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Soft-photon radiative corrections to the e " p — e pl~1* process
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We calculate the leading-order QED radiative corrections to the process e~ p — ¢~ pl~I*" in the soft-
photon approximation, in two different energy regimes which are of relevance to extract nucleon
structure information. In the low-energy region, this process is studied to better constrain the hadronic
corrections to precision muonic hydrogen spectroscopy. In the high-energy region, the beam-spin
asymmetry for double-virtual Compton scattering allows us to directly access the generalized parton
distributions. We find that the soft-photon radiative corrections have a large impact on the cross sections
and are therefore of paramount importance to extract the nucleon structure information from this process.
For the forward-backward asymmetry, the radiative corrections are found to affect the asymmetry only
around or below the 1% level, whereas the beam-spin asymmetry is not affected at all in the soft-photon
approximation, which makes them gold-plated observables to extract nucleon structure information in

both the low- and high-energy regimes.

DOI: 10.1103/PhysRevD.104.073007

I. INTRODUCTION

Double-virtual Compton scattering (dVCS) on a proton,
the process y*p — y* p with initial and final virtual photons
(y*), is a prime process to study and test models describing
the electromagnetic structure of the nucleon beyond the
information contained in the elastic form factors.

At low energies, it allows us to extract nucleon structure
constants, which enter the expansion of the nucleon
Compton amplitude. The real Compton scattering limit,
the process yp — yp with both photons real, has been
used over many years as an experimental tool to access
the nucleon electromagnetic polarizabilities, see, e.g.,
Ref. [1-4] for reviews. The virtual Compton scattering
(VCS) process, y*p — yp with initial spacelike virtual
photons, which can be accessed as a subprocess of the
e~ p — e~ py reaction, has also been studied extensively
over the past three decades to access the generalized
nucleon polarizabilities [1,5-7]. These structure quantities
allow us to obtain, through a Fourier transform, a spatial
representation of the deformation of the charge and
magnetization distributions of the nucleon under the
influence of an external static electromagnetic field [8].

The most general case of a double-virtual Compton
process, with both initial and final virtual photons, has until
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now been studied only in special limits. The most useful
extension is given by the forward double-virtual Compton
scattering (VVCS) process, where the initial and final
photons have the same nonzero spacelike virtuality. In
contrast to the processes discussed above, the forward
VVCS process is not directly measurable. It enters however
in the leading hadronic corrections to the muonic hydrogen
Lamb shift and hyperfine splitting. The interest in its
improved estimate was spurred in 2010 by the ultraprecise
determination of the proton charge radius from the muonic
hydrogen Lamb shift measurements [9], which reported a
4% smaller radius value than the 2010 recommended value
by the Committee on Data for Science and Technology [10]
based on results from electron-proton scattering and ordi-
nary hydrogen spectroscopy measurements, and represents
a 7o difference. Over the past decade, major progress has
been made in resolving this puzzle, see Refs. [11-13] for
some recent reviews. The dominant theoretical model error
in the extraction of the proton charge radius from the
muonic hydrogen Lamb shift measurements to date results
from the subtraction function entering the VVCS process
[14-16]. At second order in the photon virtuality, this
function is constrained by the magnetic polarizability,
which is determined experimentally [17]. To fourth order
in the photon virtuality, one low-energy constant in this
subtraction function is at present empirically unconstrained
[18], and one relies on chiral effective field theory
calculations [15,19] or phenomenological estimates [20].
In Ref. [21], it was proposed to access this low-energy
nucleon structure constant empirically through the forward-
backward asymmetry in the e”p — e~ pl~[* process, with
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[=e or | =p The dVCS amplitude contributing to
that process, y*p — y*p, has an incoming photon with
spacelike virtuality and an outgoing photon with timelike
virtuality.

A second kinematical region in which the virtual
Compton processes are being used as a prime tool to study
the partonic structure of the nucleon is at high energies, for
near-forward kinematics, either through the e p — e py
process with initial spacelike photons with large virtuality,
the deeply virtual Compton scattering process (DVCS), or
through the dilepton photoproduction process yp — [~ p
with outgoing timelike photons with large virtuality, the
timelike Compton scattering (TCS). In such a kinematical
regime, pertubative quantum chromodynamics (QCD)
allows us to express the proton structure entering the
DVCS and TCS processes through generalized parton
distributions (GPDs), which access the correlation between
the longitudinal momentum distribution of partons in a
proton and their two-dimensional transverse spatial distri-
butions. We refer the reader to Refs. [22-25] for the
original articles on GPDs and to Refs. [26-31] for reviews
of the field. Accessing the resulting three-dimensional
momentum-spatial distributions of valence quarks in a
nucleon through exclusive processes has been one of the
driving motivations for the JLab 12 GeV upgrade [32].
Furthermore, accessing the sea quark and gluonic structure
of nucleons and nuclei through such processes is one of the
main science questions that will be addressed at the future
Electron-Ion Collider machine [33].

A further extension of either the DVCS or TCS process in
the high-energy near-forward region has been proposed
through the e~ p — e~ pl~I" reaction (with [~ either an e~
or u~), which accesses the double deeply virtual Compton
scattering (DDVCS) process with incoming spacelike pho-
tons and outgoing timelike photons. The DDVCS process
is of particular interest as it allows us to extend the DVCS
beam-spin asymmetry measurements, which directly access
GPDs, into the so-called Efremov-Radyushkin-Brodsky-
Lepage (ERBL) domain [34,35]. A feasibility study of the
DDVCS experiment has shown that the SoLID @JLab project
with its high luminosity and large acceptance is very
promising to perform such measurements [36].

In order to use the e~ p — e~ pl~I" reaction as a tool of
proton structure, it is imperative to quantitatively estimate
the QED radiative corrections to this process, which is the
main objective of the present work. Our work extends
previous studies of radiative corrections for the VCS
process [37], as well as more recently for the TCS process
[38-40]. In Ref. [40], it was found for the yp — [TI p
process that the relevant asymmetries to extract the real
and imaginary parts of the TCS amplitudes, the forward-
backward and beam-helicity asymmetries, are nearly unaf-
fected by the radiative corrections. Very recently, the first
experimental results for these TCS asymmetries have
been reported by the CLAS Collaboration at JLab [41].

In contrast to the asymmetries, the TCS cross sections
receive sizeable corrections: in the low-energy region up to
10% and in the high-energy kinematical region up to 20%.
As for the single spacelike or single timelike Compton
scattering cases, it is crucial to have a good quantitative
understanding of radiative corrections also in the double-
virtual case in order to be able to extract relevant informa-
tion about the proton structure from future experimental
data. As a first estimate of the size of radiative corrections,
we use the soft-photon approximation in this work. We
distinguish between three different gauge-invariant types
of corrections, from which one contributes to the VCS case,
a second one contributes to the TCS case, both of which
are obtained as limits of our work, and a third type of
correction which is new for the double-virtual case. We
study the size of these corrections on the level of unpo-
larized cross sections as well as on the forward-backward
and beam-spin asymmetries.

The outline of the present paper is as follows. In Sec. II,
we introduce the relevant Feynman diagrams at tree level.
We distinguish between two different contributions: the
Bethe-Heitler and the Compton scattering processes. In
Sec. III, we introduce the two different nucleon structure
models which we use to describe the dVCS amplitude. In
the low-energy regime, we calculate the contribution from
the Born process in terms of the protons form factors as
well as the A(1232) resonance excitation in combination
with a low-energy expansion of the dVCS amplitude. In the
high-energy regime, we use the QCD factorization theorem
to express the dVCS amplitude in terms of GPDs. In
Sec. IV, we calculate the virtual radiative corrections in the
soft-photon approximation from the three gauge invariant
types of contributions. We give analytic expressions for the
finite and infrared divergent parts of all three contributions in
terms of a factorizing contribution on the cross section level.
In Sec. V, we calculate the contribution due to soft-photon
bremsstrahlung. Taking real radiation into account, we cross
check analytically the cancellation with the infrared diver-
gences from the virtual corrections. In Sec. VI, we show our
results for the observables in both the low- and high-energy
kinematical regimes. We conclude in Sec. VII. Technical
details are discussed in two Appendixes.

I1. DILEPTON ELECTROPRODUCTION
AT TREE LEVEL

In this work, we study the dilepton electroproduction
process,

e (k) + N(p) = e~ (K) + N(p') + 7(L) + 17(Ly), (1)

as a probe of proton (N) structure, with /™ either an e~ or a
4~, where the quantities in brackets denote the particle
four-momenta. At tree level, we distinguish between three
different contributions, which we denote as the spacelike
(SL) and timelike (TL) Bethe-Heitler (BH) processes, see
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FIG. 1. Tree level QED diagrams contributing to the e"p —

e~ pl~I" process. We distinguish between the spacelike (left) and
the timelike (right) Bethe-Heitler processes. The crossed dia-
grams, for which in the spacelike process the order of the vertices
on the produced dilepton line are interchanged, and for which in
the timelike process the order of the vertices on the electron beam
line are interchanged, are not shown.

p p

FIG. 2. Tree level diagrams for the Compton scattering. The
blob represents the (elastic and inelastic) interaction of the virtual
photon with the nucleon.

Fig. 1, as well as the double-virtual Compton process
(dVCS), see Fig. 2.

To specify the kinematics, it is useful to introduce the
following four-momenta:

g=k-k. ¢d=1+1, A=p'—-p (2

The process (1) is defined by eight kinematical invariants,
which we choose as

s=(k+p)? QO =-(k=-K),
W2=(qg+p) =A%
S = qlz’ q)’979 d)T’ (3)

where @ denotes the angle of the initial electron plane
relative to the production plane. Furthermore, the angle
0; (¢]) denotes the polar (azimuthal) angle, respectively, of
the negative lepton in the rest frame of the /=/" lepton pair.
In Fig. 3, we show the three different scattering planes
defined by these angles.

We denote by m the mass of the electron, by m; the mass
of the produced leptons, and by M the mass of the proton.
The on-shell relations of the external particles are therefore

FIG. 3. Planes defining the scattering angles which characterize
the e”p — e~ pl~I" process. The angles @ and ¢; are defined
with respect to the blue plane, which is the scattering plane of the
virtual photons with four-momenta g and ¢'.

K = k" = m?, P =P=m, p?=p'* =M

4)

and the invariant s is obtained from the laboratory frame

(Lab) electron beam energy E, as s = M?> + m?> + 2ME,.
The matrix element for the spacelike Bethe-Heitler

(BH,SL) process (left diagram in Fig. 1) is given by

—iet
MESSY = == alk' W)y u(k h)

0t
_ -—4q-+
xa(l_.h_) [}’MHT%M

a%h} (L hy)

x N(p',s"\T'*(p', p)N(p, s), (5)

17,

while the timelike Bethe-Heitler (BH,TL) process (right
diagram in Fig. 1) is given by

;4
MBS = (1 h ) o(ly.hy)
’ Si

X ﬁ(k/, h/) |:y;¢ m},{z
xN(p'.s")l*(p', p)N(p.s). (6)

+7.

In Egs. (5) and (6), h(h') denotes the helicities of the initial
(scattered) electrons. Also, 4_ and &, are the helicities of
the produced lepton pair, and s(s”) are the helicities of the
initial (final) proton, respectively. Furthermore, I'* is the
electromagnetic nucleon vertex given by
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ic% Ay

T“(p'. p) = Fi()y* + Fy(1) T

(7)

where F'| (F,) are the Dirac (Pauli) form factors (FFs) of
the nucleon, respectively.

The matrix element for the double-virtual Compton
scattering (dVCS) process (Fig. 2) is expressed as

ie*
MBS = ek Wl (L B )
' Si
X N(p',s'"YM*N(p,s), (8)

where M* denotes the Compton tensor which depends on
the model to describe the interaction of photons with the
nucleon, which is specified below.

