is applicable,
a propagator G can be recast in terms of its spectral
function p,

. °°d/1/1p¢(/1, )
Gy(po.|p) = | L0510V
(/I(po |p‘) /0 T p% )“2

(6)
The spectral function naturally arises as the set of non-
analyticities of the propagator in the complex momentum
plane. If (6) holds, the nonanalyticities are restricted to
the (linear) real momentum axis. Equation (6) leads to the
following inverse relation between spectral function and
the retarded propagator,

pp(@.|p]) = 2lim ImGy(~i(w +ic). [p[).  (7)

e—0"

where o is a real frequency. This formulation allows us to
work only with the frequency argument and set the spatial
momentum to zero in practice, since the full phase-space
can be restored from Lorentz invariance. Hence, for the
remainder of this work, |p| will be dropped.

Now we detail the above generic spectral representation
(6) for the Yang-Mills propagators. We will consider the
entire family (decoupling/massive and scaling) of potential
infrared solutions, for detailed discussions see [30-33]. In
terms of the ghost and gluon propagator inverse dressing
functions Z.(p) and Z,(p), a generic decoupling behavior
is characterized by

. 1 :
imZ,(p) ~—,  lLmZ(p) =Z, (8)
p—0 p p—0

with a finite Z. = Z.(p = 0).

Formally, the ghost propagator is expected to obey the
KL-representation [34]. Also recent reconstructions show
no signs of a violation of this property [5,6]. The ghost
spectral function must exhibit a single particle peak at
vanishing spectral value, with residue 1/Z,. In addition, a
continuous scattering tail is expected to show up in the
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spectral function via the logarithmic branch cut. This leads
us to the general form of the ghost spectral function,

+ pe(), )

pc(a)) ==

where p,. denotes the continuous tail of the spectral function
and §(w)/w has to be understood as a limiting process
6(w —m)/w with m — 0" Inserting (9) in (6) leads us to a
spectral representation for the dressing function,

T i 25.(2)
= p? |2 10
Z.0p) zﬁp/wzm (10)

In the case where the spectral function can be normalized
by solely integrating it over the whole branch cut, the
normalization is given by the value of the inverse dressing
function at infinity. A detailed derivation of this is given in
Appendix A. Since the inverse ghost dressing tends to zero
for large momenta, the spectral function obeys

/Ljflpc(/l) =0. (11)

Taking into account the explicit form of p. (9), we
immediately arrive at

[ S =-. (12)

c

Equation (11), or its consequence, (12), are the ghost
analogue of the Oehme-Zimmermann super-convergence
relation for the gluon, [35,36]; for a generic discussion, see
Appendix A and [37].

The present work is based on the assumption that the
gluon propagator admits a KL representation of the form
given in (6), with p, — p,. Note that the validity of this
assumption is subject of an ongoing debate; for results and
discussions, see, e.g. [2,4,5,8-10,38-46]. We will employ
the reconstruction results of [4] for the gluon spectral
function p,, based on the Euclidean propagator data
of [33].

III. THE SPECTRAL GHOST DSE IN YANG-MILLS
THEORY

In this section, we use the preparations in Sec. II to set up
the spectral DSE for the ghost spectral function p.. The
DSE for the ghost propagator in Yang-Mills theory is
depicted in Fig. 1, while the diagrammatic notation
employed is summarized in Fig. 2. As discussed before,
its only input is the scalar part G4 of the gluon propagator
and the full ghost-gluon vertex. The latter consists of two
tensor structures, see e.g. [33],

abc : rabc cl nc
Cazel2(p,q) = if (g, 250 (p.q) + P2 (p.q)].  (13)

FIG. 2. Diagrammatic notation used throughout this work:
Lines stand for full propagators, small black dots stand for
classical vertices, and larger blue dots stand for full vertices.

with incoming gluon momentum p and antighost momen-
tum ¢, and we have dropped the momentum conserving
o-function.

The ghost-gluon vertex in (13) contains two independent
vertex dressings, A1) (classical tensor structure) and A
(nonclassical). The nonclassical dressing is proportional to
the gluon momentum and hence drops out of the ghost
DSE due to the transversality of the Landau gauge gluon
propagator.

The classical dressing is subject to Taylor’s nonrenorm-
alization theorem, and has a very mild momentum depend-
ence, see e.g. [33,47-54], see Fig. 3 with the data from [33].
In Fig. 3 we depict the dressing 4™ at the symmetric point
p* = ¢* = (p + q)* for both, the scaling solution as well
as the lattice-type decoupling solution. For further explan-
ations we refer to the detailed discussion of [33].
Accordingly, we consider the approximation

2 (p.g)~ g, (14)

where g is the gauge coupling at the renormalization point
HUrg- Within the MOM-type scheme that we employ, the
dressing functions acquire at prg their tree-level value,

i.e., ZA(,MRG) - ZC(MRG) =1

T T T T L] T T T L]
B =m fRG (scaling), Cyrol et al. [33] 7
== fRG (decoupling), Cyrol et al. [33]

w
N
T
1

N

g
o
T

Vertex dressing A&fg <p)

o
[
T

107" 10° 10!
Momentum p [GeV]

FIG. 3. Ghost-gluon vertex dressing lifg)z_(p, q), see (13), data

taken from [4]. The dressing is shown at the symmetric point

p>=q*= (p+q)* for scaling and lattice-type decoupling

solution, more details can be found in [4].
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We emphasize that our approach is by no means
restricted to classical vertices only: quantum corrections
may be duly accounted for, as long as the momentum loops
involved can by integrated analytically. Especially, upon
construction of spectral representations for higher n-point-
functions, see e.g., [55-67], fully dressed vertices of
general form can be included.

