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We discuss stiffening of matter in quark-hadron continuity. We introduce a model that relates quark wave
functions in a baryon and the occupation probability of states for baryons and quarks in dense matter. In a
dilute regime, the confined quarks contribute to the energy density through the masses of baryons but do
not directly contribute to the pressure; hence, the equations of state are very soft. This dilute regime
continues until the low momentum states for quarks get saturated; this may happen even before baryons
fully overlap, possibly at density slightly above the nuclear saturation density. After the saturation, the
pressure grows rapidly while changes in energy density are modest, producing a peak in the speed of sound.
If we use baryonic descriptions for quark distributions near the Fermi surface, we reach a description
similar to the quarkyonic matter model of McLerran and Reddy. With a simple adjustment of quark
interactions to get the nucleon mass, our model becomes consistent with the constraints from 1.4-solar mass
neutron stars, but the high density part is too soft to account for two-solar mass neutron stars. We delineate
the relation between the saturation effects and short range interactions of quarks, suggesting interactions
that leave low density equations of state unchanged but stiffen the high density part.
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I. INTRODUCTION

How highly compressed baryonic matter transforms into
quark matter has been a long standing question in quantum
chromodynamics (QCD) [1,2]. Considering the size of a
baryon of 0.5–0.8 fm, we expect the transition to take place
at nB ¼ 2 − 10n0 (n0 ≃ 0.16 fm−3: nuclear saturation den-
sity). The difficulties to describe the transition lie in
treatments of nonperturbative effects such as confinement,
chiral restoration, or other strong correlation effects [3–5].
The lattice Monte Carlo simulations suitable for strong
coupling regimes are not usable at finite density, while
perturbative calculations based on the weak coupling
picture are not applicable at nB ≲ 40n0 [6–14]. The
framework based on low energy nuclear physics [15–22]
is reliable only to nB ¼ 1.5 − 2n0 beyond which we must
perform some extrapolation toward high density.
In spite of all these difficulties, the combined use of the

above information and recent neutron star (NS) observa-
tions [23–29] allows us to get insights on the properties of
dense matter (see, e.g., [30] for a short review). Recent
analyses by Neutron Star Interior Composition Explorer,
including the radius measurements of 2.08 M⊙ (M⊙: solar
mass) and 1.4 M⊙ NSs, constraints from the NS merger
event GW170817, and nuclear physics constraints, yielded
the estimates of the radii R2.08 ≃ R1.4 ≃ 12.4 km [31,32].
This small variation in the radii from 1.4 to 2.08 M⊙ NS
suggests that the equation of state (EOS) for nB ¼ 2 − 5n0
should not contain substantial softening but rather should
get stiffened. This feature disfavors strong first order phase

transitions in the domain nB ¼ 2 − 5n0, although the
weaker one is still possible.
Since the first discovery of 2 M⊙ NS [25], a number of

works have been devoted to the crossover description for
hadron-to-quark phase transitions [33–40]. Early works
[33–35] phenomenologically interpolated hadronic EOS at
nB ≲ 2n0 and quark matter EoS at nB ≳ 4n0; the resulting
EoS is consistent with the existing NS constraints and has a
novel peak structure in the speed of sound cs ¼ ð∂P=∂εÞ1=2
where P and ε are pressure and energy density, respectively.
Later, such a peak structure was discussed as generic, by
noting the contrast between stiffness of low and high density
EOS [41]; nuclear physics calculations suggest soft low
density EOS which must get stiffened rapidly to pass the
2 M⊙ mass constraints [42,43]. This peak should have a
mechanism specific to dense matter [44,45]; in the finite
temperature crossover from a hadron resonance gas to a
quark-gluon plasma, the speed of soundhas a dip, insteadof a
peak, as one can see from the lattice simulations [46].
The microscopic mechanism for the emergence of the

peak has been discussed by McLerran and Reddy (MR)
[47], who used the concepts of quarkyonic matter [48]. The
quarkyonic matter is a quark matter with a baryonic Fermi
surface, and the excitations are confined [49–58]. In the
MR model, they used a hybrid description in momentum
space. A matter at low density is dominated by baryons, but
as density increases, the quark Fermi sea emerges at low
momenta, pushing up the baryonic states to high momenta.
For suitable choices of parameters, baryons become
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relativistic at nB ¼ 1.5–3n0 with a substantial peak in cs.
The advantage of the MR model is that relativistic baryons
emerge by the quark Pauli blocking mechanism which is
independent of details in nuclear forces, and hence. the
mechanism is qualitatively robust. Several successful
descriptions of the NS have originated from this framework
[59–66].
In this paper, we discuss the stiffening of dense matter

associated with the saturation of quark states at low
momenta that may be regarded as the onset of the quark
Fermi sea. The preliminary discussion was given in
Ref. [67], and this paper is the fuller version. This work
is basically a follow-up work of Ref. [47] but contains new
attempts and insights which can be potentially important.
First, we describe the crossover behavior using quark

degrees of freedom only, starting with the description of a
single baryon, proceeding to a baryonic matter, and then to
a quark matter formation. Although the descriptions are
rather crude, this approach has the advantage over conven-
tional hybrid descriptions where one uses quarks in one
place and baryons (hadrons) in the other place. This
removes the worries about double counting as well as
the confusions associated with switching in degrees of
freedom.1 The onset density of quark matter formation is
related to the size scale of a baryon, and we found that the
saturation begins to occur slightly above the nuclear
regime, 1 − 3n0, even before baryon cores overlap. The
softness in baryonic matter and stiffness in quark matter are
described in a unified manner. We also check how our
quark descriptions are related to the MR model.
Second, we attempt to describe in-medium interactions

at the level of quark descriptions. This is potentially
important, considering the difficulties to predict the high
density behaviors of two-, three-, and more-body baryonic
forces within purely baryonic calculations. It has been
known that a simple constituent quark model with one-
gluon exchanges accounts for the baryon spectroscopy
remarkably well [70,71]. Recent lattice calculations for
baryon-baryon interactions even show that the simple
constituent quark picture correctly describes the observed
patterns of baryon-baryon interactions, including the hard
core repulsion among nucleons as well as baryon inter-
actions with strangeness [72–74]. These successes in
describing semishort range correlations, at momentum
scale ∼0.2–1 GeV, give us a hope to build a unified
description for the properties of matter from the baryonic
to quark matter regime. In this spirit, relevant interactions at
∼5 − 10n0, at lower density than for the perturbative
regime, have been examined [36–38,75,76]. The present

framework solely based on quarks is suitable for the unified
treatments of interactions from low to high densities.
In Sec. II, we begin with quarks in a baryon, and in

Sec. III we discuss quarks in a baryonic matter. In Sec. IV,
quark matter formation and the associated stiffening are
described. In Sec. V, we mention how our descriptions are
related to the MR model. In Sec. VI, we discuss the spin-
flavor quantum numbers of baryons and how they fill the
quark spin-flavor states. In Sec. VII, we discuss interactions
for matter from the dilute baryonic to dense quark regimes
and examine what kind of interactions is suitable to
describe the NS phenomenology. Section VIII is devoted
to a summary. In the Appendix, we discuss the phase space
density in baryonic descriptions for the quark matter
domain.