In the case of e~e™ production, we have to take into
account that the electrons with momenta k' and I_ are
indistinguishable. Thus, for e~e™ production, we have to
consider, besides the direct (dir) contribution of Egs. (5),
(6), and (8), also the contribution of all exchange (ex)
diagrams where both electrons in the final state are
interchanged. The Bethe-Heitler matrix elements corre-
sponding with these exchange terms are given by (note that
this only contributes in the case m; = m)

;4

BH.SL e -

o =—————u(l_, h_)yu(k, h

0;ex (k—l_)ztu( )}/ I/t( )
-—g+m

<
k= tm ]

(k _ q,>2 _ mz y,uj| (l+’ h+)

X N(p',s"T*(p', p)N(p. s), )

. 4
BH.TL e
M =

0;ex - (l+ T k/)Zt
_ K+dq +m
I_, h_ TR —
Xl/t( )|:Y/t (k’+q/)2_m2y

x N(p'.s"\T*(p'. p)N(p.s). (10)

Va

+7a

a(k' 1)y o(l, b))

+r

and the exchange term corresponding with the dVCS
matrix element is given by

dves —ie*
Moo = =020, 1 0)
x (kK W), 0(le k) x N(p' s )M#N(p. s).
(11)
To ensure the Pauli principle, one has to antisymmetrize
the amplitude under exchange of both electrons in the

si(l_, h_)y,u(k, h)

final state. Therefore, the full matrix elements for the
e"p — e pe~el process are obtained as the difference
between the amplitudes for direct (dir) and exchange (ex)
diagrams,

BH,SL __ BH.SL __ BH,SL
MERSE = MBISE — pqBIS

0;ex
BH,TL __ BH,TL BH,TL
MO - MO;dir - MO;ex ’
dvCs _ dvCs dvCs
MO - MO;dir - MO;ex ’ (12)

while for p~ut production only the direct diagrams
contribute.

The full differential cross section forthe e"p — e~ pl~I*+
process is given by

(o)
dQ?dW?dddrds;dQ; /
1 1
(47)7 2(s — M?)?

ﬂsn
[(W+M)?+ 0)((W = M)* + 0*)]:

L BH.SL BH.TL
x sz: IMG™SE 4+ MEPTE 4 pmgves
1

2

. (13)

where dQ; refers to the phase space of the produced lepton
of the dilepton pair in the /~/* rest frame, and where f3, is
the lepton velocity in the /[T rest frame,

4m?
By, = 1|1 - Tzl (14)

III. MODELS FOR THE DOUBLE-VIRTUAL
COMPTON AMPLITUDE

The double-virtual Compton tensor M** entering Eq. (8)
is calculated from the process

r*(q) + N(p) = r*(¢') + N(p"). (15)

We show the Feynman diagram for this process in Fig. 4.
The blob in this diagram represents the interaction of the
incoming and outgoing virtual photons with the proton. In
the following, we use the average photon (g) and proton (P)
momenta,

q, p q,v

/

p p

FIG. 4. Diagram representing the double-virtual Compton
process.
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(p+p). (16)

| =

(g +4), P=

| =

q=

The general double-virtual Compton tensor M** can be
constructed using ¢*, ¢, p*, ¢"*, and y* as building blocks.
From these blocks, one finds 34 independent tensors with
two indices [42]. Using gauge invariance, it was shown that
the number of independent amplitudes can be reduced from
34 to 18 [42]. However, it was realized in Ref. [42] that
there is, in general, a problem in such representation. For
specific kinematical points, the 18 tensors become linearly
dependent and therefore do not form a basis at these
specific points anymore. As a result the corresponding
Compton amplitudes display kinematic singularities at
these points. To bypass this problem, Tarrach [42] intro-
duced an overcomplete basis by introducing three addi-
tional tensors. Such an overcomplete basis does not have
any kinematical constraints and is valid in the whole phase
space. It was realized in Ref. [43] that the kinematic
singularities and constraints of the Compton amplitude
in a minimal basis are due to the Born terms, in which the
intermediate state in the Compton process in Fig. 4 is a
nucleon, and that for the non-Born contributions a minimal
tensor basis consisting of 18 structures free of kinematical
singularities and constraints exists.

In this work, we only need the helicity-averaged ampli-
tude, which is described by five independent tensors and
can be expressed as, following the notations of [43],

M = Bi(v.q*.q".q- 4T,  (17)
i=1,2,3.4,19

where T are the spin-independent and gauge invariant
tensors, symmetric under exchange of the two virtual
photons, and are given by

TV =-q-4'¢" + 4" ¢".

v , 4"
T :(2My)2<—g” +q_q,>

.P .P
_4q.ql<Pﬂ_q /q//t)(Pb_q /qu)’
q-q q-q
Y = ¢*4"¢" + q- 4'9"9" - ¢*q"4" - ¢*¢"¢".

o oo 4M
Ty = (2Mv)(q> +47°)| ¢ ;
q-q

q-P

+ 2<P" Ty d q’”) (-4¢" +q-4'q")

P
+2 <P” - —Z 7 q”) (-¢*q" +q-4'q").

P qg-P
—q”> (P” e q’”>~ (18)

iy =™ (P -

Furthermore, in Eq. (17), the invariant amplitudes B; are
functions of four Lorentz invariants, with v =g¢q - P/M.

In order to specify the double-virtual Compton ampli-
tude, we need to model the internal structure of the nucleon.
In this work, we consider two different models, which are
tailored for applications in two different energy regimes. In
a low-energy model, which is motivated for applications to
describe the hadronic structure in precision atomic physics
measurements such as the Lamb shift or hyperfine splitting
in muonic hydrogen, we consider the photons to interact
with the nucleon and its lowest excitation, the A(1232)
resonance. In a high-energy model, in which at least one of
the photons is highly virtual, we use perturbative QCD
which allows us to factorize the Compton process on the
nucleon in terms of a Compton amplitude on the quark
convoluted with the amplitude to find the quarks inside the
nucleon. The latter is parametrized through generalized
parton distributions (GPDs).

A. Low-energy double-virtual Compton amplitude

1. Born diagrams

In the low-energy regime, we describe the Compton
tensor in terms of the leading Born (B) amplitude, given in
terms of the proton form factors. The amplitude can be
calculated from two Feynman diagrams shown in Fig. 5
(upper panel). Its contribution is given by

V-d+M ., (19)

prHg+M .
(p'—q)*-m* "

where T (1“;) are the initial (final) state proton vertices.
Note that the FFs entering I'; correspond with a timelike
virtuality. For the numerical evaluation of these FFs, we use
the parametrization of Ref. [44], which allows the analyti-
cal continuation based on dispersion relations into the
unphysical part of the timelike region, 0 < ¢’> < 4M?>.
Note that in this region no direct experimental extraction
exists.

e PN

pa

FIG. 5. Born contribution (upper panel) and s-channel A-pole
contribution (lower panel) to the Compton amplitude. While for
the Born contribution only the sum of s- and u-channel diagrams
is gauge invariant, the s-channel A-pole contribution is gauge
invariant by itself.
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2. A-Pole model

In addition to the Born amplitude, we need a model for
the non-Born contribution at low energies. The covariant
baryon chiral perturbation theory (BChPT) provides a
systematic framework for the calculation of the double-
virtual Compton scattering process, see Ref. [18]. The latter
work has shown that BChPT is fully predictive at orders
O(p?) and O(p*/A), in which p stands for a small
momentum and with A = M, — M the excitation energy
of the A(1232) resonance. The O(p?) contribution comes
from the pion-nucleon (zN) loops, and the O(p*/A)
contribution comes from the delta-exchange (A-pole)
graph, which is shown in Fig. 5 (lower panel), and the
pion-delta (zA) loops.

For the near-forward real Compton cross section (i.e.,
integrated over a dilepton phase space), it was found that
around W = 1.25 GeV the Born + A(1232)-pole contribu-
tion reproduces a full dispersive calculation based on
empirical structure functions within an accuracy of 5% or
better [21]. As we consider in this work kinematics around
the A(1232) resonance, we study as a first step the effect due
to radiative corrections on the A(1232)-pole contribution.

The amplitude for the A-pole contribution to the double-
virtual Compton tensor can be expressed as

(?—’— % =+ MA)(_gaﬂ + %7&7,5)
W2 — M3 + iMATA(W?)

xTna(p +4.p). (20)

My = f%m(l’/, p+aq)

In Eq. (20), the y*NA vertex is denoted by F%A (pa>P)
and its adjoint by f%A( P, pa)- Both vertices are shown in
Fig. 6. They are given for the p — A" transition by

3(Mpa+M) )
s (pasp) = —7{9M(q2)l€ﬂ”“(m)m
e 2 MQ%

— 9e(@*) (@ s —q- Pad™)rs

- g9c(q?) MLA Pald’q" — 4> ™)
—7P(q- pag" - qu’i)]rs} (21)

and

8«
P DA DA 7’

lfIG. 6. The y*NA vertex F%A (left diagram) and its adjoint,
Iya (right diagram).

3 (M + M)

LA (Pl pa) = — 2 MQ? {QM(Q/Z)I'G(”M(PA)K‘I&

— 96(q”)(q" P4 — 4 - Pag™)7s

1
- 9c(q"?) TRG Pa(qq" — q"*g™)

—7(q" - paq"” — 4°P4)] } (22)

where we defined Q, = \/(M, &+ M)? — ¢° and likewise

', =+/(My £ M)>—g?. The FFs gy, gg and g¢
appearing in Eq. (21) have spacelike virtuality, whereas
the FFs in the adjoint vertex defined in Eq. (22) have to be
evaluated for timelike virtuality. We reexpress these FFs
in terms of the more conventional magnetic dipole (Gj},),
electric quadrupole (G%), and Coulomb quadrupole (G¢)
transition FFs as

0,
—_=* (G* —G* ,
Im M+MA( M k)
— o 2 M2 — M2 2\G* 2G+
QE——WMA@{( A~ M +47)Gr - ¢°Ge
Q 1 * *
9¢ = A= M ++1WA§{4M2AGE — (M3 = M? + ¢*)GE ),

(23)

with the so-called Ash FFs parametrized, for spacelike
virtuality Q% = —¢?, through the MAID2007 analysis
as [45,46]

Gi,(0?%) =3.00(1 + 0.010%)e 0832 Gp(Q?),

G3(Q%) = 0.064(1 — 0.0210%)e™019¢°G |, (Q?),

1401207 4M3e 029G, (0?)
14+4.90%/(4M?) M3 - M

G4(Q%) = 0.124

(24)

with QO in GeV and the dipole FF Gp(Q?) =
1/(1+ Q%/0.71)?. For small timelike virtualities,
0<qg?<(My—M)>? we extrapolate in Eq. (22) the
expressions for spacelike virtualities by the substitution
Q2 - — q/2‘

The dominant contribution is coming from the magnetic
dipole transition FF G7,. In the following, we use only that
dominant contribution, corresponding with the leading
term in the so-called & expansion [47], to calculate
observables; i.e., we set G = G = 0.

3. Low-energy expansion

The non-Born part of the dVCS amplitudes, denoted as
B, can be expanded for small values of v, g%, ¢’>, and g - ¢/,
with coefficients given by polarizabilities. The relations
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between these low-energy coefficients and the polarizabil-
ities measured through real Compton scattering (yp — yp)
and virtual Compton scattering (y*p — yp) have been
given in [18].

