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We systematically study two-body nonleptonic decays of light lambda hyperon Λ → pπ−ðnπ0Þ with
account for both short- and long-distance effects. The short-distance effects are induced by five topologies
of external and internal weakW� exchange, while long-distance effects are saturated by an inclusion of the
so-called pole diagrams with intermediate 1

2
þ and 1

2
− baryon resonances. The contributions from 1

2
þ

resonances are calculated straightforwardly by account for nucleon and Σ baryons whereas the
contributions from 1

2
− resonances are calculated by using the well-known soft-pion theorem in the

current-algebra approach. It allows one to express the parity-violating S-wave amplitude in terms of parity-
conserving matrix elements. From our previous analysis of heavy baryons we know that short-distance
effects induced by internal topologies are not suppressed in comparison with externalW-exchange diagram
and must be included for description of data. Here, in the case of Λ decays we found that the contribution of
external and internal W-exchange diagrams is sizably suppressed, e.g., by one order of magnitude in
comparison with data, which are known with quite good accuracy. Pole diagrams play the major role to get
consistency with experiment.

DOI: 10.1103/PhysRevD.104.074004

I. INTRODUCTION

Two-body nonleptonic decays of the Λ hyperon Λ →
pπ− and Λ → nπ0 are the leading modes with branching
fractions 63.9� 0.5% and 35.8� 0.5% [1], respectively.
These processes follow by producing Λ in the K−p
scattering and are clearly identified after substraction of
background effects. The other modes of the Λ are sup-
pressed by a few orders of magnitude. Such precise data on
the Λ → Nπ decays give a unique possibility to consi-
der these decays as a laboratory for testing nature of the

weak decays and a crucial check of existing theoretical
approaches modeling exclusive decays of baryons. From a
modern theoretical point of view, there are two classes of
the Feynman diagrams generating matrix elements of these
processes: (1) short-distance (SD) diagrams and (2) long-
distance (LD) or pole diagrams. The SD diagrams are
classified by five different color-flavor topologies as shown
in Fig. 1. We refer to the topologies of Ia and Ib as tree
diagrams. They are sometimes also referred to as external
(Ia) and internalW-emission (Ib) diagrams. The topologies
IIa, IIb, and III are referred to as W-exchange diagrams.
Note, in literature one can find other notations for
W-exchange diagrams. For examle, in [2] they are denoted
as the exchange (IIa), color-commensurate (IIb), and bow
tie (III) diagram. As shown in Fig. 1 the color-flavor
factor of the tree diagrams Ia and Ib depends on whether
the emitted meson is charged or neutral. For charged
emission the color-flavor factor is given by the linear
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combination of Wilson coefficients ðC2 þ ξC1Þ, where
ξ ¼ 1=Nc, while for neutral emission the color-flavor
factor reads ðC1 þ ξC2Þ. We use the large-Nc limit for
the color-flavor factors with ξ ¼ 0. For the W-exchange
diagrams the color-flavor factor is given by ðC2 − C1Þ. The
Wilson coefficients C2 ¼ 1.361 (leading order) and C1 ¼
−0.625 (subleading order) are taken at the scale μ ¼
1 GeV, on Λð4Þ

MS
¼ 435 MeV in the Naive Dimensional

Regularization (NDR) scheme from Ref. [3]. Note, the
contribution of the QCD penguin diagrams to the non-
leptonic decays of the Λ0 hyperon is strongly suppressed in
comparison with the contribution of the current-current
operators due to a suppression of the corresponding Wilson
coefficients.
In Refs. [4–14] we have performed comprehensive

analysis of the nonleptonic decays of the single and double
heavy baryons including topologies with external and
internal W exchange. In particular, we have shown that
the internal topologies are not always suppressed and must
be systematically included in theoretical analysis. Here we
turn to study of nonleptonic decays of the light baryons,
which up to now were more precisely determined from the
data and could give an opportunity for an additional check
of the theoretical approaches.
Since the end of the 1960s two-body nonleptonic decays

of the Λ hyperon have been studied in the literature using
different approaches. One of the first attempts to the Λ and
other hyperons has been done by using effective weak
Hamiltonians and methods of current algebra, dispersion
relations, and vector dominance [15–24]. In Ref. [25]
nonleptonic decays of hyperons were analyzed using three
types of nonrelativistic bound-state models of baryons: a
quark model, a three-triplet model, and a quartet model. In
the 1970s significant progress was achieved in studying
nonleptonic decays of hadrons (e.g., kaons and hyperons).
It was shown (for review, see Ref. [26]) that short-distance
strong effects playing important role in weak interactions of

