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In this paper we consider a small-x model for gluon GTMDs that we fit to data on diffractive dijet
production in electron-proton collisions obtained by HERA’s H1 Collaboration. Assuming a small number
of free parameters, each with a physical motivation, we are able to describe those data fairly well and with
this model we obtain predictions for the EIC for both electroproduction and photoproduction which may
allow to further test the underlying GTMD description. In the general discussion of the impact parameter
dependence we recall some subtle issues related to localization of states, choice of frames, and discuss what
these aspects imply for the range of applicability of the model.
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I. INTRODUCTION

Generalized transverse momentum dependent parton
distributions (GTMDs) and the associated Wigner parton
distributions were first considered in [1,2] and analyzed
further in, e.g., [3–6] for quarks and in [6,7] for gluons. The
first suggestion to access GTMDs experimentally was put
forward in [8]. In that paper the process of diffractive dijet
production in electron-proton collisions was considered to
probe gluon GTMDs. Diffractive dijet production was
earlier suggested as a way to probe gluon generalized
parton distributions (GPDs) [9] and considered at small x in
[10]. Diffractive single jet production was studied in [11].
In the present paper we follow up on these ideas and
construct a model for the unpolarized gluon GTMD similar
to the one put forward in [8]. Models for quark GTMDs
have been considered in, e.g., [12–14]. For gluon GTMDs
the models are so-far based on the small-x McLerran-
Venugopalan (MV) model [15–17] and related color glass
condensate (CGC) descriptions. We will also take the MV
model as our starting point, but introduce a few free
parameters to be fitted to H1 data from the HERA collider
in order to arrive at predictions for the U.S.-based Electron-
Ion Collider (EIC) that hopefully will allow to further test
the underlying GTMD description. We will only consider
unpolarized gluons, because the azimuthal modulations in

the diffractive dijet cross section arising from the elliptic
GTMD [8,18] are expected to be much smaller than the
present cross section uncertainties. In the model studies of
[19–23] and in the CMS data [24] the azimuthal asymme-
tries are found to be at the 10%-30% level or (much)
smaller. As a first step it would be important to check
whether the GTMD description of diffractive dijet produc-
tion is consistent with cross section measurements in
various kinematic variables and various kinematic regions.
With the presented results we hope to facilitate such a
study.
This paper is organized as follows. In Sec. II we discuss

the definitions and properties of GTMDs in general and
recall some subtle issues regarding the localization of states
and the impact parameter dependence.1 In Sec. III we
discuss the model and its free parameters, addressing also
the range of applicability of the model. We furthermore
argue that the process of diffractive dijet production in
electron-proton collisions in the so-called correlation limit
falls within that range. In Sec. IV we provide details on the
cross section calculation in terms of the unpolarized gluon
GTMD. We discuss the fit of our model to H1 data in
Sec. V and present our predictions for the EIC in Sec. VI.
We end with a concluding section.

II. DEFINITIONS OF GTMDS

GTMDs are 5-dimensional parton distributions that
depend on the parton’s light cone momentum fraction x,
the parton’s transverse momentum k⊥ and the transverse
off-forwardness Δ⊥ by which the incoming hadron
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momentum gets modified. The associated Wigner distri-
bution parton is a function of x, k⊥, and the impact
parameter b⊥ which is the Fourier conjugate of Δ⊥.
GTMDs can be viewed as off-forward extensions of
transverse momentum dependent parton distributions
(TMDs) or as transverse momentum dependent extensions
of GPDs. As a consequence, the GTMDs inherit properties
of both TMDs and GPDs and any subtle issues related to
them. In this section we will go into some of these matters,
restricting the discussion to the distribution of unpolarized
quarks inside an unpolarized hadron, for which we take a
proton for definiteness.
First of all, the quark GTMD qðx; k⊥;Δ⊥Þ can be

defined as the off-forward generalization of the quark
TMD qðx; k⊥Þ:

qðx;k⊥;Δ⊥Þ≡
Z

dλ
2πPþd

2r⊥ eiλxeik⊥·r⊥hP0j

× ψ̄

�
−
λ

2
n−

r⊥
2

�
γþLψ

�
λ

2
nþ r⊥

2

�
jPi; ð1Þ

where the lightlike vector n specifies the − direction,
whereas the proton momentum P specifies the þ direction:
P · n ¼ Pþ. In the above expression Δ ¼ P0 − P denotes
the off-forwardness considered here for zero skewness, i.e.,
ξ ¼ −Δþ=ðP0þ þ PþÞ ¼ 0 and Δ ¼ Δ⊥. The path-ordered

exponential or gauge link L does not play an important role
here and will be left unspecified.
Alternatively, the quark GTMD can be defined as the

Fourier transform of the Wigner quark distribution
Wðx; k⊥; b⊥Þ, which itself can be defined as the transverse
momentum dependent generalization of the impact param-
eter dependent GPD qðx; b⊥Þ [25–29]:

qðx; b⊥Þ ¼
Z

dλ
2πPþ eiλxhPþ;R⊥ ¼ 0jψ̄

�
−
λ

2
nþ b⊥

�

× γþLψ
�
λ

2
nþ b⊥

�
jPþ;R⊥ ¼ 0i; ð2Þ

where the impact parameter b⊥ is measured with respect to
the transverse center of longitudinal momentum RCM⊥ ≡P

i xir⊥i of the system and jPþ;R⊥ ¼ 0i is the normalized
proton state localized in the spatial ⊥ direction [26,27]:

jPþ;R⊥¼ 0i¼N
Z

d2P⊥
ð2πÞ2ΦðP⊥ÞjPþ;P⊥i; ð3Þ

for some wave packet ΦðP⊥Þ. This expression for qðx; b⊥Þ
thus depends on the wave packet considered. If this wave
packet is sufficiently localized in transverse position space,
such that ΦðP⊥ þ Δ⊥Þ ≈ΦðP⊥Þ, meaning it is slowly
varying on the scale of the off-forwardness, one can relate
it to the standard GPD H [26–29]:

qðx;b⊥Þ¼ jN j2
Z

dλ
2πPþ e

iλx

Z
d2P⊥
ð2πÞ2

d2P0⊥
ð2πÞ2Φ

�ðP0⊥ÞΦðP⊥ÞhPþ;P0⊥jψ̄
�
−
λ

2
nþb⊥

�
γþLψ

�
λ

2
nþb⊥

�
jPþ;P⊥i

¼ jN j2
Z

dλ
2πPþ e

iλx

Z
d2P⊥
ð2πÞ2

d2P0⊥
ð2πÞ2Φ

�ðP0⊥ÞΦðP⊥Þe−ib⊥·Δ⊥hPþ;P0⊥jψ̄
�
−
λ

2
n

�
γþLψ

�
λ

2
n

�
jPþ;P⊥i

≈ jN j2
Z

d2P⊥
ð2πÞ2 jΦðP⊥Þj2

d2Δ⊥
ð2πÞ2 e

−ib⊥·Δ⊥Hðx;0;−Δ2⊥Þ¼
Z

d2Δ⊥
ð2πÞ2 e

−ib⊥·Δ⊥Hðx;0;−Δ2⊥Þ: ð4Þ

In the second step we used that, unlike forward matrix
elements, off-forward matrix elements of the form
hPþ;P0⊥jOðb⊥ÞjPþ;P⊥i are not translation invariant, but
pick up a phase when translating the operator Oðb⊥Þ to
Oð0⊥Þ. In the above derivation it was also used that
hPþ;P0⊥jOð0⊥ÞjPþ;P⊥i only depends on the difference
of P0⊥ and P⊥, which is a consequence of invariance under
transverse boosts, see [26], in particular its Eq. (5).
One observes that only in the case that ΦðP⊥Þ is a

constant, the relation between qðx; b⊥Þ andHðx; 0;−Δ2⊥Þ is
exact. When viewing qðx; b⊥Þ as the Fourier transform of
the GPD Hðx; 0;−Δ2⊥Þ it is thus understood that one
considers a wave packet that is sufficiently localized in
coordinate space and hence sufficiently delocalized in
momentum space. This then raises the question of
how to reconcile such a very delocalized state in trans-
verse momentum space with a state that has a specific

z-momentum and energy, which are related by
P− ¼ ðM2 þ P2⊥Þ=ð2PþÞ. This issue is known to pose a
problem for 3D spatial distributions, where a state cannot
be simultaneously in a definite eigenstate of position and
momentum and frame and wave packet dependence enters.2

For the 2D charge distribution and analogously for qðx; b⊥Þ
one can avoid this issue by boosting to a frame in which Pþ
is much larger than the typical P⊥ values. This allows to
maintain P− ¼ ðM2 þ P2⊥Þ=ð2PþÞ ≪ Pþ in the wave
packet, such that the state has sufficiently definite P0

2This issue received renewed attention recently in the context
of defining the 3D charge radius for the nucleon [30,31]. For
nucleons (as opposed to heavy nuclei) the system size is not
sufficiently large with respect to the Compton wavelength to
allow for an unambiguous, wave packet independent, definition
of the charge distribution and hence of the charge radius [31].
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and P3 components even if the P⊥ distribution is very
broad, cf. [26] for further discussion.
Starting from the impact parameter dependent GPD

qðx; b⊥Þ one obtains a definition of the Wigner parton
distribution Wðx; k⊥; b⊥Þ defined as3

Wðx;k⊥;b⊥Þ≡
Z

dλ
2πPþd

2r⊥eiλxeik⊥·r⊥hPþ;R⊥¼ 0j

× ψ̄

�
−
λ

2
nþb⊥−

r⊥
2

�

× γþLψ
�
λ

2
nþb⊥þ r⊥

2

�
jPþ;R⊥¼ 0i: ð5Þ

The GTMD is then defined as

qWðx; k⊥;Δ⊥Þ≡
Z

d2b⊥
ð2πÞ2 e

ib⊥·Δ⊥Wðx; k⊥; b⊥Þ: ð6Þ

Just like for the Fourier transform of qðx; b⊥Þ and the GPD
Hðx; 0;−Δ2⊥Þ, one can equate the two GTMD definitions
Eqs. (1) and (6) for a sufficiently narrow state jPþ;R⊥ ¼ 0i
in coordinate space, for which, as we discussed above, one
has to consider a frame in which Pþ is much larger than the
typical P⊥ values. We emphasize that the sufficiently
narrow state refers to the wave packet in which the state

is prepared, not to the nucleon or nucleus which itself will
have some profile in transverse coordinate space that may
be considerably less narrow.
When one considers small x values gluons dominate,

hence we will from now focus on (unpolarized) gluon
distributions. More specifically, the process of diffractive
dijet production in electron-proton or electron-nucleus
collisions probes the dipole gluon GTMD (again consid-
ered for zero skewness) defined as [8,33]:

G½þ;−�ðx;k⊥;Δ⊥Þ

¼ 2

Pþ

Z
dz−

2π

d2z⊥
ð2πÞ2 e

ik·z

× hP0jTr
�
Fþi

�
−
z
2

�
U½þ�Fþi

�
z
2

�
U½−�

�
jPi

����
zþ¼0

: ð7Þ

Here i is a transverse index that is summed over in this case
of unpolarized gluons and U½�� are the standard staple-like
gauge links in the forward (þ) and backward (−) light
cone directions, also simply referred to as þ and − links.
The function xGDPðx; q⊥;Δ⊥Þ in [8] corresponds to
G½þ;−�ðx; q⊥;Δ⊥Þ.
In the limit of x → 0 one can show to arrive at [33]

