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Symmetry is among the most fundamental and powerful concepts in nature, whose existence is usually
taken as given, without explanation. We explore whether symmetry can be derived from more fundamental
principles from the perspective of quantum information. Starting with a two-qubit system, we show there
are only two minimally entangling logic gates: the identity and the SWAP, which interchanges the two
states of the qubits. We further demonstrate that, when viewed as an entanglement operator in the spin-
space, the S-matrix in the two-body scattering of fermions in the s-wave channel is uniquely determined by
unitarity and rotational invariance to be a linear combination of the identity and the SWAP. Realizing a
minimally entangling S-matrix would give rise to global symmetries, as exemplified in Wigner’s spin-
flavor symmetry and Schrödinger’s conformal invariance in low energy quantum chromodynamics. For Nq

species of qubit, the identity gate is associated with an ½SUð2Þ�Nq symmetry, which is enlarged to SUð2NqÞ
when there is a species-universal coupling constant.
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I. INTRODUCTION

Symmetry plays an essential role with respect to the laws
of nature. Mathematically defined as invariance under a
specified group of transformations, the notion of symmetry
has provided unity to vastly different physical phenomena.
For example, different physical systems with the same
underlying symmetries have the same critical exponents at
second order phase transitions. The existence of conserved
quantities, such as energy and momentum, is typically a
consequence of an underlying symmetry, in this case
invariance under time and spatial translations. Effective
field theories, including the Standard Model, are defined by
writing the most general Lagrangian consistent with known
symmetries.
But what is the origin of symmetry? In a physical theory

symmetries are usually given as inputs at short distances
and are valid over a large range of length scales. Sometimes
symmetries could be accidental and emerge only at long
distances, which nonetheless cannot be predicted a priori.
It is not known whether symmetry can be the outgrowth of
more fundamental principles.
On the other hand, in attempting to answer the question

of existence, J. A. Wheeler adopted the philosophy that

every physical quantity is derived from binary bits,
inventing the phrase It from bit [1]. Indeed, remarkable
connections between fundamental physics and information
science have been revealed in the past decades. Central to
this pursuit is quantum entanglement, a basic phenomenon
in quantum mechanics. Naturally one is led to wonder: can
symmetry come from qubit? [2]
In this regard there is a fascinating observation in low

energy quantum chromodynamics (QCD) recently. Ref. [3]
computed the entanglement power in two-nucleon scatter-
ing and found entanglement suppression in regions of
parameter space with enhanced Wigner’s spin-flavor sym-
metry and Schrödinger’s non-relativistic conformal invari-
ance. This raises the intriguing possibility of understanding
symmetry from quantum entanglement.
In this work we aim to purify the observation and study

the correlation between symmetry and entanglement sup-
pression in an information-theoretic setting. As a result, our
conclusions are universal, quantum mechanically speaking,
and not confined to QCD.

II. ALICE AND BOB MEET CARTAN

We start by considering two qubits, Alice (A) and Bob
(B), each with the basis vectors j0i and j1i. For a spin-1=2
system, j0i and j1i can be identified with states having
the spin-component Sz ¼ þ1=2 and −1=2, respectively. It
is customary to define the computational basis
fj00i; j01i; j10i; j11ig, where jiji ¼ jiiA ⊗ jjiB. There
are several measures of entanglement of two-qubit systems
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[4] but our analysis relies only on general features of these
measures, namely that they vanish if jΨi is unentangled,
i.e., can be written as a direct product state, jΨi ¼ jϕi ⊗
jϕ0i for some jϕi; jϕ0i, and are maximal for maximally
entangled states. Examples of maximally entangled states
include the Bell basis:

jΦ�i ¼ ðj00i � j11iÞffiffiffi
2

p ; jΨ�i ¼ ðj01i � j10iÞffiffiffi
2

p ; ð1Þ

as well as the magic basis [5], defined in the same way as
the Bell basis except for some phases: jΦ1i ¼
jΦþi; jΦ2i ¼ −ijΦ−i; jΦ3i ¼ jΨþi; jΦ4i ¼ −ijΨ−i. An
example of an entanglement measure is the concurrence
ΔðΨÞ [5,6], which for a normalized state jΨi ¼ αj00i þ
βj10i þ γj01i þ δj11i is defined as

