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We calculate the leading-order QED radiative corrections to the process e−p → e−pl−lþ in the soft-
photon approximation, in two different energy regimes which are of relevance to extract nucleon
structure information. In the low-energy region, this process is studied to better constrain the hadronic
corrections to precision muonic hydrogen spectroscopy. In the high-energy region, the beam-spin
asymmetry for double-virtual Compton scattering allows us to directly access the generalized parton
distributions. We find that the soft-photon radiative corrections have a large impact on the cross sections
and are therefore of paramount importance to extract the nucleon structure information from this process.
For the forward-backward asymmetry, the radiative corrections are found to affect the asymmetry only
around or below the 1% level, whereas the beam-spin asymmetry is not affected at all in the soft-photon
approximation, which makes them gold-plated observables to extract nucleon structure information in
both the low- and high-energy regimes.
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I. INTRODUCTION

Double-virtual Compton scattering (dVCS) on a proton,
the process γ�p → γ�p with initial and final virtual photons
(γ�), is a prime process to study and test models describing
the electromagnetic structure of the nucleon beyond the
information contained in the elastic form factors.
At low energies, it allows us to extract nucleon structure

constants, which enter the expansion of the nucleon
Compton amplitude. The real Compton scattering limit,
the process γp → γp with both photons real, has been
used over many years as an experimental tool to access
the nucleon electromagnetic polarizabilities, see, e.g.,
Ref. [1–4] for reviews. The virtual Compton scattering
(VCS) process, γ�p → γp with initial spacelike virtual
photons, which can be accessed as a subprocess of the
e−p → e−pγ reaction, has also been studied extensively
over the past three decades to access the generalized
nucleon polarizabilities [1,5–7]. These structure quantities
allow us to obtain, through a Fourier transform, a spatial
representation of the deformation of the charge and
magnetization distributions of the nucleon under the
influence of an external static electromagnetic field [8].
The most general case of a double-virtual Compton

process, with both initial and final virtual photons, has until

now been studied only in special limits. The most useful
extension is given by the forward double-virtual Compton
scattering (VVCS) process, where the initial and final
photons have the same nonzero spacelike virtuality. In
contrast to the processes discussed above, the forward
VVCS process is not directly measurable. It enters however
in the leading hadronic corrections to the muonic hydrogen
Lamb shift and hyperfine splitting. The interest in its
improved estimate was spurred in 2010 by the ultraprecise
determination of the proton charge radius from the muonic
hydrogen Lamb shift measurements [9], which reported a
4% smaller radius value than the 2010 recommended value
by the Committee on Data for Science and Technology [10]
based on results from electron-proton scattering and ordi-
nary hydrogen spectroscopy measurements, and represents
a 7σ difference. Over the past decade, major progress has
been made in resolving this puzzle, see Refs. [11–13] for
some recent reviews. The dominant theoretical model error
in the extraction of the proton charge radius from the
muonic hydrogen Lamb shift measurements to date results
from the subtraction function entering the VVCS process
[14–16]. At second order in the photon virtuality, this
function is constrained by the magnetic polarizability,
which is determined experimentally [17]. To fourth order
in the photon virtuality, one low-energy constant in this
subtraction function is at present empirically unconstrained
[18], and one relies on chiral effective field theory
calculations [15,19] or phenomenological estimates [20].
In Ref. [21], it was proposed to access this low-energy
nucleon structure constant empirically through the forward-
backward asymmetry in the e−p → e−pl−lþ process, with
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l ¼ e or l ¼ μ. The dVCS amplitude contributing to
that process, γ�p → γ�p, has an incoming photon with
spacelike virtuality and an outgoing photon with timelike
virtuality.
A second kinematical region in which the virtual

Compton processes are being used as a prime tool to study
the partonic structure of the nucleon is at high energies, for
near-forward kinematics, either through the e−p → e−pγ
process with initial spacelike photons with large virtuality,
the deeply virtual Compton scattering process (DVCS), or
through the dilepton photoproduction process γp → l−lþp
with outgoing timelike photons with large virtuality, the
timelike Compton scattering (TCS). In such a kinematical
regime, pertubative quantum chromodynamics (QCD)
allows us to express the proton structure entering the
DVCS and TCS processes through generalized parton
distributions (GPDs), which access the correlation between
the longitudinal momentum distribution of partons in a
proton and their two-dimensional transverse spatial distri-
butions. We refer the reader to Refs. [22–25] for the
original articles on GPDs and to Refs. [26–31] for reviews
of the field. Accessing the resulting three-dimensional
momentum-spatial distributions of valence quarks in a
nucleon through exclusive processes has been one of the
driving motivations for the JLab 12 GeV upgrade [32].
Furthermore, accessing the sea quark and gluonic structure
of nucleons and nuclei through such processes is one of the
main science questions that will be addressed at the future
Electron-Ion Collider machine [33].
A further extension of either the DVCS or TCS process in

the high-energy near-forward region has been proposed
through the e−p → e−pl−lþ reaction (with l− either an e−

or μ−), which accesses the double deeply virtual Compton
scattering (DDVCS) process with incoming spacelike pho-
tons and outgoing timelike photons. The DDVCS process
is of particular interest as it allows us to extend the DVCS
beam-spin asymmetry measurements, which directly access
GPDs, into the so-called Efremov-Radyushkin-Brodsky-
Lepage (ERBL) domain [34,35]. A feasibility study of the
DDVCS experiment has shown that the SoLID@JLab project
with its high luminosity and large acceptance is very
promising to perform such measurements [36].
In order to use the e−p → e−pl−lþ reaction as a tool of

proton structure, it is imperative to quantitatively estimate
the QED radiative corrections to this process, which is the
main objective of the present work. Our work extends
previous studies of radiative corrections for the VCS
process [37], as well as more recently for the TCS process
[38–40]. In Ref. [40], it was found for the γp → lþl−p
process that the relevant asymmetries to extract the real
and imaginary parts of the TCS amplitudes, the forward-
backward and beam-helicity asymmetries, are nearly unaf-
fected by the radiative corrections. Very recently, the first
experimental results for these TCS asymmetries have
been reported by the CLAS Collaboration at JLab [41].