G½þ;−�ðk⊥;Δ⊥Þ ¼
4

g2hPjPi
Z

d2x⊥d2y⊥
ð2πÞ3 e−ik⊥·ðx⊥−y⊥ÞeiΔ⊥·ðx⊥þy⊥Þ=2hP0j∂i

x∂i
yTr½U½□�ðy⊥; x⊥Þ�jPi

≡ 1

2πg2

�
k2⊥ −

Δ2⊥
4

�
G½□�ðk⊥;Δ⊥Þ; ð8Þ

where U½□�ðy⊥; x⊥Þ ¼ U½þ�ðy⊥; x⊥ÞU½−�ðx⊥; y⊥Þ will be referred to as the Wilson loop and hP0jPi ¼
ð2πÞ32PþδðΔþÞδð2ÞðΔ⊥Þ yielding the divergent factor hPjPi ¼ 2Pþ R

db−d2b⊥, which is assumed to be regularized,
e.g., by considering a finite volume. In this way one finds that

G½□�ðk⊥;Δ⊥Þ ¼
4Nc

hPjPi
Z

d2x⊥d2y⊥
ð2πÞ2 e−ik·ðx⊥−y⊥ÞeiΔ·ðx⊥þy⊥Þ=2hP0jS½□�ðx⊥; y⊥ÞjPi

¼ 4Nc

hPjPi
Z

d2r⊥d2b⊥
ð2πÞ2 e−ik⊥·r⊥eiΔ⊥·b⊥hP0jS½□�

�
b⊥ −

r⊥
2
; b⊥ þ r⊥

2

�
jPi ð9Þ

where S½□�ðx⊥; y⊥Þ≡ Tr½U½□�ðy⊥; x⊥Þ�=Nc, r⊥ ¼ y⊥ − x⊥ and b⊥ ¼ ðx⊥ þ y⊥Þ=2. Comparing again to the notation of [8]
we see thatF x ¼ G½□�=ðð4πÞ2NcÞ, whereF x satisfies the normalization condition

R
d2k⊥d2Δ⊥e−iΔ⊥·b⊥F xðk⊥;Δ⊥Þ ¼ 1. In

Eq. (9) b⊥ is defined with respect to some unspecified reference point, so one may wonder what determines this position? In
fact, in the derivation of Eq. (8) the following step is performed:

hPþ Δ⊥jOð0⊥; r⊥ÞjPi ¼ eib⊥·Δ⊥hPþ Δ⊥jOðb⊥; r⊥ÞjPi ¼
R
d2b⊥eib⊥·Δ⊥hPþ Δ⊥jOðb⊥; r⊥ÞjPiR

d2b⊥
; ð10Þ

where the last step is formally exact, but as mentioned, the normalization factor
R
d2b⊥ (which is part of hPjPi) is actually

divergent and requires consideration of a regulator. In the derivation it is used that although matrix elements of the form
hPþ Δ⊥jOðb⊥ÞjPi are both b⊥ and Δ⊥ dependent, despite b⊥ and Δ⊥ being each other’s Fourier conjugates, the b⊥

3In [1,2] the Wigner quark distribution was defined as a generalization of the 3D charge density in the Breit frame (for a brief
discussion of that see [32]), which inherits the mentioned wave packet dependence issue for the nucleon.

GTMD MODEL PREDICTIONS FOR DIFFRACTIVE DIJET … PHYS. REV. D 104, 074006 (2021)

074006-3



dependence enters just through a phase. As a result, the integrand is actually b⊥ independent and any reference point will
do. However, the previous GPD analysis suggests that it is better to replace Eq. (10) by

hPþ Δ⊥jOð0⊥; r⊥ÞjPi ¼
Z

d2b⊥
ð2πÞ2 e

ib⊥·Δ⊥hPþ;R⊥ ¼ 0jOðb⊥; r⊥ÞjPþ;R⊥ ¼ 0i; ð11Þ

where b⊥ is considered with respect to R⊥ ¼ 0 and a large
Pþ momentum frame and a spatially localized wave packet
are implicitly considered. It is also implicitly used that
hPþ;P0⊥jOð0⊥; r⊥ÞjPþ;P⊥i only depends on the difference
of P0⊥ and P⊥, just like for r⊥ ¼ 0 in the GPD case (r⊥ is
not affected by the required transverse boosts, since the
corresponding rþ ¼ 0). It is furthermore interesting to note

that Eq. (11) relates an off-forward matrix element to an
integral over diagonal matrix elements.
Following the above replacement, matrix elements of the

form hP0jOðb⊥; r⊥ÞjPi=hPjPi are to be interpreted as
hPþ;R⊥ ¼ 0jOðb⊥; r⊥ÞjPþ;R⊥ ¼ 0i in the expression
for G½□� and, similarly, for F ½□� which follows from
G½□� by the replacement S½□�ðx⊥; y⊥Þ → 1 − S½□�ðx⊥; y⊥Þ:

F ½□�ðk⊥;Δ⊥Þ ¼
4Nc

hPjPi
Z

d2x⊥d2y⊥
ð2πÞ2 e−ik·ðx⊥−y⊥ÞeiΔ·ðx⊥þy⊥Þ=2hP0j1 − S½□�ðx⊥; y⊥ÞjPi

¼ 4Nc

hPjPi
Z

d2r⊥d2b⊥
ð2πÞ2 e−ik⊥·r⊥eiΔ⊥·b⊥hP0j1 − S½□�

�
b⊥ −

r⊥
2
; b⊥ þ r⊥

2

�
jPi: ð12Þ

Following Ref. [8] the cross section of diffractive dijet production in electron-proton collisions is expressed in terms of
F ½□� as

dσ
dy1dy2d2k1⊥d2k2⊥

∝
Z

d2q⊥d2q0⊥F ½□�ðq⊥;Δ⊥ÞF ½□�ðq0⊥;Δ⊥ÞAðK⊥; q⊥; q0⊥; ϵ2fÞ; ð13Þ

for a particular amplitude function A. Here K⊥ is the
transverse part of K ¼ ðk1 − k2Þ=2, where ki denotes the
momentum of jet i, Δ⊥ is the transverse part of
Δ ¼ k1 þ k2, yi is the rapidity of jet i, and ϵ2f ¼
zð1 − zÞQ2, with z is the momentum fraction of one of
the two jets. One considers this process in the so-called
correlation limit: Δ⊥ ≪ K⊥, where K⊥ sets the hard scale,
allowing to also consider the photoproduction (Q2 ¼ 0)
case. One of the leading order diagrams of diffractive dijet
production in ep collisions in this kinematic regime is
shown in Fig. 1. In this exclusive process the transverse
momentum of the jet pair gives a handle on the Δ⊥
momentum, even if the off-forwardness of the struck
nucleon or nucleus itself is not measured. More details

of the cross section calculation will be given below, but first
we will discuss the model for the Wilson loop GTMD G½□�

and the corresponding F ½□�.

III. MODEL FOR THE UNPOLARIZED
GLUON GTMD AT SMALL x

In the process considered, the incoming virtual photon
splits into a quark-antiquark dipole pair that interacts with
the proton or nucleus.4 The large jet transverse momentum,
or equivalently large K⊥, the typical size r⊥ of the dipole
will be small. At small enough x even small dipoles
will have multiple interactions with the target. In the
saturation regime at small x one often employs the
McLerran-Venugopalan (MV) model for the dipole scatter-
ing amplitude [15–17,36,37]:

FIG. 1. One of the leading order diagrams of diffractive dijet
production in ep collisions.

4Note that for sufficiently high center of mass energy of the
scattering this dipole picture can be reconciled with the target
having a large Pþ momentum which, as we discussed, was
required to consider the impact parameter dependence with
respect to a sufficiently well determined center R⊥ ¼ 0 of the
target. The appropriate frame is referred to as the dipole frame
[34]. In addition, for large dipole sizes the impact parameter
should also be defined with respect to the center of momentum of
the dipole [35], but that is not relevant for the small dipole sizes
considered here.
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�
S½□�ðx⊥; y⊥Þ þ S½□�†ðx⊥; y⊥Þ

2

�
C

¼ exp

�
−
1

4
r2⊥Q2

s ln

�
1

r2⊥Λ2
þ e

��
; ð14Þ

where the subscript C indicates that an average over the
color configuration of the target is taken, Λ denotes the
QCD scale, and e is the natural number. For an infinitely
large nuclear target the saturation scale Qs is only a
function of x. As a consequence, in that case the MV
model expression applies to the forward scattering case and
it is only a function of r⊥ ¼ y⊥ − x⊥ due to translational
invariance (r2⊥ ¼ jr2⊥j). For finite nuclei at small x, a
dependence of Qs on impact parameter is often considered,
see e.g., [38–40]. The b⊥ð¼ jb⊥jÞ dependence of Qs is
usually implemented as Q2

sðx; b⊥Þ≡Q2
sðxÞTAðb⊥Þ, where

TAðb⊥Þ is the nuclear profile function or nuclear thickness
function that describes the distribution of nuclear matter
inside a nucleus integrated over the z component of b [40].
Here TAðb⊥Þ scales with A1=3. For scattering off a proton at
very small x that is described by the CGC, one can similarly
introduce a profile function. To be specific, we will consider

Q2
sðb⊥Þ ¼

4πα2sCF

Nc
Tpðb⊥Þ; ð15Þ

with a Gaussian b⊥ profile [22]:

Tpðb⊥Þ ¼ exp ð−b2⊥=ð2R2
pÞÞ; ð16Þ

whereRp is thegluonic radius of the proton forwhichwewill
take the value Rp ¼ 0.5 fm, such that 1=Rp ≈ 0.4 GeV.
Using Eq. (14) with this Q2

sðb⊥Þ implies automatically
nonzero off-forwardness, even if one is considering only
diagonal expectation values. Furthermore, by identifying
(and implicitly absorbing the light cone volume factor
2Pþ R

db− of hPjPi in the process)

hS½□�ðb⊥; r⊥ÞiC ¼ hPþ;R⊥ ¼ 0jS½□�ðb⊥; r⊥ÞjPþ;R⊥ ¼ 0i;
ð17Þ

we arrive at the following expression for the GTMD:

G½□�ðk⊥;Δ⊥Þ ¼ 4Nc

Z
d2r⊥d2b⊥
ð2πÞ2 e−ik⊥·r⊥eiΔ⊥·b⊥

× exp

�
−
1

4
r2⊥Q2

sðb⊥Þ ln
�

1

r2⊥Λ2
þ e

��
:

ð18Þ

This becomes the standard MV model expression for the
gluon TMD in the limit Rp → ∞ and Δ⊥ → 0. We expect
this model expression to be applicable as long as the typical
b⊥ values probed are larger than the typical dipole sizes.
Therefore, we will restrict application of the model to the

region Δ⊥ ≲ 1 GeV, which is consistent with the correla-
tion limit, because well-defined jets will have transverse
momenta of at least a few GeV. In practice, higher Δ⊥ will
hardly matter, as will be seen (cf. Fig. 3).
In [19,20] Gaussian weighting factors e−ϵrr