II. QUARKS IN A BARYON

We consider how quark states are occupied as baryon
density increases. We postulate2 a distribution of quarks
with the momentum p which belong to a baryon with the
momentum PB; the form is given by (Nc: number of
colors),

Qinðp;PBÞ ¼ N e−
1

Λ2
ðp−PB

Nc
Þ2 ; ð1Þ

where Λ is the scale of the order of the QCD non-
perturbative scale, ΛQCD ≃ 0.2–0.3 GeV, related to the
radius of a baryon as Λ ∼ R−1

baryon, and N is the normali-
zation constant,

N ¼ 8π3=2

Λ3
; ð2Þ

with which
R
pQin ¼ 1 (definition:

R
p ≡

R d3p
ð2πÞ3). The

momentum distribution becomes broader for a smaller
baryon radius.
We emphasize that Qin is for a quark with a particular

color, flavor, and spin. When we compute baryonic
quantities, we have to sum contributions from all colors.
The sum of Nc quark momenta should be PB, and the
distribution satisfies this condition at the level of the
expectation value,

hPBi ¼ Nc

Z
p
pQinðp;PBÞ: ð3Þ

1The double counting introduces serious problems into the
field theoretic computations for the zero point energy in matter
[68]. The UV divergences appear from both elementary and
composite particles. Consistent treatments of both contributions
are mandatory to cancel the divergences in medium by the
vacuum subtraction of the energy [69].

2For a constituent quark model with Nc ¼ 3 and the harmonic
oscillator potential [70,71], we can derive Qin within simple
analytic calculations. First, we compute three quark wave
functions Ψðp1; p2; p3;PBÞ and the corresponding probability
function jΨðp1; p2; p3;PBÞj2. Then, we integrate out two of
momentum variables to get the single particle distribution
Qinðp;PBÞ in Eq. (1).
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More realistically, the probability distribution of a quark
must be related to those of the other Nc − 1 quarks, but in
this paper, we consider only the averaged description for
quark momentum distributions.
As the quark momentum has the broad distribution, the

magnitude of momentum is substantial,

��
p −

PB

Nc

�
2
�
∼ Λ2; ð4Þ

independent of PB, and hence, quarks can be energetic
compared to the baryon kinetic energy or the nuclear scale
of Oð1 − 10Þ MeV. In baryonic matter, this disparity will
be reflected as the large energy density but small pressure.
Below, we approximate the baryon energy as the sum of

the energies from Nc quarks. The energy of a quark in a
baryon with momentum PB is

hEqðpÞiPB

¼
�
Eq

�
pþ PB

Nc

��
PB¼0

;

≃ hEqðpÞiPB¼0 þ
δij
6

� ∂2Eq

∂pi∂pj

�
PB¼0

�
PB

Nc

�
2

þ � � � ; ð5Þ

where the term linear in PB vanishes. It is important to note
that the correction from finite PB is suppressed by
1=N2

c ∼ 1=10, and the quark single particle energy is hardly
affected by the baryon momentum until PB becomes very
large, ∼NcΛ.
The simplest version of our model includes only a

potential localizing quarks, and the resulting baryon energy
is simply,

EB ≃ NchEqðpÞiPB
: ð6Þ

For instance, in a nonrelativistic quark model,

ENRq
B ¼ Nc

�
Mq þ

hp2ijPB¼0

2Mq

�
þ P2

B

2NcMq
þ � � � ; ð7Þ

and the kinetic energy of the baryon is suppressed by the
large baryon mass, MB ≡ EBðPB ¼ 0Þ.
It is important to note that MB in our model is consid-

erably larger than NcMq by the kinetic energy ∼Λ of each
quark. If we use usual constituent quark mass of Mq ∼
0.3 GeV for up and down quarks, there must be attraction
of ∼Λ to keep the picture of MB ∼ NcMq. In Sec. VII, we
consider such short range interactions to modify the
average single particle energy and to get the right baryon
mass.

III. QUARKS IN BARYONIC MATTER

A. Occupation probability of quark states

We first write the occupation probability of quark states,
fqðp; nBÞ, with given color, flavor, and spin as

fqðp; nBÞ ¼
Z
PB

BðPB; nBÞQinðp;PBÞ; ð8Þ

wherewewrote the occupationprobability of baryon states as
BðPB; nBÞ for given flavor and spin.3 The expression means
that fq in dense matter is obtained by summing up the quark
occupation probability from each baryonic state. Being
probabilities, 0 ≤ fq ≤ 1 and 0 ≤ B ≤ 1 must be satisfied.
Note that we have assumed that the probability depends only
on the size of momenta, p ¼ jpj and PB ¼ jPBj.
Integrating the quark momentum p with the normaliza-

tion
R
pQin ¼ 1, we find

nB ¼ nR;G;Bq ¼
Z
p
fqðp; nBÞ ¼

Z
PB

BðPB; nBÞ; ð9Þ

where nR;G;Bq is the quark density for a given color. (We
implicitly assumed the color neutrality condition nRq ¼
nGq ¼ nBq . The quark number density is nq ¼ NcnB.)
In dilute regime, we can neglect interactions among

baryons as they are widely separated in space. Then,
baryons fill the states from low momenta with the prob-
ability 1, as in an ideal gas (Nf : number of flavors),

BðPB;nBÞ ¼ θðPF − PBÞ; nB ¼ 2Nf
P3
F

6π2
; ð10Þ

where θðxÞ is the step function, PF the Fermi momentum of
baryons, and 2Nf the factor from spins and flavors.
Let us look at how fq evolves as nB increases. In the

following, we rescale momenta,

p̃ ¼ p=Λ; P̃B ¼ PB=NcΛ; P̃F ¼ PF=NcΛ; ð11Þ

with which fq can be written as

fqðp; nBÞ ¼ N
ðNcΛÞ3
ð2πÞ2

Z
P̃F

0

P̃2
BdP̃B e−ðp̃

2þP̃2
BÞ

×
Z

1

−1
d cos θe2p̃P̃B cos θ: ð12Þ

We note that, in a dilute regime, P̃F ≪ 1 or PF ≪ NcΛ, so
that the domain for the integral over P̃B is very small,