In contrast to the asymmetries, the TCS cross sections
receive sizeable corrections: in the low-energy region up to
10% and in the high-energy kinematical region up to 20%.
As for the single spacelike or single timelike Compton
scattering cases, it is crucial to have a good quantitative
understanding of radiative corrections also in the double-
virtual case in order to be able to extract relevant informa-
tion about the proton structure from future experimental
data. As a first estimate of the size of radiative corrections,
we use the soft-photon approximation in this work. We
distinguish between three different gauge-invariant types
of corrections, from which one contributes to the VCS case,
a second one contributes to the TCS case, both of which
are obtained as limits of our work, and a third type of
correction which is new for the double-virtual case. We
study the size of these corrections on the level of unpo-
larized cross sections as well as on the forward-backward
and beam-spin asymmetries.
The outline of the present paper is as follows. In Sec. II,

we introduce the relevant Feynman diagrams at tree level.
We distinguish between two different contributions: the
Bethe-Heitler and the Compton scattering processes. In
Sec. III, we introduce the two different nucleon structure
models which we use to describe the dVCS amplitude. In
the low-energy regime, we calculate the contribution from
the Born process in terms of the protons form factors as
well as the Δð1232Þ resonance excitation in combination
with a low-energy expansion of the dVCS amplitude. In the
high-energy regime, we use the QCD factorization theorem
to express the dVCS amplitude in terms of GPDs. In
Sec. IV, we calculate the virtual radiative corrections in the
soft-photon approximation from the three gauge invariant
types of contributions. We give analytic expressions for the
finite and infrared divergent parts of all three contributions in
terms of a factorizing contribution on the cross section level.
In Sec. V, we calculate the contribution due to soft-photon
bremsstrahlung. Taking real radiation into account, we cross
check analytically the cancellation with the infrared diver-
gences from the virtual corrections. In Sec. VI, we show our
results for the observables in both the low- and high-energy
kinematical regimes. We conclude in Sec. VII. Technical
details are discussed in two Appendixes.

II. DILEPTON ELECTROPRODUCTION
AT TREE LEVEL

In this work, we study the dilepton electroproduction
process,

e−ðkÞ þ NðpÞ → e−ðk0Þ þ Nðp0Þ þ l−ðl−Þ þ lþðlþÞ; ð1Þ

as a probe of proton (N) structure, with l− either an e− or a
μ−, where the quantities in brackets denote the particle
four-momenta. At tree level, we distinguish between three
different contributions, which we denote as the spacelike
(SL) and timelike (TL) Bethe-Heitler (BH) processes, see
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Fig. 1, as well as the double-virtual Compton process
(dVCS), see Fig. 2.
To specify the kinematics, it is useful to introduce the

following four-momenta:

q ¼ k − k0; q0 ¼ lþ þ l−; Δ ¼ p0 − p: ð2Þ

The process (1) is defined by eight kinematical invariants,
which we choose as

s ¼ ðkþ pÞ2; Q2 ¼ −ðk − k0Þ2;
W2 ¼ ðqþ pÞ2; t ¼ Δ2;

sll ¼ q02; Φ; θ�l ;ϕ
�
l ; ð3Þ

where Φ denotes the angle of the initial electron plane
relative to the production plane. Furthermore, the angle
θ�l (ϕ

�
l ) denotes the polar (azimuthal) angle, respectively, of

the negative lepton in the rest frame of the l−lþ lepton pair.
In Fig. 3, we show the three different scattering planes
defined by these angles.
We denote bym the mass of the electron, byml the mass

of the produced leptons, and by M the mass of the proton.
The on-shell relations of the external particles are therefore

k2 ¼ k02 ¼ m2; l2− ¼ l2þ ¼ m2
l ; p2 ¼ p02 ¼ M2;

ð4Þ

and the invariant s is obtained from the laboratory frame
(Lab) electron beam energy Ee as s ¼ M2 þm2 þ 2MEe.
The matrix element for the spacelike Bethe-Heitler

(BH,SL) process (left diagram in Fig. 1) is given by

MBH;SL
0;dir ¼ −ie4

Q2t
ūðk0; h0Þγμuðk; hÞ

× ūðl−; h−Þ
�
γμ

=l− − =qþml

ðl− − qÞ2 −m2
l

γα

þ γα
=q − =lþþml

ðq − lþÞ2 −m2
l

γμ

�
vðlþ; hþÞ

× N̄ðp0; s0ÞΓαðp0; pÞNðp; sÞ; ð5Þ

while the timelike Bethe-Heitler (BH,TL) process (right
diagram in Fig. 1) is given by

MBH;TL
0;dir ¼ ie4

sllt
ūðl−; h−Þγμvðlþ; hþÞ

× ūðk0; h0Þ
�
γμ

=k0 þ =q0 þm
ðk0 þ q0Þ2 −m2

γα

þ γα
=k − =q0 þm

ðk − q0Þ2 −m2
γμ

�
uðk; hÞ

× N̄ðp0; s0ÞΓαðp0; pÞNðp; sÞ: ð6Þ

In Eqs. (5) and (6), hðh0Þ denotes the helicities of the initial
(scattered) electrons. Also, h− and hþ are the helicities of
the produced lepton pair, and sðs0Þ are the helicities of the
initial (final) proton, respectively. Furthermore, Γα is the
electromagnetic nucleon vertex given by

FIG. 1. Tree level QED diagrams contributing to the e−p →
e−pl−lþ process. We distinguish between the spacelike (left) and
the timelike (right) Bethe-Heitler processes. The crossed dia-
grams, for which in the spacelike process the order of the vertices
on the produced dilepton line are interchanged, and for which in
the timelike process the order of the vertices on the electron beam
line are interchanged, are not shown.