2⊥ and e−ϵbb
2⊥

are introduced as cut offs. This will cut out the regions
where the qq̄ dipole does not overlap with the target or its
size becomes large compared to the target size, where the
model should not be applicable. Here we will only
introduce e−ϵrr

2⊥ , as we found that there is actually no
need for e−ϵbb

2⊥ when considering F ½□�. To be specific, in
order to fit the model to H1 data, we will introduce two free
parameters fϵr; χg in the model in the following way:

F ½□�ðk⊥;Δ⊥Þ¼4Nc

Z
d2r⊥d2b⊥
ð2πÞ2 e−ik⊥·r⊥eiΔ⊥·b⊥e−ϵrr

2⊥

×

�
1−exp

�
−
1

4
r2⊥χQ2

sðb⊥Þln
�

1

r2⊥Λ2
þe

���
:

ð19Þ

We will consider a fixed value Λ ¼ 0.24 GeV and consider
Nf ¼ 4 for the number of active flavors. The fitted χ value
can be viewed as determining the (average) x value of the
model through the x dependence of the saturation scale. In
applications of the MVmodel the saturation scale is usually
taken to be Q2

sðxÞ ¼ A1=3ð3 × 10−4=xÞ0.3 ½GeV2�, that
stems from the GBW (geometric scaling) description of
the inclusive DIS data from HERA [41]. Equating this

FIG. 2. The function F ½□�
0 =ð2πÞ2 as a function of the transverse

momentum k⊥ for three different values of Δ⊥ for the choice
ϵr ¼ ð0.5 fmÞ−2. The curves are for χ ¼ 1.25 and the bands
around them correspond to χ in the range from 1.0 to 1.5, where
larger χ yields larger results.

GTMD MODEL PREDICTIONS FOR DIFFRACTIVE DIJET … PHYS. REV. D 104, 074006 (2021)

074006-5



expression with χQ2
sðb⊥ ¼ 0⊥Þ ¼ 0.5χA1=3 ½GeV2�, one

finds χ ¼ 2ð3 × 10−4=xÞ0.3.
Next one can expand equation (19) as

F ½□�ðk⊥;Δ⊥Þ ¼ F ½□�
0 ðk⊥;Δ⊥Þ þ 2F ½□�

2 ðk⊥;Δ⊥Þ cos 2θkΔ
þ � � � ; ð20Þ

where θkΔ denotes the angle between k⊥ and Δ⊥. The
contribution of the elliptic part F ½□�

2 , and even more so of
the higher order harmonics, to the cross section will be

small compared to the angular independent part F ½□�
0 .

Therefore, we will only retain the latter.
In Fig. 2 we show the function F ½□�

0 for various
parameters choices and ranges that we will consider below.

IV. EXCLUSIVE DIFFRACTIVE DIJET
PRODUCTION CROSS SECTIONS

The cross section for the diffractive dijet production
process γ�pðAÞ → qq̄pðAÞ can be calculated at leading
order (LO) by combining two steps: (1) the incoming

virtual photon which splits into a quark-antiquark
dipole pair and (2) the interaction of the pair with
the proton or nucleus via two-gluon exchange. The LO
of the virtual photon light cone wave function with
virtuality Q is discussed in many papers, such as
[10,42,43] which we follow to arrive at the cross section
expressions:

dσγ
�p
T;L

dz1dz2d2K⊥d2Δ⊥

¼ 1

2ð2πÞ5z1z2
δðz1 þ z2 − 1Þ

X
βihi

jhMqq̄iCj2; ð21Þ

where Mqq̄ denotes the amplitude of this process, z1;2 ¼
kþ1;2=k

þ are the outgoing quark and antiquark longitudinal
momentum fraction with respect to the virtual photon
longitudinal momentum, and the sum is over color indices
βi and quark helicities hi. For the case of a transverse
photon the amplitude is given by:

MT
qq̄ ¼ eef

ffiffiffiffiffiffiffiffiffi
z1z2

p ½z2 − z1 − 2h0λ�δh0;−h1
Z

d2q⊥
Z

d2r⊥d2b⊥
ð2πÞ2 e−ib⊥·Δ⊥e−ir⊥·q⊥

×

�
U½□�

β0β1

�
b⊥ −

r⊥
2
; b⊥ þ r⊥

2

�
− δβ0β1

�
ϵλ · ðK⊥ − q⊥Þ

z1z2Q2 þ ðK⊥ − q⊥Þ2
; ð22Þ

and for a longitudinal photon by:

ML
qq̄ ¼ −2eef

ffiffiffiffiffiffiffiffiffi
z1z2

p
δh0;−h1

Z
d2q⊥

Z
d2r⊥d2b⊥
ð2πÞ2 e−ib⊥·Δ⊥e−ir⊥·q⊥

×

�
U½□�

β0β1

�
b⊥ −

r⊥
2
; b⊥ þ r⊥

2

�
− δβ0β1

�
z1z2Q

z1z2Q2 þ ðK⊥ − q⊥Þ2
; ð23Þ

where ϵλ denotes the polarization vector of a photon with helicity λ. After averaging over color and photon polarization, and
after summing over quark helicities [10], we arrive at:

dσγ
�p
T

dz1dz2d2K⊥d2Δ⊥
¼ αem

8ð2πÞ4Nc

X
f

e2fδðz1 þ z2 − 1Þ½z21 þ z22�
Z

d2q⊥
Z

d2q0⊥F ½□�ðq⊥;Δ⊥Þ

× F ½□�ðq0⊥;Δ⊥Þ
� ðK⊥ − q⊥Þ
z1z2Q2 þ ðK⊥ − q⊥Þ2

�
·

� ðK⊥ − q0⊥Þ
z1z2Q2 þ ðK⊥ − q0⊥Þ2

�
; ð24Þ

and

dσγ
�p
L

dz1dz2d2K⊥d2Δ⊥
¼ αem

2ð2πÞ4Nc

X
f

e2fδðz1 þ z2 − 1Þz21z22Q2

Z
d2q⊥

Z
d2q0⊥F ½□�ðq⊥;Δ⊥Þ

× F ½□�ðq0⊥;Δ⊥Þ
1

z1z2Q2 þ ðK⊥ − q⊥Þ2
1

z1z2Q2 þ ðK⊥ − q0⊥Þ2
: ð25Þ
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As discussed earlier we will only consider the angular

independent part F ½□�
0 .

