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It is frequently supposed that quark-gluon plasma created in heavy-ion collisions undergoes free
streaming at early times. We examine this issue based on the assumption that a universal attractor
dominates the dynamics already at the earliest stages, which offers a way to connect the initial state with the
start of the hydrodynamic expansion in an approximate but conceptually transparent fashion. We
demonstrate that the centrality dependence of the measured particle multiplicities can be used to
quantitatively constrain the pressure anisotropy and find that it strongly depends on the model of the
initial energy deposition. As an illustration, we compare three initial state models and show that they
predict rather different early-time values of the pressure anisotropy. This suggests that while assuming free
streaming prior to hydrodynamization may be compatible with some initial state models, in general,
features of the prehydrodynamic flow need to be matched with the model of the initial state.
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I. INTRODUCTION

Experimental studies of the dynamics of quark-gluon
plasma (QGP) created in high energy nuclear collisions aim
at understanding initial states over which there is little
direct control. The standard approach to modeling heavy-
ion collisions involves formation of QGP followed by
nonequilibrium evolution until the proper time of about
1 fm=c and subsequently by hydrodynamic evolution until
the local temperature drops below the confinement scale,
and hadrons are formed. After a stage of hadronic cascade,
the final particle distributions are measured.
Early phases of this process are usually assumed to be

invariant under longitudinal boosts [1]. This approximation
holds best for central events at midrapidity. When this
assumption is combined with rotational and translational
invariance in the plane transverse to the collision axis, it
implies that observables of the system depend only on the
proper time elapsed after the collision. Despite their limi-
tations, these approximations open the door to manageable
semianalytic considerations at all stages of QGP evolution.
The best known consequence of this line of reasoning is the
asymptotic late-time behavior of the energy density

E ∼
Λ4

ðΛτÞ4=3 ; ð1Þ

where the scaleΛ is the only remnant of the initial conditions.
Since at such late times the system is already close to local
equilibrium, one can translate this into a statement about the

entropy density, which can be directly connected to the
multiplicity of observed hadrons [1,2]. The challenge is to
relate such physical observables to characteristics of the
initial state.
In a series of recent developments it was realized that, at

least in the case of boost invariant flow, it may be reasonable
to assume that the evolving plasma system behaves in a
predictableway already at the earliest stages. In some simple
models of equilibration it was observed that certain observ-
ables exhibit universal behavior very early on, not only at late
times, when the system is very close to equilibrium [3,4].
Such far-from-equilibrium attractors were later identified
also in other models of nonequilibrium dynamics, such as
strongly-coupledN ¼ 4 supersymmetric Yang-Mills theory
through the AdS=CFT correspondence [5,6] and weakly
coupled models in kinetic theory [7–15].
It has been argued recently that such early-time far-from-

equilibrium attractors exhibit two distinct stages, both
occurring at large values of the pressure anisotropy, which
precludes a purely hydrodynamic interpretation in the
traditional sense. The later stage is determined by the
decay of nonhydrodynamic modes, and its details depend
on the microscopic theory [16–20]. It is natural to expect
that this type of behavior should be generic and indepen-
dent of any special symmetry assumptions. However, the
earliest stage which one observes in boost-invariant models
appears to be dominated by the rapid expansion success-
fully competing with nonhydrodynamic mode decay
[12,21,22]. The basic observation underlying our work is
that if this is the case, then attractor behavior should also
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occur in QCD since it is at least partly a kinematic effect—a
consequence of approximate boost invariance. This attrac-
tor would then provide a bridge between the initial state and
the start of hydrodynamic evolution. This crucial stage,
which sets initial conditions for hydrodynamics, is often
taken to be free streaming. The question we address is
whether this behavior is compatible with any given initial
state model.
The existence of an attractor implies a specific power-

law dependence of the energy density EðτÞ for asymptoti-
cally small proper time τ. For example, in models based on
kinetic theory one finds E ∼ 1=τ, which corresponds to free
streaming: the system expands starting from an initial state
where the longitudinal pressure vanishes [23]. This behav-
ior has been explored in a number of phenomenological
studies [24–27]. However, the existence of a nonequili-
brium attractor does not in itself imply free streaming at
early times. For instance, in hydrodynamic models of
equilibration [3,4], the early time behavior of the system
is determined by the transport coefficients and can therefore
be tuned to the extent that those parameters can be varied.
At the level of amicroscopic theory such asQCD this early

