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We employ the analytic QCD (anQCD) approach to analyze the unpolarized nucleon structure function
in deep inelastic scattering processes at next-to-leading-order accuracy. Considering the unreliable results
of the underlying perturbative QCD (pQCD) at energy scales near to QCD cut off parameter Q2 ∼ Λ2 and
below, we modify the calculations at these scales using the anQCD approach and compare them with results
from underlying pQCD and the available experimental data. The massive perturbation theory model is also
used where an effective mass is attributed to gluons. Finally, we use the Jacobi polynomials formalism to
transfer the calculations from Mellin moment space to Bjorken-x space. To confirm the validity of the
anQCD approach the Gottfried sum rule is also investigated. The achieved numerical results at low energy
scales are compatible with what is expected and correspond to an admissible behavior of parton densities.
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I. INTRODUCTION

An observable should be an analytic (holomorphic)
function in the complex Q2 plane where Q2 ≮ 0. At high
energy scales, i.e., jQ2j ≫ 1, we can have a good theoretical
description and achieve reliable results that confirm exper-
imental data using the underlying perturbative QCD
(pQCD). However, at energy scales near the QCD cutoff
parameter, i.e.,Q2 ∼ Λ2 and below, the coupling constant of
QCD starts to grow rapidly, and as a result we face Landau
IR singularities. On the other hand, spacelike QCD observ-
ables such as the nucleon structure functions do not have
such singularities. Accordingly, one cannot obtain any
reliable results from underlying pQCD, and thus we need
an efficient approach that eliminates these singularities in
order to achieve suitable results. There are various
approaches to attain this goal, such as the Brodsky coupling
constant obtained using the AdS=CFT correspondance [1],
the dispersive approach of Dokshitzer [2,3], and finally
analytic perturbation theory (APT) [4–9]. We use the last
one to shift and even eliminate thementioned singularities in
calculations of physical quantities, such as the unpolarized

nucleon structure function (NSF) and theGottfried sum rule,
and thus modify their theoretical predictions. We refer to
Ref. [10] for recent related work. In this approach, the

running QCD coupling constant [aðQ2Þ ¼ αsðQ2Þ
π ] is trans-

formed into an analytic function ofQ2 (analytic forQ2 ≮ 0),
called the analytic QCD coupling constant [A1ðQ2Þ], and it
does not have anyLandau singularities.We are able to obtain
the results for thementioned quantities which do not contain
any singularities at the low energies using the analytic
coupling constant.
Approaches that eliminate the Landau singularities

include fractional analytic perturbation theory (FAPT)
[11–14]; 2δanQCD [14,15] and 3δanQCD [16] which
are based on parametrizing the spectral function at low
energies by two or three Dirac delta functions, respectively;
and finally massive perturbation theory (MPT) [14,17]
which is based on removing the Landau singularities by
shifting them into the timelike region. The last method
considers an effective mass for the gluon. Since we are
working on the nucleon structure function, which contains
the singlet and gluon sectors, we decide to apply it so that
we can achieve better computational results.
The organization of this paper is as follows. In the

next section we give a brief description of the essential
concepts of APT. In Sec. III the evolution of parton
densities and the nucleon structure function using the
Jacobi transformation is discussed. Section IV is devoted
to describing the structure function in the MPT model.
Based on this model, the Gottfried sum rule is considered in
Sec. V. Finally, a summary and conclusion is presented
in Sec. VI.
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II. BASIC CONCEPTS IN ANALYTIC
PERTURBATION THEORY

As we mentioned, the underlying pQCD coupling suffers
from unphysical Landau singularities at Q2 ∼ Λ2.
Therefore, we cannot apply it in the low-momentum
regime, and this is a motivation to use other approaches,
especially analytic QCD (anQCD), to achieve fairly accu-
rate results for physical quantities. In this approach we have
analytic couplings Aν which are free from the aforemen-
tioned problems. In the following we will describe the main
elements of APT. The application of Cauchy’s theorem to
the running coupling aðQ2Þ, where aðQ2Þ ¼ αsðQ2Þ=π,
gives us the following spectral relation in general anQCD
[14,18]:

A1ðQ2Þ ¼ 1

π

Z
∞

σ¼M2
th

dσρ1ðσÞ
ðσ þQ2Þ ; ð1Þ

where

ρ1ðσÞ ≡ ImA1ð−σ − iεÞ: ð2Þ

Different approaches to consider the discontinuity function
ρ1ðσÞ and the coupling function A1ðQ2Þ will lead to the
various anQCD models. As we pointed out before,
A1ðQ2Þ is the anQCD analog of the underlying pQCD
coupling aðQ2Þ ¼ αsðQ2Þ=π, i.e., at σ ≫ Λ we have
≡ Imað−σ − iεÞ ¼≡ ImA1ð−σ − iεÞ. Let us denote by
Aν the anQCD analog of the pQCD power aν (where ν
is not necessarily an integer). An important point we should
note is that there is no standard algebra for Aν, i.e., AνAμ ≢
Aνþμ or Aνþμ ≢ ðAνÞμ. For the construction of Aν in a
general anQCD, we follow Ref. [19].
Correct analogs AnðQ2Þ of the powers anðQ2Þ will be

achieved, using the logarithmic derivatives of A1 [14]:

Ãnþ1 ≡ ð−1Þn
βn0n!

� ∂
∂lnQ2

�
n
A1ðQ2Þ: ð3Þ

It is obvious that with n ¼ 0 we get Ã1 ≡ A1. Here β0 ¼
1
4
ð11 − 2

3
NfÞ is the first coefficient of the QCD β function

which is scheme independent where this function is
governed by the renormalization group equation for the
QCD running coupling constant. Substituting A1 in Eq. (1)
into Eq. (3) will lead to

Ãnþ1ðQ2Þ ¼ 1

π

ð−1Þ
βn0Γðnþ 1Þ

Z
∞

0

dσ
σ
ρ1ðσÞLi−n

�
−σ
Q2

�
: ð4Þ

In this equation n is an integer number and it can be
extended to noninteger index ν as follows [19]:

Ãνþ1ðQ2Þ ¼ 1

π

ð−1Þ
βν0Γðνþ 1Þ

Z
∞

0

dσ
σ
ρ1ðσÞLi−ν

�
−σ
Q2

�
: ð5Þ

Here Li−νð−σQ2Þ is the polylogarithm function. It should be

noted that the integral in Eq. (5) is converging at low σ for
ν > −1 where the polyloghartitm function is approximated
by Li−νð−zÞ ∼ ln−νz. The analytic analogs AνðQ2Þ can be
constructed as linear combinations of Ãνþm ’s:

AνðQ2Þ ¼ Ãν þ
X
m≥1

k̃mðνÞÃνþm: ð6Þ

The coefficients k̃mðνÞ in Eq. (6) have been determined in
Ref. [19]. Using the analytic coupling constant, we can do
the required calculations for quantities that contain non-
integer power expansions of the coupling constant.
The specific anQCD model that is used in this paper,

called massive perturbation theory. In this model an
effective mass is attributed to gluon to achieve us to a
holomorphic coupling. Therefore one can write [14,17]

AMPT
1 ðQ2; NfÞ ¼ aðQ2 þm2

gl; NfÞ: ð7Þ

The mass scale mgl ∼ 0.5–1 GeV refers to the gluon mass,
wherem2

gl ¼ 0.7 GeV2 is considered here. Sincem2
gl > Λ2,

weget a coupling that is analytic even to scales less thanΛ. At
high energy AMPT

1 ðQ2Þ tends to the pQCD coupling aðQ2Þ.
Considering Ref. [14] the difference of coupling constant in
MPTmodelwith respect to the underlying pQCDcoupling is
given by [14]

AMPT
1 ðQ2; NfÞ − aðQ2; NfÞ ∼

m2
gl

Q2ln2ðQ2

Λ2Þ
: ð8Þ

In the following sections we will observe the benefits of
the MPT model compared with the pQCD approach. As an
adjunct to this issue, in Fig. 1 we plot the running coupling
constant in two MPT and FAPT models and compare them
with the underlying pQCD coupling.