A special limit of the double-virtual Compton process is
given by its forward limit, denoted by VVCS, which
corresponds with ¢’ = ¢ and p’ = p. This limit is of
particular importance as it enters the two-photon hadronic
corrections to the electronic and muonic hydrogen energy
levels. The helicity averaged VVCS process is described by
two invariant amplitudes, denoted by 7'; and T',, which are
functions of the two kinematic invariants, Q2 and v, as

A A

1 UAU
{rrwe-Binwe) o)

o
Myyes =
em

with 3 =g —q"q" /4%, p* = p* — p - q/¢*¢", and where
Qe = €?/4m ~ 1/137. The optical theorem allows us to
express the imaginary parts of 7| and T, as

2
e
ImTZ(I/v QZ) = _I/FZ’ (26)

2 e’
ImT](D’Q):_Fla 4

4M
where F, F, are the conventionally defined structure
functions parametrizing inclusive electron-nucleon scatter-
ing, depending on Q? and x = Q?/2Mv. The two-photon
exchange correction to the yH Lamb shift can be expressed
as a weighted double integral over Q% and v of the forward
amplitudes 7| and T’ [14]. Using the empirical inputs of F;
and F,, the v dependence of T, can be fully reconstructed
using an unsubtracted dispersion relation, whereas the
dispersion relation for 7'y requires one subtraction, which
can be chosen at v =0 as 7,(0,Q%). The subtraction
function is usually split in a Born part, corresponding with
the nucleon intermediate state, and a remainder, so-called
non-Born part, denoted by T, (0, Q). The Born part can be
expressed in terms of elastic form factors and is well
known, see, e.g., [4] for the corresponding expressions. The
non-Born part cannot be fixed empirically so far. In general,
one can however write a low Q? expansion of T (0, Q?) as

_ 1
T:(0,0%) = O* + ETY(O)Q4 +0(0%), (27)

where the term proportional to Q? is empirically determined
by the magnetic dipole polarizability /3, [17]. Theoretical
estimates for the subtraction term were given at order Q* in
heavy-baryon chiral perturbation theory (HBChPT) [15], in
BChPT, both at leading order due to zN loops, and at next-
to-leading order, including both A(1232)-exchange and z7A
loops [18,19], as well as extracted from superconvergence
sum rule (SR) relations [20]. The different estimates for
T"(0) are compared in Table I. Even for these theoretically
well motivated approaches, the spread among the different
estimates is quite large. The resulting uncertainty due to this

TABLE 1. Estimates of the Q* term of the subtraction function
T,(0, Q?) (second column) and of the dVCS low-energy constant
b5 ¢ (third column), both in units 10~ fm?>, in different theoretical
approaches [18]. The indicated range for the HBChPT result
corresponds with the range given by Eq. (15) in Ref. [15].

Source Ref. 1T7(0) Aembi
HBChPT [15] [-1.01,-0.35]

N loops -0.06 0.001
A loops —0.10 —0.005
A exchange —-1.98 0.11
Total BChPT [18] —2.14+£098  0.11+0.05
Superconvergence SR [20] —-0.47 3.96

subtraction term constitutes at present the main uncertainty
in the theoretical yH Lamb shift estimate. To reduce such
model dependence, the dilepton electroproduction process
on a proton has been proposed in [21] as an empirical way to
determine 77%(0).

As the forward VVCS process of Eq. (25) is a
special case of Eq. (17), one can express the subtraction
function entering the hadronic corrections to the uH energy
levels as [18]

T,(0,0%) = amQ*(B, + 0*Bs), (28)
where both non-Born amplitudes B, B; are understood in
the forward limit (g = ¢'), i.e., B;(0,¢*, ¢*, ¢*) for i =1,
3. In order to specify 7', (0, Q%) up to the Q* term, we use
the low-energy expansion in k € {q, ¢'} of the amplitudes
B, B; [18],

1

) 1
Bi(0,4*.4%.q-q) = " {ﬁMl ~ P q

—m@ 0+ 5 )2+ 4
+ O(k*),

B3(0.4>.9%.qq') = b3 o + O(K?), (29)
where 3, is the magnetic quadrupole polarizability deter-
mined from real Compton scattering [48], and f3),, (0) is the
slope at Q% = 0 of the generalized magnetic dipole polar-
izability which is accessed through virtual Compton scatter-
ing, see Ref. [7] for a recent review. While the terms of
O(K°) and O(k?) in the low-energy structure of the
amplitude B, at v =0 are empirically constrained from
real or virtual Compton scattering, the low-energy constant
by is not determined empirically so far because the
tensor structure Tg”’ in Eq. (18) decouples when either the
initial or final photon is real. As such, the low-energy
constant bj is the main unknown to date in the empirical
determination of 77(0). Below, we study the sensitivity of
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the e"p — e pl~IT process, including the soft-photon
radiative corrections, to this low-energy constant.

B. High-energy double-virtual Compton amplitude
in terms of GPDs

For the high-energy Compton scattering we calculate the
Compton tensor in terms GPDs using pertubative QCD.
This can be done by calculating the leading-order handbag
diagrams shown in Fig. 7.

For the evaluation of these diagrams, we need the
kinematic Lorentz invariants £ and &, defined as

=2 . 30
T 2P-g 2WP-MA)—qg*—q*+1t’

%) —a?—a? 1 ¢t/2
g=_ 9 _ g —q°+1/ e

2P-q_2(W2—M2)—q2—q’2+t
Furthermore, we introduce the two lightlike vectors p* and
n* with p-n = 1, which are related to the four-momenta
P* and g" as

MZ

Pl = P —-n, (32)
=2

— _¥ph— ;’—5 (33)

where M? = M? — t/4. The variables & and & are related to
the invariants & and & introduced in Egs. (30) and (31) as
;1 HEM/F
=f =5, (34)
1-&"M"/q
~ 2
g=¢ = . (35)

1_|_ 1_45/2M2/92

Although at leading twist, corresponding with the
kinematical regime for which M? < g?, one has

E-¢ -4 (36)

and we keep in the following analysis the (small) difference
in the kinematical quantities.

PN

FIG. 7. Handbag diagrams for the double deeply virtual
Compton amplitude. The single (composite) lines represent
quarks (nucleons), respectively. The blobs represent the GPDs.

The leading twist-2 double deeply virtual Compton
scattering (DDVCS) amplitude on a proton is given by

N[ =

Hy _
Mppyes wa =

(~g)1 / dxC, (x.7)

X

{Hex 20+ BB i, 20 )

+

() [ arc ()

2 \¢
- A
{H Difys + E(x, & t)ys 2Mn}

(37)
where the coefficient functions C, (x, &) are defined as

~ 1 1

C.(x,&= _ _ 38
+(x. &) x—&+ie x+E&- (38)
and
(_g/w)J_ =—0uw T pﬂnl/ + ﬁynw
(81//4>J_ = gy/mﬂnai’ﬁ? (39)

where the lightlike four-vectors p and n are obtained from
Egs. (32) and (33) as

1
nt==—

Emr/2- g/ (28)

{@*/& P+ Mg} (40)

{€Pr + g},

1

H —
p é: M2 =2 /5/

Furthermore, for the purpose of studying the influence
of the radiative corrections on the DDVCS observables at
small values of —¢, we only consider the contribution of the
dominant GPD H in our study below. For the numerical
evaluation, we use the GPD parametrizations from the
VGG model [26,49-51], summarized in Ref. [30], in terms
of a double distribution (DD) and so-called D-term con-
tribution (D), as

H(x, &, 1) = Hpp(x, & 1) + D(%,t), (41)

with the double distribution part for the proton given by the
weighted sum of the light quark flavor distributions,

1 1
gHbp+5Hb  (42)

4
HDD:_H]LSD+9 9

9
The isoscalar D-term contribution, is directly related to the
subtraction function in a dispersive framework for the
Compton amplitude. For its evaluation, we use the dis-
persive estimate of Ref. [52].
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In order to satisfy exact electromagnetic gauge invari-
ance for both incoming and outgoing virtual photons in the
DDVCS process, we generalize the procedure introduced in
Ref. [50] to add transversal correction terms which are
formally of higher twist as follows:

pH
Mppveswa ~ 2P
P I

+55 = PG (A1) MBpves.owa

KV
MDDVCS (AL)KMDDVCSJWQ

(A1) (AL)M (43)

- 4(P-g)* DDVCS tw-2°
where the transverse part A, of the four-momentum
transfer to the nucleon is defined as

(A" = AF 4 2EpH — EM*n*. (44)
Using the identities
1
4 Mbpyesma = 5 (AL),M DDVCS w25
1
QLM%D])VCS,tw-z ) (Ay), M DDVCS, tw-2° (45)

one immediately verifies that both g,Mf,ycs =0 and
9, Mppycs = 0.

Using the parametrization of Eq. (41) for the GPD H in
terms of a double distribution and a D-term part, the
evaluation of the amplitude in Eq. (37) involves a princi-
ple-value integral which can be evaluated numerically, for
the case 0 < & < &, as

1 Hsinglet t
PV. / G 1)
0

x—=¢&
sln let sm let / &/
[ a0 - Hy e e )
0 x=¢
¢ D(x/&1)-D(/& 1)
2
’ A x—¢

1 ! inglet / &
(L2 g

+1n <5 ;,5 > 2D(E /&, 1), (46)
with the singlet GPD defined as
HY (x £ 1) = H(x, &, 1) — H(=x,&1).  (47)

IV. VIRTUAL SOFT-PHOTON CORRECTIONS

In this work, we evaluate all one-loop virtual photon
radiative corrections to the e”p — e~ pI~I* process in the
soft-photon approximation. This limit is defined by the

scaling of the loop momenta; we only account for the
regions of integration where the loop momentum / scales as
[~ 2, (48)
where 1 is a small parameter compared to all external
scales. We then calculate all contributions only up to
order A. The resulting corrections factorize in terms of
the tree-level amplitude, which shows that this is a gauge-
invariant subset of the full one-loop corrections.
From all soft-photon contributions, one can then further
distinguish between three gauge invariant subsets:
(1) class (a): soft photon attached to the beam elec-
tron line
(i1) class (b): soft photon attached to the dilepton pair
(iii) class (c): soft photon connecting the beam electron
line with the dilepton line
We give analytical expressions for the corrections of all
three types. In order to regularize the infrared divergences
coming from the integration over the soft-photon loop
momentum /, we use dimensional regularization [53]. We
therefore perform the loop integration in D =4 —2¢
dimensions. Infrared (IR) divergences manifest themselves
as 1/epg poles in the regularized expressions. We are using
the on-shell renormalization scheme. In addition to the
diagrams with virtual soft photons we also have to consider
infrared divergent counterterms. Those counterterms are
introduced to regularize ultraviolet (UV) divergences
(which manifest themselves as 1/eyy poles), which due
to the on-shell renormalization condition can also carry IR
divergences. Those need to be included in the calculation in
order to get a finite result in the end.
We subsequently discuss the virtual radiative corrections
to the spacelike Bethe-Heitler process, the timelike Bethe-
Heitler process, and the double-virtual Compton process.

A. Corrections to the spacelike Bethe-Heitler process

1. Contributions of class (a)

In this section, we calculate the soft-photon corrections
for which the soft photon is attached to the electron line.
This corresponds to the left diagram in Fig. 8. In the
following, we suppress helicity states in all spinors to make
the formulas more compact and better readable. The first
diagram in Fig 8 is given by, using Feynman gauge,

MEHSL — s (p)T*(p'.p)N(p)u*=P

Q2

/ dPl a(K)yP (K + ]+ m)y* (K+]+m)yzu(k)

Q2n)? (K +1)? =m?|[(k+1)* = m?][P]

ﬁ(l_)y”(l_—ﬁ—i—m,)yav(h)
[(I_—gq)*—m3] ’

which reduces in the soft-photon approximation to

(49)
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FIG. 8. Virtual corrections of class (a) (left) and class (b) (right)
to the spacelike BH process with two virtual photons. One also
has to consider the corresponding counterterm diagrams. The
crossed diagrams with /_ and [, interchanged yield the same
correction.

MERSE — _i24(k - k) MERSE 4D

y / dPl 1
P [P+ 2k AP + 20 -]
D2
(2m)PT(1 —¢)
x Co(m?, (k — k)%, m?;0, m?, mz)MgH‘SL.

(50)

= e24(k - k)

Here and in the following, C denotes the scalar one-loop
three-point function. We give an analytic expression of that
function for the two different cases we need in this work in
Appendix B.