In summary, the ghost gap equation in Fig. 1 can be
written as

T )ab(p) = Z36% p> — £,2(p)5, (15)

with the renormalization constant Z; associated with the
ghost field. Similarly, the classical ghost-gluon vertex in
Fig. 1 contains the respective renormalization constant,
She(Psq) = =Z\igfec p#. The (scalar) ghost self-energy
Y.z(p) with the approximation (14) is then given by,

alp) = 7Co | (r - L) 6600+ )

(16)

where Cy, = N, is the eigenvalue of the second Casimir
operator of the color group SU(N_.) in the adjoint
representation.

The ghost DSE of (15) can be straightforwardly rewritten
in terms of the ghost dressing function,

2u(p) =z - 20, (17)

Now we write (17) in terms of spectral loops by using (6)
for ghost and gluon propagators. This leads us to

%.e(p) = 2N, A dapalp(i)

2 (p-q)2> 1 1
X pe— , (18
/q< @ )@+ (p+q)P+4 (18)

with p, and p,. the gluon and ghost spectral functions,
respectively. Note that the order of spectral and momentum
integration have been interchanged, implicitly assuming the
finiteness of the dimensionally regularized expression.

A. Spectral renormalization

The momentum integral in (18) involves two massive
propagators with spectral masses 4; and 4,. It is readily
evaluated upon introduction of Feynman parameters and
using dimensional regularization in d =4 —2¢ dimen-
sions. Calculational details and the resulting expression
are given in Appendix B. After the integration over the
loop momentum is carried out, we are left with two
spectral integrals. They suffer from the (same) logarithmic

divergence as the momentum integral, even if simply
dropping the 1/e-term, that arises from the loop integral.
This is a generic feature in the spectral DSE, for a
thorough discussion see [1]. Moreover, the potentially
divergent terms in X ;(p) are proportional to p?. Such a
divergence can be cured by a Z, that is proportional to
¥.:/p>, evaluated at some RG-scale upg. We use a
standard renormalization condition for the (inverse) dress-
ing function,

Zc(ﬂRG) = ZC‘ (193')

This renormalization condition is implemented by the
respective choice of the renormalization constant Z3 as

X (ﬂRG )

23 == Zc + B
HrG

(19b)

In accordance with (14), (19) is augmented with Zl - 1.
For a detailed discussion of self-consistent MOM-type
RG-conditions for DSEs, see [68]. Eventually, this leads us
to the renormalized DSE for the ghost dressing,

ZC(P) — ZC _ Zcé(zp) _ ZCE(;!RG) ) (20)
p HRrG

The explicit choice of the renormalization condition Z, will
be discussed in Section IV.

B. Iterative solution

The renormalized DSE in (20) can be evaluated
analytically for general complex frequencies. For the
extraction of the spectral function with (7) we choose
po = —i(w + ie) with € — 0. This leads us to

ZCE‘ (w)
o? /41210

4 e (ﬂRG) (21)

’

Z () = Zc +

where, in a slight abuse of notation, we define X (@) =
T.o(—i(w +i0™)). Note that the 1/(w + i€)* term does not
trigger a o-function, as the self energy is proportional to
(w + ie)? for small . This allows us to use 1/(w + i€)*> —
1/@?, as is done in (21). We also check at every iteration
step that no further poles are generated, and hence (21)
holds true.

The explicit spectral integral expression for X.z(w) and
its renormalized counterpart can be found in Appendix B.
The remaining finite spectral integrals have to be com-
puted numerically, and the spectral function p,.(w) is given
with (7) as
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pe(®) = Zicé(a)z) - %Im [ﬁ} . (22)

The substitution of (21) into (22) allows us to compute
the ghost spectral function as well as the propagator for
Euclidean and timelike frequencies, for a given gluon
spectral function p,. This input is discussed in Sec. III C.
The ghost spectral function is then computed within the
following iteration procedure, discussed in detail in [1], and
briefly described here. _

The ghost spectral function pﬁ'), obtained after the ith
iteration step, and the given input p,4, are inserted into the
spectral integral form of £_.;(p), on the right-hand side of
(21). Then, by means of (22), we arrive at the (i + 1)-th
spectral function, pgiﬂ). This iteration is repeated until
convergence has been reached.

The iteration commences with an initial guess for p..
Here we choose the canonical choice of its “classical”
spectral function, i.e., a massless pole with residue one,

P (w) = 78(ar?). (23)

This particular choice leads to a stable and rapid con-
vergence of the iteration procedure. For a discussion of the
numerics and their convergence properties, see Appendix C
and Fig. 10.

C. Gluon spectral function

As already mentioned, the input gluon spectral function
is taken from [4], where a spectral reconstruction of the
Yang-Mills gluon propagator fRG data from [33] has been
performed. In both scaling and decoupling scenarios, the
infrared behavior of the gluon spectral function (assuming
the validity of the KL representation) can be inferred from
the respective infrared scaling of the gluon propagator in
(4). More details can be found in [4].

For the entire family of solutions, the deep infrared limit
with p — 0 is parametrized by [4],

(IR)

Ga(p) = Zy 'x7112,

X (24a)

with a constant Zﬁ‘IR). The scaling coefficient  takes values

in the range 1/2 <« < 1, and

x = p* +ye(Mgy + p*log p?), (24b)
where the hatted dimensionless quantities in (24) all future
expressions have been rescaled with the appropriate powers
of Aqcp, €. p* = p*/Agep. For yg =0, the gluon
propagator in (24a) reduces to the scaling propagator.