hadrons can be systematically included in QCD, which lead
to modification of effective weak Hamiltonians by dressing
their couplings and arising of new operators beyond a
V − A structure. In this vein, effective weak Hamiltonians
(for review see, e.g., Ref. [3]) are constructed which further
their use in evaluation of matrix elements to predict
nonleptonic decay properties of hadrons. First, systematic
application of these ideas to hyperons and also to kaons can
be done in Ref. [26]. In particular, in Ref. [26] the most
general form of the effective weak Hamiltonian dressed by
strong short-distance effects and containing four-quark
operators with specific quantum numbers of isospin and
unitary spin has been derived. Dressing of the couplings in
operators due to gluon corrections has been taken into
account by solving corresponding renormalization group
equations. Finally, matrix elements of nonleptonic transi-
tions have been evaluated using the valence quark approxi-
mation. This work [26] served as the basis for modern
theory of weak decays of hadrons. The effective weak
Hamiltonian is a universal ingredient in calculation of
matrix elements of physical processes and all model
ambiguities are encoded in a way of projection of the
Hamiltonian between respective hadronic states or to
evaluation of matrix elements. Note that significant
progress in studying nonleptonic decays of light baryons
has been made in the framework of the effective field
theories [27–36]. In particular, different types of effective
theories [chiral perturbation theory (ChPT), heavy baryon
ChPT (HBChPT), and large-Nc QCD] with implementa-
tion of chiral and 1=Nc corrections, isospin, and SU(3)
breaking correction for study of hyperon decays have been
developed. It was found that an extension of ChPT beyond
leading order is extremely important and one-loop/chiral
corrections became significant for the p-wave hyperon
amplitudes. Recently, an updated analysis of light baryon
nonleptonic decays in ChPT has been performed in
Ref. [35] with taking into account large-Nc expansion
and SU(3) symmetry-breaking effects. In Ref. [36] the
contributions to the CP-violating asymmetries induced by
the chromomagnetic-penguin operators have been studied.
In Ref. [37] weak and radiative decays of hyperons have
been considered in a pole model. In Ref. [38] nonleptonic
decays of hyperons were analyzed in a constituent quark
model. Skyrme soliton model was applied for a description
of weak nonleptonic decays of hyperons in Refs. [39,40].
The MIT bag model to nonleptonic decays of baryons has
been applied in Ref. [41]. Phenomenological analysis of
nonleptonic decays of hyperons-based chiral Lagrangian
model was done in Ref. [42]. Sum rules for the nonleptonic
hyperon decays have been derived in Refs. [43–46]. In
Ref. [47] nonleptonic decays have been considered in the
nonrelativistic potential model. In Ref. [48] nonleptonic
decays of hyperons have been analyzed in quark-diquark
model. SU(4)-flavor chiral soliton model was applied to a
description of hyperon nonleptonic decays in Ref. [49]; the

FIG. 1. Flavor-color topologies of nonleptonic weak decays.
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two-body nonleptonic decays of light baryon octet and
decuplet have been studied using a combination of the
topological diagram approach and the SU(3) irreducible
representation approach, i.e., the transition amplitudes are
derived as linear combinations of the basic amplitudes
classified accordingly to irreducible representations of the
unitary flavor group and constraints due to isospin sym-
metry we also implemented. The main conclusion of
Ref. [50] is that W-exchange diagrams give large and even
dominant contributions to the decay rates. Note that in these
papers, a nontrivial nonperturbative dynamics of quarks in
hadrons and in the intermediated stage in propagating
between individual hadrons was modeled by the dipolelike
form factors [51] or even ignored as in Ref. [50]. From our
analysis of nonleptonic decays we know that it is a sharp
approximation, which not always matches data. In particu-
lar, one can describe data up to order of magnitude, but not
precise. A modeling of the internal nonperturbative dynam-
ics of hadronic constituents is needed in study of exclusive
decays of baryons. In Ref. [52] two-body nonleptonic
decays of the Λ have been considered in an effective quark
model with chiral Uð3Þ ×Uð3Þ symmetry. Partial decay
rates and angular distributions have been calculated. Based
on SU(2), spin SU(3)-flavor symmetries and vector domi-
nance joined description of weak radiative and nonleptonic
decays of light hyperons has been done in Ref. [53]. In
Ref. [54] factorizing and pole contributions to the non-
leptonic decays of light hyperons have been evaluated
taking into account the instanton contributions in the
framework of the Random Instanton Liquid Model. It
was concluded that roughly 70% of the amplitudes come
from instanton-induced interactions (responsible for the
spontaneous breaking of chiral symmetry), 10% from hard
gluon-exchange corrections, and the remaining 20% were
due to confinement effect. A very weak dependence on a
choice of current quark mass was noticed. In Ref. [55] a
potential model explicitly incorporating quark-quark
correlations was applied to nonleptonic decays of light
hyperons. In Ref. [56] an algebraic approach based on
mixing hyperons was used for calculation of their non-
leptonic decay rates.
The main objective of the present paper is to investigate a