timebehavior is not known, soweparametrize it asE ∼ τ−β in
terms of a constant parameter β. The main technical point,
presented in the following section, is that if an attractor exists,
then the evolution of the energy density can be determined up
to a single integration constant, for any value of the scaling
exponent β. The significance of this is that it provides
important information about the prehydrodynamic evolution
of quark-gluon plasma, as we will discuss below.
The phenomenological analysis of heavy-ion collisions

typically involves a model of the initial state, which supplies
the initial conditions for hydrodynamic evolution. More
specifically, the nuclear thickness functions TA, TB of the
colliding nuclei are generated [28], and these are combined
(using some phenomenological model of the initial state) to
produce the energy-density profile at somevery early proper-
time τ0. This is then evolved using free streaming, which
results in a state of the energy-momentum tensor suitable for
initializing hydrodynamics. Our point of departure in the
observation is that instead of using free streaming for this
prehydrodynamic stage of evolution one should instead try to
mimic evolution along the nonequilibrium attractor.
It could be that the relevant attractor is actually free

streaming at very early times [29], but a priori, this is not
obvious. In this paper we point out that the prehydrody-
namic evolution is not independent of the choice made for
the model of the initial state. If an attractor governs early-
time dynamics, then given an initial state model the
centrality dependence of the expected particle multiplicities
turns out to be quite sensitive to the parameter β. In this way
one can link an initial-state model with the corresponding
early-time behavior of the energy density, which is equiv-
alent to identifying the early-time behavior of the boost-
invariant attractor.

We find that the compatibility of free streaming with any
given initial state model cannot be assumed a priori. In this
exploratory study we consider three models of the initial
energy deposition involving various scalings. Our goal,
however, is not to study their relative merits but to see
whether they favor different early-time asymptotics of the
energy density and thus different attractors. In order to do
this, in each case we calculate the value of the parameter β,
which leads to the best fit for the observed multiplicities.
While a very good fit can be found for each of these three
models, the actual value of β obtained this way varies
considerably. This shows that the prehydrodynamic stage
of QGP evolution need not be well approximated by free
streaming, and the appropriate attractor depends on the
chosen initial state model.

II. ATTRACTOR BEHAVIOR

In this section we describe how to exploit attractor
behavior of the pressure anisotropy to approximate the full
dynamics of boost-invariant systems. We would like to
emphasize that the analysis presented here does not assume
any specific features of the attractor. In particular, it does
not assume free streaming at early times.
In the case of Bjorken flow the expectation value of the

energy-momentum tensor can be parametrized as

hTμ
νi ¼ diagð−E;Pjj;P⊥;P⊥Þμν: ð2Þ

We will focus on conformal systems, for which the energy-
momentum tensor is traceless, and

Pjj ¼
1

3
E
�
1 −

2

3
A
�
; P⊥ ¼ 1

3
E
�
1þ 1

3
A
�
; ð3Þ

where E is the energy density, and A is the pressure
anisotropy, which is a dimensionless measure of how far
the system is from local thermal equilibrium.
The conservation of the energy-momentum tensor can be

expressed in the form

τ∂τ log E ¼ −
4

3
þ 2

9
A: ð4Þ

It will be convenient to define the effective temperature
T ≡ E1=4 up to a constant factor, which will play no role
in our considerations. After introducing the dimension-
less variable w≡ τT, the conservation equation (4) is
rewritten as

d logT
d logw

¼ A − 6

Aþ 12
: ð5Þ

For a perfect fluid, A ¼ 0 and either Eq. (4) or Eq. (5)
suffices to determine the solution, leading to Eq. (1).
However, for dissipative systems one must also specify
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AðwÞ, which depends on the microscopic dynamics of the
plasma as well as the initial state of the system.
If AðwÞ is given, then one can integrate Eq. (5) to solve

for the effective temperature as a function of w as follows:

TðwÞ ¼ ΦAðw;w0ÞTðw0Þ; ð6Þ

for some initial condition (integration constant) Tðw0Þ. The
function ΦA reads [29]

