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The role of the triangle mechanism in the decay process J=ψ → K−Kþa1ð1260Þ is probed. In this
mechanism, a close-up resonance with mass 1823 MeV and width 122 MeV decays into K�ϕ; K� → Kπ
and then K�K̄ fuses into the a1ð1260Þ resonance. We find that this mechanism leads to a triangle singularity
around MinvðK−a1ð1260ÞÞ ≈ 1920 MeV, where the axial-vector meson a1ð1260Þ is considered as a
dynamically generated resonance. With the help of the triangle mechanism we find sizable branching ratios
BrðJ=ψ → K−Kþa1ð1260Þ; a1 → πρÞ ¼ 1.210 × 10−5 and BrðJ=ψ → K−Kþa1ð1260ÞÞ ¼ 3.501 × 10−5.
Such an effect from the triangle mechanism of the decay process could be investigated by such as BESIII,
LHCb and Belle-II experiments. This potential investigation can help us obtain the information of the axial-
vector meson a1ð1260Þ.
DOI: 10.1103/PhysRevD.104.074016

I. INTRODUCTION

Researchers have shown an increased interest in triangle
singularities which were first researched by Landau [1,2] in
the 1960s. A considerable amount of literature [3–7] has been
published on triangle singularities which are essentially
brought about triangle loop Feynman diagrams where an
external particle 1 decays into A and B particles, internal
particle B decays into particle C and an external particle 2,
and then particles A and C fuse into an external particle 3. To
produce triangle singularities, according to the Coleman-
Norton theorem [6], the process can occur classically and
then all three intermediate particles must be put on shell and
be collinear simultaneously. If there is zero width for all the
internal particles, the loop integral turns out to be infinite (see
e.g., [8]). Nevertheless, particle B has a finite width since it
can decay to particle C and 2, which leads to a finite peak in
the invariant mass distributions. This peak can be accessed in
experiments. Instead of evaluating the whole amplitude of a
Feynman diagram including a triangle loop, there is a more
simple and practical way addressed in Ref. [9] to find the
position of a triangle singularity. The condition for producing
a triangle singularity is just qon ¼ qa− , where qon is the on-
shell momentum of particle A or B in the particle 1 rest frame
and qa− defines one of the two solutions for the momenta of

particle B when B and C are on shell to produce particle 3.
Previous research [9] has established a convenient way to
handle the triangle mechanism method. A considerable
amount of literature has been published on the triangle
mechanism. Searching for a reaction showing a peak due
to the triangle singularity fails at the beginning. In 2015, the
COMPASS Collaboration reported a peak at 1420 MeV for
the invariant mass of the final state πf0ð980Þ [10]. Soon the
peak was explained as a triangle singularity corresponding to
the πf0ð980Þ decay mode of a1ð1260Þ resonance [11–13].
Another consideration of the triangle mechanism lies in the
abnormally enhanced isospin violating process ηð1405Þ →
πf0ð980Þ compared to the process ηð1405Þ → πa0ð980Þ
[14]. This abnormally enhancement is suggested due to the
triangle singularities [15–19]. Also, to clarify an enhance-
ment in the KΛð1405Þ invariant mass distribution of the
γp → KΛð1405Þ at about

ffiffiffi
s

p ¼ 2110 MeV [20], the
authors of Ref. [21] tied the peak to a triangle singularity
coming from a resonance N�ð2030Þ dynamically generated
from the vector-baryon interaction. In addition, there are a lot
of research examples where the triangle mechanism plays an
important role [22–43].
In Ref. [44], the K�K̄ peak related to the a1ð1420Þ