role of W- exchange diagrams in strange hyperon physics.
It is well known that the factorizable diagrams dominated
by SD effects [41,44,57], in principle, describe data well.
However, it does not mean that W-exchange and LD
diagrams vanish. They could nontrivially interplay with
SD factorizable contributions. Nonfactorizable diagrams in
baryon nonleptonic decays play an important role. The
analysis of nonleptonic baryon decays is complicated by
the necessity of having to include nonfactorizing contri-
butions. One thus has to go beyond the factorization
approximation which had proved quite useful in the
analysis of the exclusive nonleptonic decays of heavy
mesons. There have been some theoretical attempts to

analyze nonleptonic heavy baryon decays using factorizing
contributions alone, the argument being that W-exchange
contributions can be neglected in analogy to the power-
suppressed W-exchange contributions in the inclusive
nonleptonic decays of heavy baryons. One might even
be tempted to drop the nonfactorizing contributions on
account of the fact that they are superficially proportional to
1=Nc. However, since Nc baryons contain Nc quarks an
extra combinatorial factor proportional to Nc appears in the
amplitudes which cancels the explicit diagrammatic 1=Nc
factor. Another argument supporting importance of study of
W-exchange diagrams is that there are the modes which are
nonsuppressed and proceed only via these diagrams. (see
detailed discussion in Refs. [13,58]). In Ref. [13] we
showed that the total contribution of the nonfactorizing
diagrams can amount up to 60% of the factorizing con-
tribution for heavy-to-light baryon transitions and up to
30% for b → c baryon transitions. Recently we improved
our formalism for study of the nonfactorizable diagrams in
the nonleptonic decays of heavy baryons. We have made
an ab initio three-loop quark model calculation of the
W-exchange contribution to the nonleptonic two-body
decays of the doubly charmed baryons Ξþþ

cc and Ωþ
cc.

The W-exchange contributions appear in addition to the
factorizable tree graph contributions and are not suppressed
in general. We made use of the covariant confined quark
model previously developed by us to calculate the tree
graph as well as the W-exchange contribution. We calcu-
lated helicity amplitudes and quantitatively compare the
tree graph and W-exchange contributions. Finally, we
compared the calculated decay widths with those from
other theoretical approaches when they are available. We
found a substantial contribution of W-exchange graphs to
the modes with final baryon containing spin-0 light
diquarks. The suppression of the W graphs for the modes
with final baryons containing spin-1 light diquarks is
explained by the consistency of our framework with the
Körner, Pati, Woo (KPW) theorem [59,60], which states
that the contraction of the flavor-antisymmetric current-
current operator with a flavor-symmetric final-state con-
figuration is zero in the SU(3) limit. In Ref. [6] we made
unified analysis of semileptonic and nonleptonic two-body
decays of the double-charm baryon ground states Ξþþ

cc , Ξþ
cc,

andΩþ
cc. We identified those nonleptonic decay channels in

which the decay proceeds solely via the factorizing con-
tribution precluding a contamination from W exchange.
We use the covariant confined quark model previously
developed by us to calculate the various helicity amplitudes
which describe the dynamics of the 1=2þ → 1=2þ and
1=2þ → 3=2þ transitions induced by the Cabibbo favored
effective (c → s) and (d → u) currents. We then proceed to
calculate the rates of the decays as well as polarization
effects and angular decay distributions of the prominent
decay chains resulting from the nonleptonic decays of the
double heavy charm baryon parent states. Taking into
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account above arguments we conclude that taking into
account of W-exchange graphs and development of theo-
retical methods for their evaluation is quite an impor-
tant task.
The paper is structured as follows. In Sec. II we give

the basic ingredients of our framework which includes the
effective Hamiltonian of the weak interactions and the
description of quark structure of hadrons in the covariant
confined quark model. Sec. III is devoted to calculation
of the matrix elements of the decays Λ → pþ π− and
Λ → nþ π0. We discuss in detail the classification of the
Feynman diagrams appearing in these decays and give the
analytical expressions for matrix elements and helicity
amplitudes. In Sec. IV we present numerical results
for comprehensive analysis of nonleptonic decays of Λ
hyperon. Finally, in Sec. V we make conclusions and
summarize the main results obtained in this paper.