ΦAðw;w0Þ ¼ exp
�Z

w

w0

dx
x

AðxÞ − 6

AðxÞ þ 12

�
: ð7Þ

The subscript A, which appears above, indicates the
dependence of this quantity on the pressure anisotropy
as a function of w.
Although Eq. (6) expresses the content of the conserva-

tion of energy momentum in the Bjorken setting, one
still needs to determine AðwÞ for a given solution, which
will, in general, depend on additional information char-
acterizing the initial state. Crucially, in some model
systems, such as hydrodynamic models of equilibration
[3,4] or kinetic theory [5,7,10,12–15,21,30,31], there is
now a lot of evidence pointing to universal behavior of
the pressure anisotropy setting in very early on, when the
system is still very far from equilibrium. By this we
mean that for a given range of initial conditions, apart
from an initial transient, the function AðwÞ quickly
approaches a universal attractor A⋆ðwÞ, which is deter-
mined by the microscopic theory under consideration
(perhaps numerically or through some sort of a “slow
roll” approximation [3]). We assume that the physically
interesting range of initial conditions is in the basin of
attraction of this unique attractor. This suggests that it
should be a good approximation to replace the form of
the pressure anisotropy AðwÞ, as it appears in Eq. (5), by
the attractor A⋆ðwÞ as follows:

TðwÞ ≈ΦA⋆ðw;w0ÞTðw0Þ: ð8Þ

Within such an approximation, the temperature at late
times is determined by the temperature at early times
alone: the remaining dependence on the initial state is
neglected by assuming that the effective dynamics of the
system is captured by its attractor, apart from a negligible
initial transient.
The importance of Eq. (8) rests on the fact that it is an

explicit relation between the initial and final states of
expanding plasma. It implies a relationship between the
initial state energy density and the entropy of the near-
equilibrium system at late times. One can then estimate the
multiplicities of observed hadrons by following essentially
the same method as outlined in [29] for the special case of a
free-streaming attractor.

III. EARLY TIME BEHAVIOR

As currently understood, the existence of a universal
attractor is contingent upon there being a definite, finite,
and physically distinguished behavior of the pressure
anisotropy at w ¼ 0 [3,4]. One can translate this into a
statement about the behavior of the temperature at early
times. Indeed, under the above assumptions, the conserva-
tion of energy-momentum Eq. (4) implies that for asymp-
totically small proper-time τ

E ∼
μ4

ðμτÞβ : ð9Þ

We will focus on 0 ≤ β < 4. The scale μ is an integration
constant, which reflects the initial conditions, and the
exponent β is related to the attractor by

A⋆ð0Þ ¼ 6

�
1 −

3

4
β

�
: ð10Þ

While different initial conditions will correspond to differ-
ent values of the scale μ, the parameter β characterizes the
attractor itself and is therefore a feature of the particular
microscopic theory under consideration.
For instance, in Müller-Israel-Stewart theory the attractor

is the unique stable solution which is regular at w ¼ 0,
where

A⋆ð0Þ ¼ 6

ffiffiffiffiffiffiffiffi
Cη

CτΠ

s
⇔ β ¼ 4

3

 
1 −

ffiffiffiffiffiffiffiffi
Cη

CτΠ

s !
; ð11Þ

and Cη, CτΠ are dimensionless constants given by rescaling
the transport coefficients by appropriate powers of T [3,32].
Thus, in such cases the value of β is determined by the
transport coefficients.
Aside from simple models, little is known about the

existence of attractors or the early time asymptotics of the
energy density captured by the parameter β. However, as
we will show, one can constrain the value of β by
calculating certain hadronic observables sensitive to the
initial state and comparing with the experiment.

IV. ENTROPY

The universal attractor determines both early and late-
time behaviors of the system, and this fact makes it possible
to relate final state entropy to characteristics of the initial
state. To streamline the notation we will denote the value of
w at very early proper time τ0 by w0, and its value at late
times τ∞ by w∞.
Using Eq. (8), one finds the key relation between the

entropy density per unit rapidity at late time and the initial
energy density
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sðτ∞Þτ∞ ¼ hðβÞðEðτ0Þτβ0Þ
2

4−β; ð12Þ

where

hðβÞ ¼ 4

3
w∞w

2β
β−4
0 ΦA⋆ðw∞; w0Þ2: ð13Þ

We emphasize that Eq. (12) is a universal, albeit approxi-
mate, statement in any model which possesses an attractor
in the sense under consideration here.
An important point about the function in Eq. (13) is

that it is actually independent of the specific values of
w0 ≪ 1 and w∞ ≫ 1 appearing on the right-hand side of
this equation. This ensues because the quantity in Eq. (7)
diverges for small w0 and vanishes for large w∞ precisely in
such a way that the dependence on the initial and final
values of w drops out in the implied asymptotic limits,
leaving a finite and nonzero result. This can be shown, in
general, based on the asymptotic behaviors of the pressure
anisotropy.