ΔðΨÞ ¼ jhΨjσy ⊗ σyjΨ�ij ¼ 2jαδ − βγj: ð2Þ

The concurrence has the property that 0 ≤ ΔðΨÞ ≤ 1,
where ΔðΨÞ ¼ 0 if jΨi is not entangled and ΔðΨÞ ¼ 1
if it is maximally entangled. Concurrence is reviewed in the
Appendix and its relation to some other entanglement
measures is discussed. The crucial property that all these
measures share is that the entanglement is unchanged by
single qubit unitary operators.
A quantum-mechanical operator acting on the two-qubit

system is represented by a matrix U in the SUð4Þ group,
which is parametrized by 15 generators:

fσa ⊗ 12; 12 ⊗ σb; σa ⊗ σb; a; b ¼ x; y; zg; ð3Þ

where σa’s are the Pauli matrices and 12 is the 2 × 2 identity
matrix. It turns out that not all U’s generate entanglement;
operators that are local in the product space,
U ¼ UA ⊗ UB, UA=B ∈ SUð2Þ, leave the entanglement
unchanged, leading to the notion of equivalent classes:
two operators U and U0 generate the same amount of
entanglement if they are related by local operators,

U ∼U0; if U ¼ ðUA ⊗ UBÞU0ðVA ⊗ VBÞ; ð4Þ

for some single qubit operators UA=B and VA=B.
Classification of all nonlocal, and hence entanglement

generating operators in a two-qubit system has been
achieved long ago [4,7,8] and relies on the Cartan decom-
position [9] of the Lie algebra of a symmetric coset space
G=H, whose generators satisfy

½h; h� ¼ h; ½h; p� ¼ p; ½p; p� ¼ h; ð5Þ
where h ¼ fTig and p ¼ fXag are generators of H and
G=H, respectively. The Lie algebra g ofG can be written as
g ¼ h ⊕ p. Let a ¼ fAag be the maximal Abelian sub-
algebra of g contained in p: a ⊂ p and ½a; a� ¼ 0. Then an
element g of G can be written as

g ¼ K1eiβaA
a
K2; K1; K2 ⊂ H; ð6Þ

for some real parameters fβag. This is generally referred to
as the Cartan decomposition for symmetric spaces.
The Cartan decomposition in Eq. (6) can be understood

as follows. The coset structure allows for the “polar
decomposition” for any g ∈ G,

g ¼ K̄1L; K̄1 ∈ H and L ∈ G=H: ð7Þ

Next we would like to show that,

p ¼ a ⊕ ½h; a�: ð8Þ

Recall that, since a ⊂ p, Eq. (5) implies ½h; a� ⊂ p.
Consider a generator Xa ∈ p that is orthogonal to ½h; a�,

0 ¼ TrðXa½h; a�Þ ¼ Trðh½a; Xa�Þ; ð9Þ

where we have used the cyclic property of the trace in the
second equality. Using Eq. (5) again, ½Xa; a� ⊂ h which
implies the only way Eq. (9) can hold is if ½Xa; a� ¼ 0. This
shows Xa must be part of the maximal Cartan subalgebra
a ⊂ p and Eq. (8) follows. The last step is to apply Baker-
Campbell-Hausdorff formula,

eiZeiYe−iZ ¼ eiðYþ½Z;Y�þ 1
2!
½Z;½Z;Y��þ 1

3!
½Z;½Z;½Z;Y���þ���Þ; ð10Þ

with Y ¼ a and Z ¼ h. Using Eqs. (5) and (8) we see
½h; ½h; a�� ¼ p, ½h; ½h; ½h; a��� ¼ p, etc. Therefore the right-
hand side of Eq. (10) sits in G=H, leading to

L ¼ ðK2Þ−1eiβaAa
K2: ð11Þ

Plugging Eq. (11) into Eq. (7) we arrive at Eq. (6).