In addition to the contribution of Eq. (50), we also have
to include the vertex counterterm, which we show in Fig. 9.
We are using the on-shell subtraction scheme, in which
the counterterm is defined to fix the electron charge e at
g> = 0. In the soft-photon approximation, one has to
extract only the IR divergent piece of the full expression,
as has been done in Ref. [38]. To calculate the vertex
counterterm, we consider the decomposition into the two
form factors F¢, and F75,

a(k T u(k)

= a(k') |(1+ F5(g?)r" - iF?(qz)U"”zq—; u(k), (51)

FIG. 9. Left panel: one-loop vertex diagram. Right panel:
vertex counterterm.

where ¢ = k — k. In this decomposition, only F¢(g?) is
divergent. The renormalization constant Z; of the vertex is
therefore given by

2 =1~ Fy0)
Qe 1 dmp®
4r {LUV et n( m? )]
1 dru’®
+2{——y5+ln<ﬂ—lz>] +4}, (52)
€1IR m

yielding for the renormalized vertex I,

D =T"+(Z, - )y~ (53)

Since we work in the soft-photon approximation, we
only extract the infrared divergent part of the full one-loop
renormalized vertex which can be found, for example, in
Ref. [37] and find

- a 1 Admp®
F’S‘:—;y”[em—mﬂn(mz)} (54)

After adding the vertex counterterm to Eq. (50) and
evaluating the three-point function, the infrared divergent
part of the virtual correction to the cross section of the
spacelike process is given by

BHSL _ @em 1""BZQ ﬂQ_l
Pk =T [( 2p¢ )ln<ﬂQ+1>+l]
| Ay
x {a—]@—kln( ;’; )] (55)

and the finite part by

BHSL _  %em 1+ﬂ%2 - (Po—1
& ‘_7( 2, >{2L‘2< 2%, )
Bo—1 1 Bo—1 7’

where o = /1 —|—4Q—”122.

Note that here and in the following, we define & to be
the correction on the level of the cross section, not the
amplitude. This corresponds to taking twice the real part of
the correction on the level of the amplitude.

For the crossed diagrams with /_ and [/, interchanged,
we find the same result as in Egs. (55) and (56). In the limit
of a small electron mass, i.e., m < Q?, the correction
simplifies to
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a 0? 1 Am?
55}{11’{SL = ;m |:an - 1:| |:€_ —7VE + 1n< 3 s
IR m

(57)

2. Contributions of class (b)

Here, we calculate all contributions to the spacelike
process, for which the soft photon is attached to the
dilepton line. The Feynman diagram corresponding to this
correction is shown in Fig. 8 on the right. The matrix
element is given by

MBHSL ——N( NTe(p', p)N(p)a(K )" u(k)u*="

0%
x / d°l a(l )y (=] +]-+m)
@m)P  [(1=1.)* —mj]
Yu(=T 1= —d+m)y (=] =] +m)ygo(ly)
[(1=1_+q)* =mp)[(I+ 1) =mf][P] ~
(58)

which in the soft-photon approximation reduces to

MPHSE — je24(1_ - 1) MEPSEy4-P

dPl 1
x / Q)P 2 =20 - P2 + 21, - ]
D2

(27)PT(1 - ¢)
x Co(m?, (I_ +1,)%, ml;O,mIZ,mIZ)MgH’SL.
(59)

=—e%4(l_-1,)

As for the class (a) contribution, we need to include
counterterms. In addition to the infrared divergent piece of
the vertex counterterm as given by Eq. (54), we also need
the counterterm of the fermion self-energy, which is shown
in Fig. 10. To the first order in a,,,, the self-energy of a
fermion with mass m; and momentum k' is calculated as

2 4-D le ya(k/+l+mf)ya
/i (90

O G iw i mie

Equation (60) has a UV divergence, which needs to be
subtracted by an appropriate counterterm. In the on-shell
!

FIG. 10. Left panel: fermion self-energy at one-loop order.
Right panel: counterterm for fermion self energy.

scheme, this counterterm is fixed by requiring that the
fermion self-energy (k') has a pole at k> = mj with
residue equal to one. This fixes the wave-function renorm-
alization constant Z, and the mass renormalization
constant Z,, -
dx(§')

dk/ k’:mf,

(1=2,,)Zymp = Z(mg). (62)

The evaluation of X(k’) and its derivative results in the
renormalization constants

1 Ay
A v 9
T uv mf

1 dmp®
+2{—y5+ln< s >]+4}, (63)
€1IR mf
Qem 1 Amp®
2,2, =1- 4|——=yg+1In 5
4 4 uv mf
4 2
+2[——y5+ln< s >}+8} (64)
€IR my
The renormalized self-energy is then given by
LK) =2(K) = (Zo = DF + (222, = )my, (65)

and in the soft-photon limit, in which we only extract the IR
divergence, we find

50) =22 @ -mp | L e m(P)]. 0

€IR 7

Adding the counterterms of the vertex and fermion self-
energy to Eq. (59), we find for the total contribution the

infrared divergent part
)
1- ﬂ Su

1+ ﬂ
SBHSL _ Pem [ Si g (
bR zﬂs”

1 4rp?
—_—— 1 , 67
) |:€IR et n( mj )] (©7)
and the finite part
5BH,SL - _ < +ﬁ9u> |:2L12 <ﬂ2ﬁ5u )
’ n 2ﬂ5u Si + 1

1 - /}s
+—In? | —= ) — 721, 68
2 (1 +ﬁsu> g :| ( )

In the limit of small lepton masses, i.e., m,2 < sy, we find
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1 A2
SpHSL — Jem {lns—lé— 1} [——yE—Fln( il )]
: n

ml €1IR m%
gonst _ _Gem |1y oS0 20 (69)
b T |2 m 37

3. Contributions of class (c)

In this section, we calculate all diagrams, in which a soft-
photon connects the electron line with the dilepton line.
We show the contributing diagrams of this class in Fig. 11.
For the contribution of class (c), no counterterm diagrams
have to be considered.

The first diagram in Fig. 11 is calculated as

6
MEPSE = SN () (p'. pIN (p)p*~P
y / APl a(K)y"(J+ K+ m)yPu(k)
)P [(1+ k)7 = m?][(1 + k= K)][P]
u(l )y + 1+ m)y,(J- — g+ m)yav(ly)
(P =m= =g =ml]
(70)

which in the soft-photon limit can be reduced to

MIEIH.SL — —i€24(k . l_)'u4—DMgH.SL

i v

FIG. 11. Virtual photon corrections of class (c) to the spacelike

BH proces. The crossed diagrams with /_ and [, interchanged
yield the same correction.

Evaluating the three-point function C,, we find that the
infrared divergent part is given by

dPl 1
- (1 _ ot
8 / Qo)P (P[> + 2k - O[> +21_ -] piSL _ Zem k-1 In (}’kz_(l 7k1_)>
D2 o m A (k=122 \(L =y )rii
=4k 1) —po 2
_ 1 4
2oPr(i=e) <[ reem(*2)] ™
x Co(m?, (k—1_)?,m3;0,m?, mlz)MgH'SL. IR n
(71) and the finite part is given by
|
gonst _ em KoL In(=4y_) |In fia~ | Y (RO | R R e
) = T (k=1)? kl_ 77:1_ v —1 3 Vii_ > Vii_
1 1o, N AN (T L (T
_511’12(1 —]/]—:l_)—f—ilnz(}/kl_ - 1) —L12< /1 ] ) —L12<E> +L12< ﬂkl* +L12 ﬂ
w (L=7s —(k—1_)?
—ln<ykl( . yk’ﬁ) ln< k=-1) >} (73)
(I =7 )7 m
where
; _21/(k.l_)2_m2m12 L mIZ_k.l_igli (74)
T e N B

073007-12



SOFT-PHOTON RADIATIVE CORRECTIONS TO THE ...

PHYS. REV. D 104, 073007 (2021)

We now consider two limits for this correction, in which
the expressions simplify. The first limit corresponds to
the case where the electron mass is small compared to all
other scales. In this limit, we find for the infrared divergent
contribution

2k-1\[1 4rp?
5]311,{1'I§L:%_m1n< ‘) [——yE—Hn( :;/; )]’ (75)

T mm, €1R

and for the finite contribution
1 m? 1 2k -1
5]3H,SL:ae_m 1n2 — n2 -
' 2 \2k-) 2 k-
1 m?
| 2 1
T <2k-l_—m,2>
4(k-1_)? 2k - 1_
() ()

2k - 1_—m? m? 7
Lip (2= g (M) 2L
i 12( 2k 1 ) 12<2k-l_>+6}

(76)

If in addition to m?> < k - [_, also m; = m, i.e., considering
electron-pair production, we find
SBHSL _

Qem 2k - 1_ 1 Aru?
=—1 —— 1 ,
oI z n( m’ ) |:€IR retn m?

BH.SL aem 1 2 2k * l_ 7T2
pHSL _ _Tem ) 2 S
% n {2 YT T

(77)

The second diagram in the first row of Fig. 11 can
be related to the previous one using Eq. (71) with the
replacement /_ — [, together with a sign change,

ZD/2

MERSE — _e24(k - 1,)

Therefore, the correction on the level of the cross section is
given by

5BH.SL _ _5BH,SL

BH,SL __ BH,SL
IR ¢, IR 502 - _601

(79)

|I,—>l+’ |l,—>l+‘

The first diagram in the second row of Fig. 11 is given by

6

MEPSE = SR (p)T(p/. )N (p)u*
dlL a(k)yP(J+ § + m)y*u(k)
Q2a)P [(1+K)? = m?][(1 = k+ K')?][I°]
w(L)yp(J- =1+ m)y,(J- — 4 +m)yav(ly)
[(1=12)* =m}][(I = q)* — m]] ’
(80)

X

which reduces to

MERSL — 24 (k- 1) =P MEHSE

y / dPl 1
)P [ 1 2K [E =21 f[2]
2D/
(2m)PT(1 - €)
x Co(m?, (K +1_)?, mlz;O, m2, mlz)MgH’SL.

(81)

24k 1)

In this case, the second argument of the three-point function
is positive. Therefore, an analytic continuation of this
function to the timelike region has to be performed. This
yields

BH.SL _ ®em
C3,IR -

W-1) | <7;/1_(1 - 7,?,_))

= n o =
7 J(K+ 122 \(1 =7, )70,

27)PT(1 — ¢ 1 4ru?
e ) BH.SL X {__YE‘Hn( mzt >] (82)
x Co(m?, (k—1.)*, m3;0,m*, m3 ) Mg >". €IR m
(78) and
|
k/‘l_) 1 j,/
5‘3H’SL:ae—m7~( “in? () i (1 -7, ) —In2(7g, ) —In? (1 =75, ) + (7
: z dae 22 \i-7, )" (1= Zer ) =7 ) = In* (1= 7y ) + I0°(7, )
I 7 1 o 7o —1 I 572
+Li2( KL > +L12<—&> +—ln2<~_kl> +Li2< & > +Li2<~f:l> -2z
1_7k’l_ A’k/l 2 yk/l_ /Ik/l yk’l, 3
Vo, (=75 K+ 1)?
(1 —)/k/li))/k/l_ m
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where

20/ (K 1 = mPm}

A = K+1)2
2 / 7
- my+k -1 Ay
R L/ I 4
yk I [ (k’ + l_)2 2 (8 )

2kl 2kl 2k'l
5BHSL Rem 1 2 =) —In2 - In2 -
27 |2 " ml2 n m? +in 2kl + ml2
2
1

We consider the two limits like before. In the limit of a
small electron mass, we find for the infrared divergent
contribution

2k-1-N\ [ 1 4n
SB[ ()]

/2 mm; ) |eRr

and for the finite contribution

1 A(K1_)?
“In? -
) tan <m2(2k'z_ ¥ m%))

—1n? m +1n mm In m
2K+ m? 4(K'1_)? 2K+ m?

Considering electron production, m; = m, we find

2K 1 4
5?1{13L__“em1n( : >{——y5+ln( s )]
3 T m €IR m?

BH.SL a m 1 2k/ N l_ 2
55‘3 == {Elnz 5 gﬂ'z . (87)

T m

For the second diagram in the second row of Fig. 11, we
can derive the correction in the soft-photon approximation
from the previous result, leading to

5BH SL 5BH SL|[ - (88)

Note that from Egs. (77), (79), (87), and (88) we can see
that the sum of all class (c) corrections is antisymmetric
with respect to interchanging [™ <> [~. This is in contrast to
the contributions of classes (a) and (b), which are sym-
metric with respect to the interchange of /™ and /™.

B. Corrections to the timelike Bethe-Heitler process

In this section, we calculate the soft-photon corrections
for the timelike process. We show that they lead to exactly
the same corrections as in the spacelike process.