demonstrates that f1ð1285Þ can decay into the K�K̄ þ c:c:,
and there is a triangle singularity enhanced-decay mode
πa0ð980Þ for the f1ð1285Þ, where f1ð1285Þ → K�K̄,K� →
πK and then KK̄ → a0ð980Þ. In this paper, we focus on the
reaction process J=ψ → KK̄a1ð1260Þ; a1 → πþρ−, where
a1ð1260Þ is viewed as a dynamically generated resonance
using the chiral unitary approach [45,46], i.e., it can be
described as a quasibound state of dihadron in coupled
channels. The a1ð1260Þ has been probed in the radiative
decay process which is viewed as dynamically generated
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hadron state [47–49]. The a1ð1260Þ resonance is inves-
tigated in a three-body τ lepton decay process where the
triangle mechanism plays a important role. Recently, the
authors in Ref. [50] probe the strengths of the a1ð1260Þ
photoproduction in the γp → a1ð1260Þþn and γp →
πþπþπ−n reactions via the π-exchange mechanism. We
reach a peak of the invariant mass MinvðKþa1Þ at around
1920 MeV by applying the triangle mechanism, where a
close-up dynamically generated resonance decays into
K�ϕ, K� → Kπ and then K�K̄ fuses into the a1ð1260Þ
resonance. We apply the experimental data of the branching
ratio of the decay J=ψ → K̄K�ϕ to determine the coupling
strength of the J=ψK̄K�ϕ vertex. For the a1K−K�þ vertex
inside the triangle loop of the decay process, we apply the
chiral unitary approach by viewing the a1ð1260Þ as a
dynamically generated hadron state. The branching ratio
of the underlying decay process is obtained. Similarly,
research [22] predicted a f2ð1810Þ triangle singularity,
coming from a nearby f2ð1640Þ going into K�K̄�,
K� → Kπ, followed by K�K̄ fusing into a1ð1260Þ. The
J=ψ → KK̄a1ð1260Þ, a1 → πþρ− process we suppose is a
practical example of a physical process where the triangle
mechanism can work. We also perform a quantitative
calculation of the triangle loop amplitude tT .
This paper has been divided into four sections. Section II

deals with the calculation framework and formalism for
working out the decay amplitude of J=ψ → KK̄a1ð1260Þ,
a1 → πþρ− including the triangle mechanism. In this
section, the vertex coupling involved in the tree-level process
J=ψ → K�K̄ϕ has been calculated where we have intro-
duced a dynamically-generated resonance propagator. In
Sec. III we give out the numerical results related to the
triangle singularity around 1920 MeV and then make a
discussion about them. Also, the corresponding decay
branching ratios have been obtained. We reach our con-
clusion in Sec. IV.

II. FORMALISM

We plot the Feynman diagrams of the decay process
J=ψ → K−Kþa1ð1260Þ involving a triangle loop in Fig. 1,
where the meson J=ψ first decays into two vector mesons
ϕ, K� and a pesudoscalar meson K̄, and then the meson ϕ is
converted into K and K̄. The K̄ can move faster than K�, so
they can combine to generate the a1ð1260Þ. Finally, we
consider that the a1ð1260Þ continues to decay into πþρ−
final states.
We take Fig. 1(b) for example to perform the following

discussion since Fig. 1(a) and (b) have nearly the same
amplitude. In order to find the position of triangle singularity
in complex-q plane, analogously to Ref. [9,21,51], we use

qonþ ¼ qa−; and qonþ ¼ λ
1
2ðs;M2

ϕ;M
2
K�þÞ

2
ffiffiffi
s

p ; ð1Þ

where the qonþ is the on-shell three-momentum of the K�þ in
the center of mass frame of ϕK�þ, s denotes the squared
invariant mass of ϕ and K�þ, and λðx; y; zÞ ¼ x2 þ y2 þ
z2 − 2xy − 2yz − 2xz is the Kählen function.
Meanwhile, qa− can be obtained by analyzing the

singularity structure of the triangle loop, which is given by

qa− ¼ γðνEK�þ − p�
K�þÞ − iϵ ð2Þ

with definition

ν¼ k
Ea1

; γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1− ν2

p ¼ Ea1

ma1

;

EK�þ ¼m2
a1 þm2

K�þ −m2
k−

2ma1

; p�
K�þ ¼ λ

1
2ðm2

a1 ;M
2
K− ;M2

K�þÞ
2ma1

;

ð3Þ

where EK�þ and p�
K�þ are the energy and momentum of the

K�þ meson in the center of mass frame of theK�þϕ system,
ν and γ are the velocity of the a1 and Lorentz boost factor,
respectively. In addition,

Ea1 ¼
sþm2

a1 −m2
K−

2
ffiffiffi
s

p ; k ¼ λ
1
2ðs;m2

a1 ; m
2
K−Þ

2
ffiffiffi
s

p : ð4Þ

When Eq. (1) is established we need to consider the case
that all three intermediate particles in the triangle loop are
on shell and the angular z between momentum q and k is
taken as z ¼ −1, i.e., the momentum of particle K�þ is