III. MINIMAL ENTANGLERS

For SUð4Þ=ðSUð2Þ ⊗ SUð2Þ), with the SUð2Þ’s gener-
ated by σa ⊗ 12 and 12 ⊗ σb, a ¼ fσa ⊗ σa; a ¼ x; y; zg.
The space of inequivalent “entanglers” is then parametrized
by only 3 parameters, ðβx; βy; βzÞ,

Ud ≡ eiβaσ
a⊗σa ¼ ðcxcycz þ isxsyszÞ1

þ ½ðszsycx þ iczcysxÞσx ⊗ σx

þ ðcyclic perm: offx; y; zgÞ�; ð12Þ

where ca ¼ cos βa and sa ¼ sin βa and 1 is the four-
dimensional identity matrix. It is worth recalling some
basic properties of Ud. First, the amount of entanglement
created by Ud is periodic in βi → βi þ π=2 [4]. To see this,
consider

eiðβxþδÞσx⊗σx ¼ ð1 cos δþ iσx ⊗ σx sin δÞeiβxσx⊗σx : ð13Þ
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When δ ¼ π=2 the above operator is related to the operator
with δ ¼ 0 by an operator that is a product of local
unitaries, UA ⊗ UB ¼ iσx ⊗ σx, and therefore belongs to
the same equivalent class. Moreover, the eigenvalues of Ud
(most easily computed in the Bell basis which is the
eigenbasis of Ud) are λi ¼ eiϕi , where ϕi are

ϕ1 ¼ βx − βy þ βz; ϕ2 ¼ −βx þ βy þ βz

ϕ3 ¼ βx þ βy − βz; ϕ4 ¼ −βx − βy − βz: ð14Þ

These are the eigenvalues of jΦþi, jΦ−i, jΨþi, and jΨ−i,
respectively. Then ðβa; βbÞ → ð−βa;−βbÞ or ðβa; βbÞ →
ðβb; βaÞ generate all possible permutations of the eigen-
values. Permuting the eigenvalues of Ud does not change
the entanglement properties of Ud. The geometric structure
underlying all Ud is a 3-torus, T3 ¼ S1 × S1 × S1, and we
can restrict to π=2 > βx ≥ βy ≥ βz ≥ 0, π=2 ≥ βx þ βy. If
βz ¼ 0 we have the additional constraint π=4 ≥ βx. This
corresponds to one Weyl chamber of G=H [8,10], where
every point corresponds to an equivalent class. We will use
½Ud� to denote the equivalent class containing Ud. Related
discussions in the context of the S-matrix in a quantum field
theory can be found in Ref. [11].
To quantify the ability of an operator to produce

entanglement, it is possible to define the entanglement
power of an operator by averaging over the states it acts on
[12]. For our purpose, it is sufficient to consider Udjψi,
where jψi ¼ ðaj0i þ bj1iÞ ⊗ ðcj0i þ dj1iÞ is a general
product state in the computational basis, compute the
concurrence defined in Eq. (2) and average over the wave
function of the qubit on the Bloch sphere. It turns out that it
is easier to compute the average of the square of the
concurrence [13,14], as explained in the Appendix,

1

2
ΔðUdjψiÞ2 ¼

1

6
−

1

18

X
a<b

cosð4βaÞ cosð4βbÞ: ð15Þ

Since Eq. (15) is positive-definite, a vanishing entangle-
ment power requires cosð4βaÞ cosð4βbÞ ¼ 1 for all a and b.
The only solutions are βx ¼ βy ¼ βz ¼ 0 or π=4. So there
are only two minimally entangling Ud whose matrix
representations in the computational basis are,

βa ¼ 0∶Ud ¼ 1;

βa ¼
π

4
∶Ud ¼ ei

π
4

2
6664
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

3
7775≡ ei

π
4 × ðSWAPÞ: ð16Þ

The SWAP interchanges the states of qubit A and qubit B,
i.e., jiji → jjii in the computational basis and
SWAP2 ¼ 1. The corresponding equivalence classes are
½1� and ½SWAP�.

IV. TWO-BODY SCATTERING

In a scattering experiment AB → AB, where A and B are
fermions, the S-matrix can be considered as an entangle-
ment operator in the spin-space. Moreover, it is well-known
that the low-energy scattering of non-identical fermions is
dominated by the s-wave channel, which we focus on here.
See Refs. [15,16] for prior discussions of entanglement in
fermion scattering.
In the s-wave channel, there is no orbital angular

momentum and the S-matrix, S, can be decomposed into
the singlet, 1S0, and the triplet, 3S1, channels [17],
S ¼ S0 þ S1. The general form of S is constrained by
(1) unitarity: S†S ¼ 1, and (2) rotational invariance:
½Si; J⃗� ¼ 0, where in the s-wave J⃗ ¼ s⃗A þ s⃗B is the total
spin of A and B. In the computational basis, s⃗A ¼ ðσ⃗=2Þ ⊗
12 and s⃗B ¼ 12 ⊗ ðσ⃗=2Þ. Therefore Si can only be a linear
combination of the identity 1 and J2 ¼ ðs⃗A þ s⃗BÞ2:

Si ¼ ei2δiðai1þ biσ · σÞ; σ · σ ≡X
a

σa ⊗ σa: ð17Þ

where δi ¼ δiðpÞ is a phase which could depend on the
center-of-mass momentum p and ai, bi are constants.
Demanding that S0 and S1 project onto the singlet and
the triplet channels, respectively, gives a1 ¼ 3b1 and
a0 ¼ −b0. The overall normalization is fixed by the
unitarity constraint, S†S ¼ 1, and we arrive at

S ¼ 1

4
ð3ei2δ1 þ ei2δ0Þ1þ 1

4
ðei2δ1 − ei2δ0Þσ · σ; ð18Þ

¼ 1

2
ðe2iδ1 þ e2iδ0Þ1þ 1

2
ðe2iδ1 − e2iδ0ÞSWAP; ð19Þ

where we have used SWAP ¼ ð1þ σ · σÞ=2. Surprisingly,
rotational invariance and unitarity constrains the s-wave S-
matrix to be a linear combination of minimal entanglers.
Realizing a minimally entangling gate in the S-matrix then
requires the relations:

δ0ðpÞ − δ1ðpÞ ¼ 0 ⇒ S ∼ ½1�; ð20Þ

jδ0ðpÞ − δ1ðpÞj ¼ π=2 ⇒ S ∼ ½SWAP� ð21Þ

Given the momentum dependence in δi’s, the above
relations are not satisfied generically, except at certain
fixed momenta. Therefore, when the relations hold inde-
pendently of the momentum p, we are sitting in special
regions of parameter space. Indeed, these are regions where
symmetries emerge.
At sufficiently low energies, when effective range

expansion is valid, p cot δiðpÞ is analytic in p2

p cot δiðpÞ ¼ −
1

ai
þ 1

2
rðiÞ0 p2 þ � � � ; ð22Þ
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where ai is the scattering length and rðiÞ0 is the effective
range. This translates into

tan δiðpÞ ¼ −pai þOðp3Þ: ð23Þ

The limit ai → 0 and δi → 0 corresponds to a free theory in
that channel, while ai → �∞ and δi →∓ π=2 arises from
the “unitarity limit,” with the largest possible cross section
consistent with unitarity. Then it is clear that to achieve the
½SWAP� gate with jδ0 − δ1j ¼ π=2 for more than one p one
must tune a → �∞ in one channel and a → 0 in the other
channel. This corresponds to an RG fixed point of the
theory, which is known to possess an emergent Schrödinger
symmetry [18].
On the other hand, realizing the identity with δ0ðpÞ ¼

δ1ðpÞ one needs to set the scattering parameters in the two
channels equal. This could be enforced through an internal
symmetry, which we turn to next.

V. EFFECTIVE HAMILTONIANS

In this section we investigate what kind of Hamiltonians
would give rise to the minimally entangling ½1� gate in the
S-matrix. In a quantum field theory the phase δi is
computed through the scattering amplitude Ai defined
by e2iδi ¼ 1þ iðMp=2πÞAi, where M is the mass of the
fermions (which we take to be degenerate, for simplicity).
We then have

Ai ¼
4π

M
1

p cot δi − ip
: ð24Þ

To realize the identity gate we need δ0 ¼ δ1, which implies
the amplitudes in both channels are equal, suggesting the
existence of an internal symmetry.
In what follows we will consider an effective

Hamiltonians for two species of qubits, labeled by the
species index: I; J ¼ 1, 2. Then the notation jIi; Jji
represents the situation where Alice possesses a qubit jii
in species I and Bob has a qubit jji in species J. The
addition of the species quantum number opens the pos-
sibility of entanglement through the species quantum
numbers.
An entangler that takes an input jIi; Jji to an output

jI0i0; J0j0i can arise from the generic Hamiltonian,

a†I0i0aIia
†
J0j0aJj; ð25Þ

where a†Ii (aIi) creates (annihilates) jIii and all other
quantum numbers (such as the momentum) are suppressed.
The most general effective Hamiltonian is