V. CONNECTION TO THE EXPERIMENT

The estimate of entropy density, Eq. (12), can be
translated into a statement about centrality dependence
of observed particle multiplicities. Given the entropy
density in Eq. (12), the charged particle multiplicity of a
specific event can be expressed as

dN
dy

¼ Aτ
2β
4−β
0 hðβÞ

Z
d2x⊥Eðτ0;x⊥Þ

2
4−β; ð14Þ

where A is a constant, whose value will not be relevant
to our considerations. The new element here is allowing
for a nontrivial dependence of the initial energy density on
the location in the plane transverse to the collision axis.
This brings in dependence on the impact parameter of a
given event. The underlying assumptions and applicability
of this procedure are discussed in Ref. [29]. We will then
use formula (14) to estimate the expected multiplicity by
averaging over Monte Carlo generated events. For a given
event, the calculation of the energy density requires a
model of the initial state. In this work we consider three
such models, all of which are formulated in terms of a
nuclear thickness function Tðx⊥Þ, which is obtained by
Monte Carlo sampling [28].
In the first model, which we will refer to as model I, the

energy density for a given event is given by [29,33–37]

EðIÞðτ0;x⊥Þ ¼ CT<ðx⊥Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T>ðx⊥Þ

p
; ð15Þ

where the constant C is independent of the impact
parameter b, which enters only through

T<ðx⊥Þ ¼ minðTðx⊥ þ b=2Þ; Tðx⊥ − b=2ÞÞ ð16Þ

with an analogous formula holding for T>ðx⊥Þ. The second
model is the p ¼ −1 case of the reduced thickness event-
by-event nuclear topology family of models [38]. In this
case,

EðIIÞðτ0;x⊥Þ ¼ C
Tðx⊥ þ b=2ÞTðx⊥ − b=2Þ

Tðx⊥ þ b=2Þ þ Tðx⊥ − b=2Þ : ð17Þ

The third model is defined by [39,40]

EðIIIÞðτ0;x⊥Þ ¼ CTðx⊥ þ b=2ÞTðx⊥ − b=2Þ: ð18Þ

Here C is again a normalization factor independent of the
impact parameter.
We now focus our discussion on the case of PbPb

collisions at
ffiffiffi
s

p ¼ 2.76 TeV at the LHC and confront
our findings with the ALICE data, which quotes the
multiplicity of charged particles in each of 9 centrality
classes [41]. We will use our formula, Eq. (14), to calculate
the corresponding prediction in each centrality class. The
centrality c is connected to the impact parameter b by the
relation c ¼ πb2=σ, where σ ¼ 797 fm2 is the total inelas-
tic nucleus-nucleus cross-section at

ffiffiffi
s

p ¼ 2.76 TeV.
We define the following ratios of multiplicities at differ-

ent centralities:

Qðc; c0Þ≡ hdN=dyic
hdN=dyic0

; ð19Þ

where the angle-brackets denote the mean value over
events in the specified centrality class. These quantities
are independent of the normalization factors C entering
Eqs. (15), (17), and (18); they are also independent of the
factor hðβÞ, which contains the details of the presumptive
attractor. However, they retain dependence on the param-
eter β itself, which is related to the attractor by Eq. (10). In
this way, for any value of β, we obtain a set of numbers
Qðc; c0Þ which can be directly compared to published
experimental results. The best fit for each of the three
models is found to be

βðIÞ ¼ 1.12; βðIIÞ ¼ 1.96; βðIIIÞ ¼ 0.44; ð20Þ

with statistical errors not exceeding 0.02. The correspond-
ing longitudinal and transverse pressures are related to β by

Pjj ¼ ð−1þ βÞE; ð21Þ

P⊥ ¼ð1 − β=2ÞE: ð22Þ

The beta values for the three models differ by a factor of
almost 4.5, which is significant even though we are not
attempting to account fully and quantitatively for the errors
arising from the various approximations we have made.
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This shows that if indeed an attractor determines early time
behavior, it is strongly connected to the initial state model.
We can also normalize all the multiplicities to 20%

centrality—this choice gives a result closest to what is
obtained from the fit to all data points. This allows us to
compare the prediction of our analysis to many indepen-
dent measurements. In Fig. 1 we show our prediction for
the ratioQðc; c0 ¼ 20%Þ for different collision systems as a
function of centrality, normalized to 20% centrality. This is
plotted together with data taken from various experiments
[41–44].