3For the moment, we treat quarks and baryons as if they have
no flavor and spin species or discuss u ↑ state in a Δþþ

sz¼3=2 ¼ðuR ↑; uG ↑; uB ↑Þ baryon. More details about spin-flavor quan-
tum numbers are addressed in Sec. VI.
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canceling the overall factor ðNcΛÞ3. As P̃B in the exponent
of the integrand can be regarded as small, we expand them
and find

fq ≃N
P3
F

6π2
e−p̃

2

�
1þ −3þ 2p̃2

5
P̃2
F þ � � �

�
: ð13Þ

RecallingN ∼ Λ−3, the overall size of fq is ∼ðPF=ΛÞ3. As
for the shape, the leading order contribution maintains the
Gaussian form same as inQin. The correction starts with the
order of 1=N2

c ≃ 1=10 for Nc ¼ 3, so the large Nc should be
a good approximation for the Nc ¼ 3 case, except in
situations where p and PF are very large. The numerical
results of Eq. (12) for various nB=n0 are shown in Fig. 1,
together with the leading contribution of the 1=Nc expan-
sion. We took Λ ¼ 0.25 GeV and Nc ¼ 3. Here, we
emphasize that we used the formula (12) for only the
curves up to nB=n0 ¼ 1.25; for nB=n0 > 1.25, we used
another expression Eq. (20) which is explained in the next
section. Here, fq for various nB=n0 are shown for Λ ¼
0.25 GeV and Nc ¼ 3.
It is remarkable that the shape of fq hardly changes,

while the size grows almost linearly in nB. Since fq is a
probability, the growth in the size of fq must be terminated
at fq ¼ 1. We call it saturation of quark states, or more
simply, quark saturation. The behavior of fq beyond
nB=n0 ¼ 1.25 is discussed in the next section.
In the large Nc limit, one can derive a number of simple

expressions as we may neglect P̃F terms in Eq. (13). The fq
takes the form

fqðp;nBÞjNc→∞ ¼ N
P3
F

6π2
e−p̃

2 ¼ nB
ncB

e−p̃
2

; ð14Þ

where the p ¼ 0 state gives the largest fq. The p ¼ 0 state
gets saturated at ncB ¼ NfðPc

FÞ3=3π2; the corresponding
baryon Fermi momentum is

1 ¼ fð0;Pc
FÞ ↔ Pc

FjNc→∞ ¼ Λð3
ffiffiffi
π

p
4

Þ1=3 ≃ 1.1Λ: ð15Þ

In Fig. 2, the fqðp ¼ 0; nBÞ is shown as a function of nB
for Nc ¼ 3. For a larger Λ, the baryon radius is smaller, and
the saturation of the p ¼ 0 state happens at larger nB. It is
important to note that, for Λ ¼ 0.2–0.3 MeV as the
reasonable scale of baryon radii, the saturation takes place
at nB ¼ 0.5 − 2n0; this baryon density is within or close to
the territory of conventional nuclear physics. Such density
range is well below the density ∼4 − 7n0 [37] where
baryon cores begin to overlap. The reason why this may
happen would be that quark wave functions, in general,
have broader extension than the average baryon size, or the
overlap of the meson cloud around a baryon take place
before the cores overlap [77].

B. Equations of state in dilute baryonic matter

Next, we compute the EOS using the occupation
probability discussed in the previous section. For simplic-
ity, we assume the quark energy of the form

EqðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q

q
: ð16Þ

The energy density is computed as

εðnBÞ ¼ 2NcNf

Z
p
EqðpÞfqðp; nBÞ: ð17Þ

The chemical potential is computed as

FIG. 1. The quark occupation probability fqðp; nBÞ, for various
nB=n0. We took Λ ¼ 0.25 GeV and Nc ¼ 3. The thin lines are
the leading order of the 1=Nc expansion.

FIG. 2. The nB dependence of the quark occupation probability
at zero momentum, fqðp ¼ 0; nBÞ, for Λ ¼ 0.15, 0.20, 0.25,
0.30, and 0.35 GeV. We took Nc ¼ 3. The growth in fqðp ¼
0; nBÞ is almost linear in nB.
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μB ¼ ∂ε
∂nB ¼ 2NcNf

Z
p
EqðpÞ

∂fqðp; nBÞ
∂nB : ð18Þ

The expression is particularly simple in the large Nc limit;
using Eq. (14), we find

εNc→∞ ¼ nBNcN
Z
p
EqðpÞe−p̃2 ¼ nBM

Nc→∞
B ; ð19Þ

so that μB ¼ MB at large Nc. Accordingly, the pressure is
small, P ¼ μBnB − ε ∼ n5=3B =MB ∼ 1=Nc, as expected from
purely baryonic matter in an ideal gas regime. This trend
changes when quark states at low momenta get saturated, as
we see in the next section.

IV. QUARK MATTER FORMATION

We have seen that the quark states at low momenta begin
to be saturated at ncB ∼ Λ3. Beyond this critical density, we
can no longer use the ideal gas description of baryons. In
fact, the EOS behaves very differently before and after the
saturation; EOS are much stiffer after the saturation.
It is highly unconventional to discuss the baryon

momentum distribution B after the quark Fermi sea begins
to be relevant. In this situation, instead of starting with B, it
is more intuitive to postulate the form of quark occupation
probability fq for which we can implement the quark Pauli
blocking easily. In Sec. V, we come back to the question of
how B looks like for the postulated form of fq.

A. A model of saturation

We assume that the occupation probability changes
smoothly just after the saturation takes place. As a trial,
we postulate the form

fafterq ¼ θðpsat − pÞ þ θðp − psatÞfqðp − psat; ncBÞ; ð20Þ

where psat is a function of nB. The first term is responsible
for states occupied with the probability 1; the states to p ¼
psat are saturated. Meanwhile, the second term is for states
with p > psat which are only partially occupied. Here, we
assume that the distribution fq at ncB is shifted by the
occupied level, so the states up to ∼psat þ Λ can be
occupied with substantial probability. For Λ → 0, the
postulated form of fq is reduced to the form for the ideal
quark gas. But we keep Λ finite, assuming that quarks just
after the saturation are not fully delocalized. The behavior
of fq after the saturation is shown in Fig. 1 for nB=n0 >
1.25 with Λ ¼ 0.25 GeV.
While the postulated form of fq seems a small departure

from fq in a baryonic matter, it has dramatic impacts on the
EOS. First, we note that the baryon densities before and
after the saturation are continuous, as we postulate the
continuous changes in fq. The relation between the Fermi
momentum and psat is given by

P3
F

6π2
¼ p3

sat

6π2
þ 1

2π2

Z
∞

psat

p2dpfqðp − psat; ncBÞ;

¼ p3
sat

6π2
þ 1

2π2

Z
∞

0

ðpþ psatÞ2dpfqðp; ncBÞ: ð21Þ

Near the saturation, we keep only terms to OðpsatÞ.