Hint ¼
X

Gii0jj0KII0JJ0a
†
I0i0aIia

†
J0j0aJj þ H:c:; ð26Þ

where Gii0jj0 and KII0JJ0 are coupling constants in the spin-
and species-space, respectively.
From Eq. (16) we see that, in order for Hint to generate

½1�, it must be diagonal in the spin-space, Gii0jj0 ¼
Gijδ

ii0δjj
0
. Rotational invariance further implies Gij must

be independent of ðijÞ,

G ¼ gs

�
1 1

1 1

�
; ð27Þ

where gs is a constant. It turns out to achieve entanglement
suppression when there is more than one species of qubit,
Hint must conserve the “species number” for each individ-
ual species [3]. To see this, consider the following species-
changing one-body operators,

Θ ¼ a†I↑aJ↑ þ H:c:: ð28Þ

When Θ acts on the state jI ↑; J ↑i,

ΘjI ↑; J ↑i ¼ jI ↑; I ↑i þ jJ ↑; J ↑i; ð29Þ

which will result in an entangled output. Therefore,
entanglement suppression also requires KII0JJ0 ¼
KIJδ

II0δJJ
0
. If we use the notation NI ¼ ðaI↑; aI↓ÞT , the

Hamiltonian can now be written as

Hint ¼ gs
X
I;J

KIJðN†
INIÞðN†

JNJÞ þ H:c:; ð30Þ

which is invariant under an SUð2Þ1 × SUð2Þ2 global
symmetry,

NI → UINI; UI ∈ Uð2ÞI; I ¼ 1; 2: ð31Þ

The rotational invariance is the diagonal subgroup of
SUð2Þ1 × SUð2Þ2, which acts on each species identically.
In some cases it is possible to further assume the

existence of a “species symmetry” such that, much like
the rotational invariance in Eq. (27), the coupling constant
KIJ is universal and independent of ðIJÞ,

K ¼ gf

�
1 1

1 1

�
: ð32Þ

In the context of two-nucleon scattering the universality is
achieved through the SUð2Þ isospin symmetry transform-
ing the neutron and the proton into each other. In this case
the Hamiltonian becomes

Hint ¼ gsgfðN †N Þ2; ð33Þ

where N ¼ ðN1; N2ÞT ¼ ða1↑; a1↓; a2↑; a2↓ÞT . We see the
SUð2Þ1 × SUð2Þ2 global symmetry is enlarged to an SUð4Þ
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symmetry. This is Wigner’s SUð4Þ spin-flavor symmetry in
effective interactions of nucleons [19].
The above argument generalizes immediately to the case

when there are Nq species of qubit: I; J ¼ 1; 2;…; Nq. In
fact, Eq. (30) remains valid in the general case and the
global symmetry is Nq-copy of SUð2Þ: SUð2Þ1×
� � � SUð2ÞNq

. Moreover, when there is a species-universal
coupling constant (due to some underlying species sym-
metry), the Hamiltonian implementing the ½1� gate must be
diagonal in both the spin- and species-space, with N in
Eq. (33) now defined by N ¼ ða1↑; a1↓;…; aNq↑; aNq↓ÞT.
The resulting global symmetry is enlarged to SUð2NqÞ.
In low energy QCD interactions of the octet baryons

indeed exhibit an enhanced SUð16Þ spin-flavor symmetry
[3]. Now we see this is a direct consequence of QCD
realizing the ½1� gate. The example also serves to demon-
strate that, to arrive at a species-universal coupling constant
among the Nq qubit, it is not necessary to impose an
SUðNqÞ species symmetry. In fact, it suffices if the Nq

species of qubit furnish an irreducible linear representation
of an underlying group Gq which may be smaller than
SUðNqÞ. For the octet baryon this is achieved through the
SUð3Þ flavor symmetry in QCD.
It is interesting to entertain the possibility of realizing the

½SWAP�, which requires the S-matrix in one spin channel
saturating the unitarity limit (δ ¼ π=2) and the scattering
being absent in the other channel (δ ¼ 0). Both S matrices
are invariant under the Schrödinger invariance [18], which
is not apparent at the level of the Lagrangian, but emerges
after resumming certain contact interactions to all orders
and performing a fine tuning of the theory parameters. For
octet baryons the interactions in question are the two
double trace operators in the chiral Lagrangian [20]. The
resulting theory is not SUð16Þ symmetric and does not
appear to be realized in low energy QCD.