FIG. 2. Tree level diagrams for the Compton scattering. The
blob represents the (elastic and inelastic) interaction of the virtual
photon with the nucleon.

FIG. 3. Planes defining the scattering angles which characterize
the e−p → e−pl−lþ process. The angles Φ and ϕ�

l are defined
with respect to the blue plane, which is the scattering plane of the
virtual photons with four-momenta q and q0.
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Γαðp0; pÞ ¼ F1ðtÞγα þ F2ðtÞ
iσαα

0Δα0

2M
; ð7Þ

where F1 (F2) are the Dirac (Pauli) form factors (FFs) of
the nucleon, respectively.
The matrix element for the double-virtual Compton

scattering (dVCS) process (Fig. 2) is expressed as

MdVCS
0;dir ¼ ie4

Q2sll
ūðk0; h0Þγμuðk; hÞūðl−; h−Þγνvðlþ; hþÞ

× N̄ðp0; s0ÞMμνNðp; sÞ; ð8Þ

where Mμν denotes the Compton tensor which depends on
the model to describe the interaction of photons with the
nucleon, which is specified below.
In the case of e−eþ production, we have to take into

account that the electrons with momenta k0 and l− are
indistinguishable. Thus, for e−eþ production, we have to
consider, besides the direct (dir) contribution of Eqs. (5),
(6), and (8), also the contribution of all exchange (ex)
diagrams where both electrons in the final state are
interchanged. The Bethe-Heitler matrix elements corre-
sponding with these exchange terms are given by (note that
this only contributes in the case ml ¼ m)

MBH;SL
0;ex ¼ ie4

ðk − l−Þ2t
ūðl−; h−Þγμuðk; hÞ

× ūðk0; h0Þ
�
γμ

=l− − =qþm
ðl− − qÞ2 −m2

γα

þ γα
=k − =q0 þm

ðk − q0Þ2 −m2
γμ

�
vðlþ; hþÞ

× N̄ðp0; s0ÞΓαðp0; pÞNðp; sÞ; ð9Þ

MBH;TL
0;ex ¼ ie4

ðlþ þ k0Þ2t ūðk
0; h0Þγμvðlþ; hþÞ

× ūðl−; h−Þ
�
γμ

=k0 þ =q0 þm
ðk0 þ q0Þ2 −m2

γα

þ γα
=q − =lþ þm

ðq − lþÞ2 −m2
γμ

�
uðk; hÞ

× N̄ðp0; s0ÞΓαðp0; pÞNðp; sÞ; ð10Þ

and the exchange term corresponding with the dVCS
matrix element is given by

MdVCS
0;ex ¼ −ie4

ðk − l−Þ2ðlþ þ k0Þ2 ūðl−; h−Þγμuðk; hÞ

× ūðk0; h0Þγνvðlþ; hþÞ × N̄ðp0; s0ÞMμνNðp; sÞ:
ð11Þ

To ensure the Pauli principle, one has to antisymmetrize
the amplitude under exchange of both electrons in the

final state. Therefore, the full matrix elements for the
e−p → e−pe−eþ process are obtained as the difference
between the amplitudes for direct (dir) and exchange (ex)
diagrams,

MBH;SL
0 ¼ MBH;SL

0;dir −MBH;SL
0;ex ;

MBH;TL
0 ¼ MBH;TL

0;dir −MBH;TL
0;ex ;

MdVCS
0 ¼ MdVCS

0;dir −MdVCS
0;ex ; ð12Þ

while for μ−μþ production only the direct diagrams
contribute.
The full differential cross section for the e−p → e−pl−lþ

process is given by�
dσ

dQ2dW2dΦdtdslldΩ�
l

�
0

¼ 1

ð4πÞ7
1

2ðs −M2Þ2

×
βsll

½ððW þMÞ2 þQ2ÞððW −MÞ2 þQ2Þ�12
×
X
i

X
f

jMBH;SL
0 þMBH;TL

0 þMdVCS
0 j2; ð13Þ

where dΩ�
l refers to the phase space of the produced lepton

of the dilepton pair in the l−lþ rest frame, and where βsll is
the lepton velocity in the l−lþ rest frame,

βsll ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
l

sll

s
: ð14Þ

III. MODELS FOR THE DOUBLE-VIRTUAL
COMPTON AMPLITUDE

The double-virtual Compton tensorMμν entering Eq. (8)
is calculated from the process

γ�ðqÞ þ NðpÞ → γ�ðq0Þ þ Nðp0Þ: ð15Þ

We show the Feynman diagram for this process in Fig. 4.
The blob in this diagram represents the interaction of the
incoming and outgoing virtual photons with the proton. In
the following, we use the average photon (q̄) and proton (P)
momenta,

FIG. 4. Diagram representing the double-virtual Compton
process.
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q̄≡ 1