(b)

(a)

FIG. 1. The Feynman diagrams of the decay process J=ψ →
K−Kþa1ð1260Þ; a1 → πþρ− involving a triangle loop.
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antiparallel to the momentum of the a1ð1260Þ in the
K�þK− center of mass frame. Now, by letting the mass
of the a1ð1260Þ be slightly larger than the mass sum of K�
and K mesons and applying Eq. (1), one can find a triangle
singularity at around

ffiffiffi
s

p ¼ 1920 MeV keeping K�þ ¼
891.66 MeV and K− ¼ 493.68 MeV [52] in mind. If we
use in Eq. (1) complex masses ðM − iΓ=2Þ of vector
mesons which include widths of K� and ϕ mesons, the
solution of Eq. (1) is then ð1920 − 48iÞ MeV. This solution
implies that the triangle singularity has a width of 96 MeV.

A. The decay process J=ψ → K −ϕK�+

Before writing the whole amplitude of the Feynman
diagram in Fig. 1(b), the generalized vertex VJ=ψ ;K−ϕK�þ

needs to be calculated first. Experimentally we have the
K�ϕ invariant mass distribution in Fig. 10(a) of Ref. [53].
One can find a broad peak around 1800 MeV in K�ϕ
invariant mass distribution. This structure indicates that
there should be a better form factor in the one to three
amplitude range, which comes from the interaction of K�ϕ
to give a resonance of around 1800 MeV. This structure is
somewhat important since if we do not add this structure in
the one to three vertex, after carefully calculation one can
not find a clear singularity in Kþa1ð1260Þ invariant mass
distribution of J=ψ → K−Kþa1ð1260Þ decay process. In
that case, the clear peak of Kþa1ð1260Þ in jtT j2 will be
expunged by the phase space and kinematic factors in the
total J=ψ → K−Kþa1ð1260Þ decay process.
Now we introduce some kind of propagator X that can

decay into K�ϕ. The process then becomes J=ψ →
K−X → K−ϕK�þ. Under conservation of strangeness, iso-
spin, and spin for X → K�ϕ, the low-lying vector meson X
should satisfy strangness ¼ 0, isospin ¼ 1=2, and spin ¼ 1.
In Refs. [54,55], the vector mesonK1ð1650Þ is well regarded
as dynamically-generated state from the vector-vector inter-
action which corresponds to the pole position (1665,−95).
It is supposed to couple with two vector mesons such as
K�ρ; K�ω; K�ϕ. However, the width of K1ð1650Þ is not very
large and the mass of K1ð1650Þ is somewhat far away from
the K�ϕ threshold which results in a small possibility of
decay from K1ð1650Þ to K�ϕ final states. Alternatively, a
pole position (1823,−61) was reported by applying a differ-
ent subtraction constants, a ¼ −3.1 [55]. This potential K1

state has a suitable width and its mass 1823 MeV is close to
the K�ϕ threshold. Also, its coupling from K�ϕ shown in
Ref. [55] is relatively large. On basis of the above consi-
derations, we choose this reported pole of K1 type as the
propagator X, which has a resonant shape

FðMK�ϕÞ ¼
MXΓMX

M2
K�ϕ −M2

X þ iMXΓMX

; ð5Þ

where MX;ΓMX
are taken by 1823 MeV and 122 MeV,

respectively. The J=ψ → K−ϕK�þ decay amplitude can then
be written as

−itJ=ψ ;K−ϕK�þ ¼ −iCεijkϵiðJ=ψÞϵjðϕÞϵkðK�ÞFðMK�þϕÞ:
ð6Þ

The coefficient C is obtained by comparing the calculated
J=ψ → ϕK−K�þ decay branching ratio with those from the
experiment. Note that the amplitude in Eq. (6) is a bit rough,
since we have neglected all the other contributions to the
process, such as resonances that couple to each pair of the
three final-state mesons. In Refs. [53,56] the decay branching
ratio for J=ψ → ϕK�K̄ þ c:c: is ð2.18� 0.23Þ × 10−3.
Here, we only focus on the J=ψ → ϕK−K�þ process and
the relation between above the two-decay branching ratio is