The lattice-type propagator is obtained for a ygat) that is

close to the maximal one compatible with infrared QCD in

the Landau gauge. The parameters (y, n%éap) characterize

the one-parameter family of solutions. Indeed, the actual
solutions in [33] are well approximated by using the
functional form of the scaling solution but with the argu-
ment of (24b), and an appropriate tuning of y;. We shall
exploit this property for constructing a simple one-param
eter family of gluon spectral functions, using the scaling
one, p'%) (@), as our point of departure.

For completeness, we note that, for p — 0, the respective
(dimensionful) ghost propagator is given by

(IR)
Ge(p) = —5 (25)

In the deep infrared, p*) (w) is determined from (24a)
and (24b), setting y; = 0. Specifically, for o — 0,, we
obtain

P (@) = 22,0, (26)
which corresponds to the infrared tail of the full spectral

function reconstructed [4], depicted in Fig. 4. Similarly, in
the case of the decoupling-type solutions, we arrive at

(IR)
A (dec) - Zy" 2rm ~2
P w)=-—"———a". (27
4 ( 7G mgap )

While (26) and (27) describe the different behavior of the
scaling and decoupling spectral functions in the deep
infrared, for larger spectral values the two sets of spectral
functions coincide. This regime is approximately bounded
from below by the first zero, @y, of the scaling spectral
function, shown in Fig. 4, with wy~0.78. A simple
interpolation to the decoupling solution, based on the
scaling spectral function in [4], is therefore given by

0)2 22k scal
) A @l

P,(L‘deC) (w,){) - Z)((

+ 5 (@)0(w — ay). (282)
with
oN (scal)
Z,=— (ijﬁpA (f) —. (28b)
Jo* didp, () ()

dictated by the Oehme-Zimmermann superconvergence
relation for the gluon spectral function,

/wMMAD_O. (29)
0
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FIG. 4. Reconstructed gluon spectral function (left) based on [4] and (28) and the respective gluon propagators (right). The spectral
functions and propagators differ in the infrared and are labeled by Gﬁa[) (blue) for our lattice-type input, and G4 (0) [GeV~?] = 4.4
(green), 1.9 (yellow). (a) Gluon spectral functions (scaling and decoupling), see (28), based on the reconstruction of the scaling
spectral function in [4] (red-dashed line). The spectral functions dier only in the infrared, shown in the inset and (b) Euclidean
gluon propagators obtained from the KL- representation (6) with the gluon spectral functions in Fig. 4(a). The small IR-difference
for w<0.7 GeV shown in the inset in Fig. 4(a) translate into the IR-differences for p<1 GeV. The lattice data is taken

from [69].

With (28b) the total spectral weight of p(dec)(a), x) is the

A
same as that of pﬁfcal)(a)). Hence, given that the latter

satisfies (29), so does the former. The scaling spectral
function reconstructed in [4], satisfies (29) analytically for

€ — 0% in (7). In the present work we take a small € &~ 107~/
leading to

(30)

for all spectral functions. For y = 0, we get back the scaling
solution with y5; = 0. The lattice gluon is achieved via
(28a) for x4 = 3GeV? with Z™) = 1.86.

We emphasize that fully quantitative gluon spectral
functions p Adec may be achieved by means of reconstruc-
tions. While possible, this is beyond the scope of the
present work. Note also that the simple analytic spectral
functions p,(w,y) give semiquantitative results for the
gluon propagators, while at the same time allowing for an
analytic access to the relative changes.

IV. RESULTS

With the preparation of the previous sections we now
compute the ghost spectral function. The ghost DSE is
solved for the three different input decoupling gluon
spectral functions in Fig. 4 and propagators, labelled by

Ggat) resp. the infrared value of the related gluon propa-
gators G, (0) =4.4,1.9[GeV~2]. For Ggal), we tune

the mass parameter y in (28a) such that we best agree
with the lattice results from [69]. We pair each of our

input G,’s with a gluon propagator from the family
of self-consistent YM solutions of [33], indicated by

dashed lines in the right panel of Figure 4. For GSat)
(blue curve), we chose the solution which also matches the
lattice results from [69] best. The green and yellow curves
are matched with the respective solution with the same
G, (0). )

The renormalization condition Z, is now chosen such
that the value of the ghost dressing function 1/Z.(p)
matches that of [33] at the RG scale urg = 20 MeV for the
respective gluon propagator. This IR renormalization pro-
cedure is necessary in order to compensate for the lack of
self-consistency when considering the ghost DSE with
fixed gluon input. The strong coupling constant is fixed
to a, = 0.26.

In Fig. 5(a) and Fig. 6 we show the respective ghost
spectral functions. All spectral functions shows a positive
particle peak at vanishing momentum, constituted by a
delta distribution. The magnitude of the corresponding
residue, i.e., the particle peaks amplitude, rises with
decreasing G4(0), and the residues positivity reflects
the chosen positive classical dispersion of the ghost.
The spectral function also has a negative scattering
spectrum starting at vanishing frequency. For decreasing
G (0), one gradually approaches the scaling solution, and
the spectral weight increases drastically. This also mirrors
the increasing amplitude of the particle peak, which is
enforced by the Oehme-Zimmermann-type superconver-
gence relation (11) for the ghost, for more details
see Appendix A and [37]. This also leads to the known
UV-asymptotics for the ghost spectral function,
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functions in Fig. 4, with the same color coding by GSEH) (blue), G4(0)[GeV~2] = 4.4 (green), 1.9 (yellow). (a) Ghost spectral function:
direct computation by iteration with the spectral DSE (18) and the gluon spectral function from Fig. 4 for G,“) . The inlay also
indictaes the -function contribution in the origin, indicated by an arrow. Its amplitude is given by the value of corresponding Euclidean
dressing function 1/Z.(p) at p = 0. The squares show our best t, comp. Sec. IV B and (b) Euclidean ghost dressings: 1/Z,.(p) from
KL-representation via the pc’s in Fig. 5(a) (squares), 1/Z.(p) from the direct solution with the Euclidean DSE (straight lines), 1/Z.(p)
from the Euclidean fRG computations in [33]: we have taken the solutions with matching values of GO A (dashed lines).