2
ðqþ q0Þ; P≡ 1

2
ðpþ p0Þ: ð16Þ

The general double-virtual Compton tensor Mμν can be
constructed using qμ, q0μ, pμ, gμν, and γμ as building blocks.
From these blocks, one finds 34 independent tensors with
two indices [42]. Using gauge invariance, it was shown that
the number of independent amplitudes can be reduced from
34 to 18 [42]. However, it was realized in Ref. [42] that
there is, in general, a problem in such representation. For
specific kinematical points, the 18 tensors become linearly
dependent and therefore do not form a basis at these
specific points anymore. As a result the corresponding
Compton amplitudes display kinematic singularities at
these points. To bypass this problem, Tarrach [42] intro-
duced an overcomplete basis by introducing three addi-
tional tensors. Such an overcomplete basis does not have
any kinematical constraints and is valid in the whole phase
space. It was realized in Ref. [43] that the kinematic
singularities and constraints of the Compton amplitude
in a minimal basis are due to the Born terms, in which the
intermediate state in the Compton process in Fig. 4 is a
nucleon, and that for the non-Born contributions a minimal
tensor basis consisting of 18 structures free of kinematical
singularities and constraints exists.
In this work, we only need the helicity-averaged ampli-

tude, which is described by five independent tensors and
can be expressed as, following the notations of [43],

Mμν ¼
X

i¼1;2;3;4;19

Biðν; q2; q02; q · q0ÞTμν
i ; ð17Þ

where Tμν
i are the spin-independent and gauge invariant

tensors, symmetric under exchange of the two virtual
photons, and are given by

Tμν
1 ¼ −q · q0gμν þ q0μqν;

Tμν
2 ¼ ð2MνÞ2

�
−gμν þ q0μqν

q · q0

�

− 4q · q0
�
Pμ −

q · P
q · q0

q0μ
��

Pν −
q · P
q · q0

qν
�
;

Tμν
3 ¼ q2q02gμν þ q · q0qμq0ν − q2q0μq0ν − q02qμqν;

Tμν
4 ¼ ð2MνÞðq2 þ q02Þ

�
gμν −

q0μqν

q · q0

�

þ 2

�
Pμ −

q · P
q · q0

q0μ
�
ð−q02qν þ q · q0q0νÞ

þ 2

�
Pν −

q · P
q · q0

qν
�
ð−q2q0μ þ q · q0qμÞ;

Tμν
19 ¼ 4q2q02

�
Pμ −

q · P
q2

qμ
��

Pν −
q · P
q02

q0ν
�
: ð18Þ

Furthermore, in Eq. (17), the invariant amplitudes Bi are
functions of four Lorentz invariants, with ν≡ q · P=M.
In order to specify the double-virtual Compton ampli-

tude, we need to model the internal structure of the nucleon.
In this work, we consider two different models, which are
tailored for applications in two different energy regimes. In
a low-energy model, which is motivated for applications to
describe the hadronic structure in precision atomic physics
measurements such as the Lamb shift or hyperfine splitting
in muonic hydrogen, we consider the photons to interact
with the nucleon and its lowest excitation, the Δð1232Þ
resonance. In a high-energy model, in which at least one of
the photons is highly virtual, we use perturbative QCD
which allows us to factorize the Compton process on the
nucleon in terms of a Compton amplitude on the quark
convoluted with the amplitude to find the quarks inside the
nucleon. The latter is parametrized through generalized
parton distributions (GPDs).

A. Low-energy double-virtual Compton amplitude

1. Born diagrams

In the low-energy regime, we describe the Compton
tensor in terms of the leading Born (B) amplitude, given in
terms of the proton form factors. The amplitude can be
calculated from two Feynman diagrams shown in Fig. 5
(upper panel). Its contribution is given by

Mμν
B ¼Γν

f

=pþ=qþM
ðpþqÞ2−M2

Γμ
i þΓμ

i
=p0−=qþM

ðp0−qÞ2−M2
Γν
f; ð19Þ

where Γμ
i (Γν

f) are the initial (final) state proton vertices.
Note that the FFs entering Γν

f correspond with a timelike
virtuality. For the numerical evaluation of these FFs, we use
the parametrization of Ref. [44], which allows the analyti-
cal continuation based on dispersion relations into the
unphysical part of the timelike region, 0 < q02 < 4M2.
Note that in this region no direct experimental extraction
exists.

FIG. 5. Born contribution (upper panel) and s-channel Δ-pole
contribution (lower panel) to the Compton amplitude. While for
the Born contribution only the sum of s- and u-channel diagrams
is gauge invariant, the s-channel Δ-pole contribution is gauge
invariant by itself.
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2. Δ-Pole model

In addition to the Born amplitude, we need a model for
the non-Born contribution at low energies. The covariant
baryon chiral perturbation theory (BChPT) provides a
systematic framework for the calculation of the double-
virtual Compton scattering process, see Ref. [18]. The latter
work has shown that BChPT is fully predictive at orders
Oðp3Þ and Oðp4=ΔÞ, in which p stands for a small
momentum and with Δ≡MΔ −M the excitation energy
of the Δð1232Þ resonance. The Oðp3Þ contribution comes
from the pion-nucleon (πN) loops, and the Oðp4=ΔÞ
contribution comes from the delta-exchange (Δ-pole)
graph, which is shown in Fig. 5 (lower panel), and the
pion-delta (πΔ) loops.
For the near-forward real Compton cross section (i.e.,

integrated over a dilepton phase space), it was found that
around W ¼ 1.25 GeV the Bornþ Δð1232Þ-pole contribu-
tion reproduces a full dispersive calculation based on
empirical structure functions within an accuracy of 5% or
better [21]. As we consider in this work kinematics around
theΔð1232Þ resonance, we study as a first step the effect due
to radiative corrections on the Δð1232Þ-pole contribution.
The amplitude for the Δ-pole contribution to the double-