BrðJ=ψ → ϕK−K�þÞ ¼ 1

4
BrðJ=ψ → ϕK�K̄ þ c:c:Þ: ð7Þ

The differential decay width over the invariant mass
distribution K�þϕ can be written as

dΓJ=ψ→ϕK−K�þ

dMinvðK�þϕÞ ¼
1

ð2πÞ5
jk⃗�K�þ jjk⃗K− j

16m2
J

·
X

jtJ=ψ→ϕK−K�þ j2dΩ�
K�þdΩK− ; ð8Þ

where mJ is the mass of J=ψ , jk⃗�K�þ j and Ω�
K�þ are the

absolute value of the K�þ three-momentum and the K�þ

solid angle in the center of mass frame of the final K�þϕ
system, respectively. Whereas, jk⃗K− j and ΩkK− are the
absolute value of the K− three-momentum and the K−

solid angle in the rest frame of the initial J=ψ meson,
respectively. To perform the calculation in Eq. (8), we use
the polarization summation formula

X
pol

εμðpÞενðpÞ ¼ −gμν þ
pμpν

m2
: ð9Þ

Then one can obtain

C2

ΓJ=ψ
¼ BrðJ=ψ → ϕK−K�þÞR

dMinvðK�þϕÞ dΓJ=ψ→ϕK−K�þ
dMinvðK�þϕÞ

: ð10Þ

B. The role of triangle mechanism in the decay
J=ψ → K −K + a1ð1260Þ;a1 → π + ρ−

In the previous subsection we calculated the transition
strength of the decay process J=ψ → K−ϕK�þ. Now we
focus on the triangle diagram amplitudes required by
J=ψ → K−Kþa1ð1260Þ, a1 → πþρ− process. The Feyn-
man diagrams are shown in Fig. 1 where J=ψ decays into
ϕK�K̄, the ϕ decays into K̄K, and then the K� and K̄ fuse
into the a1ð1260Þ. The particles’ identification and momen-
tum information are labeled in the diagrams. This triangle
mechanism can take place as long as the a1ð1260Þ couples
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to the K�K̄ pair, thus the triangle singularity induced decay
process can be used to gain valuable information for
the a1ð1260Þ. Finally, the a1ð1260Þ decays into πþρ−.
At the beginning, we need to evaluate the ϕKþK− vertex
for Fig. 1(b) which can be obtained from the vector-
pseudoscalar Lagrangian

LVPP ¼ −ighVμ½P; ∂μP�i; ð11Þ

where the hi represents the SUð3Þ trace. The coupling
constant g, vector meson mass, and the decay constant of
the pion are taken as [57]

g ¼ MV

2fπ
; MV ¼ 800 MeV; fπ ¼ 93 MeV: ð12Þ

The V and P in Eq. (11) are the vector-meson matrix
and pseudoscalar-meson matrix in the SUð3Þ group,
respectively [58]

P ¼

0
BBBB@

π0ffiffi
2

p þ ηffiffi
3

p þ η0ffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ ηffiffi
3

p þ η0ffiffi
6

p K0

K− K̄0 − ηffiffi
3

p þ
ffiffi
2
3

q
η0

1
CCCCA;

V ¼

0
BBBB@

ρ0ffiffi
2

p þ ωffiffi
2

p ρþ K�þ

ρ− − ρ0ffiffi
2

p þ ωffiffi
2

p K�0

K�− K̄�0 ϕ

1
CCCCA: ð13Þ

The total amplitude of the J=ψ → K−Kþa1 decay
process as shown in Fig. 1(b) can be written down directly

−it¼ −iCFðK−a1ÞεijkεiðJ=ψÞεjðϕÞεkðK�Þ

·
Z

d4q
ð2πÞ4

i
q2 −m2

K�þ þ imK�ΓK�

·
i

ðP− qÞ2 −m2
ϕ þ imϕΓϕ

i
ðP− q− kÞ2 −m2

K− þ iε

· ð−igÞðpKþ −pK−ÞμεμðϕÞð−iga1;K�þK−ÞεðK�Þ · εða1Þ;
ð14Þ

where the ga1;K�þK− is the coupling of the a1ð1260Þ to
K�þK−, and P0 ¼ MinvðKþa1Þ in the Kþa1 rest frame. We
have assumed that only the spatial components of the
polarization vector of vector mesons are nonvanishing,
which leads to the vanishing zero component of the
polarization vector and the completeness relation for
the polarization vectors written as