—2000F

—4000f-

=== Spectral function | |
[} Fit

—6000

Spectral function p(w) [GeV 2]

Ll 1 L3 a1l
107" 10°
Frequency w [GeV]

Ll
1072

L o i
DOe0eoog,

-1.x10%- - .
0.00 0.03
o o

! - c3-to)]
1.x10°

=== Spectral function
—2.x 10k xie 0 @ Fit 1

Spectral function po(w) [GeV 2]

L1l 1 T A | L1l
1078 1072 107"

Frequency w [GeV]

FIG. 6. Ghost spectral functions: direct computation by iteration with the spectral DSE (18) and the gluon spectral functions from
Fig. 4 with the same color coding, i.e., G4 (0)[GeV~2] = 4.4 (green), 1.9 (yellow). The inlays also show the §-function pole in the origin,
indicated by an arrow. The residue is given by the value of corresponding Euclidean dressing function 1/Z.(p) at p = 0. The squares

show our best fits, comp. Sec. IV B.

Z0V)

p(UV) :1 = T A
P 1 + A*(log A?)7

(31)

with the ghost anomalous dimension y,., and the UV wave

. . uv
function renormalization ZE. )

tion for G/&lat) represents the lattice-type case, see Fig. 4(b).
The respective lattice data for the ghost propagator is
depicted in Fig. 5(b), and confirms the semiquantitative

nature of the classical vertex approximation in the ghost

. The gluon spectral func-

DSE. For smaller G,(0) — 0, the gluon propagator
approaches the scaling solution. This entails that also
the ghost propagators approaches the scaling solution
with 1/Z.(p) & (p*)7.

The Euclidean dressing functions corresponding to the
computed spectral functions for the different gluon propa-
gator inputs are shown in Fig. 5(b). We show both the
dressing functions obtained from the spectral Euclidean
and real-time DSE and find that the spectral representation
for the ghost propagator (and dressing function) holds.
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We also compare to the Yang-Mills results from [33],
which we also used in the renormalization condition as
described above, and see that we reach very good
qualitative agreement. In particular, our most scalinglike
solution shows the typical scaling behavior down to about
30 MeV. The deviations from [33] in the UV originate in
the classical approximation for the full ghost-gluon vertex
used here.

A. Comparison with previous works

In this section we compare our results on the ghost
spectral function with that in the literature, for results
with different approaches see [5-7,70]. The spectral
function also allows us to map out the ghost propagator
in the complex momentum plain, which is discussed
in Section IV C including a comparison with respective
results in the literature from a DSE analysis, see [10].

In [6], the ghost spectral function has been recon-
structed from lattice QCD data. The results are in good
agreement with our direct computation: both show a
massless particle pole and a negative scattering tail.
The reconstruction in [6] lacks reliability for spectral
values smaller than roughly 100 MeV, as the smallest
Euclidean data point used for the reconstruction is at about
p = 150 MeV. In this regime, the present results from a
direct spectral computation can be used as an input for
future reconstructions by restricting the respective infra-
red completion. The same qualitative features are also
found in the ghost spectral function obtained via a massive
propagator expansion in [7], i.e., a massless particle pole
as well as negative spectral tail.

In [5], Pade-type reconstructions of the ghost dressing
spectral function from DSE and lattice data in Yang-Mills
theory has been performed. These results are in contra-
distinction to the present result and [6,7], as the scattering
tails in [5] show significant negative contributions. This
corresponds to positive contributions in the propagator
spectral function due to a relative sign in the definition. In
addition, the UV tail of the reconstruction of DSE data is
not shown in [5], and the spectral function appears to
approach a constant value. A UV-positive (negative) as
well as a nonvanishing tail in the propagator (dressing)
spectral function violates the analytically given asymp-
totic fixed by Eq. (7), for a detailed derivation see
Appendix A.

The study of the analytic structure of the ghost propa-
gator put forward in [70] also suggests the existence of a
massless pole as well as a branch cut along the real
frequency axis. As already mentioned above, Yang-Mills
propagators in the whole complex momentum plane have
been investigated with DSEs in [10]. The findings show
good qualitative agreement with the propagators obtained
from the ghost spectral function computed in the present
work, but do not support a KL spectral representation of the
ghost. This is discussed further in Sec. IV C.

B. Spectral fits

The results for the ghost spectral function with the UV
asymptotics p(U¥)(1) in (31), the IR asymptotics p, allow
for a simple fit in terms of the both asymptotics and Breit-
Wigner functions for intermediate spectral values. The split

into these three regimes allows for a simple parametrization

pﬁﬁt) of the ghost spectral function,

AT () = [;,OGIR () + o1 TV ()0 (2)

N
+ 3P0 + oW (32)
J

In (32a) we use the sigmoid function for projecting on
the three regimes,

1

o.(y) = (32b)

where x only carries the appropriate dimension. The
intermediate regime is expanded in Breit-Wigner kernels,

. (32¢)

For our best fit, we use N = 3. The respective fit param-
eters are listed in Appendix C, Table I, and the fits are
depicted together with the spectral functions in Fig. 11.