The first diagram in Fig. 12 is given by

MERTL — —_N(p"D(p', p)N(p)a (L) v(l )u*P

N
y / A1 a(K)yp(K + [+ m)
2z)P (K +1)* = m’]
Va4 1+ m)ya(K 4]+ m)yPu(k)
(K +q +1)? =m?|[(k + 1) =m?][IP]
(89)

which in the soft-photon limit reduces to

m? W1 3
Li Lio (2K 351
> + 12( 21 ) + (Zk’l_ +m,2> 2" } (86)
[

MEH,TL _ —i€24(k . k/)'u4—DMgH,TL

o / dPl 1
(27)P [I2][2 + 2k - [ + 2K - []
Y

(27)PT(1 —¢)

x Co(m?, (k= k'), m?>,0,m>, m>) Mg™" ™.

(90)

= e24(k - k)

After adding the counterterms, on the level of the cross
section, the same correction as for the spacelike process is
found,

5]3H,TL _ 5SH'SL. (91)

Analogously, the second diagram in Fig. 12, including
counterterms, yields the same correction as for the space-
like process from Egs. (67) and (68),

5BH TL 5BH SL (92)

FIG. 12. Virtual corrections of class (a) (left) and class
(b) (right) to the timelike BH process. One also has to consider
the corresponding counterterm diagrams. For the correction, the
crossed diagrams with A and ¢’ interchanged yield the same
result.
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I\
IRgA

FIG. 13. Contributing diagrams from class (c) for the timelike
Bethe-Heitler process. The crossed diagrams with A and ¢’
interchanged yield the same result.

The same argument also applies to the four diagrams of
class (c¢), shown in Fig. 13, which yield the same correction
as for the spacelike process,

BH,TL _ <BHSL BH,TL _ <BHSL
O¢, "~ =0¢ 7, Oc, = ¢,

’

BHTL _ <BH,SL BH,TL __ ¢BH.SL
Oc, =0c "7, Oc, =06¢, 7. (93)

C. Corrections to the Compton process

In this section, we list the corrections for the Compton
scattering, as shown in Fig. 14, which in the soft-photon
limit lead again to the same results as before for spacelike
and timelike Bethe-Heitler processes. Therefore, on the
level of the cross section, the correction in the soft-photon
approximation can be factorized for the total process and is
given by

dVCS _ g¢BH.SL dVCS _ ¢BH.SL
SIVCS — gBHSL  savCs _ sBHSL

dVCS __ ¢BH.SL dVCS _ ¢BH.SL
5cl - 501 5c2 - 502

’ ’

dVCS __ ¢BH.SL dVCS __ ¢BH.SL
603 - 5C3 ’ 5c4 - 5C4 . (94)

D. Sum of all virtual soft-photon corrections

Adding all contributions from classes (a), (b), and (c), we
define the virtual soft-photon corrections on the cross
section as

dds;v = dGO(l + 55‘;1})' (95)

e
o

FIG. 14. Virtual corrections of class (a) (top left), class (b) (top
right), and class (c) (lower two rows) to the dVCS process. One
also has to consider the corresponding counterterm diagrams.
The crossed diagrams with ¢ and ¢’ interchanged yield the same
result.

The correction can be separated in the IR divergent
contribution

2 2k -1 2k -1
5?3,):%“{[111(%) +ln< ‘) —ln( +)
T m mm; mm;
2k - 2k -
() (Y]
mm,; mm,;
1 4
[
€1R m
| () -
l_ﬂsu l_ﬂsn
1 4u?
x [——yE—|—1n< il )]} (96)
€1R ml

and a finite contribution

5.\';1} = 6a + 6}1 + 551 + 552 + 5(;3 + 5()4' (97)

For convenience of the reader, we summarize all formulas
derived in the previous sections,

Uem [1. (0% =*
= ——<—-] = ) - —
Oa 7 {2 8 <m2 6] (98)
5, _ _Cen <1+ﬂ?,,> {2L12< 2,, )
4 Zﬂsu ﬁ511+1

1 2 1_'6511 2
w3 (1) -} (99)
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QAo [ 1 m? 1 2k - 1 m?
L === -In? ——In?(—— “In2f —t
Oc =g {2n<2k-l_> 2n<2k.1_—m12>+2n<2k-1_—m§>

4(k-1_)? 2k -1
—ln((z_z))ln< = 2)
m-ms 2k - 1_—mj3

2k -1

a 1 2k -1 2k -1 1
5. =) In? ~ ) —1In? - In?| — — —1
. 2ﬂ{2n< m? ) n( m? )+n<2k’-l_+m%>+2n

2k-1_—m? m? 7
Lir (== 1) _Lji ! =3,
* 12< 2k -1 > 12<2k~l_>+6}

(100)

(101)

(i)

m? m2m? m? —m? 2Kk -1 3
—In?—"Lt ) +1 | Li L Li) [ —————= ) —=#22%, (102
8 <2k’-l_+m12> * “<4(1</.1_)2) n(Zk’-l_+m,2> T <2k’-l_ e\ e T2 (102

Oe,

_503 |l,—>l+ *

(103)

For the electroproduction of an e”e™ pair, the formula simplifies as

. 2 sy 21 W1, 2% -1 %1\ 5
55;1} = —g {1[12 <W> + ln2 (W) - 1n2< m2 ) + lnz <7> + 11'12 (7) - 11'12 (T) - gﬂ'z}. (104)

One can expect that the above considered soft-photon
approximation works well in the case when the neglected
single log terms are small in comparison to the corre-
sponding double log terms which appear in the expression
of Eq. (104). In the energy regions which we consider
here, terms of the order In(s;/m?) or In(Q?/m?) are an
order of magnitude smaller than their double logarithmic
counterparts In?(s;/m?) or In>(Q*/m?). We can therefore
expect the single log terms to be subdominant in com-
parison to the double log terms. This was also confirmed
in our previous studies [38—40], where we have performed
a full one-loop calculation for the radiative corrections to
the yp — e"e™ p process and compared with the result in
the soft-photon approximation. In those works, we also
found that the soft-photon approximation provides an
overestimate of the radiative corrections by around 20%
for the kinematics of relevance to this work. Therefore, we
expect that also in the present work for the e ™ p —
e~ pete™ process we get an upper bound for the full
one-loop corrections by studying radiative corrections in
the soft-photon approximation.

V. SOFT-PHOTON BREMSSTRAHLUNG

To cancel the IR divergences of the virtual soft-photon
corrections, we need to include soft real radiation (soft
bremsstrahlung). On the level of a cross section, the IR
divergences cancel, resulting in a finite physical result.

The contribution due to soft bremsstrahlung stems from
Feynman diagrams in which an additional soft photon is
emitted from an external fermion line. Denoting the
momentum of the fermion line with / and the momentum
of the soft photon by k,, this corresponds to the amplitude

*

M, = ilei—ﬁMo, (105)
-

with a + sign, if the fermion is outgoing, and a — sign if

it is incoming, where Q; denotes the charge of the lepton

and where M, denotes the amplitude without soft-photon

emission.

The evaluation of the bremsstrahlung contribution
requires integrating over the momentum of the unobserved
soft photon up to an energy cutoff AE,. The integration
has to be performed in a reference frame in which the
dependence of the integral on the photon momentum is
isotropic. The choice of this frame depends on the
experimental condition. In the present work, we consider
the process e~ p — e~ I7I" p where the dilepton momenta
[~ and [" are measured, and the scattered proton with
momentum p’ remains unobserved. Thus, the bremsstrah-
lung integral has to be performed in a system in the rest
frame of the unobserved proton and soft photon. Defining
the missing momentum p,, = p’ + k,, this frame is defined
by the condition p,, = 0. The bremsstrahlung contribution
to the cross section in this frame is given by
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—e? &k m? m? m? m? 20, -1
doy, = doy o3 / 0 l s l 7+ 7t n2 = .
(27[> |k, |<AE; 2ky (k}/ : l+) (ky : l—) (ky : k) (ky -k ) (k;' : l+)(k}' : l—)

2K -1y 2 -1 2 - k 2kl k-1
TG L) Kk L) Kk k) Rk L) (k- k)(k; l+)}’ (106)

where the maximal soft-photon energy in that frame is denoted by AE,. The expression after performing the integration in
Eq. (106) is lengthy and complicated in the general case. Here, we give explicit results only in the limit of a small electron
mass; i.e., we only keep the logarithmic dependence on m. For the calculation, one considers the basic integral /;;
corresponding to the interference of two terms like Eq. (105) from two fermion lines. This basic integral has been worked
out in [54] for a generic lepton mass. In the limit m — 0, we find

IE/ d3k}’ plp]
Y |k, |<AE, k? (ky‘Pi)(ky‘Pj)
1 m? m? 2EE; 72 2pi P\ [1 dmy®
= 278~ |In? 1 Li, [ 1 - —- —+1 L)l —— 1 . (107
ﬂ{4 [n (4E12) o <4E2>} - 12( Pi'Pj> - 3 - n< m? > |:€IR et n(‘mEz)}} ( )

Using this expression and the general one for finite lepton masses from [54], we can now easily perform the integration in
Eq. (106). Let us stress again that we only keep the dependence of the electron mass m in the logarithms while for the lepton
mass m; we keep the full dependence of the soft-photon integral. For the infrared divergent contribution, we then find

2 . /-, /. . 5
T m mni; mm,; mm,; mm; ER m
+ f; L+ f 1 drp®
+ zz) ]n( 11) _1:| |:——y +ln< , 108
|:< zﬁsu 1- ﬁs” €IR E m% ( )

while for the finite part we find

8gr =0 + 8+ 8, (109)
. a 4(AE,)? Q? m? 1. [ m? 1 4EN\ 1 4E?
&= 1-1 Uin “In{-—= | +~In? —In?( —
n {n( m? >[ n(m i) 4E"? amae) Tam G ) Tam G
) AEE' 7
+L12(1——Q2 ) +?}, (110)

o Qem [0 (4AE)N\[ (145, 1+ 8y, 1 (1-p 1 1-5,

% =" {1“< e [l <2ﬂx,1 >1“< —ﬂs,,ﬂ zif_1“<1+ﬁ> 2/3+1“<1+B+>
+'Bsu 1_/}— ﬂ-‘r . 1+ﬂsu E

(2ﬂs,, >[ ln2<1 B_>_ “( ﬁ)Jrle(l_(l—ﬂs,,)T( - )>

=
—

+Li2<1

-ta-p)|f am
5;;r:_%Tm{ln<4(i1€s)2>1n<lz"ll: —[Li2<1— Fl_ (E‘_— E%—m%))—Lb(l—%(E‘_— E%—m,2>>

k
+Li2<1 —% (E_ +/E2 —ml2>) —Li2<1 —% (E_ + 4/ E2 —m?>)] } - (.= 1,), (112)

where

073007-17



HELLER, KEIL, and VANDERHAEGHEN

PHYS. REV. D 104, 073007 (2021)

v=—— ﬁﬁ;f;" . (113)
2B~ 154 Ey)
e = (1—mj/EZ)'2, (114)

where £ denotes the energy of the lepton with momentum
I* in the rest frame of the soft photon and recoil proton, and
E (E') denotes the energy of the electron with momentum
k (k') in the same system.

Adding Egs. (96) and (108), we verify that the IR
divergences from real and virtual soft-photon corrections
cancel on the level of the cross section.

As mentioned before, the integration of the soft-photon
bremsstrahlung is performed up to a small energy cutoff
AE,. This cutoff can be related to the experimental
resolution of the detector. In the frame p,, = 0, we find

2 2 2
Pm — M Apm
AE, = A ~ , 115
oA S s)
where to the first order we have used p2 =~ M? in the

denominator, and where A p2, denotes the resolution in the
missing mass squared. In order to express AE; in terms of
Lab quantities, one needs to calculate the missing mass in
that frame. Neglecting the lepton masses, we find

pm=1(q-q+p)]
=M +5,-0°=29-q +2p-(q—¢)
= [M? +2Mq° + 4E_E  sin* 0;/2 + 2|4||g'| cos b,
—4EE'sin® O /2 = 2(¢° + M)(E + E_)] >
(116)

where all quantities on the rhs have to be given in the Lab
frame, where 6, denotes the scattering angle between the
incoming electron with momentum k and the outgoing with
momentum k" and where 8;; denotes the Lab angle between
the lepton pair momenta. Equations (115) and (116) allow
one to express the maximal soft-photon energy AFE,
(defined in the system p,, = 0) in terms of Lab quantities
and detector resolutions.