VI. CONCLUSION

In this work we initiated an information-theoretic study
on the origin of symmetry. In particular, we studied the
correlation between the emergence of global symmetries
and entanglement suppression in the two-body scattering of
fermions in the s-wave channel. After showing there are
only two minimally entangling gates in a two-qubit system:
the identity and the SWAP gates, which turned out to be
rotationally invariant, we argued the S-matrix is constrained
by unitarity and rotational invariance to be a linear
combination of the identity and the SWAP. Imple-
menting a minimally entangling S-matrix requires certain
conditions on the phases in the S-matrix in the 1S0 and 3S1
channels. The SWAP gate can be realized when one of the
channels flows to a free fixed point in the IR and the other a
unitarity fixed point with the Schrödinger symmetry. On
the other hand, an S-matrix implementing the identity gate
implies ½SUð2Þ�Nq global symmetry in the effective

Hamiltonian, where Nq is the number of species of qubits.
When there is a universal coupling among the species, the
symmetry is enlarged to SUð2NqÞ.
In nature the identity gate is realized in low energy QCD.

One wonders whether the SWAP gate arises naturally in
other physical systems [21]. Furthermore, while we focused
on symmetries realized in the Wigner-Weyl mode [23], it
would be interesting to study whether spontaneously
broken symmetries, the Nambu-Goldstone mode, can also
be realized in an information-theoretic setting.
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APPENDIX: ENTANGLEMENT MEASURES

This Appendix gives a brief discussion of entanglement
measures, which we argue can be motivated by demanding
that they be invariant under unitary transformations on
single qubits. The concurrence [6] turns out to be the
simplest such invariant. We then discuss its relation to other
entanglement measures based on reduced density matrices,
such as the von Neumann entropy and the 2-entropy.
Entanglement measures for operators are defined by
applying them to unentangled direct product states and
averaging over all such states. This is used to prove that all
minimal entanglers are equivalent to 1 or SWAP up to local
unitary operations.
For a two-qubit system the most general state is

jΨi ¼ αj00i þ βj01i þ γj10i þ δj11i: ðA1Þ

Any entanglement measure should vanish on direct product
states and attain a maximum on maximally entangled
states. It is easy to show that ΔðΨÞ ¼ 2jαδ − βγj defined
in Eq. (2) vanishes on all direct product states:

jψi ¼ ðaj0i þ bj1iÞ ⊗ ðcj0i þ dj1iÞ: ðA2Þ

In fact we will show that αδ − βγ is the only second order
polynomial in α, β, γ, and δ that has this property. It is also
clear that jαδ − βγj ≤ jαjjδj þ jβjjγj ≤ ðjαj2 þ jβj2þ
jγj2 þ jδj2Þ=2 ¼ 1=2, so that 0 ≤ ΔðΨÞ ≤ 1. Finally
ΔðΨÞ ¼ 1 for Bell states, so ΔðΨÞ has the desired
properties.
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Here we want to emphasize another way of motivating
ΔðΨÞ, which could easily be generalized to m-level qubits.
Under a unitary transformation UA on Alice the compo-
nents of the wave function transform as:

�
α

γ

�
→ UA

�
α

γ

�
;

�
β

δ

�
→ UA

�
β

δ

�
; ðA3Þ

while under a unitary transformation UB on Bob the
components transform as

�
α

β

�
→ UB

�
α

β

�
;

�
γ

δ

�
→ UB

�
γ

δ

�
: ðA4Þ

If we assemble the components of the wave function into a
matrix

M ≡
�
α β

γ δ

�
; ðA5Þ

these transformations can be written as

M → UAMUT
B: ðA6Þ

An important ingredient underlying this work is that local
unitary transformations do not affect entanglement and this
led us to the Cartan decomposition of a general SUð4Þ
element acting on two qubits. In the present context we see
that entanglement measures must be invariants under the
transformation in Eq. (A6). There are only two invariants
that are second order:

Det½M� ¼ αδ − βγ

Tr½M†M� ¼ jαj2 þ jβj2 þ jγj2 þ jδj2 ¼ 1: ðA7Þ

Given this, it is not surprising that other entanglement
measures for two qubits can be expressed in terms of Δ½Ψ�.
For example, the reduced density matrices for qubits A and
B are