II. EFFECTIVE HAMILTONIAN AND DIAGRAMS

We concentrate our discussion on two nonleptonic decay
modes of Λ− hyperon: Λ0 → pþ π− and Λ0 → nþ π0.
They proceed due to weak interactions of quarks which are
described by the effective Hamiltonian:

Heff ¼ −
GFffiffiffi
2

p VCKMfC2ðūaOLsaÞðd̄bOLubÞ

þ C1ðūaOLsbÞðd̄bOLuaÞg; ð1Þ

where VCKM ¼ VudV�
us is the product of the Cabibbo-

Kobayashi-Maskawa matrix elements; the matrix Oμ
L ¼

γμðI − γ5Þ is the weak matrix with the left chirality. The
summation over μ is implied in Eq. (1). The Wilson
coefficients C2 (leading order) and C1 (subleading order)

are taken at the scale μ ¼ 1 GeV, on Λð4Þ
MS

¼ 435 MeV in
the NDR scheme from Ref. [3] (see Table XVIII):
C1 ¼ −0.625; C2 ¼ 1.361.
We should stress that the contribution of the QCD

penguin diagrams to the nonleptonic decays of the Λ0

hyperon is strongly suppressed in comparison with the
contribution of the current-current operators because the
Wilson coefficients C3 − C6 corresponding to the penguin
operators are suppressed at least by two orders of magni-
tude in comparison with the Wilson coefficients C1 and C2.
We present a comparison of the Wilson coefficients C1, C2

for the current-current operators and C3 − C6 for the QCD
penguins in Table I.
We will take into account both the SD diagrams and LD

diagrams contributions. In general, the SD diagrams have

five different topologies generated by the W-exchange
between two quarks as shown in Fig. 1. Note the
W-exchange diagram III contributes to the S-wave ampli-
tude, because the light diquark loop with weak nonleptonic
vertex contains the Dirac structure proportional four-
dimensional Levi-Cevita tensor ϵα;β;ρ;σ, which produces
S-wave amplitude due to contracting with to the fermion
line containing two quark propagators and γ5 Dirac matrix
(due to pion coupling to u=d quarks). One should stress that
the contribution of the diagram III to the S-wave amplitude
could vanish in some limiting cases. For example, in
Refs. [13,58] it occurs when a static approximation for
baryon wave functions or light quark propagators is used.
In the present paper we go beyond static approximation.
In addition to the SD diagrams we calculate the pole

diagrams as shown in Fig. 2 by account for the lowest-lying
resonances with spin 1=2 and 0.
In Table II we display the quantum numbers, mass

values, and interpolating currents of baryons needed in this
paper. Note that the forms of interpolating currents are not
unique. The different form may be transformed to each
other by using the Fierz transformations. We do not display
the overall flavor factors because they will be recovered due
to T-product operation of the quark fields.
We are going to calculate the matrix elements of the

above-mentioned nonleptonic decays in the framework of
the covariant confined quark model (CCQM) developed in
our previous papers. The starting point is the Lagrangian
describing couplings of the baryon field with its interpolat-
ing quark current:

LðxÞ ¼ gBðB̄ðxÞ · JðxÞ þ J̄ðxÞ · BðxÞÞ; ð2Þ

where J̄ ¼ J†γ0 is the Dirac conjugate current. The
coupling constant gB is determined from the normalization
condition called compositeness condition.
The nonlocal version of the interpolating currents shown

in Table II reads

JBðxÞ ¼
Z

dx1

Z
dx2

Z
dx3FBðx; x1; x2; x3Þεabc

× Γ1qa1ðx1Þðqb2ðx2ÞCΓ2qc3ðx3ÞÞ;

FB ¼ δð4Þ
�
x −

X3

i¼1

wixi

�
ΦB

�X

i<j

ðxi − xjÞ2
�
; ð3Þ

TABLE I. Wilson coefficients.