P3
F

6π2
≃
ðPc

FÞ3
6π2

þ psatΛ2
c

2π2
; ð22Þ

or

psat ≃
π2ðnB − ncBÞ

NfΛ2
c

; ð23Þ

whereΛc ∼ Λ characterizes the thickness of the distribution
at nB ¼ ncB,

Λ2
c ¼

Z
∞

0

dp2fqðp; ncBÞ: ð24Þ

In the largeNc, fqðp; ncBÞ ¼ e−p̃
2

so thatΛc → Λ. It is clear
that psat → 0 as nB → ncB from above. Similarly, ε is
continuous before and after the saturation,

ε ¼ εsat þ
NcNf

π2

Z
∞

psat

p2dpEqðpÞfqðp − psat; ncBÞ; ð25Þ

where εsat is the contribution from p ¼ 0 to psat. For a small
psat ∼ 0, we neglect εsat and expand the integrand in the
second term,

ε≃ εc þpsat
NcNf

π2

Z
∞

0

p2dpEqðpÞ
�
−
∂fqðp;ncBÞ

∂p
�
; ð26Þ

where εc is the energy density at nB ¼ ncB. The derivative is∂fq=∂p2 ≤ 0, so the ε approaches εc continuously from
above for psat → 0þ. Noting ∂psat=∂nB ≃ π2=NfΛ2

c, the
chemical potential just after the saturation is

μB ≃
Nc

Λ2
c

Z
∞

0

p2dpEqðpÞ
�
−
∂fqðp; ncBÞ

∂p
�
; ð27Þ

which is compared to the μB before the saturation.
A number of analytic insights are obtained in the large

Nc limit, where fqðp; ncBÞ → e−p̃
2

and Λc → Λ, so that

μafterB

Nc
→ 2Λ

Z
∞

0

p̃3dp̃ẼqðpÞe−p̃2

; ð28Þ

where we wrote Ẽ ¼ E=Λ. The chemical potential before
the saturation is given by the baryon mass at large Nc,
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μbeforeB

Nc
→

4Λffiffiffi
π

p
Z

∞

0

p̃2dp̃ẼqðpÞe−p̃2 ¼ MB: ð29Þ

If the saturation takes place in the relativistic regime of
quarks, we may expand Eq ∼ pþ � � �, and find

μafterB

μbeforeB
→

ffiffiffi
π

p
2

�
3

ffiffiffi
π

p
4

þ � � �
�
≃ 1.18þ � � � ; ð30Þ

where the chemical potential jumps by ≃0.18MB.
Meanwhile, in the nonrelativistic limit,

�
μafterB

μbeforeB

�
NR

→ 1þ Λ2

4M2
q
þ � � � ; ð31Þ

where the jump in μB is the order of nonrelativistic
corrections.
We found that, while nB and ε do not contain any jumps,

the derivatives do. Of course, the thermodynamics does not
allow jumps in μB, and the results being presented must
contain something unphysical, in spite of the seemingly
reasonable form of fq in Eq. (20). But for the moment, we
proceed further to examine what would happen in this
idealized description.
Figure 3 shows μB as a function of nB=n0 where we

chose Nc ¼ 3, Mq ¼ 0.3 GeV, and Λ ¼ 0.25 GeV, for
whichMB ≃ 1.26 GeV, and the jump in μB associated with
the saturation is ≃0.1 GeV. It is clear that the μB and ε=nB
after the saturation grow much faster than the behavior
before the saturation. For comparisons, we also show the
results for the QHC19-D EOS [38] as an example of EOS
consistent with NS observations; for the QHC19-D,
Mmax ≃ 2.28 M⊙, R1.4 ≃ 11.6 km, and R2.08 ≃ 11.5 km.
(In Sec. VII, we make comparisons again after adjusting
the baryon mass.)

These jumps in μB result in the discontinuities in the
corresponding pressure P through the thermodynamic
relation P ¼ μBnN − ε, where nB and ε are continuous
but μB are not. Now, the pressure just after the saturation is

P ≃ μafterB nB − ε ≃ ðμafterB − μbeforeB ÞncB ∼ NcΛ4; ð32Þ

which is much bigger than the pressure of an ideal baryon
gas, P∼n5=3B =MB∼ðPF=ΛÞ3=Nc. Accordingly, the squared
speed of sound c2s ¼ ∂P=∂ε diverges to þ∞ at the
saturation. The P vs ε for the setup, the same as Fig. 3,
is shown in Fig. 4.

B. Smoothing out the discontinuities

The discontinuities are the artifacts which are presum-
ably associated with our use of the ideal baryon gas picture
for baryons just before the quark saturation (Fig. 5). The

FIG. 4. The P vs ε for the setup same as Fig. 3.FIG. 3. The nB dependence of the baryon chemical potential μB
for a model Eq. (20) without interactions. The results of Nc ¼ 3,
Mq ¼ 0.3 GeV, and Λ ¼ 0.15, 0.25, 0.35 GeV are shown.
Quark-Hadron-Crossover (QHC)-D is also plotted as a reference.

FIG. 5. Smoothing out the artifact: The use of ideal baryon gas
description to the quark saturation point leads to a discontinuous
jump in P (left panel). With baryon interactions mediated by
quark exchanges, the precursory behavior should appear before
reaching the quark saturation point (right panel). In the lower
panels, the evolution of fq, which changes the direction from the
vertical to horizontal direction at the quark saturation point, takes
place more smoothly with baryon interactions.
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validity of the ideal gas picture should break down before
reaching the quark saturation point. The baryon interactions
are mediated by the meson exchanges or quark exchanges,
so near the quark saturation point those interactions should
grow up. In realistic nuclear EOS, nuclear interactions of
OðNcÞ are important, and the pressure increases faster than
in the ideal baryon gas. Thus, with interactions, the
pressure does not suddenly jump up, but there should be
a precursory behavior as the system approaches the quark
saturation regime.
With these considerations in mind, we introduce an ad

hoc procedure to smooth out the discontinuities. We revise
the previous model of quark saturation slightly, by multi-
plying a smearing function,

fsatq ðp;psatÞ ¼ tanhðpsat=pwÞ
× ½θðpsat − pÞ þ θðp − psatÞe−ðp̃−p̃satÞ2 �;

ð33Þ
where pw is a regulator which should be taken to be very
small, pw ≪ Λ. For psat ≪ pw, psat in the step function and
the Gaussian factor is negligible, so we can regard

fsatq ≃
psat

pw
e−p̃

2 ∼
psat

pw
fqðp; nB ¼ 0Þ; ð34Þ

in computations of thermodynamic quantities. Technically,
the factor psat=pw ≪ 1 plays the role similar to the factor
∼NP3

F ∼ nB=ncB in Eq. (13). There the shape of fq was
fixed, but its magnitude increases until the saturation takes
place. When psat ∼ pw, the model goes back to the model in
Eq. (20) modulo P̃F ∼ 1=Nc corrections. The nB depend-
ence of fsatq for pw ¼ 0.01 GeV is shown in Fig. 6. The
qualitative behaviors are very similar to Fig. 1 [the major

difference comes from our neglect of P̃F corrections in
Eq. (33) compared to Eq. (20)].
Now, we use fsatq to examine several thermodynamic

quantities. Shown in Fig. 7 is μB as a function of nB.
Working with a model with the same form from low to high
density, the artificial discontinuities found in the previous
treatment are smoothed out, and μB is now continuous, as it
should. Accordingly, the (squared) speed of sound c2s is
now regulated and well defined, as shown in Fig. 8. The c2s
has a peak around the density where the saturation effects
become important, and it exceeds the conformal value 1=3
for a sufficiently small pw. The degree of the smearing is
rather sensitive to the value of pw, and a too small pw tends
to violate the causality constraint c2s ≤ 1. The sharpness of
the peak should be dynamically determined by the interplay
between baryon and quark dynamics. We choose pw ¼
0.01–0.02 GeV unless otherwise stated.
We emphasize that the existence of the peak was not

driven by nuclear forces but by the quark Pauli blocking

FIG. 7. The μB vs nB=n0 for the pw ¼ 0.005, 0.010, 0.020 GeV.
We took Λ ¼ 0.25 GeV, Mq ¼ 0.3 GeV, and Nc ¼ 3.