ρA ¼ MM†; ρB ¼ M†M; ðA8Þ

whose eigenvalues are

λ� ¼ 1

2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ2ðΨÞ

q
Þ: ðA9Þ

Any entanglement measure derived from reduced density
matrices can therefore be expressed in terms of the
concurrence. For example the von Neumann entropy is

EEðjΨiÞ ¼ −Tr½ρA ln ρA� ¼ −λþ ln λþ − λ− ln λ−; ðA10Þ

while the 2-entropy is

ERðjΨiÞ ¼ 1 − Tr½ρ2A� ¼
1

2
Δ2ðΨÞ ¼ 2jαδ − βγj2: ðA11Þ

These share the property of ΔðΨÞ that they vanish when
evaluated on an unentangled state. For maximally
entangled states, EE ¼ ln 2 and ER ¼ 1=2.
So far we have discussed entanglement measures for

states. For operators the entanglement generated is depen-
dent on the state they act on. For example, CNOTacting on
the computational basis fj00i; j01i; j10i; j11ig yields
fj00i; j01i; j11i; j10ig and generates no entanglement.
But acting on the direct product state ðj0i þ j1iÞ ⊗
j0i= ffiffiffi

2
p

the CNOT gate creates the maximally entangled
state jΦþi. Forming a sensible entanglement measure for
operators requires some sort of averaging over initial states.
One possible approach is to average over all direct product
states [12,13], which we will do below.
We parametrize the wave function of the qubits using

Bloch sphere coordinates,

a ¼ cos
θA
2
; b ¼ sin

θA
2
eiϕA ;

c ¼ cos
θB
2
; d ¼ sin

θB
2
eiϕB : ðA12Þ

It is simple to compute the concurrence for arbitrary Ud.
Expanding the pure state jψi in Eq. (A2) in terms of the
Bell states, which are eigenstates of Ud, it is straightfor-
ward to show:

jαδ − βγj ¼ 1

4
j
X4
i¼1

viλ2i j; ðA13Þ

where λi ¼ eiϕi is defined through the ϕi in Eq. (14) and

v1 ¼ ðacþ bdÞ2; v2 ¼ −ðac − bdÞ2;
v3 ¼ −ðadþ bcÞ2; v4 ¼ ðad − bcÞ2: ðA14Þ

For averaging over direct product initial states it is more
convenient to consider the entanglement power, which is
the 2-entropy in Eq. (A11) averaged over all direct product
states,

ERðUdjψiÞ ¼ 2jαδ − βγj2

¼ 1

8
j
X

i
viλ2i j2

¼ 1

8

X
i

jvij2þ
1

8

X
i≠j

viv�j λ
2
i λ

−2
j ; ðA15Þ

where the last line follows from λ�i ¼ λ−1i . The overline
denotes averaging over the solid angles ΩA;B. It is simple to
evaluate the integral viv�j ,
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viv�j ¼
Z

dΩA

4π

Z
dΩB

4π
viv�j ¼ −

1

9
þ 4

9
δij; ðA16Þ

which yields [13,14]

ERðUdjψiÞ

¼ 1

6
−

1

18

X
a<b

cosð4βaÞ cosð4βbÞ: ðA17Þ

The entanglement power is manifestly invariant under the
transformations βa → βa þ π=2, ðβa; βbÞ → ðβb; βaÞ and
ðβa; βbÞ → ð−βa;−βbÞ discussed in the main text. To have
minimal entanglement we must have all cosð4βaÞ cosð4βbÞ
in Eq. (A17) equal to 1. This requires βa ¼ 0 or π=4 for all

a. The solution βa ¼ 0 yields the identity gate, 1, and βa ¼
π=4 yields the SWAP gate times eiπ=4. Thus we see that all
minimal entanglers are either equivalent to 1 or SWAP up
to local unitary operations.
For βx ¼ βy ¼ βz ≡ β, the entanglement power simpli-

fies to

ERðUdjψiÞ ¼
sin24β

6
: ðA18Þ

In this case the eigenvalues of Ud are eiβ and e−3iβ, while
the eigenvalues of S are e2iδ1 and e2iδ0 . Identifying 4β with
2ðδ1 − δ0Þ we recover the entanglement power derived
in Ref. [3].
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