X
pol

εμðpÞενðpÞ ¼ δμν þ
pμpν

m2
; ð15Þ

where i, j are Lorentz indices from 1 to 3. In Eq. (14), after
integrating over q⃗ only the vector k⃗ remains, therefore, for
a function fðq⃗; k⃗Þ we have

Z
d3q⃗qifðq⃗; k⃗Þ ¼ Aki;

A ¼
Z

d3q⃗
q⃗ · k⃗

jk⃗j2
fðq⃗; k⃗Þ: ð16Þ

Considering Eqs. (15) and (16), Eq. (14) can be simpli
fied as

t ¼ CFεijkεiðJ=ψÞεkða1Þi
Z

d4q
ð2πÞ4

1

q2 −m2
K�þ þ imK�ΓK�

×
ð2kþ qÞjg ga1;K�þK−

ðP − qÞ2 −m2
ϕ þ imϕΓϕ

1

ðP − q − kÞ2 −m2
K− þ iε

¼ iCFðMinvðKþa1ÞÞgga1;K�þK−εijkεiðJ=ψÞεkða1ÞkjtT:
ð17Þ

where the zero component of q integration in Eq. (17) has
been performed analytically by residue theory, leads to a
three-dimensional loop intergral tT which can be inte-
grated numerically

tT ¼
Z

d3q
ð2πÞ3

1

8ωK−ωϕωK�þ

1

k0 − ωK− − ωϕ

×
1

MinvðKþa1Þ þ ωK�þ þ ωK− − k0

×
1

MinvðKþa1Þ − ωK�þ − ωK− − k0 þ i ΓK�þ
2

×

�
2MinvðKþa1ÞωK�þ þ 2k0ωK−

MinvðKþa1Þ − ωϕ − ωK�þ þ i Γϕ

2
þ i ΓK�þ

2

−
2ðωK�þ þ ωK−ÞðωK�þ þ ωϕ þ ωK−Þ

MinvðKþa1Þ − ωϕ − ωK�þ þ i Γϕ

2
þ i ΓK�þ

2

�

×

�
2þ q⃗ · k⃗

k⃗2

�
; ð18Þ

with

ωϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þm2

ϕ

q
; ωK− ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq⃗þ k⃗Þ2 þm2

K−

q
;

ωK�þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þm2

K�þ

q
; k0 ¼ M2

invðKþa1Þ þm2
Kþ −m2

a1

2MinvðKþa1Þ
;

jk⃗j ¼ λ1=2ðM2
invðKþa1Þ;m2

Kþ ;m2
a1Þ

2MinvðKþa1Þ
: ð19Þ

The width of vector mesons K�þ and ϕ are taken as
ΓK�þ ¼ 48 MeV and Γϕ ¼ 4.25 MeV, respectively.
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The above integral is regularized with a cutoff qmax on the
loop integral jq⃗j. We take qmax ¼ 950 as in [59] to produce
a1ð1260Þ in the chiral unitary approach. In the j⃗tj2 level we
need to sum over the spin structure of the external vector
mesons. Applying Eq. (9) we have

X
pol

εijkεiðJ=ψÞεkða1ÞkjεμνρεμðJ=ψÞερða1Þkν

¼ 1

3

�
2p⃗2k⃗2

m2
a1

−
2ðp⃗ · k⃗Þ2
m2

a1

þ 6k⃗2
�
; ð20Þ

where p⃗ ¼ P⃗ − k⃗ is the three-vector of the final a1ð1260Þ
meson, and the mass of the a1ð1260Þ is taken as
1230 MeV from particle data group [52]. Then the
distribution of invariant mass MinvðKþa1Þ in the decay
J=ψ → K−Kþa1ð1260Þ can be written as