We note that since there is an average over the color
configurations of the target, the cross section will scale as
Nc, the sum over colors of the quark-antiquark pair. Since
we express the cross section in terms of GTMDs that
themselves scale as Nc, the above expressions have an
overall 1=Nc factor, rather than Nc like in, e.g., [10]. But
the results are consistent with each other.
In order to relate σγ

�p to the diffractive dijet cross section
σep for electron-proton collisions in DIS in HERA experi-
ments, one can use [10]

dσep

dxdQ2
¼ αem

πxQ2

��
1 − yþ y2

2

�
σγ

�p
T þ ð1 − yÞσγ�pL

�
; ð26Þ

with y ¼ Q2=sx and
ffiffiffi
s

p
is the center of mass energy of ep

collision, which for the H1 data to be discussed was
319 GeV. We will fit the resulting expression to the high
Q2 electroproduction data of H1 and make predictions for
high Q2 electroproduction at EIC. We will also make
predictions for photoproduction, which we now discuss.

A. Photoproduction: Q2 = 0

For the case of Q2 ¼ 0 the expression for dσγ
�p
T can be

used to arrive at:

dσγp

dz1dz2d2K⊥d2Δ⊥
¼ αem
8ð2πÞ4Nc

X
f

e2fδðz1þ z2−1Þ½z21þ z22�

×
Z

d2q⊥
Z

d2q0⊥F ½□�ðq⊥;Δ⊥Þ

×F ½□�ðq0⊥;Δ⊥Þ
� ðK⊥−q⊥Þ
ðK⊥−q⊥Þ2

�
·

� ðK⊥−q0⊥Þ
ðK⊥−q0⊥Þ2

�
: ð27Þ

The integrations over the angles of q⊥ and q0⊥ can be
calculated analytically to arrive at [20,44]

Z
d2q⊥

F ½□�
0 ðq⊥;Δ⊥ÞðK⊥ − q⊥Þ

ðK⊥ − q⊥Þ2

¼ ð2πÞ3K⊥
K2⊥

ATðK⊥;Δ⊥Þ; ð28Þ

with

ATðK⊥;Δ⊥Þ ¼
1

ð2πÞ2
Z

K⊥

0

dq⊥q⊥F
½□�
0 ðq⊥;Δ⊥Þ: ð29Þ

In Fig. 3 we show the function ATðK⊥;Δ⊥Þ as a function of
K⊥ for the same parameters choices and ranges as in Fig. 2.

It shows that the function is already very small when
Δ⊥ ¼ 1 GeV.
The γp differential cross section can thus be written as:

dσγp

dz1dz2dK⊥dΔ2⊥
¼ ð2πÞ4αem

16Nc

X
f

e2fδðz1 þ z2 − 1Þ½z21 þ z22�

×
A2
TðK⊥;Δ⊥Þ

K⊥
: ð30Þ

B. Electroproduction: Q2 > 0

For the case of Q2 > 0 the cross section receives
contributions from both the transverse and the longitudinal
polarization states of the photon. The integrations over the
angles of q⊥ and q0⊥ can again be calculated analytically to
arrive for the transverse part in Eq. (24) at
Z

d2q⊥F
½□�
0 ðq⊥;Δ⊥Þ

� ðK⊥ − q⊥Þ
z1z2Q2 þ ðK⊥ − q⊥Þ2

�

¼ ð2πÞ3K⊥
K2⊥

ATðK⊥;Δ⊥; zi; QÞ ð31Þ

with

ATðK⊥;Δ⊥; zi;QÞ

¼ 1

ð2πÞ2
Z

∞

0

dq⊥
q⊥F

½□�
0 ðq⊥;Δ⊥Þ

2

×

�
1þ K2⊥ − q2⊥ − z1z2Q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðK2⊥ þ q2⊥ þ z1z2Q2Þ2 − ð2K⊥q⊥Þ2
p

�
; ð32Þ

while for the longitudinal part in Eq. (25) can be evaluated
to be

FIG. 3. The function ATðK⊥;Δ⊥Þ as a function of K⊥ for three
different values of Δ⊥.
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Z
d2q⊥F

½□�
0 ðq⊥;Δ⊥Þ

�
Q

z1z2Q2 þ ðK⊥ − q⊥Þ2
�

¼ ð2πÞ3K⊥
K2⊥

ALðK⊥;Δ⊥; zi; QÞ ð33Þ

with

ALðK⊥;Δ⊥; zi; QÞ

¼ 1

ð2πÞ2
Z

∞

0

dq⊥q⊥F
½□�
0 ðq⊥;Δ⊥Þ

×

�
K⊥Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðK2⊥ þ q2⊥ þ z1z2Q2Þ2 − ð2K⊥q⊥Þ2
p

�
: ð34Þ

Therefore, the γ�p differential cross section for Q2 > 0 can
be expressed in terms of AT and AL as

dσγ
�p
T

dz1dz2dK⊥dΔ2⊥
¼ ð2πÞ4αem

16Nc

X
f

e2f δðz1 þ z2 − 1Þ½z21 þ z22�

×
A2

TðK⊥;Δ⊥; zi; QÞ
K⊥

ð35Þ

and

dσγ
�p
L

dz1dz2dK⊥dΔ2⊥
¼ ð2πÞ4αem

4Nc

X
f

e2f δðz1 þ z2 − 1Þ

× z21z
2
2

A2
LðK⊥;Δ⊥; zi; QÞ

K⊥
: ð36Þ

In Figs. 4 and 5 we show the functionsAT andAL for the
same parameter choices as in Fig. 2 and Fig. 3, and for
Q2 ¼ 4 GeV2 and z1 ¼ z2 ¼ 0.5. It can be seen that the
magnitude of AL is larger than AT. However, the z21z

2
2 term

in front of AL makes its contribution to the differential
cross section much smaller as can be seen in the next
section. In Figs. 6 and 7 we show AT and AL for different
values of Q2.