The accuracy of the fits is best evaluated within a
comparison between the ghost dressing functions
1/Z.(p) obtained from the computed spectral functions
and their fits. This comparison if depicted in Fig. 7 for all
three different input gluon propagators.

OO0og
o
o a

== KL with original p¢
=} m KL with fitted p.

—_
o
N

o — G%D
= GQ =44
Gl=1.9

10"

Dressing function 1/Z(p)

10°

1 1 L1 1l 1 L1l 1 L1 1l
1072 107" 10° 10’
Momentum p [GeV]

FIG. 7. Comparison of the ghost dressing function obtained via
the KL representation (10) from the spectral function (solid line)
and its fit (squares) for the different input gluon propagators.
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Re 1/Z(w)

7 Imw[GeV]
101 2

Re w [GeV]

FIG. 8.

m1/Zow)

N
101
T~

|
Re w [GeV] 10" 2

Im w [GeV]

Real (left) and imaginary (right) part of the ghost dressing function 1/Z,.(w) for the lattice-like gluon input (comp. Fig. 5) as a

function of complex frequencies. Purely real w correspond to Minkowski frequencies, purely imaginary o to Euclidean frequencies. The
color coding serves to guide the eye. The branch cut along the real frequency axis is clearly visible.

C. Results in the complex plane

We close this section with a short discussion of the
potential application of the present results within bound
state and resonance computations in QCD. To begin with,
the behavior of QCD correlation functions for complex-
valued momenta is instrumental for the reliable computa-
tion of bound-state properties within the frameworks of the
Bethe-Salpeter equations (BSEs). In this quest, the gluon
and ghost propagators are of paramount importance, as may
be exemplified by considering the BSEs that control the
formation of glueballs in a pure Yang-Mills theory [71-76]
(for lattice studies, see [77] and references therein). In fact,
the present results are specifically useful for the scalar
glueball: in contradistinction to its pseudoscalar counter-
part, it involves both the gluon and ghost propagators, as
shown in Fig. 9.

As i1s well-known, the need to extend the aforemen-
tioned propagators to the complex plane stems from the
fact that the momentum P of the bound-state in question
must satisfy P> = —M?, where M is the corresponding
mass. This condition is typically implemented by intro-
ducing the rest-frame parametrization P = M(0,0,0,1)
(see, e.g. [78]). Invariably, this complexifies the argu-
ments of G4(q;) and G.(qy) in the BSE of Fig. 8,
since ¢3 = |q|* — M?/4 +i|q|M.

FIG. 9. One of the two BSEs comprising the system that
controls the scalar glueball formation. The blue (red) ellipses
denote the glueball-gluon (ghost) BS amplitudes, and
k. =k+P/2,q. =q+P/2, where ¢ denotes the loop
momentum.

These considerations motivate the computation of the
dressing function 1/Z.(p) in the entire complex plane. To
that end, we employ the KL representation of (A1), utilising
the p.(4) found above, and setting ip = Rew + ilm®. The
results of this computation are shown in Fig. 8.

We now compare our results for the ghost propagator in
the complex plane with the spectral DSE with those from
[10]. There, ghost and gluon propagators in the complex
plane have been computed with complex DSEs. The gluon
propagators in [10] exhibit complex conjugate singular-
ities, and their nature and position varies greatly under
small changes in the ansatz for the vertex. We emphasize,
that these singularities simply indicate the limited radius
of convergence of the method both for the gluon and for
the ghost, for a detailed discussion see [10]. For large
(angular) distances to the Euclidean axis analyticity is
lost, and the method used does not produce reliable
results. If reconstructed with the Schlessinger point
method, the singularities observed in [10] take the form
of complex conjugate poles. This has also been seen in
[5], where similar reconstruction methods have been used.
For further studies of the complex structure of QCD-like
theories in the presence of complex conjugate poles see
also the recent work [8,45].

Despite the lack of reliability for sufficiently large
Minkowski frequencies, we have compared ghost dressing
from [10] with the present result in this region. The
imaginary part of the ghost dressing function computed
there is strictly positive for timelike momenta, in quali-
tative agreement with our result, in particular in view of
the different approximations. We have also confirmed the
absence of a spectral representation of the ghost by
computing the spectral function from the Minkowski
dressing of [10] via Eq. (7). Then, the Euclidean dressing
is computed via the KL representation of Eq. (6) and
compared to the direct calculation. This comparison
showed a significant violation of the spectral representa-
tion especially for larger Euclidean frequencies. This is to
be expected, since by nature of the kernel of the spectral
representation Eq. (6), large Euclidean frequencies are
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sensitive to large spectral values, i.e., large Minkowski
frequencies. These lie beyond the radius of convergence
of the method used in [10], as discussed.

In summary, this analysis strongly suggests that complex
conjugate poles as well as other nonanalyticities in the
gluon propagator beyond the real frequency axis invalidate
the KL representation for both the gluon and the ghost.
A more detailed discussion is deferred to future work [79].
In particular, this casts serious doubts on mixed recon-
structions with a KL representation for the ghost and cc
poles for the gluons. In turn, the gluon spectral function in
[4] was reconstructed with the assumption of a KL
representation, as outlined in Sec. III C. As shown in the
present work, this also leads to a KL representation of the
ghost. Whether this property holds true in a self-consistent
solution of the coupled system, remains to be seen and is
deferred to future work.