1

ΓJ=ψ

dΓJ=ψ→K−Kþa1ð1260Þ
dMinvðKþa1Þ

¼ 1

ð2πÞ3
j ⃗q̃Kþjjp⃗K− j

4M2

X
jtj2; ð21Þ

where M is the mass of the J=ψ meson. The three-
momenta j ⃗q̃Kþj and jp⃗K− j in Eq. (26) are given by

j ⃗q̃Kþj ¼ λ1=2ðM2
invðKþa1Þ; m2

Kþ ; m2
a1Þ

2MinvðKþa1Þ
;

jp⃗K− j ¼ λ1=2ðM2; m2
K− ;M2

invðKþa1ÞÞ
2M

: ð22Þ

Then the differential branching ratio of the decay process
J=ψ → K−Kþa1ð1260Þ can be written as

1

ΓJ=ψ

dΓJ=ψ→K−Kþa1ð1260Þ
dMinvðKþa1Þ

¼ 1

ð2πÞ3
j ⃗q̃Kþjjp⃗K− j

4M2

C2

ΓJ=ψ
F2ðMinvðKþa1ÞÞg2g2a1;K�þK−

×
1

3

�
2p⃗2k⃗2

m2
a1

−
2ðp⃗ · k⃗Þ2
m2

a1

þ 6k⃗2
�����tT j2; ð23Þ

where the a1ð1260Þ → K�K̄ vertex is obtained from the
chiral unitary approach of Ref. [45] with ga1;K�K ¼
2390 MeV. Furthermore, to perform the numerical cal-
culations, we choose the z-axis along the direction of the
vector k without loss of generality.
Now we add the final a1ð1260Þ → πþρ− decay process

to our total amplitude. To calculate the jtj2, we need to sum
over the spin structure of the external vector mesons.
Applying Eq. (9) we have

X
pol

εijkεiðJ=ψÞεkðρÞkjεμνρεμðJ=ψÞερðρÞkν

¼ 1

3

�
2p⃗02k⃗2

m2
ρ

−
2ðp⃗0 · k⃗Þ2

m2
ρ

þ 6k⃗2
�
; ð24Þ

where p⃗0 denotes the three-momentum of the final ρmeson,
and mρ ¼ 782 MeV denotes the mass of the ρ meson.
Then we have

X
pol

jtj2 ¼ C2F2ðMinvðKþa1ÞÞg2g2a1;πþρ−

×
1

3

�
2p⃗02k⃗2

m2
ρ

−
2ðp⃗0 · k⃗Þ2

m2
ρ

þ 6k⃗2
�
jtT j2: ð25Þ

After applying the calculation details in [27], one can
reach the double differential mass distribution in
MinvðKþa1Þ and Minvðπþρ−Þ

1

ΓJ=ψ

d2ΓJ=ψ→K−Kþa1ð1260Þ;a1→πþρ−

dMinvðKþa1ÞdMinvðπþρ−Þ

¼ 1

4π

1

ð2πÞ5
jp⃗K− jjk⃗j
4M2

C2

ΓJ=ψ
jFðMinvðKþa1ÞÞj2g2jtT j2j ⃗q̃ρj

×
1

3

�
2p⃗02k⃗2

m2
ρ

−
2ðp⃗0 · k⃗Þ2

m2
ρ

þ 6k⃗2
�
· jtK�þK−→πþρ− j2dΩk;

ð26Þ

where the coupling ga1;πþρ− has been absorbed into
tK�þK−→πþρ− denoting the isospin-one amplitude of the final
VP → VP scattering. This amplitude can be calculated by
solving the Bethe-Salpeter equation

t ¼ V
1 − VG

; ð27Þ

where G is the loop function given in [45], and V is a 2 × 2
matrix of the interaction kernel, the two channels are taken
by 1 for K�K and 2 for ρπ. The corresponding transition
potentials come from the Lagrangian involving VVPP
coupling under the local hidden-gauge approach [45]

Vij ¼ −
Cij

8f2

h
3s − ðM2 þm2 þM02 þm02Þ

−
1

s
ðM2 −m2ÞðM02 −m02Þ

i
; ð28Þ

where the Cij are coefficients related to different particles
and isospin basis ðS; IÞ [45]. M and m are respectively
vector and pseudoscalar mesons in channel i, and M0 and
m0 are respectively vector and pseudoscalar mesons in
channel j. Also, after calculating the corresponding C − G
coefficient we have
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tK�þK−→πþρ− ¼ −
1