In the following, it is convenient to express the energies
E., E and E' in terms of kinematic invariants. For the case
of a large lepton mass, for which the formulas are lengthy
and complicated, we use the formulas given in Appendix A
and then boost to the rest frame of the recoiled proton and
soft photon to calculate the energies numerically. In the
case of electron-pair production in which we can neglect
the mass m compared to other quantities, the formulas
become more compact. In that case, we also find more
compact expressions for the bremsstrahlung corrections.
We find

e 4(AE,)? 0? LS K - K-1,1 1] 4E% 4E? 41”52 4E"?
5‘Y;r:—%{ln<7> [Z—In(—2 +1 T l lnk-l+ -3 In — " +In —|—1n +1In e
1[ ,4E? 4E% 4F? 4E’2 . 4E_E, 4EFE
+Z|:12 2"’12 +12 +12m2:|+L12<1— i > L12<1—7>
+Lip( 1 2EE, Li, ( 1 2EE. +Liy( 1 2EE. Liy( 1 2EE, 4 I (117)
i —-— | —Li - i -——| —-Li - = .
20T 2T L 2 e 2Tk ) 3"
The energies £, E, and E' in the rest frame of the recoil proton + soft photon are given by
= Pmly N 1 /
E:F_ \/ENM(Q+p_Q> l:F
1
= m{(Wz —M? —sy) £ [(W? = M? = s)* = 4Ms5]' 2B, cos 0} }, (118)
7 Pm- k 1
E= — k
—~ raplatp=4)-
1 2
— IWZ MZ 2 _2M2 2
2M((W2 M Qz)z -|—4M2Q2) {Q [ ( + +0 ) (Q + sll)]
+ (s = M2)[(W? = M?*)(W? = M? + Q% — sy + 1) + Q*(=sy — t + 4M?)]
+ 20 cos(®@)[s(s — M* — Q%) — W2 (s — M?)]'/?
X [=t(W? = M*)(W? = M? + Q® — sy + 1) = M*((Q” — sy +1)* + 45,0%)]'/*}, (119)
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~ Wz—Mz—S1[+[

E=F- 12
M (120)

VI. RESULTS
A. Observables

We use our setup to study the e"p — e~ pl~I" process,
including the first-order radiative corrections in both the
low- and high-energy regimes. For both cases, we study the
effect of these corrections in the soft-photon approximation
on the cross section and on the forward-backward asym-
metry Apg, as well as on the beam-spin asymmetry Ag.
These asymmetries are, respectively, defined as

dog: g — do,_g: g i1

_ , 121
e dog: g + doz_g: g n (12)
dot —do~
Ag =——— 122
© " dot 4+ do’ (122)

where doy, 4. in App stands for the unpolarized cross
section measured at lepton angles ¢; and ¢; (defined in
the [7I" rest frame) and where do® in Ay stand for the
polarized cross sections for a polarized electron beam with
helicity +1/2, respectively. In the following, we show plots
ranging from 8 = —180° to §; = +180°. This allows us to
show forward and backward cross sections economically in
one plot, since do(0;,¢; +n) =do(—0;,¢;). The forward-
backward asymmetry can therefore also be written as

_ do(0}. ¢}) — do(z — 0.7+ ¢])
"5 do(0;, 7) + do(n — 0}, n + ¢})
(
(

_ do(0].¢;) — do(0; — 7. ;)
do (6}, ;) + do (0] — 7.4}

(123)

and, including radiative correction explicitly, it is given by
_ doo(6)(1 +6(07)) — doy(0] — m)(1 +6(6] — 7))
doo(67)(1 +6(0))) + doy(0] — ) (1 + 6(6] — 7))
(124)

AFB

From Eq. (124) one can see that corrections that are
symmetric under the interchange [~ <> [T, corresponding
with 07 <> 07 — 7, drop out in the ratio. Therefore, to the
first order, only corrections of class (c) give a contribution
to the asymmetry,

— A(I‘)’B +5c/(1 +5a +6b)
1+ A%6./(1+ 6, +35,)
R A +6.(1 = (AR)?),

(125)

where A%, denotes the uncorrected asymmetry.

On the other hand, the radiatively corrected beam-spin
asymmetry (BSA), given by

_dot(1+6%)—do(1+6")
© det(1+6")+do(1+68)’

(126)

does not get modified in the soft-photon approximation,
since the corrections are the same for both helicity cross
sections, i.e., 57 = 7, and therefore drop out in the ratio.
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FIG. 15. Kinematic quantities entering the exchange dVCS

amplitude for the e"p — e " pe~e™ process in the A(1232)
region. In the upper panel, we show the c.m. energy W,,, as
function of @}, compared with the value W = 1.25 GeV of the
direct process. In the lower panel, we compare the 8} dependence
of both photon virtualities in the exchange dVCS amplitude with
their constant values for the direct dVCS amplitude.
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In the following, we show our numerical results for the
e~ p — e~ pl~IT observables including the first-order soft-
photon radiative corrections.

B. Results for dVCS observables in the A(1232) region

In this section, we show our results in the low-energy
regime in which we choose the dVCS center-of-mass
energy W = 1.25 GeV. We model the dVCS amplitude
in terms of the Born amplitude and the first proton
excitation, the A(1232) resonance. As was found in
Ref. [21], this model can reproduce the full calculation
based on empirical structure functions from Ref. [55]
with an accuracy in the few percent range for the process
yp — e"etp (ie., for a real photon). Therefore, we can
safely assume that the Born + A-pole model describes the
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T 500 T BHHAVCS (BomtA)
% T | == BH+dVCS (Born+A-+bsy)
3 rad. corr.
2 A
= 4.00- l\ E.=0.6 GeV
d f \ W = 1.25 GeV
5 [ ‘ sy = 0.075 GeV?
€ 3.0 I § o TV
] i\ ® = 30°
3 i\ ¢e =0°
L 2,004 / \
5 7.\
@ .: "-
=
o 1.001
=
000 ....... "“ ...' M
-100 0 100
0% (deg)
1.00
-------- BH
0.75 1 --=- BH+dVCS (Born+A)
- —'— BH+dVCS (Born+A+bs)
050\, ™
\ rad. corr.
0.25
B
5 0001
-0.25
-0.50 1
-0.75 1 /
-1.00 ' : :
50 100 150
0% (deg)
FIG. 17.

dVCS amplitude sufficiently well also in the virtual-photon
process for sufficiently small photon virtualities.

In order for the dVCS model to be also accurate for the
e"p — e pe~ et process, in which we need to antisym-
metrize the full amplitude under exchange of both final
electrons as given by Eq. (12), we choose the kinematics
in such a way that also for the exchange dVCS amplitude
the c.m. energy W, remains in the A(1232) resonance
region, and the photon virtualities entering the exchange
process remain sufficiently small. As can be seen from
Fig. 15 (upper panel), for the choice of an electron beam of
0.6 GeV, we find that W, (blue dotted curve) is roughly
of the same magnitude as W (dashed red curve), varying
between 1.18 and 1.33 GeV as a function of #%. Note that a
larger electron beam energy leads to a larger value of W,.
From the lower panel of Fig. 15, we furthermore see that
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0% dependence of the e~ p — e~ pe~e™ cross section (upper panels) and forward-backward asymmetry (lower panels) in

the A(1232) region for ® = 30° (left panels) and ® = 45° (right panels). Curve conventions as in Fig. 16.
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both photon virtualities in the exchange dVCS amplitude,
denoted by Q. (blue dotted curve) and sy, ., (green dashed-
dashed curve), are both below 0.18 GeV? for the full range
of the lepton angle #;. We are thus in a kinematic regime
where we can study the sensitivity of the full amplitude to
the low-energy constant b5, described in Sec. IIT A.

Having studied the appropriate kinematics to describe
both the direct and the exchange dVCS amplitude within
the same model, we next explore the sensitivity of the
e~ p — e~ pl~IT observables on the low-energy constant
bs introduced in the low-energy expansion of Eq. (29).
This low-energy constant is the main unknown in the
determination of the O(Q*) term of the subtraction
function 7', (0, Q) entering the theoretical calculation of
the uH Lamb shift.

In Fig. 16, we show the dependence on the lepton angle
0; of the e"p — e~ pl~I* differential cross section (upper
panels) and the forward-backward asymmetry (middle
panels) as well as the beam-spin asymmetry (lower panels)
for both e~e™ and y~u™ production (left and right panels,
respectively). We choose the kinematics as in Fig. 15. As
can be seen from the upper panel, the interference between
the dVCS process with the BH process amplifies the cross
sections for both e~e™ and y~u™ production by roughly a
factor of two as compared with the BH process itself.
Furthermore, the spread between the different theoretical
estimates for the low-energy constant b3, as shown in
Table I, increases the cross sections additionally by
approximately 15% in both cases.

We also study the effect of the soft-photon radiative
corrections on the cross section, as given by Egs. (97)—(103),
(109)—(112), and (117). For the real soft-photon emission
correction, we choose the soft-photon energy cutoff of
AE; = 0.01 GeV, which corresponds to approximately
1.5% of the lepton beam energy. As can be seen from
Fig. 16, the effect of the first-order radiative corrections is
found to be quite sizeable on the level of cross sections. In
the case of e~e™ production, the effect leads to a decrease
of the cross section by around 30%, whereas for y~pu™
production, it leads to a decrease of the order of 15%.
Therefore, although the cross section by itself has a relatively
high sensitivity on the low-energy constant b;,, for an
experimental extraction of bs ), the inclusion of the radiative
corrections is imperative. A comparable importance of the
radiative corrections was also found in the extraction of the
proton generalized polarizabilities from the cross sections of
the VCS process e"p — e~ py [7,37].

The situation is different for the asymmetries. For the
forward-backward asymmetry App, we find for the kin-
ematics of Fig. 16 only a small sensitivity to the dVCS
amplitude and its underlying hadronic model. However,
this is mainly due to the choice of ® = 90°, for which the
forward-backward asymmetry is completely dominated
by the BH process. The sensitivity can be increased by
varying ®. In Fig. 17, we show the cross sections and

forward-backward asymmetries for the same kinematics,
but for smaller angles between the (k.X) and (F.§')
scattering planes in Fig. 3: ® =30° and ® = 45°. For
these cases, we find a 20% shift of the forward-backward
asymmetry for the case including the A resonance com-
pared to the BH process by itself. Including the range of
theoretical values for the dVCS low-energy constant bs ),
we find a further shift of the asymmetry of up to 5%
on App, while the inclusion of radiative corrections is
found to have a very small effect, around or below the 1%
range on App.

For the beam-spin asymmetry A, we find a significantly
higher sensitivity on b3, than for the forward-backward
asymmetry, as shown in the lower panels of Fig. 16.
Note that the result for Born + A-pole + b3, (green
dashed-dotted curves) and the result which in addition
also includes the radiative corrections (black solid curves)
coincide, since in the soft-photon approximation the
radiative corrections drop out in the ratio of cross sections
calculated for the BSA, as discussed above. Including
the range of theoretical values for the dVCS low-energy
constant b3 leads to an absolute shift in the BSA up to
around 15% for e~e™ production and up to around 10% for
u~u" production.

As the BSA and App are basically not affected by
the radiative corrections, a combined analysis of the cross
section, the Agp, and the BSA holds promise to extract the
dVCS low-energy constant b .