FIG. 6. The quark occupation probability for fsatq ðp; nBÞ in
Eq. (33), for various nB=n0. We took Λ ¼ 0.25 GeV,
pw ¼ 0.01 GeV, and Nc ¼ 3. The thin lines are the leading
order of the 1=Nc expansion.

FIG. 8. The squared speed of sound c2s vs nB=n0 for the
parameter set same as Fig. 7.
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effects. Including baryon interactions tames the peak, rather
than enhancing it; stronger baryonic interactions before the
quark saturation blur the peak structure by reducing the
contrast between baryonic and quark matter pressures.
Taking the picture that baryon interactions are mediated
by quark exchanges, baryonic matter with stronger inter-
actions should look more similar to quark matter.4 This
viewpoint motivates a three-window modeling of dense
matter from nuclear to quark matter domains [33–40] and
more microscopic considerations based on mode-by-mode
percolation [77].

V. BARYONS AFTER SATURATION

As we have seen, the saturation of low momentum quark
states induces a rapid increase in the pressure. Such
changes are difficult to imagine from purely baryonic
descriptions, and we are interested in how the correspond-
ing occupation probability of baryon states (B) looks.
Through attempts to understand B, we also discuss how
to obtain expressions similar to the MR model for quar-
kyonic matter EOS [47].
Regarding (for a given nB) fq and B as vectors with

indices p and PB, respectively, they are related through a
matrix Qin as

f
!

q ¼ QinB⃗; ð35Þ

where 0 ≤ BðPB; nBÞ ≤ 1 for any PB and nB. The equation
is linear, and in principle, one can take inversion to
determine B for a given fq. But in practice, this method
does not work well. Another strategy is to prepare some
model Bα for B with parameters α⃗ ¼ ðα1; α2; � � �Þ and
minimize a function “energy” functional,

Hðα⃗Þ ¼ ð f!q −QinB⃗αÞTð f!q −QinB⃗αÞ þ I costðBαÞ; ð36Þ

where I cost is some functional which gives the energetic
penalty if, for instance, Bα violates the condition
0 ≤ BðPB; nBÞ ≤ 1. For this strategy to work, we need a
good guess for the form of B.
For this purpose, we first assume baryons with momenta

PB ≳ Λ and discuss which form of fq should follow. We
consider the form

BshðPB;PshÞ ¼ hθðPsh − PBÞθðPB − Psh − ΔÞ; ð37Þ

where “sh” is the abbreviation of “shell”, and h is the
overall size in the occupation probability (0 ≤ h ≤ 1) for
states with momenta Psh − Δð≥ 0Þ to Psh. Below, to
simplify calculations, we assume Δ to be small,
Δ ≪ Psh. Integrating the baryon momentum distribution,
we get the contribution to fq as

fshq ðpÞ ≃
hΔ
Λ

N3
cffiffiffi
π

p P̃sh

p̃
e−p̃

2−P̃2
shðe2p̃P̃sh − e−2p̃P̃shÞ; ð38Þ

where we set P̃sh ¼ Psh=NcΛ. For small p̃P̃sh,

fshq ðpÞ ∼ 4
hΔ
Λ

N2
cffiffiffi
π

p e−p̃
2−P̃2

shP̃2
shð1þOðp̃2P̃2

shÞÞ; ð39Þ

and for large p̃P̃sh,

fshq ðpÞ ∼
hΔ
Λ

N2
cffiffiffi
π

p P̃sh

p̃
e−ðp̃−P̃shÞ2 ; ð40Þ

where the maximum of fq appears at p̃ ∼ P̃sh.
Below, we examine these asymptotic behaviors in some

details. We can see a number of the remarkable features in
the large Nc limit. For Psh ∼ Λ or P̃sh ∼ 1=Nc, we use
Eq. (39) to obtain

fshq ðpÞ ∼
hΔ
Λ

e−p̃
2

; ð41Þ

where the condition fq ≤ 1 demands hΔ ∼ Λ.
For Psh ∼ NcΛ or P̃sh ∼ 1, we use Eq. (40) to obtain

fshq ðpÞ ∼
hΔ
Λ

N2
ce−ðp̃−P̃shÞ2 ; ð42Þ

where we set P̃sat=p̃ ∼ 1 as the Gaussian part has a peak at
p̃¼ P̃sh. In this regime, the condition fq ≤ 1 demands
hΔ ∼ Λ=N2

c .
Now, we consider the forms of h that are compatible with

the scaling behaviors in Eqs. (41) and (42). For example,
one can take

½hΔ�ðPshÞ ∼ c0Λ
�
Λ2

P2
sh

þ c1
Nc

Λ
Psh

þ c2
N2

c

�
; ð43Þ

where c0, c1, and c2 are constants ofOð1Þ. For Psh ∼ Λ, the
first term dominates. For Psh ∼ NcΛ, all these three terms
can be comparable. In what follows, baryon states
with large momenta Psh are compatible with the condition
fq ≤ 1 only if those states are occupied with the small
probability density; i.e., either h or Δ becomes small for
large Psh. In particular baryon states with momenta, ∼NcΛ
are occupied with a small but nonzero probability
hΔ ∼ 1=N2

c . In the Appendix, we further explore the phase
space density in baryonic descriptions.