virtual Compton tensor can be expressed as

Mμν
sΔ ¼ Γ̃αν

γNΔðp0; pþ qÞ ð=pþ =qþMΔÞð−gαβ þ 1
3
γαγβÞ

W2 −M2
Δ þ iMΔΓΔðW2Þ

× Γβμ
γNΔðpþ q; pÞ: ð20Þ

In Eq. (20), the γ�NΔ vertex is denoted by Γβμ
γNΔðpΔ; pÞ

and its adjoint by Γ̃αν
γNΔðp0; pΔÞ. Both vertices are shown in

Fig. 6. They are given for the p → Δþ transition by

Γβμ
γNΔðpΔ; pÞ ¼

ffiffiffi
3

2

r
ðMΔ þMÞ

MQ2þ

�
gMðq2ÞiϵβμκλðpΔÞκqλ

− gEðq2Þðqβpμ
Δ − q · pΔgβμÞγ5

− gCðq2Þ
1

MΔ
½=pΔðqβqμ − q2gβμÞ

− γβðq · pΔqμ − q2pμ
ΔÞ�γ5

�
ð21Þ

and

Γ̃αν
γNΔðp0; pΔÞ ¼ −

ffiffiffi
3

2

r
ðMΔ þMÞ

MQ02þ

�
gMðq02ÞiϵανκλðpΔÞκq0λ

− gEðq02Þðq0αpν
Δ − q0 · pΔgανÞγ5

− gCðq02Þ
1

MΔ
γ5½=pΔðq0αq0ν − q02gανÞ

− γαðq0 · pΔq0ν − q02pν
ΔÞ�

�
; ð22Þ

where we defined Q� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMΔ �MÞ2 − q2

p
and likewise

Q0
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMΔ �MÞ2 − q02

p
. The FFs gM, gE, and gC

appearing in Eq. (21) have spacelike virtuality, whereas
the FFs in the adjoint vertex defined in Eq. (22) have to be
evaluated for timelike virtuality. We reexpress these FFs
in terms of the more conventional magnetic dipole (G�

M),
electric quadrupole (G�

E), and Coulomb quadrupole (G�
C)

transition FFs as

gM ¼ Qþ
M þMΔ

ðG�
M −G�

EÞ;

gE ¼ −
Qþ

M þMΔ

2

Q2
−
fðM2

Δ −M2 þ q2ÞG�
E − q2G�

Cg;

gC ¼ Qþ
M þMΔ

1

Q2
−
f4M2

ΔG
�
E − ðM2

Δ −M2 þ q2ÞG�
Cg;

ð23Þ

with the so-called Ash FFs parametrized, for spacelike
virtuality Q2 ¼ −q2, through the MAID2007 analysis
as [45,46]

G�
MðQ2Þ ¼ 3.00ð1þ 0.01Q2Þe−0.23Q2

GDðQ2Þ;
G�

EðQ2Þ ¼ 0.064ð1 − 0.021Q2Þe−0.16Q2

GDðQ2Þ;

G�
CðQ2Þ ¼ 0.124

1þ 0.12Q2

1þ 4.9Q2=ð4M2Þ
4M2

Δe
−0.23Q2

GDðQ2Þ
M2

Δ −M2
;

ð24Þ

with Q in GeV and the dipole FF GDðQ2Þ ¼
1=ð1þQ2=0.71Þ2. For small timelike virtualities,
0 < q02 < ðMΔ −MÞ2, we extrapolate in Eq. (22) the
expressions for spacelike virtualities by the substitution
Q2 → −q02.
The dominant contribution is coming from the magnetic

dipole transition FF G�
M. In the following, we use only that

dominant contribution, corresponding with the leading
term in the so-called δ expansion [47], to calculate
observables; i.e., we set G�

E ¼ G�
C ¼ 0.

3. Low-energy expansion

The non-Born part of the dVCS amplitudes, denoted as
B̄i, can be expanded for small values of ν; q2; q02, and q · q0,
with coefficients given by polarizabilities. The relations

FIG. 6. The γ�NΔ vertex Γβμ
γNΔ (left diagram) and its adjoint,

Γ̃αν
γNΔ (right diagram).
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between these low-energy coefficients and the polarizabil-
ities measured through real Compton scattering (γp → γp)
and virtual Compton scattering (γ�p → γp) have been
given in [18].
A special limit of the double-virtual Compton process is

given by its forward limit, denoted by VVCS, which
corresponds with q0 ¼ q and p0 ¼ p. This limit is of
particular importance as it enters the two-photon hadronic
corrections to the electronic and muonic hydrogen energy
levels. The helicity averaged VVCS process is described by
two invariant amplitudes, denoted by T1 and T2, which are
functions of the two kinematic invariants, Q2 and ν, as

Mμν
VVCS ≡ 1

αem

�
ĝμνT1ðν; Q2Þ − p̂μp̂ν

M2
T2ðν; Q2Þ

�
; ð25Þ

with ĝμν≡gμν−qμqν=q2, p̂μ ≡ pμ − p · q=q2qμ, and where
αem ¼ e2=4π ≃ 1=137. The optical theorem allows us to
express the imaginary parts of T1 and T2 as

ImT1ðν; Q2Þ ¼ e2

4M
F1; ImT2ðν; Q2Þ ¼ e2

4ν
F2; ð26Þ

where F1, F2 are the conventionally defined structure
functions parametrizing inclusive electron-nucleon scatter-
ing, depending on Q2 and x≡Q2=2Mν. The two-photon
exchange correction to the μH Lamb shift can be expressed
as a weighted double integral over Q2 and ν of the forward
amplitudes T1 and T2 [14]. Using the empirical inputs of F1

and F2, the ν dependence of T2 can be fully reconstructed
using an unsubtracted dispersion relation, whereas the
dispersion relation for T1 requires one subtraction, which
can be chosen at ν ¼ 0 as T1ð0; Q2Þ. The subtraction
function is usually split in a Born part, corresponding with
the nucleon intermediate state, and a remainder, so-called
non-Born part, denoted by T̄1ð0; Q2Þ. The Born part can be
expressed in terms of elastic form factors and is well
known, see, e.g., [4] for the corresponding expressions. The
non-Born part cannot be fixed empirically so far. In general,
one can however write a low Q2 expansion of T̄1ð0; Q2Þ as