III. JACOBI TRANSFORMATION AND PARTON
DENSITY EVOLUTIONS

To extract the unpolarized NSF in terms of the energy
scale Q2 we need to evolve the singlet and nonsinglet
sectors of the SF with respect to energy scale. Here we start
by singlet densities where splitting functions are governing
their evolution. The singlet quark distribution of a hadron is
defined by

Σðx;Q2Þ ¼
XNf

i¼1

½qiðx;Q2Þ þ qiðx;Q2Þ�: ð9Þ
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Here qiðx;Q2Þ and qiðx;Q2Þ represent the respective
number densities of quarks and antiquarks as a function
of the carried momentum fraction x. The subscript i
indicates the flavor of the (anti)quark and nf stands for
the number of effectively massless flavors. Suppressing the
fractional dependencies, the coupled evolution equations
for the singlet patron and gluon distributions read

d
dlnQ2

�Σ
g

�
¼

�
Pqq Pqg

Pgq Pgg

�
⊗

�Σ0

g0

�
; ð10Þ

where⊗ stands for a convolution integral in the momentum
variable,

½a ⊗ b�ðxÞ ≡
Z

1

x

dy
y
aðyÞb

�
x
y

�
: ð11Þ

The corresponding gluon distribution, gðx;Q2Þ, is denoted
here by g.
The quark-quark splitting function Pqq [20] in Eq. (10)

can be expressed as [21]

Pqq ¼ Pþ
ns þ NfðPs

q̄q þ Ps
qqÞ ≡ Pþ

ns þ Pps: ð12Þ

Here Pþ
ns is the nonsinglet splitting function. The quantities

Ps
qq and Ps

q̄q are the flavor-independent sea contributions to
the quark-quark and quark-antiquark splitting functions,
respectively. The gluon-quark entries in Eq. (10) are
given by

Pqg ¼ NfPqig; Pgq ¼ Pgqi : ð13Þ

In terms of the flavor-independent splitting functions, one
can write Pqig ¼ Pq̄g and Pgqi ¼ Pgq̄.
The required calculations can now be continued in

Mellin-N space, using the Mellin transformation:

aðNÞ ¼
Z

1

0

dx xN−1aðxÞ: ð14Þ

Then, by transforming all needed quantities to Mellin
(moment) space, the solution of Eq. (10) at next-to-
leading-order (NLO) accuracy is given by

�Σ
g

�
¼

��
as
a0

�
−r−

�
e− þ ða0 − asÞe−R1e−

−
�
a0 − as

�
as
a0

�
r−−rþ

�
e−R1eþ

rþ − r− − 1

�

þ ðþ ↔ −Þ
��Σ0

g0

�
: ð15Þ

Here we explicitly define as ¼ αs=ð4πÞ ¼ a=4. In the
last line the following recursive abbreviations have been
used [21]:

R0 ≡ 1

β0
Pð0Þ;

Rk ≡ 1

β0
PðkÞ−

Xk
i¼1

biRk−i; ð16Þ

with bk ≡ βk=β0. Furthermore, for the r� one can write

r� ¼ 1

2β0

h
P0
qqþP0

gg�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP0

qq−P0
ggÞ2−4P0

qgP0
gq

q i
; ð17Þ

where the following relation for e� is defined:

e� ¼ 1

r� − r∓
½R0 − r∓I�; ð18Þ

where I represents a unique 2 × 2 matrix.
In the nonsinglet case, in order to decouple the combi-

nation we need to use the general structure of the (anti)
quark-(anti)quark splitting functions as follows [21]

Pqiqk ¼ Pq̄iq̄k ¼ δikPV
qq þ Ps

qq;

Pqiq̄k ¼ Pq̄iqk ¼ δikPV
qq̄ þ Ps

qq̄: ð19Þ

The flavor asymmetries q�ns and the total valence distribu-
tion qVns and their corresponding splitting functions are
given by [21]

0.001 0.01 0.1 1 10 100

Q
2

0.5

1

1.5

2

A
0.