4This consideration is in conflict with some EOS models with
first order hadron-quark phase transitions. Such models assume
strong repulsions in nuclear matter to describe very stiff nuclear
EOS; as a consequence, the quark EOS can remain stiff even after
first order phase transitions, being consistent with the 2 M⊙
constraints. In this scenario, nuclear matter with stronger inter-
actions differs more from quark matter. In contrast, our picture in
this paper takes the view that baryonic matter with stronger
interactions is closer to quark matter.
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Now, we notice that the scaling fshq ∼ e−ðp̃−P̃shÞ2 is similar
to the behavior of fqðp − psat; ncBÞ ∼ e−ðp̃−p̃satÞ2 in Eq. (20)
for the partially occupied quark states beyond the saturated
states. This suggests that P̃sh ≃ p̃sat or Psh ≃ Ncpsat, and the
approximate relation

fqðp − psat; ncBÞ ∼
Z
PB

QinBshðPB;Psh ≃ NcpsatÞ: ð44Þ

Thus, the shell form Eq. (37) turns out to be a good
candidate for the p > psat part of the quark distribution fq
postulated in Eq. (20). The schematic picture is given
in Fig. 9.
Substituting this form into Eq. (20), and then integrating

quark momenta p, we reach a model similar to the model of
McLerran and Reddy [47].5 With Psh ¼ Ncpsat, the baryon
number and energy densities per flavor are

nB
Nf

≃
h
π2

Z
Psh

Psh−Δ
dPBP2

B þ p3
sat

3π2
;

ε

Nf
≃

h
π2

Z
Psh

Psh−Δ
dPBP2

BEB þ Nc

Z
psat

0

dpp2

π2
EqðpÞ; ð46Þ

where we have used the relations
R
pQin ¼ 1 and EBðPBÞ ¼

Nc

R
p Qinðp;PBÞEqðpÞ and neglected possible double

counting in fq at p≲ psat which should be minor effects
unless psat is very large. We also note that

μB ¼ ∂Psh

∂nB
∂ε
∂Psh

;

≃
P2
shEBðPshÞ − ðPsh − ΔÞ2EBðPsh − ΔÞ

P2
sh − ðPsh − ΔÞ2 ; ð47Þ

where the contributions from the saturated quark states are
suppressed by an extra factor of 1=Nc. When Psh ∼ Λ,
baryons are nonrelativistic, EBðPsh − ΔÞ ≃ EBðPshÞ and
μB −MB ≃ EBðPshÞ −MB ∼ 1=Nc. As Psh approaches
NcΛð≫ ΔÞ, we findμB−MB≃EBðPshÞ−MBþðPsh=2Þ∂EB=
∂Psh∼P2

sh=EðPshÞ∼NcΛ, as in usual relativistic expressions.
What is remarkable is that the relativistic regime is

reached already for nB ∼ Λ3. For Psh ∼ NcΛ, we obtain

nB ≃
h
π2

ðP3
sh − ðPsh − ΔÞ3Þ ∼ hΔP2

sh;

≃ c0Λ3 þ c1Λ2
Psh

Nc
þ c2Λ

�
Psh

Nc

�
2

; ð48Þ

which is ∼Λ3. For small Psh, the first term dominates, while
the second and third terms slowly grow as Psh becomes
∼NcΛ. This result drastically differs from naive expectation
nB ∼ ðNcΛÞ3. In ordinary baryonic descriptions at nB ∼ Λ3,
baryons approach the relativistic regime by interactions of
OðNcÞ, but here we found that relativistic baryons can also
emerge just due to the constraints on baryons as composite
particles. This reproduces the remarkable findings by
McLerran and Reddy [47].

VI. QUANTUM NUMBERS

We discuss the quantum numbers of baryons such as
colors, flavors, and spins. The question is how baryons
saturate these quantum numbers for quark states. In
previous sections, we implicitly assumed that the quark
states for Nc colors, Nf flavors, and two spins are saturated
by putting Nf species of baryons with two spins. In this
section, we explain why this description should be valid.
Specifically, we consider the Nc ¼ Nf ¼ 3 cases to utilize
the terminology common in hadron spectroscopy. We also
ignore the mass difference among up, down, and strange
quarks.
The argument is simplified by assuming SUð2NfÞ

symmetry in which there are no energy differences asso-
ciated with spins and flavors. In particular, nucleons, Δ, Ω,
so on are all energetically degenerate. It is useful to focus
on the following states:

Δþþ
sz¼�3=2 ¼ ½uR ↑ uG ↑ uB ↑�; ½uR↓uG↓uB↓�;

Δ−
sz¼�3=2 ¼ ½dR ↑ dG ↑ dB ↑�; ½dR↓dG↓dB↓�;

Ω−
sz¼�3=2 ¼ ½sR ↑ sG ↑ sB ↑�; ½sR↓sG↓sB↓�; ð49Þ

where quark states are totally antisymmetrized.

FIG. 9. A model Bsh for a baryon momentum distribution after
the saturation takes place. The Bsh convoluted with Qin leads to
the quark momentum distribution fshq around psat. For the
“baryon shell” of Bsh, we found hΔ ∼ 1=N2

c for Psh ∼ NcΛ. If
we fix h ¼ 1, the thickness Δ gets narrower as in the MR model.

5Our presentation here is slightly different from the paper of
McLerran and Reddy [47] where the concept of the occupation
probability for baryons is not used, so h ¼ 1 from the very
beginning, while they assumed the form of Δ to be

Δ ¼ Λ3

P2
sh

þ κΛ
N2

c
: ð45Þ

The second term plays important roles to regulate μB and the
speed of sound.
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While there are many more S-wave baryons with spin or
flavor excitations (such as baryon octet or decuplet), for
given spatial wave functions we can saturate quark states
usingonly the2Nfð¼ 6Þ states listed inEq. (49). For example
(Fig. 10), by puttingΔþþ

sz¼3=2, colors RGB for up quarks with
spins aligned in ↑ directions are filled at once. Therefore the
number of baryon species we need is the same as the number
of quark species, as we have assumed in the previous
sections. The arguments are applicable to any Nc.
This discussion also suggests that, once baryons with a

specific spin-flavor quanta form their Fermi sea, the other
baryons cannot freely enter the system due to the Pauli
blocking at quark level. For instance, when Δþþ

sz¼3=2 and
Δþþ

sz¼−3=2 form the large Fermi sea of up quarks, one cannot
put nucleons (uud or ddu) at low energy butmust place them
on top of the saturated Fermi sea. This viewpoint should be
importantwhenwe describe hyperons entering dense nuclear
matter. Also, this consideration should affect the treatment in
the self-energy processes for protons and neutrons, as virtual
states are blocked by preoccupied states.
More realistically we need to discuss the cases where

protons and neutrons appear as the lowest energy states.
The treatments of quantum numbers are more involved than
the idealized ðΔþþ;Δ−;Ω−Þ baryon bases used here. We
leave such realistic cases for our future work.

VII. INTERACTIONS

So far, our discussions on EOS are entirely based on
quasiparticle pictures, based on either quarks or baryons;
the interactions for quarks have been taken into account
only indirectly, by demanding that quark momenta are
distributed to some range as they should localize by
confining effects. Now, we perturb the calculations pre-
sented in the previous sections. We discuss interactions
within quark descriptions.
In principle, one can construct EOS from the information

of single particle propagators. The pressure at given μB is
given by

PðμBÞ ¼
Z

μB

0

dμ0BnBðμ0BÞ; ð50Þ

where nB can be expressed as (γ0: the zero component of
the Dirac matrices)

nBðμBÞ ¼
1

Nc
Tr½Sqγ0�; ð51Þ

where Sq is the quark propagator, and the trace runs over all
quantum numbers. This relation is exact for whatever
interactions; for example, in functional frameworks such
as the 2PI action [78–80], Eq. (51) always follows from self-
consistent treatments of the quark self-energy and inter-
actions.As a result, the effects of interactions can be included
into the self-energy of the propagator. If we need to include
the baryon-baryon interactions, one should write the corre-
sponding 2PI graphs and consider all possible cuts of quark
propagators to generate the self-energy graph, see Fig. 11 for
a quark in a baryon and Fig. 12 for a quark participating in
baryon-baryon interactions.
In this paper, we simply assume a phenomenological

parametrization for a single quark energy. We consider the
form for a single particle energy,

Eqðp; fqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q

q
þ V½fq�; ð52Þ

FIG. 11. A self-energy graph for a quark in a baryon. The gluon
exchanges happen in the color antisymmetric channels.