T̄1ð0; Q2Þ ¼ βM1Q2 þ 1

2
T 00
1ð0ÞQ4 þOðQ6Þ; ð27Þ

where the term proportional to Q2 is empirically determined
by the magnetic dipole polarizability βM1 [17]. Theoretical
estimates for the subtraction term were given at order Q4 in
heavy-baryon chiral perturbation theory (HBChPT) [15], in
BChPT, both at leading order due to πN loops, and at next-
to-leading order, including both Δð1232Þ-exchange and πΔ
loops [18,19], as well as extracted from superconvergence
sum rule (SR) relations [20]. The different estimates for
T̄ 00
1ð0Þ are compared in Table I. Even for these theoretically

well motivated approaches, the spread among the different
estimates is quite large. The resulting uncertainty due to this

subtraction term constitutes at present the main uncertainty
in the theoretical μH Lamb shift estimate. To reduce such
model dependence, the dilepton electroproduction process
on a proton has been proposed in [21] as an empirical way to
determine T̄ 00

1ð0Þ.
As the forward VVCS process of Eq. (25) is a

special case of Eq. (17), one can express the subtraction
function entering the hadronic corrections to the μH energy
levels as [18]

T̄1ð0; Q2Þ ¼ αemQ2ðB̄1 þQ2B̄3Þ; ð28Þ

where both non-Born amplitudes B̄1; B̄3 are understood in
the forward limit (q ¼ q0), i.e., B̄ið0; q2; q2; q2Þ for i ¼ 1,
3. In order to specify T̄1ð0; Q2Þ up to the Q4 term, we use
the low-energy expansion in k ∈ fq; q0g of the amplitudes
B̄1; B̄3 [18],

B̄1ð0; q2; q02; q · q0Þ ¼ 1

αem

�
βM1 −

1

6
βM2q · q0

−
�
β0M1ð0Þ þ

βM1

8M2

�
ðq2 þ q02Þ

�
þOðk4Þ;

B̄3ð0; q2; q02; q · q0Þ ¼ b3;0 þOðk2Þ; ð29Þ

where βM2 is the magnetic quadrupole polarizability deter-
mined from real Compton scattering [48], and β0M1ð0Þ is the
slope at Q2 ¼ 0 of the generalized magnetic dipole polar-
izability which is accessed through virtual Compton scatter-
ing, see Ref. [7] for a recent review. While the terms of
Oðk0Þ and Oðk2Þ in the low-energy structure of the
amplitude B̄1 at ν ¼ 0 are empirically constrained from
real or virtual Compton scattering, the low-energy constant
b3;0 is not determined empirically so far because the
tensor structure Tμν

3 in Eq. (18) decouples when either the
initial or final photon is real. As such, the low-energy
constant b3;0 is the main unknown to date in the empirical
determination of T̄ 00

1ð0Þ. Below, we study the sensitivity of

TABLE I. Estimates of the Q4 term of the subtraction function
T̄1ð0; Q2Þ (second column) and of the dVCS low-energy constant
b3;0 (third column), both in units 10−4 fm5, in different theoretical
approaches [18]. The indicated range for the HBChPT result
corresponds with the range given by Eq. (15) in Ref. [15].

Source Ref. 1
2
T̄ 00
1ð0Þ αemb3;0

HBChPT [15] ½−1.01;−0.35�
πN loops −0.06 0.001
πΔ loops −0.10 −0.005
Δ exchange −1.98 0.11
Total BChPT [18] −2.14� 0.98 0.11� 0.05

Superconvergence SR [20] −0.47 3.96
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the e−p → e−pl−lþ process, including the soft-photon
radiative corrections, to this low-energy constant.

B. High-energy double-virtual Compton amplitude
in terms of GPDs

For the high-energy Compton scattering we calculate the
Compton tensor in terms GPDs using pertubative QCD.
This can be done by calculating the leading-order handbag
diagrams shown in Fig. 7.
For the evaluation of these diagrams, we need the

kinematic Lorentz invariants ξ and ξ0, defined as

ξ≡ −
Δ · q̄
2P · q̄

¼ −q2 þ q02

2ðW2 −M2Þ − q2 − q02 þ t
; ð30Þ

ξ0 ≡ −
q̄2

2P · q̄
¼ −q2 − q02 þ t=2

2ðW2 −M2Þ − q2 − q02 þ t
: ð31Þ

Furthermore, we introduce the two lightlike vectors p̃μ and
nμ with p̃ · n ¼ 1, which are related to the four-momenta
Pμ and q̄μ as

Pμ ¼ p̃μ þ M̄2

2
nμ; ð32Þ

q̄μ ¼ −ξ̃0p̃μ −
q̄2

2ξ̃0
nμ; ð33Þ

where M̄2 ¼ M2 − t=4. The variables ξ̃ and ξ̃0 are related to
the invariants ξ and ξ0 introduced in Eqs. (30) and (31) as

ξ̃ ¼ ξ
1þ ξ̃02M̄2=q̄2

1 − ξ̃02M̄2=q̄2
; ð34Þ

ξ̃0 ¼ ξ0
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ξ02M̄2=q̄2

p : ð35Þ

Although at leading twist, corresponding with the
kinematical regime for which M̄2 ≪ q̄2, one has

ξ̃ → ξ; ξ̃0 → ξ0; ð36Þ

and we keep in the following analysis the (small) difference
in the kinematical quantities.