C1 C2 C3 C4 C5 C6

−0.2632 1.0111 −0.0055 −0.0806 0.0004 0.0009

FIG. 2. The pole diagrams which effectively account for the
long-distance contributions.
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where wi ¼ mi=ð
P

3
j¼1 mjÞ andmi is the quark mass at the space-time point xi, and Γ1, Γ2 are the Dirac strings of the initial

and final baryon states as specified in Table II. For simplicity and calculational advantages we mostly adopt a Gaussian form
for the functions ΦB, i.e., we write

ΦBð
X

i<j

ðxi − xjÞ2Þ ¼
Z

dq1
ð2πÞ4

Z
dq2
ð2πÞ4 e

−iq1ðx1−x3Þ−iq2ðx2−x3ÞΦ̃Bð−Ω⃗2Þ;

Φ̃Bð−Ω⃗2Þ ¼ exp ðΩ⃗2=Λ2
BÞ; Ω⃗2 ¼ 1

2
ðq1 þ q2Þ2 þ

1

6
ðq1 − q2Þ2 ¼

2

3

X

i≤j
qiqj; ð4Þ

where ΛB is the size parameter for a given baryon with values of the order of 1 GeV. The size parameter represents the
extension of the distribution of the constituent quarks in the given baryon.

III. MATRIX ELEMENTS, HELICITY AMPLITUDES, AND RATE EXPRESSIONS

The matrix element of the decay 1
2
þ → 1

2
þ þ 0− is written as

MðB1 → B2 þMÞ ¼ MSDðB1 → B2 þMÞ þMLD1
ðB1 → Bres → B2 þMÞ þMLD2

ðB1 → B0
res þM → B2 þMÞ: ð5Þ

Here

MSD ¼ i4ūðp2ÞΓB1B2Mðp1; p2; qÞuðp1Þ;

ΓB1B2M ¼ gB1
gB2

gM

Z
dxe−ip1x

Z
dyeip2y

Z
dveiqv

Z
dzhTfJB2

ðyÞHeffðzÞJMðvÞJ̄B1
ðxÞgi0; ð6Þ

MLD1
¼ i6

Z
d4k

ð2πÞ4i ūðp2ÞΓBresMB2
ðk; p2; qÞSBres

ðkÞΓB1Bres
ðp1; kÞuðp1Þ;

ΓBresMB2
¼ gBres

gMgB2

Z
dξ2e−ikξ2

Z
dyeip2y

Z
dveiqvhTfJB2

ðyÞJMðvÞJ̄Bres
ðξ2Þgi0

ΓB1Bres
¼ gB1

gBres

Z
dxe−ip1x

Z
dξ1eikξ1

Z
dzhTfJBres

ðξ1ÞHeffðzÞJ̄B1
ðxÞgi0 ð7Þ

MLD2
¼ i6

Z
d4k

ð2πÞ4i ūðp2ÞΓBresB2
ðk; p2ÞSBres

ðkÞΓB1MBres
ðp1; k; qÞuðp1Þ;

ΓBresB2
¼ gBres

gB2

Z
dξ2e−ikξ2

Z
dyeip2y

Z
dzhTfJB2

ðyÞHeffðzÞJ̄Bres
ðξ2Þgi0

ΓB1MBres
¼ gB1

gMgBres

Z
dxe−ip1x

Z
dveiqv

Z
dξ1eikξ1hTfJBres

ðξ1ÞJMðvÞJ̄B1
ðxÞgi0 ð8Þ

TABLE II. Quantum numbers and interpolating currents of baryons.

Baryon JP Interpolating current Mass (MeV)

Λ0 1
2
þ εabcsaðubCγ5dcÞ 1115.683� 0.006

Σþ 1
2
þ εabcγμγ5saðubCγμucÞ 1189.37� 0.07

Σ0 1
2
þ εabcγμγ5saðubCγμdcÞ 1192.642� 0.024

Δ0 3
2
þ εabcfuaðdbCγμdcÞ − i

2
γνuaðdbCσμνdcÞg 1231.3� 0.6

Σ�þ 3
2
þ εabcfsaðubCγμucÞ − i

2
γνsaðubCσμνucÞg 1382.80� 0.35

Σ�0 3
2
þ εabcfsaðubCγμdcÞ − i

2
γνsaðubCσμνdcÞg 1383.7� 1.0

p 1
2
þ εabcfð1 − xÞγμγ5daðubCγμucÞ − x

2
σμνγ5daðubCσμνucÞg 938.2720813� 0.0000058

n 1
2
þ εabcfð1 − xÞγμγ5uaðdbCγμdcÞ − x

2
σμνγ5uaðdbCσμνdcÞg 939.5654133� 0.0000058
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In our approach the building blocks Γ are represented by a set of the Feynman diagrams shown in Fig. 3 for the SD
contributions and in Fig. 4 for the LD contributions.
By going to the momentum space in the above building blocks, one gets