FIG. 12. A self-energy graph for a quark participating in
baryon-baryon interactions. The gluon exchanges can happen
in both the color antisymmetric and symmetric channels.

FIG. 10. Examples of quantum numbers for baryons where
Δþþ

sz¼þ3=2 and Ω
−
sz¼−3=2 are shown. The former (latter) fills the u ↑

(d↓) states for all colors RGB, while leaving the other color-
flavor-spin states empty. For a given space wave function for
quarks, six baryon states completely fill color-flavor-spin states.

TORU KOJO PHYS. REV. D 104, 074005 (2021)

074005-10



where V is the contribution from interactions that may
depend on fq.
Our first task is to adjust the baryon mass. As in a quark

model with a phenomenological confining potential
[70,71], our baryon mass is too massive due to the kinetic
energies of localized quarks. To reproduce the observed
baryon spectra, we need color-electric interactions for the
overall reduction in the masses for baryons and color-
magnetic interactions to get the correct mass splitting, e.g.,
the N − Δ and π − ρ splittings. In this work, we focus on
the electric interaction but neglect the details of mass
splittings. In vacuum, we consider

Vvac
CE ½fq� ¼ −CA

E ð≤ 0Þ; ð53Þ

where A indicates an antisymmetric representation in
colors. We adjust Vvac

CE to set the baryon mass to the
nucleon mass, MN ≃ 939 MeV.
In a baryon, the color-electric forces always reduce the

average quark energy, as the color wave function is always
antisymmetric for any combinations of quarks (e.g., Fig. 11).
For symmetric wave functions, the color-electric forces yield
repulsive forces, and such channels are inevitable when
several baryons come close together (e.g., Fig. 12).
To take into account these attractive forces in the dilute

regime and the repulsive forces in denser regime, we
consider the parametrization (CS

E ≥ 0)

VCE½fq� ¼ −CA
E × ð1 − γfβqÞ þ CS

Ef
β
q; ð54Þ

where S indicates symmetric channels in colors. The power
β controls the impacts of partially occupied levels, and the
parameter γ is chosen to either 0 or 1 to examine the effects
of partially filled states.
In this model, quarks with p ≫ psat are free from the

saturated levels and have the energy reduction (fq ≪ 1),

VCE½fq� ≃ −CA
E ; ð55Þ

as quarks in a baryon. This feature may be interpreted as the
attractive correlations near the Fermi surface; since the
quark states are not fully occupied, quarks can arrange their
wave functions to enhance the portion of color-antisym-
metric channels as in an isolated baryon. Meanwhile,
quarks with p ≪ psat have less freedom for such arrange-
ments and feel the overall repulsion (fq ≃ 1 for the
saturated levels),

VCE½fq� ≃ −CA
E × ð1 − γÞ þ CS

E; ð56Þ

due to the appearance of the repulsive channels. The
repulsive energy is activated only when psat becomes
substantial. The power β determines how sharply one

can distinguish the filled (fq ≃ 1) and partially filled
(fq < 1) states.
Now, we put these ingredients into our numerical

analyses. First, we set CS
E ¼ γ ¼ 0. Shown in Fig. 13

are various EOS, nB vs μB, P vs ε, and c2s vs nB, together

FIG. 13. Equations of state, nB vs μB, P vs ε, and c2s vs nB, with
CA
E ¼ 0.15 GeV and CS

E ¼ 0. The impacts of partially filled
states are examined for the power β ¼ 1, 2, 4, 8 with γ ¼ 1 or
γ ¼ 0. (Reminder: for the QHC19-D, Mmax ≃ 2.28 M⊙,
R1.4 ≃ 11.6 km, and R2.08 ≃ 11.5 km.)
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with the results of QHC-D as a guideline for EOS
consistent with the NS observations [38]. We set CA

E ¼
0.15 GeV to get MB ≃ 0.94 GeV at nB ¼ 0. The EOS at
low density behaves as those in QHC19-D but starts to
deviate from QHC19 around nB ∼ 3n0 due to softening of
our model at high density. The speed of sound has the
maximum at ∼2.6n0, mainly determined by our model

parameter Λ (or baryon size). We emphasize that stiffening
takes place in our model solely by the saturation effects.
To get stiffer EOS at high density, we set γ ¼ 1 to

activate the effects of partially filled states. With β ¼ 1, the
low density part is much stiffer than the baryonic part in the
QHC19 (which is the Togashi EOS [15]), contradicting
with nuclear EOS at nB ≲ n0. Here, quarks lost the
attractive energy too rapidly, leading to rapid growth in
μB as nB increases. One can delay the loss of attractive
energies by increasing β and suppressing fβq terms for
fq < 1. We found that, for β ≳ 8, our EOS gets along with
the nuclear EOS for nB ≲ 1.5n0. Meanwhile, the high
density part is considerably softer than QHC19-D.
In order to make the high density part stiffer, the simple

way is to turn on CS
E. We increase from CS

E ¼ 0.05 GeV to
0.20GeV, and the corresponding results are shown inFig. 14.
The repulsive forces are activated onlywhen fq ≃ 1, orpsat is
large, so leaving the low density part as before but stiffening
the high density part wherepsat is substantial. The location of
themaximum in the speedof sound is not very sensitive to the
choice ofCS

E, but the height becomes larger for a greaterCS
E.

We also note that the width of the peak is sensitive to our
choice of pw, as in Fig. 8.

VIII. SUMMARY

In this paper, we discussed how quark degrees of
freedom stiffen EOS. In order to relate the quark dynamics
for a single baryon to baryonic matter and quark matter
formation, we have introduced a model that relates three
relevant functions: quark momentum distribution Qin in a
baryon, occupation probability of states for baryons B, and
occupation probability of quark states fq. We also consider
the effects of interactions at the quark level.
Below we summarize our findings:
(i) In a dilute regime, the confined quarks contribute to

the energy density through the mass of baryons but
do not directly contribute to the pressure; hence, the
EoS are very soft (Fig. 15, left). This dilute regime
continues until the low momentum states for quarks
are saturated (Fig. 15, middle). The saturation can
take place considerably before the baryons fully
overlap, possibly at density close to the nuclear
saturation density, nB ∼ 1 − 3n0. This picture is in
line with the recent proposal of soft deconfinement
as the onset of the mode-by-mode percolation [77].