The leading twist-2 double deeply virtual Compton
scattering (DDVCS) amplitude on a proton is given by

Mμν
DDVCS;tw-2 ¼

1

2
ð−gμνÞ⊥

Z
1

−1
dxCþðx; ξ̃0Þ

×

�
Hðx; ξ̃; tÞ=nþ Eðx; ξ̃; tÞiσαβnα

Δβ

2M

�

þ i
2
ðενμÞ⊥

Z
1

−1
dxC−ðx; ξ̃0Þ

×

�
H̃ðx; ξ̃; tÞ=nγ5 þ Ẽðx; ξ̃; tÞγ5

Δ · n
2M

�
;

ð37Þ

where the coefficient functions C�ðx; ξ̃0Þ are defined as

C�ðx; ξ̃0Þ≡ 1

x − ξ̃0 þ iϵ
� 1

xþ ξ̃0 − iϵ
ð38Þ

and

ð−gμνÞ⊥ ¼ −gμν þ p̃μnν þ p̃νnμ;

ðενμÞ⊥ ¼ ενμαβnαp̃β; ð39Þ

where the lightlike four-vectors p̃ and n are obtained from
Eqs. (32) and (33) as

nμ ¼ 1

ξ̃0M̄2=2 − q̄2=ð2ξ̃0Þ fξ̃
0Pμ þ q̄μg;

p̃μ ¼ −1
ξ̃0M̄2 − q̄2=ξ̃0

fq̄2=ξ̃0Pμ þ M̄2q̄μg: ð40Þ

Furthermore, for the purpose of studying the influence
of the radiative corrections on the DDVCS observables at
small values of −t, we only consider the contribution of the
dominant GPD H in our study below. For the numerical
evaluation, we use the GPD parametrizations from the
VGG model [26,49–51], summarized in Ref. [30], in terms
of a double distribution (DD) and so-called D-term con-
tribution (D), as

Hðx; ξ; tÞ ¼ HDDðx; ξ; tÞ þD

�
x
ξ
; t

�
; ð41Þ

with the double distribution part for the proton given by the
weighted sum of the light quark flavor distributions,

HDD ¼ 4

9
Hu

DD þ 1

9
Hd

DD þ 1

9
Hs

DD: ð42Þ

The isoscalar D-term contribution, is directly related to the
subtraction function in a dispersive framework for the
Compton amplitude. For its evaluation, we use the dis-
persive estimate of Ref. [52].

FIG. 7. Handbag diagrams for the double deeply virtual
Compton amplitude. The single (composite) lines represent
quarks (nucleons), respectively. The blobs represent the GPDs.
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In order to satisfy exact electromagnetic gauge invari-
ance for both incoming and outgoing virtual photons in the
DDVCS process, we generalize the procedure introduced in
Ref. [50] to add transversal correction terms which are
formally of higher twist as follows:

Mμν
DDVCS ¼ Mμν

DDVCS;tw-2 −
Pμ

2P · q̄
ðΔ⊥ÞκMκν

DDVCS;tw-2

þ Pν

2P · q̄
ðΔ⊥ÞλMμλ

DDVCS;tw-2

−
PμPν

4ðP · q̄Þ2 ðΔ⊥ÞκðΔ⊥ÞλMκλ
DDVCS;tw-2; ð43Þ

where the transverse part Δ⊥ of the four-momentum
transfer to the nucleon is defined as

ðΔ⊥Þμ ≡ Δμ þ 2ξ̃p̃μ − ξ̃M̄2nμ: ð44Þ
Using the identities

qμM
μν
DDVCS;tw-2 ¼

1

2
ðΔ⊥ÞμMμν

DDVCS;tw-2;

q0νM
μν
DDVCS;tw-2 ¼ −

1

2
ðΔ⊥ÞνMμν

DDVCS;tw-2; ð45Þ

one immediately verifies that both qμM
μν
DDVCS ¼ 0 and

q0νM
μν
DDVCS ¼ 0.

Using the parametrization of Eq. (41) for the GPD H in
terms of a double distribution and a D-term part, the
evaluation of the amplitude in Eq. (37) involves a princi-
ple-value integral which can be evaluated numerically, for
the case 0 < ξ0 < ξ, as

P:V:
Z

1

0

dx
Hsingletðx; ξ; tÞ

x − ξ0

¼
Z

1

0

dx
Hsinglet

DD ðx; ξ; tÞ −Hsinglet
DD ðξ0; ξ; tÞ

x − ξ0

þ 2

Z
ξ

0

dx
Dðx=ξ; tÞ −Dðξ0=ξ; tÞ

x − ξ0

þ ln

�
1 − ξ0

ξ0

�
Hsinglet

DD ðξ0; ξ; tÞ

þ ln

�
ξ − ξ0

ξ0

�
2Dðξ0=ξ; tÞ; ð46Þ

with the singlet GPD defined as

Hsingletðx; ξ; tÞ≡Hðx; ξ; tÞ −Hð−x; ξ; tÞ: ð47Þ

IV. VIRTUAL SOFT-PHOTON CORRECTIONS

In this work, we evaluate all one-loop virtual photon
radiative corrections to the e−p → e−pl−lþ process in the
soft-photon approximation. This limit is defined by the

scaling of the loop momenta; we only account for the
regions of integration where the loop momentum l scales as

l ∼ λ; ð48Þ

where λ is a small parameter compared to all external
scales. We then calculate all contributions only up to
order λ. The resulting corrections factorize in terms of
the tree-level amplitude, which shows that this is a gauge-
invariant subset of the full one-loop corrections.
From all soft-photon contributions, one can then further

distinguish between three gauge invariant subsets:
(i) class (a): soft photon attached to the beam elec-