In Fig. 18, we show in more detail how the radiative
corrections to the e~ p — e~ pe~e™ process vary when the
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FIG. 18. Radiative corrections for the e”p — e~ pe~e™ process

in the A(1232) region in the limit Q> — O for the comparable
kinematic setup as was studied before for the yp — e“e™p
process in Ref. [40]. The corrections are for soft-photon cutoff
energy of AE;, =0.01 GeV.
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initial photon approaches the real photon limit, i.e.,
Q? - 0. In this limit, only the class (b) corrections
contribute. We choose the kinematics comparable to
Ref. [40], in which we studied the effect of radiative
corrections for the process yp — e~e™ p. In that study,
we found corrections of roughly 8% for the full set of one-
loop QED corrections for the kinematics shown in Fig. 18.
In the soft-photon approximation, the corrections are
somewhat overestimated, as can be seen from the blue
dotted curve corresponding with a correction of roughly
13%. Comparing the blue dotted curve with the red dashed-
dotted one, we see that for quasireal photons with a
virtuality from 10~ to 1073 GeV? the inclusion of all
corrections is important, and the description as a real
photon underestimates the corrections by 10%—-15%.
Note that in the region around Q= 0.03 GeV? the two
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outgoing electrons with momenta k' and /_ are becoming
collinear. This explains the spiked behavior in the red
dashed-dotted curve, since the logarithm with the argument
proportional to the scalar product k" - I_ is becoming large.

In Fig. 19 (upper panels), we study in more detail the
relative size of the radiative corrections due to the three
different diagram classes (a), (b), and (c). While for e~e™
production the corrections due to classes (a) and (b) are
dominant and negative, for x~u™ production the main
correction arises from class (a) as it involves the vertex
correction on the beam electron, whereas the corrections
between the produced y~p*t pair are small and positive.
Comparing left and right panels, one can clearly see that
the biggest difference between e~e™ and p~pu+ production
is due to the corrections of class (b), which correspond
with the corrections from the produced dilepton pair.
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FIG. 19. Upper panels: 6; dependence of the radiative corrections to the e~ p — e~ pl~I" cross section in the A(1232) region for e~ e™
production (left) and g~ u™ production (right), for the different classes of radiative corrections for AE; = 0.01 GeV. Lower panels: 07
dependence of the total radiative correction for different values of AE, for both e~e™ production (left) and x~u™ production (right).
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FIG. 20. 6} dependence of the e~ p — e~ pl~I" cross section in the DDVCS regime for e~e™ production (left panels) and g~ u*
production (right panels), for different values of the dilepton invariant mass s;;. The curves show the predictions for BH and BH + dVCS
for two models showing the sensitivity to the D term in the GPD parametrization. The black solid curves show the effect of the radiative
corrections for the hadronic model of the green dashed-dotted curves.
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Furthermore, Fig. 19 illustrates, as mentioned above, that
the corrections of classes (a) and (b) are symmetric under
the interchange of /™ and /™, corresponding to the angular
shift 0] — 67 — &, while class (c) is antisymmetric. As only
class (c) contributes to the forward-backward asymmetry
to lowest order, the smallness of the corrections of class
(c) also explains why the App is largely unaffected by the
radiative corrections.

Furthermore, in Fig. 19 (lower panels), we show the sum
of all three types of corrections also for a twice larger value
of the soft-photon cutoff energy AE,. One notices the
positive contribution to the cross section correction é upon
increasing the value of AE;.

C. Results for high-energy DDVCS observables

In this section, we show our results for the e”p —
e~ pl~I" observables in the high-energy regime, in which
we use GPDs to model the dVCS amplitude in the deeply
virtual regime, the so-called DDVCS process, as described
in Section III B. We explore the sensitivity of this process
to the modeling of the GPDs, in particular, the D-term
contribution, and quantify the effect of the radiative
corrections in the soft-photon approximation.

As is conventional in the high-energy regime, we give
the differential cross section with respect to the Bjorken
scaling variable instead of the c.m. energy W describing
the Compton process. Therefore, in this section, we show
differential cross sections with respect to the quantity &,
which is related to the kinematical invariants through
Eq. (30). The cross section differential with respect
to £ is related to the cross section differential with respect
to W? as

do
szdédd)dtds”dQ}‘

. d
(L) (o . (127)
2% Q%AW dDdrds, 40

In Fig. 20, we show a comparison of e~ p — e~ pl~ [T
cross sections for e~e™’ production (left panels) vs y~u™
production (right panels). The cross sections are shown
for an incoming electron beam energy of 11 GeV,
which corresponds to the experimental setup of the
CLAS12@JLab experiment and of the SoLID@JLab
project. We show the cross sections for &= 0.175,
0% =2.75 GeV?, —t = 0.25 GeV?, and ® = 90° and for
three values of the dilepton invariant mass s;. While for
e~ e production one observes a pronounced peak around
05 ~ —20° for all three cross sections, the cross sections for
u~pu" production appear flatter. Furthermore, the cross
sections for e“et production are 4-15 times larger than
the cross sections for ¢~ production at the same value of
s;;- This significant difference is due to the contribution of
the exchange diagrams, which only contribute to e~e™

production to satisfy the Pauli principle. Naively, one
would expect the cross sections to be of roughly the same
magnitude, since even for s; = 0.5 GeV? the dilepton
invariant mass is 10 times larger than the y~u™ production
threshold, such that effects from the lepton mass do not
play a crucial role. However, the antisymmetrization of the
final-state electrons for e~e™ production yields a large
contribution of the exchange diagrams, which increases
with increasing values of s;;.

Furthermore, one can see from Fig. 20 that the BH
process again serves as an amplifier of the dVCS process,
and the BH + dVCS cross section is roughly 50% larger
than the BH cross section. The cross section therefore has a
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FIG. 21. Upper panel: 67 dependence on the soft-photon

radiative corrections to the e~ p — e~ pl~It cross section in
the DDVCS regime for different values of s;. Upper (lower)
panel is for e"et (u~pu™) production, respectively. The correc-
tions are for a soft-photon cutoff energy of AE, = 0.05 GeV.
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strong sensitivity to the underlying GPD model. In par-
ticular, through such interference, the D-term contribution
to the GPD, using the dispersive estimate of Ref. [52],
decreases the cross section by up to approximately 20%
(green dashed-dotted curves vs red dashed curves).

In order to use the e"p — e~ pl~[" as a tool to access the
DDVCS amplitude, it is important to quantify the radiative
corrections, which is an aim of this work. In Fig. 20, we
show the impact of the radiative corrections on the cross
section. For the real soft-photon emission correction, we
choose the soft-photon energy cutoff of AE; = 0.05 GeV,
which is roughly 1% of the e — p center-of-mass energy
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/s = 4.64 GeV (corresponding to an electron beam of
11 GeV). We see from Fig. 20 that the soft-photon radiative
corrections are very sizeable in the DDVCS regime,
decreasing the cross sections by up to 50% for e~e™
production and by up to 35% for y~u™ production (black
solid curves vs green dashed-dotted curves).

In Fig. 21, we show the 0; dependence of the soft-photon
radiative correction factor on the e”p — e~ pl~I" cross
section in more detail, for the three values of s;, corre-
sponding to the cross sections shown in Fig 20. As
mentioned above, using AE, = 0.05 GeV, the corrections
in the DDVCS regime vary between —60% and —45% for
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FIG. 22. Upper panels: 6} dependence of the radiative corrections to the e”p — e~ pl~I™" cross section in the DDVCS regime for e~ e™
production (left) and g~ p™ production (right) for the different classes of radiative corrections for AE,; = 0.05 GeV. Lower panels: 07
dependence of the total radiative correction for different values of AE, for both e~e™ production (left) and x~u™ production (right).
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e~e™ production, while for pu~u™ production they are
slightly smaller and vary between —45% and —30%.

In Fig. 22 (upper panels), we show the relative size of the
corrections to the unpolarized cross sections stemming
from the three different classes of diagrams for the central
value of the squared dilepton mass, s; = 1.0 GeV2. We
show both the virtual corrections (labeled “virt”), corre-
sponding with Egs. (97)—-(103), as well as the virtual + real
soft-photon corrections, with the real corrections given by
Egs. (109)—(112) and (117).

While the corrections of class (a) are just constant and
negative, the corrections of classes (b) and (c) have a
nontrivial dependence on the dilepton scattering angle 6;.
For class (b), this dependence is coming entirely from the
real photon emission correction, since the dilepton energies
in the soft-photon frame depend on the lepton scattering
angle 607, see Eq. (118). Comparing the soft-photon
radiative corrections to e~e™ and p~ut production, we
see that the largest difference is again coming from class
(b), which is expected since it is most sensitive to the lepton
mass m;. Let us note that, as discussed before for the low-
energy case, classes (a) and (b) are symmetric with respect
to the interchange /™ and [~, while class (c) is antisym-
metric. Therefore, to the first order only, class (c) contrib-
utes to the Agp.

In the lower panels of Fig. 22, we show the sum of all
corrections for two different values of the soft-photon
energy cutoff of AE; = 0.05 GeV (blue dotted curve)
and AE, = 0.1 GeV (red dashed curve). The difference
between both curves is a constant proportional to
In AE2/m?. For the twice higher value of the soft-photon
energy, we find in absolute values smaller corrections
shifted by approximately 10%. Furthermore, we see that
the sum of all corrections is in absolute value smaller by
more than 10% for y~u™ production compared to ee™
production. As mentioned above, the difference is coming
mainly from corrections of class (b) which are (in absolute
value) smaller for y~u™ production.

In Fig. 23, we show the soft-photon radiative corrections
for the e”p — e~ pe~et process, for roughly the same
kinematics as in Ref. [40], in which we studied the effect of
radiative corrections for the timelike Compton scattering
(TCS) process, yp — e~ e p, with an on-shell incoming
photon. In the soft-photon approximation, the corrections
to that process are equivalent to that of class (b) studied in
the present work. Therefore, we find for corrections of class
(b) the same order of magnitude of approximately —25% as
in [40] (blue dotted curve). Including also corrections of
classes (a) and (c), we find that the corrections increase with
increasing Q7 values, varying from —35% to —50% when
varying Q2 from 107 to 107" GeV? (red dashed curve).
Furthermore, one observes around Q% = 1 GeV? the same
spiked behavior as in the low-energy case in Fig. 18. The
reason is again that in this kinematics the two outgoing
electrons with momenta &’ and I_ become collinear which
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FIG. 23. Radiative correction for the e"p — e~ pe~e* proc-

ess in the TCS limit Q> — 0 in a kinematic setup comparable
to Ref. [40].

leads to a large logarithm in the corrections of type (c). For
an experiment, such a kinematic region should be avoided.

In Fig. 24, we show a comparison of both beam-spin and
forward-backward asymmetries in the DDVCS regime,
both for e“e™ and p~u* production and for a dilepton
invariant mass squared of s; = 1.0 GeV?2.

Studying the DDVCS process in this energy regime is of
particular interest as it allows us to extend the DVCS beam-
spin asymmetry measurements of GPDs into the so-called
ERBL domain [34,35]. The BSA is proportional to the
imaginary part of the DDVCS amplitude of Eq. (37) and
allows us to access the GPDs directly unlike the real part of
the amplitude which depends on a convolution integral over
the GPDs. The numerator of the BSA directly yields for
both the cases & > 0 (Q> > ¢’*) and & < 0 (Q? < ¢,

ot —0 = cH™M(E £ 1) + -, (128)
with =& < & < & In Eq. (128), ¢ is a known factor,
originating from the BH amplitude dependent on the
nucleon elastic form factors, and the ellipses stand for
the subdominant contribution of GPDs beyond H*"#,

As Hs"get s an odd function in its first argument, we
thus see that the BSA for the DDVCS process changes sign
when crossing the point & = 0. The BSA for the DVCS and
TCS limits have the same magnitude but opposite signs,
expressing the fact that the GPD information content in
both limits is the same.