FIG. 5. The function AL as a function of K⊥ from Eq. (34) for
three different values of Δ⊥, Q2 ¼ 4 GeV2, and z1 ¼ z2 ¼ 0.5.

FIG. 6. The function AT as a function of K⊥ from Eq. (32) for
five different values of Q2, Δ⊥ ¼ 0.1 GeV, and z1 ¼ z2 ¼ 0.5.

FIG. 4. The function AT as a function of K⊥ from Eq. (32) for
three different values of Δ⊥, Q2 ¼ 4 GeV2, and z1 ¼ z2 ¼ 0.5.
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V. MODEL FIT OF H1 DATA

The H1 and ZEUS experiments at HERA have studied
the diffractive dijet process in a series of papers [45–47].
Here we focus on [46] where data in the Q2 range of
4–110 GeV2 was presented, for y ∈ ½0.05; 0.7� and
jtj ≤ 1 GeV2, that allows us to study the correlation limit
region.5 Given this Q2 range we consider the case of four
flavors. The H1 cross sections for two central jets shown in
Fig. 8 are obtained by extrapolation to the range jtminj ≤
jtj ≤ 1 GeV2 in order to compare to earlier results [45]. We
fit our model to this extrapolation range. Here, jtminj is the
minimum kinematically accessible value of jtj. In our
case jtj ¼ Δ2⊥.
Since the cross section expression used here is derived in

the strict x → 0 limit in order to be expressed in terms of the
Wilson loop GTMD in Eq. (8), the model does not include
any x dependence (and as a consequence also no evolution
in x). Therefore, we only fit the parameters to the data
integrated over Q2 and y, which effectively corresponds to
data integrated over x. The average x of the data is small
however (the largest x value is for Q2 ¼ 110 GeV2 and
y ¼ 0.05, giving x ¼ Q2=sy ¼ 2 × 10−2), such that a small
x model is appropriate.
We first consider the data for the t-dependence of the

differential cross section based on Eqs. (35) and (36). We

select ϵr ¼ ð0.5 fmÞ−2 and find that χ ¼ 1.25 can describe
the data quite well, as shown in Fig. 8, which has a very
clear e−bt dependence, with b ≈ 6 GeV−2. The slope of the
cross section as a function of jtj is controlled by the proton
profile in Eq. (16). The H1 data description does not
depend much on ϵr, therefore, we have chosen ϵr ¼ 0.5 fm
in line with the gluonic radius of the proton Rp.
We also display a band corresponding to χ in the range

from 1.0 to 1.5. This range is selected on the basis of the
K⊥-dependence of the differential cross section. The H1
data is actually presented as a function of the transverse
momentum of one of the jets, which is large (in the range
5–12 GeV) and almost back-to-back with the other jet in
the transverse plane, such that one can expect that
q⊥ ≪ K⊥, although the values of q⊥ are not included in
[46]. On the basis of this expectation we approximate
K⊥ ¼ ðk1⊥ − k2⊥Þ=2 ¼ k1⊥ − q⊥=2 ≈ k1⊥. The result is
shown in Fig. 9. As can be seen the transverse momentum
dependence does not show as clear a power law fall-off as
the model curves, hence, the considerable uncertainty in the
χ value. The contribution of the longitudinal part to the
cross section is not very large, it is 12% at K⊥ ¼ 12 GeV
and becomes smaller for smaller K⊥, e.g., it is 3.5% for
K⊥ ¼ 5 GeV.
For the description of the H1 data we selected values for

χ in the range 1.0–1.5 with a central value χ ¼ 1.25. One
could relate these values using the GBW model expression
for the saturation scale to corresponding x values:
χ ¼ 2ð3 × 10−4=xÞ0.3, such that χ ¼ 1.25� 0.25 corre-
sponds to x ∼ ð1 − 3Þ × 10−3. We consider such χ values
to be acceptable and consistent with the typical x values at
which the MV model is generally considered to be

FIG. 7. The function AL as a function of K⊥ from Eq. (34) for
five different values of Q2, Δ⊥ ¼ 0.1 GeV, and z1 ¼ z2 ¼ 0.5.

FIG. 8. Differential cross section as a function of jtj for the
model for the indicated parameter choices and ranges, and for the
H1 FPS data including the total uncertainties δtot.