3(Q
2 )

a
0.3

A
(FAPT)
0.3

A
(MPT)
0.3

NLO

FIG. 1. Coupling constants using two MPT and FAPT models
with fraction index ν ¼ 0.3. The moderate behavior of the
running coupling constant in these models at low energy scales
in comparison to underlying pQCD is obvious.
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q�ns;ik ¼ qi � q̄i − ðqk � q̄kÞ;

qVns ¼
Xnf
r¼1

ðqr − q̄rÞ;

P�
ns ¼ PV

qq � PV
qq̄;

PV
ns ¼ PV

qq − PV
qq̄ þ nfðPs

qq − Ps
qq̄Þ ≡ P−

ns þ Ps
ns: ð20Þ

For nonsinglet quark distribution evolution a similar
process exists as in the singlet case, but with the obvious
simplification that no spurious complexity occurs.
Consequently, the nonsinglet evolution can be written as
follows [21]:

q�;VðasÞ ¼ exp½R�;V
1 ða0 − asÞ�

�
as
a0

�
−R�;V

0

q�;Vða0Þ; ð21Þ

where R�;V
0 ¼ 1

β0
Pð0Þ�;V and R�;V

1 ¼ 1
β0
Pð1Þ�;V − β1R

�;V
0

are defined based on nonsinglet splitting functions where
β0 and β1 are the first two universal coefficients of the QCD
β function. Accordingly, Eq. (21) at NLO accuracy can be
written as

q�;V
NLOðasÞ¼ ½1þR�;V

1 ða0−asÞ�
�
as
a0

�
−R�;V

0

q�;Vða0Þ: ð22Þ

Finally, using Eqs. (15) and (22) we can obtain the
nucleon structure function at the NLO accuracy in Mellin-
N (moment) space as follows:

F2ðN;Q2Þ ¼ ½Cð0Þ
2q ðNÞ þ asðQ2ÞCð1Þ

2q ðNÞ�
X

i¼u;d;s

e2i qiðN;Q2Þ

þ asðQ2ÞCð1Þ
2g ðNÞ 1

f

X
i¼u;d;s

e2i gðN;Q2Þ: ð23Þ

Here CkðNÞ are Wilson coefficient functions which have
been calculated in Ref. [22]. As mentioned before, using
the Jacobi transformation is an adequate method to convert
the calculated results from moment N space to Bjorken-x
space. Details of this method have been described in
Ref. [23,24]. According to this method, we can define
the NSF based on the following relation:

F2ðx;Q2Þ ¼ xβð1 − xÞα
X∞
x¼0

aα;βn ðQ2ÞΘðα;βÞ
n ðxÞ: ð24Þ

Here aα;βn ðQ2Þ is an expansion coefficient and Θðα;βÞ
n ðxÞ

denotes the Jacobi polynomials, and they are related to each
other by

aα;βn ðQ2Þ ¼
Z

1

0

F2ðx;Q2ÞΘðα;βÞ
n ðxÞdx: ð25Þ

By substituting Θðα;βÞ
n ðxÞ ¼ P

n
k¼0 C

ðα;βÞ
k;n xk into Eq. (25),

we get

aα;βn ðQ2Þ ¼
Z

1

0

F2ðx;Q2Þ
Xn
j¼0

Cðα;βÞ
j;n xjdx: ð26Þ

Putting Eq. (26) into Eq. (24) and using the SF in
moment N space as MF2

ðN;Q2Þ ¼ R
1
0 xj−2F2ðx;Q2Þdx,

we can obtain SF in Bjorken-x space as follows [25]:

F2ðx;Q2Þ ¼ xβð1 − xÞα
XNmax

n¼0

Θðα;βÞ
n ðxÞ

×
Xn
j¼0

Cðα;βÞ
j;n MF2

ðjþ 2; Q2Þ: ð27Þ

IV. UNPOLARIZED NUCLEON STRUCTURE
FUNCTION AND THE MPT MODEL

To do the required computations to extract the nucleon
structure function we first need the parton distribution
functions at the initial energy scale Q0 as the inputs. For
this purpose, the following parametrized functions are
suggested [26]:

xuvðx;Q2
0Þ ¼ Nuxauð1 − xÞbuð1þ Au

ffiffiffi
x

p þ Buxþ Cux2Þ;
xdvðx;Q2

0Þ ¼ Ndxadð1 − xÞbdð1þ Ad
ffiffiffi
x

p þ Bdxþ Cdx2Þ;
xgðx;Q2

0Þ ¼ Ngxagð1 − xÞbgð1þ Bgxαgð1 − xÞβgÞ;
xΣðx;Q2

0Þ ¼ NΣxaΣð1 − xÞbΣð1þ AΣ
ffiffiffi
x

p þ BΣxÞ;
xΔðx;Q2

0Þ ¼ NΔxaΔð1 − xÞbΔð1þ AΔ
ffiffiffi
x

p þ BΔxÞ;
xsðx;Q2

0Þ ¼ Nsxasð1 − xÞbsð1þ As
ffiffiffi
x

p þ BsxÞ: ð28Þ

In Eq. (28) these definitions are used: uv ¼ u − ū,
dv ¼ d − d̄, Σ ¼ ūþ d̄, and Δ ¼ d̄ − ū. All unknown
parameters including the normalization factors are obtained
via the fitting over the related data [26]. The results are
listed in Table I.

TABLE I. Numerical values of the free parameters in Eq. (28) at
Q2

0 ¼ 2 GeV2 at NLO accuracy [26].

NLO

Nu 1.63 Nd 7.4 Ng 2.95
au 0.55 ad 0.92 ag 0.047
bu 3.61 bd 4.6 bg 6.1
Au 0.8 Ad −2.8 Bg 0
Bu 4.7 Bd 4.5 αg 0
Cu −0.1 Cd −2 βg 0
NΣ 0.164 NΔ 57 Ns 0.03
aΣ −0.19 aΔ 2.29 as −0.28
bΣ 8.42 bΔ 18.6 bs 8.42
AΣ 1.9 AΔ 1 As 1.9
BΣ 10 BΔ 0 Bs 10
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The computations in this paper are done with
Mathematica using the anQCD.m package [14], and we
calculate the analytic coupling constant corresponding to
the underlying pQCD coupling, realizing the powers given
in Eq. (23). The relevant Mathematica command for the
MPT coupling constant is AMPTNl½Nf; ν; Q2; m2

gl;Λ2�,
which returns the N-loop (N ¼ 1, 2, 3, 4) analytic MPT

coupling AðMPT;NÞ
ν ðQ2; m2

gl; NfÞ, including the fractional
index ν at a fixed number of active quark flavors Nf, with
Q2 in the Euclidean domain (Q2 > 0). During our calcu-
lations at the NLO approximation, the N-loop is fixed at
two (i.e., we use two-loop MPT). The other commands for
analytic coupling constant in various anQCD models, have
been described in Ref. [14]. The interested reader is also
encouraged to read Ref. [19]. For simplicity, we use the
notation aνs ≡ aν