ΓB1B2Mðp1; p2; qÞ ¼ ið2πÞ4δðp1 − p2 − qÞGFffiffiffi
2

p VCKMΓ̃B1B2Mðp1; p2Þ;

ΓB1Bres
ðp1; kÞ ¼ ið2πÞ4δðp1 − kÞGFffiffiffi

2
p VCKMΓ̃B1Bres

ðp1Þ;

ΓBresMB2
ðk; p2; qÞ ¼ ið2πÞ4δðk − p2 − qÞGFffiffiffi

2
p VCKMΓ̃BresMB2

ðk; p2Þ;

ΓBresB2
ðk; p2Þ ¼ ið2πÞ4δðk − p2Þ

GFffiffiffi
2

p VCKMΓ̃BresB2
ðp2Þ;

ΓB1MBres
ðp1; k; qÞ ¼ ið2πÞ4δðp1 − k − qÞGFffiffiffi

2
p VCKMΓ̃B1MBres

ðp1; kÞ; ð9Þ

where VCKM ¼ VudV�
us. The Wilson coefficients C1 and C2

appear in the combinations C2 þ ξC1 for charged mesons
and C1 þ ξC2 for neutral mesons (ξ ¼ 1=Nc) in the case of
the tree diagrams Ia and Ib. In the case of other diagrams
including the pole diagrams they appear in the combina-
tions C2 − C1. The details of calculation of two- and three-
loop quark diagrams in CCQM may be found in our
previous papers (see Refs. [4–14]).
Let us discuss some subtleties of calculation of the pole

diagrams. There are contributions from the 1
2
þ resonances

(neutron and Σþ). Note that the 3
2
þ resonances (Δ0 and Σ�þ)

do not contribute to the amplitude due to the KPW theorem
[59,60]. This theorem states that the contraction of the
flavor-antisymmetric current-current operator with a flavor-
symmetric final state configuration is zero in the SU(3)
limit. The antisymmetric ½us� diquark emerging from the
weak vertex is in the 3� representation and cannot evolve

into the 6 representation of the symmetric final-state fusg
diquark.
The propagator of the 1

2
þ resonances is the ordinary Dirac

propagator,

SðpÞ ¼ 1

mres − =p
¼ mres þ =p

m2
res − p2

: ð10Þ

Let us consider in detail the calculation of the Λ →
pþ π− process which goes via neutron and Σþ resonances.
Recalling Eqs. (7) and (8) one has

MLD1;2
¼ ið2πÞ4δðp1 − p2 − qÞGFffiffiffi

2
p VCKMM̃LD1;2;

ð11Þ

where

M̃LD1
¼ −ūðp2ÞΓ̃nπpðp1; p2ÞSnðp1ÞΓ̃Λnðp1Þuðp1Þ; ð12Þ

M̃LD2
¼ −ūðp2ÞΓ̃Σþpðp2ÞSΣþðp2ÞΓ̃ΛπΣþðp1; p2Þuðp1Þ:

ð13Þ

By using the Dirac equations of motion ūðp2Þp2 ¼
m2ūðp2Þ and =p1uðp1Þ ¼ m1uðp1Þ one can get

FIG. 4. Feynman diagrams describing the building blocks of
pole contributions.FIG. 3. Feynman diagrams describing the SD contributions.
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ūðp2ÞΓ̃nπpðp1; p2Þ ¼ ūðp2Þγ5ðCnπp þ =p1DnπpÞ; Γ̃Λnðp1Þuðp1Þ ¼ ðAΛn þ γ5BΛnÞuðp1Þ;
ūðp2ÞΓ̃Σþpðp2Þ ¼ ūðp2ÞðAΣþp þ γ5BΣþpÞ; Γ̃ΛπΣþðp1; p2Þuðp1Þ ¼ γ5ðCΛπΣþ þ =p1DΛπΣþÞ:

Finally, we arrive at the invariant matrix elements for the pole diagrams with intermediate 1
2
þ resonances. One has

M̃LD1
≡ M̃n ¼ ūðp2ÞðAn þ γ5BnÞuðp1Þ;

An ¼ −
BΛnðCnπp −mΛDnπpÞ

mn þmΛ
; Bn ¼ −

AΛnðCnπp þmΛDnπpÞ
mn −mΛ

;

M̃LD2
≡ M̃Σ ¼ ūðp2ÞðAΣ þ γ5BΣÞuðp1Þ;