2
tK�K̄→πρ: ð29Þ

The three-momenta j ⃗q̃ρj and jp⃗K− j in Eq. (26) are given by

j ⃗q̃ρj ¼
λ1=2ðM2

invðπþρ−Þ; m2
π; m2

ρ

2Minvðπþρ−Þ
;

jp⃗K− j ¼ λ1=2ðM2; m2
K− ;M2

invðKþa1ÞÞ
2M

: ð30Þ

In addition, without loss of generality, we choose the four
vector p0 of the final ρ− meson as the z-axis, then there
exists a solid angle integral element 1

4π dΩk in Eq. (26)
according to the general three-body phase space integra-
tion formalism [52]. Finally, the integration range of
Minvðπþρ−Þ is ðmπþ þmρ− ;MinvðKþa1Þ −mK−Þ as usual
and there is also a factor of four added in to the numerical
calculation due to the two Feynman diagram contributions
for the underlying process.

III. NUMERICAL CALCULATION

At the beginning, we present in Figs. 2(a)–2(c) the
absolute value, the square of the absolute value, the
imaginary part, and the real part of the triangle loop
amplitude tT in Eq. (18) as functions of the Kþa1 invariant
mass, where the invariant masses of final πþρ− states are
taken as 1300, 1350, and 1400 MeV, respectively. We focus
on Fig. 2(c) obtained by taking the invariant masses of
πþρ− a little larger than the K−K�þ threshold (1385 MeV)
first. Note that in this case the smallest value ofMinvðK−a1Þ
is about 1900 MeV (nearby the Kþa1 threshold). From this
diagram we can see that there is a peak in jtT j2 located at
around 1920 MeV with a width of 100 MeV. This width
mainly originates from the width of the vector propagators
K� and ϕ, which is basically consistent with the prediction
of 96 MeV. It is also found from Figs. 2(a)–2(c) that as the
chosen mass of a1ð1260Þ becomes larger, the width of the
peak in jtT j2 becomes larger. A bump in ImðtTÞ can be
found nearby 1920 MeV related with the triangle singu-
larity, which has been addressed in Refs. [26,31]. After
comparing with Figs. 2(a) and 2(b), we find that the

(a) (b)

(c)

FIG. 2. Triangle amplitude tT as a function of MinvðKþa1Þ for (a) Minvðπþρ−Þ ¼ 1300 MeV, (b) Minvðπþρ−Þ ¼ 1350 MeV, and
(c) Minvðπþρ−Þ ¼ 1400 MeV. jtT j2; jtT j;ReðtTÞ and ImðtTÞ are plotted using the green, red, yellow, and blue curves, respectively.
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strengths of the absolute value, the square of the absolute
value, the imaginary part, and the real part of the triangle
loop amplitude tT become smaller as the Ma1 gets smaller.
This suggests all these quantities can obtain sizeable
enhancement when Ma1 is close to the K−K�þ threshold.
Also, the position of the peak in jtT j2 leaves basically
unchanged due to the triangle mechanism. We observe a
broad peak in ReðtTÞ nearby the K�ϕ threshold which has
been suggested and discussed in Refs. [26,31]. Moreover,
the primary bump in Fig. 2(c) has converted into broad
bumps in Figs. 2(a) and 2(b) on account of the potential
deviation from the K−K�þ threshold required by the
triangle mechanism.
As shown in Fig. 3, we plot the differential branching

ratio of the underlying decay process 1
Γ

d2Γ
dMinvðKþa1ÞdMinvðπþρ−Þ,

defined in Eq. (26), where the Minvðπþρ−Þ has been
integrated from ðmπþ þmρ−Þ to ðMinvðKþa1Þ −mK−Þ.
There is a clear peak around 1920 MeV as predicted by
the triangle mechanism. The strength of the differential
branching ratio can reach 2.4 × 10−8 MeV−2. Additionally,
the upper part of the invariant mass distribution drops more
slowly than the lower part because of the polarized factor
in Eq. (9), which produces large contribution when
Minvðπþρ−Þ is large. We also plot the triangle amplitude
jtT j in Eq. (18) as a function of Minvðπþρ−Þ with
MinvðKþa1Þ taken by 1920, 1940, and 1960 MeV in
Fig. 4, respectively. There is a peak near 1390 MeV in
all of these three cases which is the direct reflection of the
triangle mechanism; to obtain the triangle singularities, one
should let the Minvðπþρ−Þ slightly larger than the K−K�þ
threshold. It is desirable to mention that there is a very
small reduction on the position of the peak as the
MinvðKþa1Þ increases from 1920 MeV to 1960 MeV.
On the other hand, the distribution with the MinvðKþa1Þ
taken as 1920 MeV has the largest strength which is
enhanced by the triangle mechanism. As the MinvðKþa1Þ
increases from the position of triangle singularity, the