4ν
and subsequently As;ν ≡ Aν

4ν
, so the men-

tioned command becomes
AMPT2l½3;ν;Q2;m2

gl;Λ
2�

4ν
. Here Nf ¼ 3,

m2
gl ¼ 0.7 GeV2, and Λ2 ¼ 0.35 GeV2.
Extracting the nucleon structure function, at first view,

might be done by employing the MPT model on singlet and
nonsinglet evolution equations, given by Eqs. (15) and (22)
and then applying the model on Eq. (23) to consider the
contribution of Wilson coefficients. This is not admissible
since Wilson coefficients and parton densities are not
directly observable and it is the nucleon structure function
that should be analyzed, and not the different factors in
Eq. (23). Based on this way, we should employ the MPT
model entirely on Eq. (23) and not on its factors separately.
Hence when Eq. (23) is written in anQCD approach, part of
the exponent number of analytical coupling constant is
arising from the evolved parton densities. The rest is related
to exponent of coupling constant that is put behind Wilson
factors. This procedure corresponds completely to the
specific algebraic property of analytical couplings, i.e.
AνAμ ≠ Aνþμ or Aνþμ ≠ ðAνÞμ which we discussed about
it in Sec. II.
In fact, what we finally need to calculate can be given

summarily by

F2ðN;Aνþ1ðQ2ÞÞ
¼ ½Cð0Þ

2q ðNÞ þ A1ðQ2ÞCð1Þ
2q ðNÞ�

X
i¼u;d;s

e2i qiðN;AνðQ2ÞÞ

þ A1ðQ2ÞCð1Þ
2g ðNÞ × 1

f

X
i¼u;d;s

e2i gðN;AνðQ2ÞÞ; ð29Þ

where we replace A1Aν ↦ Aνþ1 (≠ A1Aν).
Considering the numerical values for the required

parameters in the analytical coupling, the Mathematica
command used for the AνðQ2Þ coupling would be
AMPT2l½3; ν; Q2; 0.7; 0.35�, where the ν index is deter-
mined via the evolution processes for singlet and gluon
densities and the nonsinglet density. In practical

calculations, this index takes the following forms:
ν¼−R0;1−R0;2−R0;−r−;1−r−;2−r−;rþ;1−rþ;2−rþ.
Using available data at different energy scales makes it

possible to present the Q dependence of the Jacobi
parameters α and β in Eq. (24) as it follows:

α ¼ −465.737þ 553.088 expðQ2Þ þ 336.376
logðQ2Þ ;

β ¼ 11.158þ 7.670Q2

logðQ2Þ þ 14.308
ffiffiffiffiffiffi
Q2

p
logðQ2Þ: ð30Þ

In Fig. 2 we show the Fp
2 ðx;Q2Þ structure function versus

the Bjorken-x variable at the different energy scales
Q2 ¼ 0.15, 0.21, 0.27, and 0.313 GeV2 using the MPT
model and compare it with E665 experimental data [27].
To indicate the adequate applicability of the MPT model at
low energy scales, we also add to this figure the results of
underlying pQCD for the Fp

2 ðx;Q2Þ structure function. To
achieve more precise results, the underlying pQCD com-
putations are done in the two-loop approximation of the
coupling constant [28–31].
Although there are not so much experimental data in

above mentioned energy scales but as it is shown in Fig. 2,
an appropriate agreement is standing between anQCD
results and the available experimental data.
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FIG. 2. Unpolarized nucleon structure function Fp
2 ðx;Q2Þ as a

function of the Bjorken-x variable, using the MPT model (solid
line) and underlying pQCD (dashed line), and comparison with
the available experimental data [27].
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V. GOTTFRIED SUM RULE IN THE
anQCD APPROACH

Since establishing the quark-parton model, the sum rules
for nucleon structure functions play important roles to
develop this model. One important sum rule is called the
Gottfried sum rule (GSR). Considering the isospin sym-
metry for parton densities in the proton and neutron, the
numerical value for the GSR would be different from the
measured value by NMC group [32] where they take into
account the electromagnetic structure function of the
nucleon through the deep inelastic scattering of muons
from protons and deuterons. Here we consider the GSR
numerical values at low energy scales. Therefore we can
use the MPT model to calculate the GSR at these energy
scales. As we mentioned above, this sum rule provides a
determination of the light flavor asymmetry of the nucleon
sea and is given by [33]