V. CONCLUSION

We have solved the Dyson-Schwinger equation for the
ghost propagator in the complex plane on the basis of a
given input gluon spectral functions, spanning the whole
family of decoupling solutions, including the scaling
limit. Our spectral DSE approach is based on the spectral
DSE put forward in [1], and uses the spectral renormal-
ization devised there. The procedure allows for analytic
solution of the momentum loop integrals by utilizing
the KL representation and dimensional regularization.
This facilitates the access to the full complex momentum
plane, constituting the central aspect of our scheme. The
present truncation uses classical vertices in the ghost gap
equation, but we emphasize that the spectral DSE
approach also allows for nontrivial vertex approximations,
see [1].

The input data for the gluon spectral function is con-
structed via a decoupling-type modification of the scaling
spectral function from [4]. The latter spectral function has
been obtained via a reconstruction of the scaling solution
fRG data of [33].

The spectral function for the ghost shows a massless pole
as well as a continuous scattering tail. The classical
massless mode dominates up to momenta close to the
position of the maximum of the input gluon propagator. For
larger momenta, the perturbative logarithmic behavior
starts to dominate, ultimately causing the dressing function
to vanish in the ultraviolet. The present results and the
current real-time approach with a real-time renormalization
scheme opens the door to a systematic spectral access to
dynamical, timelike properties of QCD. We hope to report
on a self-consistent spectral investigation of the full Yang-
Mills system soon, both within the standard DSE approach
and within the pinch technique. The respective results are
pivotal for following studies of the resonance properties
and the dynamics of QCD within the present approach.
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APPENDIX A: SPECTRAL SUM RULES FROM
PERTURBATIVE DRESSING FUNCTIONS

In a general manner, given a KL representation, the
normalization relation for the corresponding spectral func-
tion can be inferred from the perturbative behavior of the
propagator. Multiplying (6) by p?, one has

Z(p 71)2—1—/12: L+ 2

In the UV, the behavior of the dressing function Z(p) can be
inferred from perturbation theory, lim,_ ., 1/Z(p) = Z3,".
For large p?, we can also expand the integrand, yielding

0 dr? a2\
7=l = | —1)" — (M) —
2= im0 " [ o (2)

p

2
= [ o)+ timap) (82)
defining
0 2
A =Y (17 [ g (a3

n=1

We want to show lim,_ ., A(p) = 0 in order to obtain a
normalization condition for p via (A2) using the known
perturbative asymptotics of the corresponding dressing
function. In doing that, we first note that for the spectral
integral in the left term of the lower line in (A2) to converge,
the spectral function must obey

lim p(w)w? log w* — 0. (A4)

W—> 0

If this requirement does not hold, p cannot be normalized in
the above form.
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Based on the assumption of the existence of above
representation (Al), p can be taken to be integrable on
[0,00). We choose a scale A such that for frequencies
A> A, p is given solely by the leading UV behavior
of its corresponding propagator via (7), see also [4].
Denoting the known UV asymptotics as pyy, we then
distinguish

if w <A,

else,

o) = {/)A(w)

(AS)

puv(@)
where pyy now obeys (A4). Note that by the nature of the
spectral function being a tempered distribution, it can have
distributional contributions such as (higher order) poles.
These are allowed in our consideration as long as
integrability is not violated. The parametrization (AS) is
chosen such that these contributions are contained in py.
We now split the spectral integration interval of (A3)
along the split of the spectral function and conclude for
finite A that

A d)?
/ o)A <0 ¥V on1, (A6)
0 V3

such that for large momenta, the contribution (A6) to the
spectral representation of the dressing function vanishes,

: Adp?
lim (pZ)—n[) 7pA(ﬂ)12n - 0.

p—oo

(A7)

Hence, in the limit of large p we are only left with spectral
integral over pyy contributing to A(p) in (A3). Taking
into account the known asymptotics of pyy from (A4)
however, we find that

. o )2
lim (p?)~" / a2
A T

p—0oo

0 d/12 /12"_2
< Cli 2\—n Dk —
171—>Holo(p ) [\ 7 logA?

(A8)
where the lower line can already be anticipated to vanish
for arbitrary constants C. However, this can also be shown
rigorously by noting that upon substitution, the last line of
(A8) can be reexpressed as the exponential integral
function E,,

0 d/IZ /12;1—2
/\ 7 logi2
The contribution from the lower integral boundary is finite
and thus vanishes in (AS8). For the upper limit we utilize

1
—;El(—nlogﬂz)lf- (A9)

the asymptotic expansion of the exponential integral and
plug this back into (AS8), yielding, while dropping the
constant prefactor,

lim (p*)™"E;(—n log p?)

p—0

o' log p>

- gglolo(pz)_n —n log p? mz:;) (n loz!pz)’”
- ;ggo;(n log’:;;)m+1 0 (A10)
In conclusion, recalling (A3), we arrive at
limA(p) =0, (Al1)

which, with (A2), eventually yields the desired normali-
zation for the spectral function,

[ o=z (A12)

We thus see that, in the fairly general case where p can be
normalized via the integral in (A12), the normalization is
given by the value of the dressing function at infinity.