Given that the real BH process does not yield a BSA
by itself, we see from Fig. 24 that the BSA has a
significant sensitivity to the GPDs, yielding asymmetries
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FIG. 24. 6} dependence of the ¢e”p — e~ pl~I* beam-spin asymmetry A, (upper panels) and forward-backward asymmetry Arp
(lower panels) in the DDVCS regime, for e~e™ production (left) and y~u* production (right). Curve conventions as in Fig. 20.

between —25% and +10% for e~ e™ production and
between —25% and —5% for pu~u™ production. The differ-
ence between both cases is mainly due to the effect of
antisymmetrization in both outgoing electrons for e~e™
production. Furthermore, unlike the DVCS and TCS cases,
the BSA for DDVCS is also sensitive to the D-term
contribution to the GPD, as it also yields a contribution
to the imaginary part of the DDVCS amplitude. By
comparing the red dashed and black solid curves in
Fig. 24, we notice that the sensitivity to the D term induces
a change of the BSA by 5% or more over a large angular
range. As noticed above, the radiative correction drop out
of the BSA in the soft-photon approximation.

We also show the forward-backward asymmetry in
Fig. 24 and notice that the antisymmetrization induces

already a large effect for the BH process itself (blue dotted
curves in Fig. 24). Adding the dVCS contribution changes
the forward-backward asymmetry by up to 25% over a
large angular range, while the effect of radiative corrections
(black solid curves) is in the few percent range only. The
sensitivity on the D term for the forward-backward asym-
metry is much smaller; comparing the curve including
the D term (green dotted-dashed line) and the curve
excluding the D term (red dashed line), we find a difference
of up to approximately 5%.

For the calculation of the e”p — e"pe~e™’ cross sec-
tions shown in Fig. 20 (left panels) and the corresponding
asymmetries shown in Fig. 24 (left panels), we have to
ensure that the model used for the dVCS amplitude is
applicable for both the direct and the exchange terms.
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In Fig. 25, we show the two photon virtualities entering the
dVCS tensor for the exchange diagrams. One can see that in
the kinematics considered one of the two virtualities is
around or above 2 GeV? for nearly all lepton angles, which
corresponds with the lower limit for which the QCD
factorization in terms of GPDs is expected to hold. This
justifies the use of the handbag description of Sec. III B in
terms of GPDs also for the exchange term.

Furthermore, in Fig. 25 (lower panel), we show the
scaling variables entering the DDVCS tensor for the
exchange diagrams. While &,, and &,, both are roughly
constant as function of the dilepton angle, close to the value
of £=0.175 for the direct diagram, one notices a large
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FIG. 25. Upper panel: photon virtualities entering the dVCS

amplitude in the exchange diagrams of the ¢~ p — e pe~e™
process for the kinematics of Fig. 24. Lower panel: scaling
variables entering the GPDs for the exchange diagrams.

angular variation for £, and &,,. Compared to the constant
value & = 0.0758 entering the direct diagram, &, varies
between —0.08 and 0.08. Thus, the e"p — e pe e™
process has the unique feature, due to the antisymmetriza-
tion in both outgoing electrons, that by varying the dilepton
angle #; one performs a systematic scan in the scaling
variable &, in the ERBL domain of the GPDs.

In Fig. 26, we also show the dilepton momenta and
scattering angles measured in the Lab frame as a function of
the dilepton rest frame angle ¢;. From the upper panel of
that figure, it becomes clear that most of the region is
experimental accessible. Except for angles around 0° and
+180°, over most of the dilepton angular range, the lepton
momenta are larger than 0.1 GeV, which makes it quite
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FIG. 26. Lab momenta (upper panel) and Lab scattering angles
(lower panel) of the dilepton pair as function of dilepton rest
frame angle #; for the kinematics of Fig. 24.
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feasible to detect the particles. The scattering angles
measured in the Lab system are shown in the lower panel
in Fig. 26. In the region where the Lab momenta of the
dilepton pair are larger than 0.1 GeV, they range from —50°
to 50°. This initial study seems promising for a measure-
ment of the e"p — e~ pe~e™ process over a large range of
scattering angles.

VII. CONCLUSIONS

In this paper, we studied the soft-photon radiative
corrections to the process e~ p — e~ pl~IT, where [ = ¢
or [ = u. The process contains two distinct contributions:
first, the spacelike and timelike Bethe-Heitler processes
which only depend on the nucleon elastic form factors
and second the double-virtual Compton scattering process.
The latter is sensitive to the underlying hadronic model
describing the virtual photon-nucleon interaction, and a
measurement of e~ p — e~ pl~I" observables can therefore
be used to test and study nucleon structure models for
different energy regimes. In the present work, we studied
the e"p — e pl~ It process in two different energy
regimes.

In the low-energy regime, in which the center-of-mass
energy is close to the A(1232)-resonance, and in which
both photon virtualities are typically below or around
0.1 GeV2, we described the interaction using a A-pole
model together with a low-energy expansion of the dVCS
amplitude. This regime is motivated to better constrain the
hadronic corrections to precision atomic spectroscopy.
In particular, for the muonic hydrogen Lamb shift, the
main hadronic unknown to date results from a low-energy
nucleon structure constant, denoted by bs o, which enters
the empirical determination of the O(Q*) term in the
subtraction function 7(0,Q*) of the forward double-
virtual Compton amplitude. We found that the spread
between the different theoretical estimates for the low-
energy constant b, increases the e~ p — e~ pl~I" cross
section by approximately 15% both for e~e™ and g~ u™
productions. Furthermore, we also found that the beam-
spin asymmetry and the forward-backward asymmetry,
resulting from an interchange in the kinematics of the
produced dilepton pair, are sensitive to the low-energy
constant b; . For the beam-spin asymmetry, the range of
theoretical values for this low-energy constant leads to a
shift in the asymmetry up to 15% for e”e™ production and
up to around 10% for y~pu™ production. A measurement of
the e~ p — e~ pl~I" observables in this low-energy regime
is thus promising to extract the nucleon structure constant,
which could help to reduce the main uncertainty in the
theoretical uH Lamb shift estimate.

For the high-energy deeply virtual regime, we modeled
the dVCS amplitude in terms of GPDs. We studied the
sensitivity of the e™p — e~ pl~I" process to the modeling
of the GPDs, in particular, the so-called D-term

contribution. In kinematics of future experiments at
JLab, we found that dispersive estimates for the D-term
contribution to the GPDs induce around 20% change in the
e~ p — e~ pl~IT cross section. Furthermore, we also found
a large sensitivity to the GPD model for the beam-spin as
well as the forward-backward asymmetry. The beam-spin
asymmetry is of particular interest as it does not involve any
convolution over GPDs but is directly proportional to the
GPDs, mostly in a linear way, through interference with the
Bethe-Heitler process. For the e”p — e~ pe~et process,
the beam-spin asymmetry has the unique feature, due to the
antisymmetrization in both outgoing electrons, that by
varying the dilepton angle one performs a systematic scan
in the average quark momentum fraction in the ERBL
domain of the GPDs, due to the exchange term.

In order to use the e”p — e~ pl~I" process in either the
low-energy or high-energy regime as a probe of nucleon
structure, we also studied the QED radiative corrections
on the observables, in the soft-photon approximation. We
found that the radiative corrections have a large impact on
the cross sections. In the low-energy regime, we find that
these corrections lead to a decrease of the cross section of
up to 30% for e"e™ production and around 15% for p~pu™
production. In the high-energy deeply virtual regime, the
corrections even range up to 50% for e~e™ production,and
around 35% for p~u™ production in JLab kinematics. For
the forward-backward and beam-spin asymmetries, the
situation is different. For the Arp, the radiative corrections
were found to affect the asymmetry only around or below
the 1% level, whereas the beam-spin asymmetry is not
affected at all in the soft-photon approximation. A com-
bined analysis of the cross section and of both asymmetries
thus holds promise to access the hadronic structure infor-
mation in both regimes.

A next step to interpret future measurements of e~ p —
e~ pl~I* observables would consist in performing a full
one-loop radiative correction calculation, beyond the soft-
photon approximation. Such a calculation can build upon
the work of Refs. [39,40], in which such a study was
performed for the related yp — [~I" p process. The latter
study has shown that the soft-photon approximation can
be expected to somewhat overestimate the full one-loop
corrections on the cross sections, while the beam-spin and
forward-backward asymmetries remain nearly unaffected
by the radiative corrections.
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APPENDIX A: KINEMATICS IN y*p
REST FRAME

In this Appendix, we derive expressions for the four-
momenta in the rest frame of a proton and the momentum
transfer of the scattered electron, i.e.,

G=k—k =-p. (A1)
We align this system along the z-axis, such that the energy
of the virtual photon with momentum ¢ is given by

W2 _ MZ _ Q2
O = ————— A2
em T , (A2)
and the z-component of the three-momentum by
QCWI = QZ
1
~ow [(W+M)* + Q) (W = M)* + 0%)]'/2.
(A3)

The energy of the incoming electron with momentum k is
given by

_S_MZ_mZ_QZ

kO
2w

(A4)

In order to write the three-momentum k, we define ry,
which is the magnitude of the three-momentum in x and y
directions,

e [s(s — M?* — Q%) — W2(s — M?)

Wy,
— m2((W2 — M2)2/Q2 + 25 + W2 + M2) + m4]1/2’

(AS)

|

/
c

cm

dn (1 4 Gew P cos
2 g% sn !
10 ! . .
% (B, c0s 0] + %) sin(60,,) + %57 B, sin 0] cos g cos(6,,)
g sin sin ]
0 : 1
qém (ﬁs,, cos 6 + 3’0) cos(6,,) — @ﬁs,, sin 0} cos ¢; sin(6,,)

such that & is given by

k. = r;cos @,
ky, = risin @,

W@+ gl (s —m* - M* - Q)

k
‘ 2an‘l W

(A6)

Using these quantities, we can write down the momenta
of the incoming and outgoing electrons k and k' as

K0 K= g

7, cos @ 7, cos @
= =] """ (A7)

7y sin @ 7y sin @

kz kz ~4em

The energy of the photon with momentum ¢’ is given by

W2 - M2 + S
qom = T ow (A8)
and its three-momentum by
/ pre
Gem =14 cn]
(W +M1)* = s5) (W = M)> = s)]"/2. (A9)

oW

The angle 0,, is defined as the angle between the two
virtual photons with momenta ¢ and ¢’. It can be calculated
in terms of invariants via

(W2 —M? — O*)(W? — M + 5;))

2qcm q/cm COs (97/7) =

The momentum [, of the other lepton can be obtained via the transformation

cos; — —cos by,

cos ¢p; = —cos ¢y,

2W?
+ r— S” + QZ. (AIO)
We can now write the four-momentum of [_,
(A11)
sing; — —sin¢;. (A12)

The momentum p of the incoming proton is aligned to the z axis. The energy and the z component are given by
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pO =V M? + q%m? Pz = —4em- <A13)
The momentum p’ of the outgoing proton can be calculated
using energy-momentum conservation. The energy and
three-momentum are given by

/ — — —
plo = M2—|—|q/|2, P =-4.

Having derived all four-momenta in the y*p center-of-
mass frame, one can easily perform a Lorentz transforma-
tion to get the four-momenta in any other system. In
particular, one can perform the boost to the recoil proton +
soft-photon rest frame, which is needed to calculate the
soft-photon integrals from Sec. V.

(A14)

APPENDIX B: THREE-POINT FUNCTIONS

In this Appendix, we give analytic expressions for the
three-point function which we need for the virtual soft-photon
|

1 2\er (]
Consomis0.mon) = o (<2) "L L)

s €1R

1 1 . — sy~
F 02 — 1) = g2 (—) + 501 — 1) ~ Ly ( 7 )

corrections. The results are taken from Ref. [56]. The three-
point function with equal masses is given by

o) ()

(B1)

Co(m?,s,m?,0,m?, m?)

_é{ﬁR <ﬂ+1> <
2 (551) %)

where we defined

2
p—f1=4m (B2)
s
The above expression is valid in the spacelike region in
which s < 0.
The three-point function with two different masses m
and m; is given by

A Lo v
_1n<_g) (In(xy) +In(x_)) +§ln (=r")

A

. S}/+ . - S . sy_
—Li, (T) +L12< 2 > + Li, (T) }, (B3)
with
ﬂ:\/(—s+m2+m2)2_4m2m2 y _! 1+Mi'} P R £ | (B4)
1 IR + o) s P s 1—7/_’ + ,

As above, the expression is valid in the spacelike region with s < 0.
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