5Strictly speaking, these H1 data are not purely exclusive
diffractive dijet events to which our LO analysis applies. The
events are required to have at least two jets, i.e., ep → ejjX0p,
and leave some room for additional particles for which a qq̄g final
state would need to be included, such as in [48]. We will proceed
under the assumption that the dijet contribution dominates and
that corrections are αs suppressed.
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applicable. Selecting a fixed χ value corresponds to
selecting an average x value.
In Fig. 10 we show the Q2 dependence of the model in

comparison to the H1 data. We do not expect the model to
describe this data fully, because each data point corre-
sponds to a different average x value, whereas the model
contains no x dependence. Nevertheless the data do follow
the expectation that for smaller Q2, which corresponds to
smaller x values for given y and s, a larger χ value is

needed, whereas at larger Q2, a smaller χ value is needed.
Clearly a better description of the Q2 dependence of the
data could be obtained with an x-dependent χ. DGLAP-
evolution based Q2 dependent GBW and MV-like models
have been considered, see, e.g., [49], but we do not employ
such modifications here, because for GTMDs one expects
TMD evolution to apply rather than DGLAP evolution and
since the Q2 and x dependence are correlated, one would
have to include evolution in x as well, for which it is not
clear whether it is consistent with the strict x → 0 limit
considered here (corrections involving other matrix ele-
ments are expected besides logarithmic ones from the
small-x evolution). Soft gluon radiation corrections that
are part of the TMD evolution have been considered in
Ref. [50], where it was shown that they can lead to
significant effects, especially to suppression of azimuthal
modulations. For further discussion we refer to [50].
Since the integral of a curve through the central values of

the H1 data as function of Q2 is found to fall within the
range of the Q2 integral of the model, we simply proceed
with the model with a fixed χ, i.e., with an average x. We
note that the H1 data spans an x range from 5 × 10−5 to
0.02, giving a geometric mean of 10−3, which corresponds
well with the x values we obtain from the GBW model
expression for the χ values considered.
All in all, we conclude that the GTMD model allows for

a fair description of the diffractive dijet production H1 data,
for reasonable model parameters, in reasonable agreement
with assumptions on the gluonic radius and the x values the
model applies to.

VI. MODEL PREDICTIONS FOR EIC

In Figs. 11and 12 we present predictions for exclusive
diffractive dijet production at the EIC using our model. For
leptoproduction we consider the range 3 ≤ K⊥ ≤ 9 GeV,
because the center of mass energy of EIC will be lower than
at HERA. At even lower K⊥ we expect that jets cannot be
resolved anymore and by selecting this range, we can
consider the fixed flavor case with Nf ¼ 4. We consider
Q2 ∈ ½1 GeV2; K2⊥� rather than the fixed range Q2 ∈
½4; 110� GeV2 of HERA and also show the cases for Q2 ¼
K2⊥ and Q2 ¼ 4K2⊥ (here we expect smaller Q2 to be better
described by larger χ and vice versa). We also present
model predictions for photoproduction. As expected, the
cross section is much larger in this case.
The photoproduction result can also be translated into

predictions for ultraperipheral collisions (UPCs) in p-Pb
and Pb-Pb collisions at the LHC upon folding in the
appropriate photon distribution inside a Pb nucleus,
cf. [20]. However, if in such collisions K⊥ values are
reached that are much larger than Qs, then the saturation
description may no longer be appropriate. Also it is
important that the dijet pair has a rapidity gap in order
to ensure a diffractive process. The only currently available

FIG. 10. Differential cross section as a function of Q2 for the
model for the indicated parameter choices and ranges (tmin ≈ 0),
and for the H1 FPS data including the total uncertainties δtot.

FIG. 9. Differential cross section as a function of K⊥ ≈ k1⊥ for
the model for the indicated parameter choices and ranges
(tmin ≈ 0), and for the H1 FPS data including the total uncer-
tainties δtot.
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UPC jet production data is by the ATLAS collaboration
[51], where such a rapidity gap condition is not imposed
however. The diffractive contribution was estimated to be at
most at the 5% level for the small x part of the data [52] and
it may thus not be surprising that our GTMD model cannot
describe those ATLAS UPC data, underestimating the cross
section by two or three orders of magnitude. In contrast, the
collinear factorization description of [53] at NLO is able to

describe the ATLAS data well. Predictions for UPCs in a
kinematic regime appropriate for our GTMD model will be
considered elsewhere.

VII. CONCLUSIONS

We have considered a small-x model for gluon GTMDs
that is based on the MV model with an impact parameter
dependent saturation scale, introducing a few free param-
eters in order to obtain a good fit to the H1 data on
diffractive dijet production in electron-proton collisions.
The values of the free parameters turn out to be reasonable
from the physical interpretation point of view. With this we
obtain a good description of the jtj dependence of the data
and a reasonable description of the jet transverse momen-
tum dependence. This provides confidence that the gluon
GTMD description is appropriate for this process in the
examined kinematic range. With this model we provide
predictions for the EIC for both electroproduction in a
somewhat different kinematic regime and for photopro-
duction which has a much higher cross section. We hope
that this will allow further tests of the underlying GTMD
description.
We also have addressed some theoretical issues known

from GPD and small x studies that are relevant for small-x
gluon GTMD models with an impact parameter dependent
saturation scale. First there is the issue that considering the
impact parameter dependence requires the target (and the
dipole) to be sufficiently localized in transverse coordinate
space. This in turn requires consideration of the dipole
frame with large Pþ and hence sufficiently large center of
mass energy. Second, the dipole size has to be much
smaller than the size of the impact parameter profile
considered. This requires consideration of the correlation
limit for dijet production, in which Δ⊥ ¼ k1⊥ þ k2⊥ is
much smaller than K⊥ ¼ ðk1⊥ − k2⊥Þ=2 ≈ k1⊥ ≈ k2⊥,
where the latter scale determines the relevant dipole sizes.
On the other hand, K⊥ should not be so large that one is
outside the saturation regime. Under these kinematic
conditions the MVmodel with impact parameter dependent
saturation scale is expected to be an appropriate model for
the gluon GTMDs probed. The fairly good description of
the H1 data gives support to this GTMD picture and we
hope it can be scrutinized further with future data from EIC
and LHC.
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FIG. 11. Predictions for exclusive diffractive dijet production in
ep (black curve) and γp (red curve) collisions at the EIC.

FIG. 12. Predictions for exclusive diffractive dijet production in
ep collisions at the EIC for Q ¼ K⊥ and Q ¼ 2K⊥.
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