APPENDIX B: LOOP MOMENTUM
INTEGRATION OF THE GHOST-GLUON
DIAGRAM

In this appendix we detail the computation of the ghost
self energy diagram X;.. Starting at (18), we define

Zee(p) = 925ahcA/ MA2pa(A2)pe()I(p, 215 42),

Ay

(B1)

with the now dimensionally regularized momentum
integral

(r-90)\ 1 1
I(p,2;,2 :/(pz— .
Pl =) @ )@+ (p+a)+4

(B2)

The measure is now [, = [d?q/(2x)".
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1. Momentum integration

Next, we employ partial fraction decomposition

1 1 1 /1 1
B e —T B3
q2 q2 _'_12 12 <q2 q2 _'_12) ( )
and introduce Feynman parameters, i.e., utilize
1 ! 1
— = dx ——. B4
AB A YA+ (I1-x)B (B4)

Upon a shift in the integration variable ¢ — ¢ — xp and
after some manipulation, we arrive at

2 . A,’ Bi
o= [ S0 [t )

=0
(BS)
with
Ay = (1=x)23 + x4 + x(1 - x)p?,
Ay = A, —x)3. (B6)

We will not make all intermediate results explicit, such as
giving the full expressions for A; and B;, which are
functions of external momentum p, the spectral parameter
A1 as well as the Feynman parameter x. Ultimately, the
complete final result will be stated explicitly.

The momentum integrals are now readily solved via the
standard integration formulation,

/ ddq q2m
27)? (¢* + A)"

_ 1 T(m+9r—f-m)
T @n” T T@r

Am+d/2—n

(B7)

with m a non-negative and n a positive integer.

2. Feynman parameter integration

Reordering the expression in powers of the Feynman
parameter x and taking the limit d — 4 — 2¢, we arrive at

1 drp? : a;—pi
I(p.21:4) = (g“og o )Z i+1
i=0

3
- [ > aitogy ~plogh) +O().  (B8)

i=0

with yg the Euler-Mascheroni constant. The coefficients
a; and f; do not depend on x, and will be given down
below. We can solve the Feynman parameter integrals
analytically and simplify the first sum to obtain the final
result,

1 4zu*\ 3
I(p, A1, 4y) = <E+10g ) :

ere Zp
3
- Z[aifi - Bigil- (B9)
i=0
The coefficients a;, f; are defined as follows:
L
0="5"
o = PP -5k B)
28 ’
VYA )
28 ’
4p*
a3 = — 7, (BIO)
1
and
Po =0,
PR i)
1 2)1% s
P 3p2(3p* +2243)
2 2)4% )
4p*
Py=——5 (B11)
1

The functions f; and g; carry the branch cuts ultimately
giving rise to the spectral function and are defined by
integrals over the Feynman parameter x via

1 . - 1 . ~
f,»:/ dx x'log A, g,»:/ dxx'logA,, (B12)
0 0

yielding
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-2+ 4 A
fozichut—l-ﬂog/lz —i—il ( ) 2,
2p p? A
1 p2 _/12 _'_/12
fi= 44, Dew[((A1 = 22)* + p2) (41 + 4)* + p*)(p* — 27 + 23)] + log Ay —271;22
L E=B? 2 4t () L
2p4 /12 2’
1
fa= WDcut[(l% - '1%)4 + P6(/1% + 4’1%) - 2/1%194(/1% - 3'@) + PQM% - /1%)2(/1% + 4’1%) + PS]
+1logiz_ﬁ%—ﬂ%+p2_(/1%—/1%)2+2/1%p2+p4
3 2 6p? 3p*
SR ) R (1) 2
3p 12 9
1
f3= chut[((l] — L)+ p) (B =+ ) AT+ A3+ pt +283(p* = A7) (4 + 4)* + p?)]
1 1 B —13)5 A-81B3+71 (-3 7
-1 _/12 ~1 /12 1 2 _ "1 172 2 1 2 _
3 og( 2) +4 og( 2) + 12p2 8p4 + 4p6 12
log(/l) 2 92\4 4(gq4 292 22092 _ 9232 2.6 8
+7g[(/1 —3)* + p*(64; — 44143) + 443 p” (A1 — 43)° + 445 p° + p°]

where we defined

Dy = l0g(¢ + A1 = 45 + p?) —log({ + 41 — 43

8p
log(—143
_ %82) A3+ 25+ 443(p? — A7) + 223343

— p?) +log(¢ = A3+ 23 + p?)

—44p? +3p*) + 443 (p* = ) (A1 + P, (B13)

—log({ -4+ 25 -p%).  (Bl4)

+ (43 + p*)*log(=43 — p?)].

—6(43 4 p*)*log(—13 — p*) + 13p°],

with § = /23 + (22 + p?)* +243(p?> - 43), and
22+ p?)log(=12 2
=log 3 — (2 +p )2 g(=4) + <—22+ 1> log(—43 — p?) -2,
p p
1
9 =7 [—p?(23 + 2p?) + p*log 23 — log(—13)(23 + p?)*
=156 [1543p* + 643 p* — 6p®log(43) + 6log(—=43)(43 + p?)°
1
g = 748 [—p?(645 + 265 p* + 2123 p* + 14p®) + 6p®log(43)

3. Real frequencies

For a real-time expression of the ghost gluon loop, we
need (B9) at real frequencies w, i.e., I(w,4;,4,) =
I(—i(w +10™)). From the definitions of the functions «;
(B10), p; (B11), g; (C1) and f; (B13), their respective real-
time expressions are trivially obtained by the substitution
p < iw. The calculations were performed in Wolfram

— 6log(—43)(43 + p*)* + 6(45 + p*)*log(=43 — p?)].

(B15)

|
Mathematica 12.1 with the convention Im logx =z for
x < 0 for the logarithmic branch cut.

APPENDIX C: NUMERICAL PROCEDURE

This appendix elaborates on the numerical treatment of
the spectral integrals as well as the spectral integrands.
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Spectral function p(w) [GeV 2]

A | 1 1 A |
107" 10°
Frequency w [GeV]

1aaal
1072

FIG. 10. Convergence of an exemplary spectral function
through iteration of the DSE. The color coding indicates
the iteration number n;.. After about 10 iterations, the
curves become visually indistinguishable, i.e., the iteration
converges.