AΣ ¼ −
BΣþpðCΛπΣþ −mpDΛπΣþÞ

mΣ þmp
; BΣ ¼ −

AΣþpðCΛπΣþ þmpDΛπΣþÞ
mΣ −mp

: ð14Þ

The calculation of the A and B amplitudes appearing in the
decay Λ → nþ π0 proceeds in an analogous manner. The
pole diagram with the kaon resonance contributes only to
the structure which is proportional to γ5. Numerically, they
are negligibly small.
It is well known that the P-wave amplitude B is

dominated by the low-lying 1=2þ resonances whereas their
contributions are tiny to the S-wave amplitude A. The
invariant amplitudes A and B may be converted to a set of
helicity amplitudes Hλ1λM as described in [58]. One has

HV
1
2
t
¼ ffiffiffiffiffiffiffi

Qþ
p

A; HA
1
2
t
¼

ffiffiffiffiffiffiffi
Q−

p
B; ð15Þ

where m� ¼ m1 �m2, Q� ¼ m2
� − q2.

We show in Fig. 5 the behavior of the helicity amplitudes
as a function of the size parameter Λs. One can clearly see
that the S-wave amplitudes are almost zero.
It is widely accepted that S-wave amplitude is saturated

by the 1
2
− resonances, see, e.g., Refs. [61–66]. Ordinarily,

their contributions are calculated by using the well-known

soft-pion theorem in the current-algebra approach. It allows
one to express the parity-violating S-wave amplitude in
terms of parity-conserving matrix elements. In our case,
one has, see, e.g., [66]

A1=2−ðΛ → pþ π−Þ ¼ 1

fπ
AΛn;

A1=2−ðΛ → nþ π0Þ ¼ 1
ffiffiffi
2

p
fπ

AΛn; ð16Þ

where fπ is the leptonic pion decay constant. Here we adopt
our convention of signs.
Finally, the transition 1

2
þ → 1

2
þ þ 0− amplitude is written

in terms of invariant amplitudes as

hB2PjHeff jB1i ¼
GFffiffiffi
2

p VCKMūðp2ÞðAþ γ5BÞuðp1Þ; ð17Þ

where A and B include all relevant contributions dis-
cussed above.
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Λ (GeV)

-0.5

-0.4

-0.3

-0.2

-0.1

0

neutron-PI
neutron-P5

0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45
Λ (GeV)

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

neutron-PI
neutron-P5

FIG. 5. Dependence of the helicities PI ≡HV
1=2t and P5≡HA

1=2t on the size parameter in the case of the neutron resonance. Left panel:
the decay Λ → pþ π; right panel: the decay Λ → nþ π.
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The two-body decay widths read

ΓðB1 → B2 þ PÞ ¼ G2
F

32π

jp2j
m2

1

jVCKMj2HS;

HS ¼ 2ðjHV
1
2
t
j2 þ jHA

1
2
t
j2Þ; ð18Þ

where jp2j ¼ λ1=2ðm2
1; m

2
2; q

2Þ=ð2m1Þ.

IV. NUMERICAL RESULTS

Our covariant constituent quark model contains a number
of model parameters which have been determined by a global
fit to a multitude of decay processes. The values of the
constituent quarkmassesmq are taken from the last fit in [67].
In the fit, the infrared cutoff parameter λ of themodel has been
kept fixed as found in the original paper [68]. One has

mu ms mc mb λ
0.242 0.428 1.672 5.046 0.181 GeV

ð19Þ

The size parameters of light mesons were fixed by fitting the
data on the leptonic decay constants. The numerical values of
the size parameters and the leptonic decay constants for pion
and kaon are shown in Eq. (20).

Meson ΛMðGeVÞ fMðMeVÞ fexptM ðMeVÞ
Pion 0.871 130.3 130.0� 1.7

Kaon 1.014 156.0 156.1� 0.8

ð20Þ

In case of the nucleons, the best description of magnetic
moments, electromagnetic radii, and form factors is achieved
in [69] for a superposition of theV and T currents of nucleons
according toTable IIwith x ¼ 0.8 andΛN ¼ 0.5 GeV.TheΛ
size parameter is the only adjustable parameter. In Fig. 6 we
plot the dependence on this parameter of two branching rates
Λ → pþ π− and Λ → nþ π0. One can see that the theo-
retical curves fit the data for Λ ≈ 0.355 GeV in both decays
simultaneously. The givenvalue of 0.355GeVdiffers from the
value of 0.492 GeV fixed in our previous paper [70] by fitting
the experimental data on the magnetic moment of the Λ
hyperon. The point is that the calculated branching fractions
depend very strongly on the size parameter Λ as one can see
from Fig. 6. Contrary, the magnetic moment of theΛ hyperon
calculated in the indicated paper depends very weakly on this
parameter. We have taken our old FORTRAN code and
recalculated its value for 0.355 GeV. We found that μΛ ¼
−0.74 for 0.355 GeV, which is very close to the old result,
μΛ ¼ −0.73 for 0.492 GeV.
For comparison, we plot the SD contributions coming