(ii) After the saturation, the energy per particle, ε=nB,
begins to change as in quark matter (Fig. 15, right),
and the pressure, P ¼ n2B∂ðε=nBÞ=∂nB, grows rap-
idly, although changes in nB and ε are modest. These
features lead to a peak in speed of sound,
c2s ¼ ∂P=∂ε. In our model, such a peak follows
by just assuming the continuity of fq before and
after the saturation, while no detailed descriptions of
interactions were necessary.

FIG. 14. The plots are same as Fig. 13 except β ¼ 8 is fixed and
CS
E is varied from 0.05 to 0.20 GeV.
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(iii) To take into account the constraint fq ≤ 1 after the
saturation, it is easiest to directly work with the
quark description. But we can also infer the baryon
momentum distribution B consistent with the de-
sired form of fq. Through such attempts, we reached
a model similar to the MR model for quarkyonic
matter. The resulting B differs from the pure
baryonic descriptions in which baryons are treated
as if elementary particles; baryons after the satu-
ration are highly relativistic.

(iv) We do not need many baryon species to fill the quark
levels. For three flavors, we need 2Nf baryon states
to fill the quark color-flavor-spin states for a given
spatial wave function. In this respect, nucleons and
hyperons should not be treated as independent when
they share the same quark states [61,81].

(v) While the stiffening of matter near the saturation
seems a generic trend in our modeling, a model
without interactions does not lead to sufficient stiff-
ness at high density, nB ≳ 4 − 5n0, that is required by
the existence of 2 M⊙ NSs. This observation is
consistent with viewpoints in our previous works
[38,75,82] where various short-range interactions of
p ¼ 0.2–1 GeV were discussed. One way to stiffen
the high density part is to use amodel in which quarks
in saturated states feel repulsions, but those near the
Fermi surface enjoy the attractive correlations.

Unfortunately, our discussions remain largely qualitative,
and the treatments of dynamics are in many senses ad hoc.
There remain many things to be done, as listed below.
First, it is better to directly use a quark wave function in a

constituent quark model. To getQin in this work, we should
first calculate the three-body wave function and then
integrate out two momentum variables. By doing this,
the matter properties can be directly expressed by quantities
in hadron spectroscopy.
Second, to use the framework for predictions of the NS

properties, we need to include the flavor asymmetry and, in

particular, have to discuss how nucleons fill the quark states
at low energy.
Third, as we use a quark model, it is desired to directly

use interactions in a quark model for baryons. There have
been many works to reproduce baryon properties, and the
lattice QCD studies of baryon-baryon interactions support
the idea that the short range part (such as the hard core
repulsion among nucleons) is overall consistent with the
descriptions based on quark dynamics with one-gluon
exchanges.
Fourth, pairing effects leading to the chiral condensates

or diquark condensates should be discussed to determine
the phase structures as well as EOS. In this work, we fixed
the constituent quark mass as in vacuum, but it is very
likely the effective mass changes with density.
Finally, the model should be extended to finite temper-

atures. When we come to thermal excitations, we need to
addresswhether thermal excitations are hadrons or quarks. In
fact, this is a crucial step to establish the quark-hadron
continuity or the quarkyonic matter scenario, because the
response in EOS as well as in the transports to changes in
temperature is entirely different for hadronic and quark
excitations [83]. In two-color QCD, there is a hint from
the lattice QCD for hadronic excitations at high density
[84,85], although more data are needed to establish this idea.
In forthcoming papers, we plan to give more quantitative

estimates on EOS, arranging the setup for the baryon
spectra and NS phenomenology.
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APPENDIX: PHASE SPACE DENSITY
IN BARYONIC BASES

In Sec. V, we considered the shell distribution of
baryonic states after the quark saturation and have derived
a constraint hΔ≲ Λ=N2

c . The constraint acts on the product
hΔ, not on each of h and Δ separately. In the MR model, a
thin shell structure with h ¼ 1 andΔ ∼ Λ=N2

c is used. Here,
we consider another possible choice. This illustrates the
peculiar structures of the baryon occupation probability
after the quark saturation.
Let us discuss the increase of baryon number in two

different bases, i.e., quark and baryon bases, see Fig. 16.
Noting the relation nB ¼ nR;G;Bq ¼ nq=Nc, we compare the
change of quark Fermi sea for a specific color with that of
the baryon Fermi sea.
In quark descriptions, we increase the quark Fermi

momentum from p to pþ δp. The density increases as

δnB ¼ δnR;G;Bq ∼ p2δp; ðA1Þ

where Nc factors do not show up.
Now, we try to describe the same increase in density

using purely baryonic bases. We note that the quark and
baryon momenta near the Fermi surface are related as
PB ∼ Ncp. Similarly, δPB ∼ Ncδp. Then, naively one
would reach

δnnaiveB ∼ ðNcpÞ2 × Ncδp ¼ N3
cp2δp; ðA2Þ

which does not match with δnR;G;Bq , due to the factor N3
c. In

order to avoid this contradiction, we have to conclude that
the phase space for baryons is more dilute than
the quark’s phase space. The proper estimate should take
into account the occupation probability h for baryonic
states [67],

δnB ∼ hδnnaiveB → h ∼ 1=N3
c : ðA3Þ

In terms of the hΔ constraint discussed before, here we are
thinking of the case that h ∼ 1=N3

c and Δ ∼ Ncδp.
Within this description, we consider the variation of

energy density with respect to the change δp and examine
how the expression appears consistent for quark and baryon

descriptions. For simplicity, we assume the case where p ≫
Λ so that quarks and baryons have the energies ∼p and
∼Ncp, respectively.
In quark bases, we need to sum contributions from all

colored quarks,

δεquark ∼ Nc × p3δp: ðA4Þ

In baryon bases, we take into account the baryon occupa-
tion probability h ∼ 1=N3

c and get

δεbaryon ∼
1

N3
c
× ðNcpÞ3ðNcδpÞ: ðA5Þ

So in both bases, the variation of the energy density is
∼Ncp3δp, as it should. This represents the dual feature of
quark and baryon descriptions; the concept of occupation
probability for baryonic states is the key to satisfy the
consistency condition.
The remarkable feature in baryonic descriptions is that

while baryons occupy the high energy states with small
probability, those states still make significant contributions
to the baryon number and energy density. This feature is
difficult to be foreseen from pure baryonic considerations;
the quark saturation effects demand highly exotic descrip-
tions for baryons.

FIG. 16. The comparison of the occupation probabilities for
quark and baryon states. We increase the quark Fermi momentum
p by δp, with which the quark density for a given color (and spin
flavor) increase by δnR;G;Bq ∼ p2δp. In terms of the purely
baryonic bases, the baryon number must increase by the same
amount, δnB ¼ δnR;G;Bq . In order to satisfy this consistency
condition, we have to conclude that the phase space in baryonic
bases is more dilute than the quark’s phase space.
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