VI. CONCLUSIONS AND OUTLOOK

An early-time attractor should be viewed as a bridge
between an assumed initial state model and the stage of
hydrodynamical evolution. By considering three models of
the initial energy deposition we have shown that the
centrality dependence of measured particle multiplicities
can be used to constrain the early-time behavior of the
energy-momentum tensor implied by a given model of the
initial state.

It is often assumed that irrespective of the initial state
model, the prehydrodynamic evolution of QGP can be
approximated by free streaming, with the longitudinal
pressure vanishing at asymptotically small times. In the
three models which we have considered here, this is not the
case. Instead, the longitudinal pressure varies significantly
between them. Furthermore, none are really close to free
streaming: even in the closest case the predicted pressure
anisotropy is about 30% lower, relative to what is expected
for free streaming.
In conclusion, we have argued that the existence of an

early-time attractor couples the preequilibrium evolution of
the system to the initial state model. This suggests, in
particular, that depending on the model of the initial energy
deposition it may not be appropriate to assume a stage
of free streaming governing the interval between QGP
formation and hydrodynamization. This conclusion was
reached using some simplifying assumptions and relies on
the most basic observables, but its impact could be even
more significant when some symmetry requirements are
relaxed, so that more sophisticated observables can be
explored.
Our study suggests that it would be worthwhile to look

for other options for the prehydrodynamic evolution.
This should be particularly relevant for Bayesian studies
[27,45–47], which scan over families of initial state models,
but assume free-streaming prehydrodynamic evolution for
all of them.

ACKNOWLEDGMENTS

We would like to thank T. Altinoluk, W. Florkowski,
M. P. Heller, A. Mazeliauskas, S. Mrówczyński, P.
Romatschke, T. Schaefer, S. Schlichting, and V. Skokov
for discussions and/or comments on the manuscript.
S. K. and M. S. are supported by the Polish National
Science Centre Grant No. 2018/29/B/ST2/02457. J. J.
was supported by the Polish National Science Centre
(NCN) Grant No. 2016/23/D/ST2/03125. M.M. is sup-
ported in part by the U.S. Department of Energy Grant
No. DE-FG02-03ER41260 and BEST (Beam Energy Scan
Theory) DOE Topical Collaboration.

[1] J. Bjorken, Highly relativistic nucleus-nucleus collisions:
The central rapidity region, Phys. Rev. D 27, 140 (1983).

[2] M. Gyulassy and T. Matsui, Quark gluon plasma evolution
in scaling hydrodynamics, Phys. Rev. D 29, 419 (1984).

[3] M. P. Heller and M. Spaliński, Hydrodynamics Beyond the
Gradient Expansion: Resurgence and Resummation, Phys.
Rev. Lett. 115, 072501 (2015).

[4] I. Aniceto and M. Spaliński, Resurgence in extended
hydrodynamics, Phys. Rev. D 93, 085008 (2016).

[5] P. Romatschke, Relativistic Fluid Dynamics Far
from Local Equilibrium, Phys. Rev. Lett. 120, 012301
(2018).

[6] M. Spaliński, On the hydrodynamic attractor of Yang–Mills
plasma, Phys. Lett. B 776, 468 (2018).

10 20 30 40 50 60 70
0.0

0.5

1.0

1.5

2.0

FIG. 1. Universal centrality dependence of Qðc; c0 ¼ 20%Þ,
i.e., the number of produced charged particles normalized to 20%
centrality for each of the three models we consider. Experimental
data shown for different collision systems: Xeþ Xe [42], Pbþ
Pb [41], Auþ Au [43], Uþ U [44], Cuþ Cu [43].