from the diagrams with topologies Ia (charged pion), Ib

(neutral pion), and IIa, IIb, and III (all two modes). It is
readily seen that their contributions are relatively less than
those coming from the pole diagrams. However, the
calculation of those diagrams is time-consuming because
it involves the analytical and numerical calculation of three
loops. The most significant contributions among the pole
diagrams are coming from the diagrams with intermediate
neutron resonance with mass closest to the Λ resonance.
The contribution from the pole diagram with intermediate
kaon resonance is negligibly small.
In Tables III–VI the numerical results of ASD, ALD and

BSD, BLD at Λ ¼ 0.355 GeV are shown. One can see that
the B amplitudes dominate over A amplitudes. The SD
contributions are suppressed almost by one order of
magnitude comparison with the LD contributions. The
numerical results for the full amplitudes are written down.

Λ → pπ−∶ A ¼ ASD þ ALD ¼ þ0.124 GeV2; B ¼ BSD þ BLD ¼ −3.042 GeV2:

Λ → nπ0∶ A ¼ ASD þ ALD ¼ þ0.087 GeV2; B ¼ BSD þ BLD ¼ −2.059 GeV2: ð21Þ

0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45
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FIG. 6. Dependence of the nonleptonic Λ decay widths on its
size parameter.
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V. SUMMARY AND CONCLUSION

We have studied two-body nonleptonic decays of light
lambda hyperon Λ → pπ−ðnπ0Þ with account for both
short- and long-distance effects. The short-distance effects
are induced by five topologies of external and internal weak
W interactions, while long-distance effects are saturated by
an inclusion of the so-called pole diagrams. Pole diagrams
are generated by resonance contributions of the low-lying
spin 1

2
þ (nucleon and Σ) and spin 1

2
− baryons. The last

contributions are calculated by using the well-known soft-
pion theorem. The spin 3

2
þ resonances do not contribute to

the amplitude due to the Körner-Pati-Woo theorem. The
contributions from the intermediate K meson is also
negligibly small. From our previous analysis of heavy
baryons we have known that short-distance effects induced
by internal topologies are not suppressed in comparison
with external W-exchange diagrams and must be included
for description of data. Here, in the case of Λ decays we
have found that the contribution of the SD diagrams is
sizably suppressed, almost by one order of magnitude in

comparison with data, which are known with quite good
accuracy. The most significant contributions are coming
from the intermediate 1

2
þ and 1

2
− resonances. The contri-

bution from the kaon resonance is negligibly small.
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TABLE III. SD contributions to the amplitudes A and B of the decay Λ → pπ− in units of GeV2.

Amplitudes Ia IIa IIb III Sum (SD)

ASD −0.372 × 10−1 0.269 × 10−3 0.300 × 10−1 0.213 × 10−1 0.144 × 10−1

BSD −0.345 −0.116 0.167 −0.452 −0.746

TABLE IV. LD contributions to the amplitudes A and B of the decay Λ → pπ− in units of GeV2.

Amplitudes n Σþ K K� 1
2
− (Soft pion) Sum (LD)

ALD −2.13 × 10−3 −9.54 × 10−3 0 2.61 × 10−2 0.869 × 10−1 1.10 × 10−1

BLD −2.55 2.26 × 10−1 2.82 × 10−2 0 0 −2.296

TABLE V. SD contributions to the amplitudes A and B of the decay Λ → nπ0 in units of GeV2.

Amplitudes Ib IIa IIb III Sum (SD)

ASD −0.120 × 10−1 0.190 × 10−3 0.211 × 10−1 0.150 × 10−1 0.243 × 10−1

BSD −0.112 −0.82 × 10−1 0.119 −0.319 −0.394

TABLE VI. LD contributions to the amplitudes A and B of the decay Λ → nπ0 in units of GeV2.

Amplitudes n Σ0 K K� 1
2
− (Soft pion) Sum (LD)

ALD −1.52 × 10−3 −6.58 × 10−3 0 8.44 × 10−3 6.24 × 10−2 0.627 × 10−1

BLD −1.83 1.56 × 10−1 0.902 × 10−2 0 0 −1.665
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