1. Spectral integration and convergence

The spectral integrals of the form

/{/I} H’lipiw“i)[ren(pa {/11}), (C])

where /., is the renormalized spectral integrand (comp.
(20) or (21)), are evaluated numerically on a logarithmic
momentum grid of about 200 grid points with boundary
(Pmin» Pmax) = (107#,10?), identically for the Euclidean
and Minkowskian axis. We use a global adaptive inte-
gration strategy with default multidimensional symmetric
cubature integration rule. After spectral integration, the
diagram is interpolated with splines in the Euclidean and
Hermite polynomials in the Minkowski domain, both of
order 3. The spectral function is then computed from the

| ( === Spectral function |

IR
)
S

LoL L
(=] o (@]
> ) =)
T
o

Spectral function j4(w) [GeV 2]

108k DDDDDDDDDDDD

G ’ I
Frequency w [GeV]

FIG. 11. Ghost spectral functions (solid lines) compared to their
fits via ansatz (32). The best fit parameters are listed in Table 1.
The change of sign around 1.2 GeV is an imprint of the
oscillations of the input reconstructed gluon spectral function
from [4] and is discussed in Appendix C 4.

interpolants. Note that, a priori, due to (7), the domain of
the ghost spectral function is given by the momentum
grid. The integration domain of the spectral integral of
the ghost spectral parameter has to be bounded by
(Pmin» Pmax)> 10 order to not rely on the extrapolation of
the spectral function beyond the grid points. Due to
numerical oscillations at the very low end of the grid,
we choose (AM", AmaX) = (1073,10%). Convergence of
the integration result with respect to increase of the
integration domain has been explicitly checked.

For the gluon spectral integral, the situation is different,
as the spectral function is given in an algebraic form from
[4]. We use the integration boundary (/Ifi“,lf“ax) =
(1074,10%).

2. Spectral integrands

The numerical performance of the spectral integrations
presented in Appendix B is sped-up by up to two orders of
magnitude by using interpolating functions of the numeri-
cal data. The interpolants are constructed by first discretiz-
ing the integrand inside the three-dimensional (p,A.,1,)
cuboid defined by p € 10142}, 4, € 101-*4}. As for the

TABLEI. Best fit parameters for the ansatz (32) of the spectral
functions for the different solutions. As indicated in the top right
cell, in each cell the first line contains the fit parameter of the
ghost spectral function corresponding to the latticelike input
gluon propagator ija‘), the second to G4(0) = 4.4 GeV~2 and
the last line to the scalinglike G,(0) = 1.9 GeV 2.

GA(O) (Spea.k 51 52 53
(lat) 1.89930 10.7596 2.14185 2.15831
4.4 1.61917 3.91085 1.34667 1.88137
1.9 1.13871 20.5415 1.07826 19.8684
Ve 1—‘peak I I I3
0.891763 0221917 121044  0.408565  0.410932
0.916629 0.0435632  0.978503  0.245856  0.285878
0.794928 0.00641307 0.837894  0.151710  0.890227
ZUV Mpeak M] Mz M3
0.746555 0.374992  0.589509 1.59738 1.59758
0.933136 0.0146429 1.12309 1.26385 1.55235
0.859889 0.0134048  0.654315 1.26661 1.55657
ﬁO Cpeak ¢ 2 C3
18.4661  0.656878 231.204 —1.1422 1.13776
3235.78 1.90835 1.02717  —=0.0321321 0.00133668
417864 37.4574  0.00294505 —0.0113776 0.00148406
luv VIR vy %]

13.5935  —9.99927 16.953 —28.7442

9.49617  —49.8529 80.9258 —13.3501

19.5468  —195.657 7800.45 —6.45

AUV AIR Al A2

1.92012  0.374992  0.0998299  0.759367

2.18064  0.0775041 0.0721607  0.762104

0.967466 0.0816488 —0.0648268 0
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momentum grid for the spectral integration, we use the
same cuboid for the real- and imaginary-time domain. We
use 60 grid points in the momentum and 160 grid points in
the spectral parameter integration, both with logarithmic
grid spacing. For the real-time expressions, we divide into
real and imaginary part of the integrands. Both real and
imaginary parts of the discretized Minkowski as well as the
Euclidean expressions are then interpolated by three dimen-
sional splines inside the cuboid. The resulting interpolating
functions are then used in the spectral integration.

3. Convergence of iterative solution

The iteration is described in Sec. III B. It is initiated with
a classical spectral function, pgo) (w) = n8(w?), see also
(23). It converges rapidly, see Fig. 10.

4. Spectral fits

As discussed in Sec. IV, we provide a ready-to-use
analytic fit formula for the ghost spectral function, see
(32). For our best fit we use N = 3, the fit parameters for
the ghost spectral functions for all input gluon propagators
are listed in Table I. We show the spectral functions and
their respective fits on a log-log scale in Fig. 11. For
GA(0)[GeV~2] = 4.4 and 1.9, the spectral functions fea-
ture a change of sign between 1.2 and 1.3 GeV. These
wiggles are imprints of the oscillations in the input
reconstructed gluon spectral function of [4], and can be
understood as numerical artefacts from the reconstruction
process. However, in order to match the original
Euclidean dressing function 1/Z.(p) in the UV (comp.
Fig. 7), it is necessary to keep the respective oscillatory
behavior in the fit.
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