CONSTRAINING THE INITIAL STAGES OF … PHYS. REV. D 104, 074012 (2021)

074012-5

https://doi.org/10.1103/PhysRevD.27.140
https://doi.org/10.1103/PhysRevD.29.419
https://doi.org/10.1103/PhysRevLett.115.072501
https://doi.org/10.1103/PhysRevLett.115.072501
https://doi.org/10.1103/PhysRevD.93.085008
https://doi.org/10.1103/PhysRevLett.120.012301
https://doi.org/10.1103/PhysRevLett.120.012301
https://doi.org/10.1016/j.physletb.2017.11.059


[7] M. Strickland, J. Noronha, and G. Denicol, Anisotropic
nonequilibrium hydrodynamic attractor, Phys. Rev. D 97,
036020 (2018).

[8] G. S. Denicol and J. Noronha, Analytical attractor and
the divergence of the slow-roll expansion in relativistic
hydrodynamics, Phys. Rev. D 97, 056021 (2018).

[9] A. Mazeliauskas and J. Berges, Prescaling and Far-from-
Equilibrium Hydrodynamics in the Quark-Gluon Plasma,
Phys. Rev. Lett. 122, 122301 (2019).

[10] M. Strickland, The non-equilibrium attractor for kinetic
theory in relaxation time approximation, J. High Energy
Phys. 12 (2018) 128.

[11] G. S. Denicol and J. Noronha, Exact Hydrodynamic
Attractor of an Ultrarelativistic Gas of Hard Spheres, Phys.
Rev. Lett. 124, 152301 (2020).

[12] A. Kurkela, W. van der Schee, U. A. Wiedemann, and B.
Wu, Early- and Late-Time Behavior of Attractors in Heavy-
Ion Collisions, Phys. Rev. Lett. 124, 102301 (2020).

[13] D. Almaalol, A. Kurkela, and M. Strickland, Nonequili-
brium Attractor in High-Temperature QCD Plasmas, Phys.
Rev. Lett. 125, 122302 (2020).

[14] A. Behtash, S. Kamata, M. Martinez, and H. Shi, Dynamical
systems and nonlinear transient rheology of the far-
from-equilibrium Bjorken flow, Phys. Rev. D 99, 116012
(2019).

[15] A. Behtash, S. Kamata, M. Martinez, T. Schäfer, and V.
Skokov, Transasymptotics and hydrodynamization of the
Fokker-Planck equation for gluons, Phys. Rev. D 103,
056010 (2021).

[16] R. A. Janik, Viscous Plasma Evolution from Gravity Using
AdS=CFT, Phys. Rev. Lett. 98, 022302 (2007).

[17] M. P. Heller and R. A. Janik, Viscous hydrodynamics
relaxation time from AdS=CFT, Phys. Rev. D 76, 025027
(2007).

[18] M. P. Heller, A. Kurkela, M. Spaliński, and V. Svensson,
Hydrodynamization in kinetic theory: Transient modes
and the gradient expansion, Phys. Rev. D 97, 091503
(2018).

[19] W. Florkowski, R. Ryblewski, and M. Spaliński, Gradient
expansion for anisotropic hydrodynamics, Phys. Rev. D 94,
114025 (2016).

[20] I. Aniceto, B. Meiring, J. Jankowski, and M. Spaliński, The
large proper-time expansion of Yang-Mills plasma as a
resurgent transseries, J. High Energy Phys. 02 (2019) 073.

[21] J.-P. Blaizot and L. Yan, Fluid dynamics of out of equilib-
rium boost invariant plasmas, Phys. Lett. B 780, 283 (2018).

[22] M. P. Heller, R. Jefferson, M. Spaliński, and V. Svensson,
Hydrodynamic Attractors in Phase Space, Phys. Rev. Lett.
125, 132301 (2020).

[23] G. Baym, Thermal equilibration in ultrarelativistic heavy
ion collisions, Phys. Lett. 138B, 18 (1984).

[24] J. Liu, C. Shen, and U. Heinz, Pre-equilibrium evolution
effects on heavy-ion collision observables, Phys. Rev. C 91,
064906 (2015).

[25] P. F. Kolb, J. Sollfrank, and U.W. Heinz, Anisotropic
transverse flow and the quark hadron phase transition,
Phys. Rev. C 62, 054909 (2000).

[26] W. Broniowski, W. Florkowski, M. Chojnacki, and A.
Kisiel, Free-streaming approximation in early dynamics

of relativistic heavy-ion collisions, Phys. Rev. C 80,
034902 (2009).