SG ≡
Z

1

0

dx
x
½Fp

2 ðx;Q2Þ − Fn
2ðx;Q2Þ�

¼
Z

1

0

1

3
ðuðxÞ − dðxÞ þ ūðxÞ − d̄ðxÞÞdx

¼ 1

3
−
2

3

Z
1

0

ðd̄ðxÞ − ūðxÞÞdx: ð31Þ

SG deviates from the expectation of the simple quark
model. In other words, if the nucleon sea were flavor
symmetric, i.e., ūðxÞ ¼ d̄ðxÞ, the GSR would be
SG ¼ 1

3
, but this is in contrast with data from the NMC

Collaboration on lepton-nucleon deep inelastic scattering
[32,34,35]. Accordingly, the following numerical value for
SG has been reported [33,36]:

SGðQ2 ¼ 4 GeV2Þ ¼ 0.235� 0.026: ð32Þ
This discrepancy can be associated with the existence of
perturbative effects in the nucleon sea, which generate
light-quark flavor asymmetry ūðx;Q2Þ < d̄ðx;Q2Þ over a
significant range of the Bjorken-x variable [33]. For
numerical values of the GSR at some specific energies,
we refer to Ref. [36].
We apply the MPT model to calculate the GSR at energy

scales lower than the QCD cutoff Λ, which is about
0.35 GeV2. The obtained numerical results are listed in
Table II. To avoid numerical difficulty, we take the low limit
of integration of SG in Eq. (31) to be 10−7. Due to the

nonexistence of gluon radiation at low energy scales, the
probability of the appearance of sea quarks is very low and
it is expected that theSG value approaches 13. TheSG values at
low energy scales listed in Table II confirm this reality.

VI. SUMMARY AND CONCLUSION

Considering the nonexistence of the pQCD coupling at
low spacelike momenta 0 < Q2 ≲ Λ, we employed an
approach called anQCD for the purpose of reforming
and modifying the calculations at an energy scale
Q2 < Λ2 to evaluate the unpolarized nucleon structure
function at the mentioned momenta. In this way, consid-
ering the importance of gluon density in the singlet sector
of nucleon structure function computations, we applied the
anQCD approach based on the MPT model, where a mass
is attributed to gluon. Using this approach, specifically the
MPT model, the NSF is calculable at all energy scales
Q2 > 0 where at moderate and high energies the MPT
results for the NSF match those of the underlying pQCD. It
was seen that at low energies the behavior of F2ðx;Q2Þ is
smoother than in the underlying pQCD. We showed these
facts in Fig. 2 at Q2 ¼ 0.15, 0.21, 0.27, and 0.313 GeV2.
Consequently, with due attention to the acceptable con-
formity between MPT results and available data, we
conclude that the results of the anQCD approach using
the MPT model are more reliable than those of the
(underlying) pQCD at low energies.
Also, we evaluated the Gottfried sum rule while con-

sidering a nucleon sea flavor asymmetry [ūðx;Q2Þ <
d̄ðx;Q2Þ]. The naive GSR indicates a difference in the
value with respect to the experimental data, because
according to the naive parton model for the GSR
SG ¼ 1=3, but experimental data shows a deviation from
1
3
. By applying the anQCD approach (specifically the MPT
model), we achieved a result closer to the experimental
data. In addition to the experimental energy scale
Q2 ¼ 4 GeV2, we employed this model at energy scales
Q2 ¼ 0.15, 0.21, 0.27, and 0.313 GeV2 due to the appli-
cability of this approach at low energies. Numerical results
for SG at low energy scales, based on the MPTmodel, are in
agreement with the behavior of the parton densities, which
is the correct behavior at these scales.
The anQCD approach can be employed to calculate

nuclear structure functions like 3He and 7Li where there are
many experimental data for them at low energy scales. We
hope to report on this subject in future.
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TABLE II. Theoretical GSR values, using the MPT model, at
various Q2.

Q2 GeV2 SG

0.15 0.325
0.21 0.312
0.27 0.301
0.313 0.294
4 0.196
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