strength becomes lower and the width of the peak gets
larger.
Next, we show in Fig. 5 the differential branching ratio

1
Γ

dΓ
dMinvðπþρ−Þ, described as in Eq. (26) as a function of

Minvðπþρ−Þ for MinvðKþa1Þ ¼ 1920, 1940, and
1960 MeV. We find that the Minvðπþρ−Þ distribution
around 1920 MeV has the largest strength over the three
cases, which is a natural result of the triangle mechanism.
Note that the position of the peak in the three cases
increases as the Minvðπþρ−Þ increases. The peaks of all
three distributions deviate from theK−K�þ threshold due to
the contribution coming from the polarized factor involving
k2 in Eq. (9).
Finally, we integrate out two invariant masses in Eq. (26)

in order to obtain the branching ratio of the total decay
process J=ψ → K−Kþa1ð1260Þ. The integration range of
MinvðKþa1Þ is ðmKþ þma1 ; mJ=ψ −mKþ −ma1Þ, while
those for Minvðπþρ−Þ is ðmρ− þmπþ ;MinvðKþa1Þ−
mK−Þ. We find

FIG. 3. The differential branching ratio 1
Γ

d2Γ
dMinvðKþa1ÞdMinvðρπÞ

described as in Eq. (26) as a function of MinvðKþa1Þ. The
integration range of Minvðπþρ−Þ is given by the text.

FIG. 4. Triangle amplitude jtT j as a function of Minvðπþρ−Þ for
MinvðKþa1Þ ¼ 1920, 1940, and 1960 MeV.

FIG. 5. The differential branching ratio 1
Γ

d2Γ
dMinvðKþa1ÞdMinvðπþρ−Þ

described as in Eq. (26) as a function of Minvðπþρ−Þ for
MinvðKþa1Þ ¼ 1920, 1940, and 1960 MeV.
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BrðJ=ψ → K−Kþa1ð1260Þ; a1 → πþρ−Þ ¼ 4.033 × 10−6;

ð31Þ

and then one can easily obtain

BrðJ=ψ → K−Kþa1ð1260Þ; a1 → πρÞ ¼ 1.210 × 10−5:

ð32Þ
In addition, we obtain the decay branching ratio of J=ψ →
K−Kþa1ð1260Þ by using Eq. (23)

BrðJ=ψ → K−Kþa1ð1260ÞÞ ¼ 3.501 × 10−5: ð33Þ
These rates are accessible at BESIII within the observation
capability.

IV. CONCLUSION

The present study was designed to determine the effect
of the triangle mechanism of the decay process of
J=ψ → K−Kþa1ð1260Þ. The results of this investigation
show that there is a triangle singularity around 1920 MeV
for the invariant mass MinvðKþa1Þ. The strength of the

differential branching ratio 1
Γ

d2Γ
dMinvðKþa1ÞdMinvðρ−πþÞ, reaches

2.4 × 10−8 MeV−1. We have applied the experimental data
of the branching ratio of the decay J=ψ → K̄K�ϕ to
determine the coupling strength of the J=ψK̄K�ϕ vertex.
We also evaluate the triangle amplitude jtT j and the
differential branching ratio 1

Γ
d2Γ

dMinvðKþa1ÞdMinvðρ−πþÞ as func-

tions of Minvðπþρ−Þ. There are deviations of all three
distributions in the latter from the K−K�þ threshold on
account of the contribution coming from the polarized
factor involving k2. We hope that the future the LHCb,
Belle-II, and BESIII experimental data will focus on the
J=ψ → K−Kþa1ð1260Þ process and clarify the role played
by the triangle singularities in this decay process, which can
provide valuable information for the low-lying axial-vector
mesons a1ð1260Þ.
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