[27] D. Everett et al. (JETSCAPE Collaboration), Multisystem
Bayesian constraints on the transport coefficients of QCD
matter, Phys. Rev. C 103, 054904 (2021).

[28] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg,
Glauber modeling in high energy nuclear collisions, Annu.
Rev. Nucl. Part. Sci. 57, 205 (2007).

[29] G. Giacalone, A. Mazeliauskas, and S. Schlichting, Hydro-
dynamic Attractors, Initial State Energy and Particle Pro-
duction in Relativistic Nuclear Collisions, Phys. Rev. Lett.
123, 262301 (2019).

[30] J.-P. Blaizot and L. Yan, Analytical attractor for Bjorken
expansion, Phys. Lett. B 820, 136478 (2021).

[31] S. Kamata, M. Martinez, P. Plaschke, S. Ochsenfeld, and S.
Schlichting, Hydrodynamization and nonequilibrium
Green’s functions in kinetic theory, Phys. Rev. D 102,
056003 (2020).

[32] W. Florkowski, M. P. Heller, and M. Spaliński, New theories
of relativistic hydrodynamics in the LHC era, Rep. Prog.
Phys. 81, 046001 (2018).

[33] A. Dumitru and L. D. McLerran, How protons shatter
colored glass, Nucl. Phys. A700, 492 (2002).

[34] J. P. Blaizot, F. Gelis, and R. Venugopalan, High-energy pA
collisions in the color glass condensate approach. 1. Gluon
production and the Cronin effect, Nucl. Phys. A743, 13
(2004).

[35] F. Gelis and Y. Mehtar-Tani, Gluon propagation inside a
high-energy nucleus, Phys. Rev. D 73, 034019 (2006).

[36] J.-P. Blaizot, T. Lappi, and Y. Mehtar-Tani, On the gluon
spectrum in the glasma, Nucl. Phys. A846, 63 (2010).

[37] S. Schlichting and V. Skokov, Saturation corrections to
dilute-dense particle production and azimuthal correlations
in the color glass condensate, Phys. Lett. B 806, 135511
(2020).

[38] J. S. Moreland, J. E. Bernhard, and S. A. Bass, Alternative
ansatz to wounded nucleon and binary collision scaling in
high-energy nuclear collisions, Phys. Rev. C 92, 011901
(2015).

[39] T. Lappi, Energy density of the glasma, Phys. Lett. B 643,
11 (2006).

[40] P. Romatschke and U. Romatschke, Relativistic Fluid
Dynamics out of Equilibrium (Cambridge University Press,
Cambridge, England, 2019).

[41] K. Aamodt et al. (ALICE Collaboration), Centrality
Dependence of the Charged-Particle Multiplicity Density
At Mid-Rapidity in Pb-Pb Collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV,
Phys. Rev. Lett. 106, 032301 (2011).

[42] S. Acharya et al. (ALICE Collaboration), Centrality and
pseudorapidity dependence of the charged-particle multi-
plicity density in Xe–Xe collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.44 TeV,
Phys. Lett. B 790, 35 (2019).

[43] B. Alver et al. (PHOBOS Collaboration), Phobos results
on charged particle multiplicity and pseudorapidity distri-
butions in Auþ Au, Cuþ Cu, dþ Au, and pþ p collisions
at ultra-relativistic energies, Phys. Rev. C 83, 024913
(2011).

[44] A. Adare et al. (PHENIX Collaboration), Transverse energy
production and charged-particle multiplicity at midrapidity

JANKOWSKI, KAMATA, MARTINEZ, and SPALIŃSKI PHYS. REV. D 104, 074012 (2021)

074012-6

https://doi.org/10.1103/PhysRevD.97.036020
https://doi.org/10.1103/PhysRevD.97.036020
https://doi.org/10.1103/PhysRevD.97.056021
https://doi.org/10.1103/PhysRevLett.122.122301
https://doi.org/10.1007/JHEP12(2018)128
https://doi.org/10.1007/JHEP12(2018)128
https://doi.org/10.1103/PhysRevLett.124.152301
https://doi.org/10.1103/PhysRevLett.124.152301
https://doi.org/10.1103/PhysRevLett.124.102301
https://doi.org/10.1103/PhysRevLett.125.122302
https://doi.org/10.1103/PhysRevLett.125.122302
https://doi.org/10.1103/PhysRevD.99.116012
https://doi.org/10.1103/PhysRevD.99.116012
https://doi.org/10.1103/PhysRevD.103.056010
https://doi.org/10.1103/PhysRevD.103.056010
https://doi.org/10.1103/PhysRevLett.98.022302
https://doi.org/10.1103/PhysRevD.76.025027
https://doi.org/10.1103/PhysRevD.76.025027
https://doi.org/10.1103/PhysRevD.97.091503
https://doi.org/10.1103/PhysRevD.97.091503
https://doi.org/10.1103/PhysRevD.94.114025
https://doi.org/10.1103/PhysRevD.94.114025
https://doi.org/10.1007/JHEP02(2019)073
https://doi.org/10.1016/j.physletb.2018.02.058
https://doi.org/10.1103/PhysRevLett.125.132301
https://doi.org/10.1103/PhysRevLett.125.132301
https://doi.org/10.1016/0370-2693(84)91863-X
https://doi.org/10.1103/PhysRevC.91.064906
https://doi.org/10.1103/PhysRevC.91.064906
https://doi.org/10.1103/PhysRevC.62.054909
https://doi.org/10.1103/PhysRevC.80.034902
https://doi.org/10.1103/PhysRevC.80.034902
https://doi.org/10.1103/PhysRevC.103.054904
https://doi.org/10.1146/annurev.nucl.57.090506.123020
https://doi.org/10.1146/annurev.nucl.57.090506.123020
https://doi.org/10.1103/PhysRevLett.123.262301
https://doi.org/10.1103/PhysRevLett.123.262301
https://doi.org/10.1016/j.physletb.2021.136478
https://doi.org/10.1103/PhysRevD.102.056003
https://doi.org/10.1103/PhysRevD.102.056003
https://doi.org/10.1088/1361-6633/aaa091
https://doi.org/10.1088/1361-6633/aaa091
https://doi.org/10.1016/S0375-9474(01)01301-X
https://doi.org/10.1016/j.nuclphysa.2004.07.005
https://doi.org/10.1016/j.nuclphysa.2004.07.005
https://doi.org/10.1103/PhysRevD.73.034019
https://doi.org/10.1016/j.nuclphysa.2010.06.009
https://doi.org/10.1016/j.physletb.2020.135511
https://doi.org/10.1016/j.physletb.2020.135511
https://doi.org/10.1103/PhysRevC.92.011901
https://doi.org/10.1103/PhysRevC.92.011901
https://doi.org/10.1016/j.physletb.2006.10.017
https://doi.org/10.1016/j.physletb.2006.10.017
https://doi.org/10.1103/PhysRevLett.106.032301
https://doi.org/10.1016/j.physletb.2018.12.048
https://doi.org/10.1103/PhysRevC.83.024913
https://doi.org/10.1103/PhysRevC.83.024913


in various systems from
ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7 to 200 GeV, Phys. Rev.
C 93, 024901 (2016).

[45] J. E. Bernhard, J. S. Moreland, S. A. Bass, J. Liu, and U.
Heinz, Applying Bayesian parameter estimation to relativ-
istic heavy-ion collisions: Simultaneous characterization of
the initial state and quark-gluon plasma medium, Phys. Rev.
C 94, 024907 (2016).

[46] G. Nijs, W. van der Schee, U. Gürsoy, and R. Snellings,
Transverse Momentum Differential Global Analysis of
Heavy-Ion Collisions, Phys. Rev. Lett. 126, 202301 (2021).

[47] G. Nijs, W. van der Schee, U. Gürsoy, and R. Snellings,
Bayesian analysis of heavy ion collisions with the heavy ion
computational framework Trajectum, Phys. Rev. C 103,
054909 (2021).

CONSTRAINING THE INITIAL STAGES OF … PHYS. REV. D 104, 074012 (2021)

074012-7

https://doi.org/10.1103/PhysRevC.93.024901
https://doi.org/10.1103/PhysRevC.93.024901
https://doi.org/10.1103/PhysRevC.94.024907
https://doi.org/10.1103/PhysRevC.94.024907
https://doi.org/10.1103/PhysRevLett.126.202301
https://doi.org/10.1103/PhysRevC.103.054909
https://doi.org/10.1103/PhysRevC.103.054909