tron line
(ii) class (b): soft photon attached to the dilepton pair
(iii) class (c): soft photon connecting the beam electron

line with the dilepton line
We give analytical expressions for the corrections of all
three types. In order to regularize the infrared divergences
coming from the integration over the soft-photon loop
momentum l, we use dimensional regularization [53]. We
therefore perform the loop integration in D ¼ 4 − 2ϵ
dimensions. Infrared (IR) divergences manifest themselves
as 1=ϵIR poles in the regularized expressions. We are using
the on-shell renormalization scheme. In addition to the
diagrams with virtual soft photons we also have to consider
infrared divergent counterterms. Those counterterms are
introduced to regularize ultraviolet (UV) divergences
(which manifest themselves as 1=ϵUV poles), which due
to the on-shell renormalization condition can also carry IR
divergences. Those need to be included in the calculation in
order to get a finite result in the end.
We subsequently discuss the virtual radiative corrections

to the spacelike Bethe-Heitler process, the timelike Bethe-
Heitler process, and the double-virtual Compton process.

A. Corrections to the spacelike Bethe-Heitler process

1. Contributions of class (a)

In this section, we calculate the soft-photon corrections
for which the soft photon is attached to the electron line.
This corresponds to the left diagram in Fig. 8. In the
following, we suppress helicity states in all spinors to make
the formulas more compact and better readable. The first
diagram in Fig. 8 is given by, using Feynman gauge,

MBH;SL
a ¼−

e6

Q2t
N̄ðp0ÞΓαðp0;pÞNðpÞμ4−D

×
Z

dDl
ð2πÞD

ūðk0Þγβð=k0 þ=lþmÞγμð=kþ=lþmÞγβuðkÞ
½ðk0 þ lÞ2−m2�½ðkþ lÞ2−m2�½l2�

×
ūðl−Þγμð=l−−=qþmlÞγαvðlþÞ

½ðl−−qÞ2−m2
l �

; ð49Þ

which reduces in the soft-photon approximation to
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MBH;SL
a ¼ −ie24ðk · k0ÞMBH;SL

0 μ4−D

×
Z

dDl
ð2πÞD

1

½l2 þ 2k · l�½l2�½l2 þ 2k0 · l�

¼ e24ðk · k0Þ πD=2

ð2πÞDΓð1 − ϵÞ
× C0ðm2; ðk − k0Þ2; m2; 0; m2; m2ÞMBH;SL

0 :

ð50Þ

Here and in the following, C0 denotes the scalar one-loop
three-point function. We give an analytic expression of that
function for the two different cases we need in this work in
Appendix B.
In addition to the contribution of Eq. (50), we also have

to include the vertex counterterm, which we show in Fig. 9.
We are using the on-shell subtraction scheme, in which
the counterterm is defined to fix the electron charge e at
q2 ¼ 0. In the soft-photon approximation, one has to
extract only the IR divergent piece of the full expression,
as has been done in Ref. [38]. To calculate the vertex
counterterm, we consider the decomposition into the two
form factors Fe

D and Fe
P,

ūðk0ÞΓμuðkÞ

¼ ūðk0Þ
�
ð1þ Fe

Dðq2ÞÞγμ − iFe
Pðq2Þσμν

qν
2m

�
uðkÞ; ð51Þ

where q ¼ k − k0. In this decomposition, only Fe
Dðq2Þ is

divergent. The renormalization constant Z1 of the vertex is
therefore given by

Z1 ¼ 1 − Fe
Dð0Þ

¼ 1 −
αem
4π

��
1

ϵUV
− γE þ ln

�
4πμ2

m2

��

þ 2

�
1

ϵIR
− γE þ ln

�
4πμ2

m2

��
þ 4

�
; ð52Þ

yielding for the renormalized vertex Γ̃,

Γ̃μ ¼ Γμ þ ðZ1 − 1Þγμ: ð53Þ

Since we work in the soft-photon approximation, we
only extract the infrared divergent part of the full one-loop
renormalized vertex which can be found, for example, in
Ref. [37] and find

Γ̃μ
s ¼ −

αem
2π

γμ
�
1

ϵIR
− γE þ ln

�
4πμ2

m2

��
: ð54Þ

After adding the vertex counterterm to Eq. (50) and
evaluating the three-point function, the infrared divergent
part of the virtual correction to the cross section of the
spacelike process is given by

δBH;SLa;IR ¼ −
αem
π

��
1þ β2Q
2βQ

�
ln

�
βQ − 1

βQ þ 1

�
þ 1

�

×

�
1

ϵIR
− γE þ ln

�
4πμ2

m2

��
; ð55Þ

and the finite part by

δBH;SLa ¼ −
αem
π

�
1þ β2Q
2βQ

��
2Li2

�
βQ − 1

2βQ

�

þ ln2
�
βQ − 1

2βQ

�
−
1

2
ln2

�
βQ − 1

βQ þ 1

�
−
π2

6

�
; ð56Þ

where βQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

Q2

q
.

Note that here and in the following, we define δ to be
the correction on the level of the cross section, not the
amplitude. This corresponds to taking twice the real part of
the correction on the level of the amplitude.
For the crossed diagrams with l− and lþ interchanged,

we find the same result as in Eqs. (55) and (56). In the limit
of a small electron mass, i.e., m ≪ Q2, the correction
simplifies to

FIG. 8. Virtual corrections of class (a) (left) and class (b) (right)
to the spacelike BH process with two virtual photons. One also
has to consider the corresponding counterterm diagrams. The
crossed diagrams with l− and lþ interchanged yield the same
correction.

FIG. 9. Left panel: one-loop vertex diagram. Right panel:
vertex counterterm.
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δBH;SLa;IR ¼ αem
π

�
ln
Q2

m2
− 1

��
1

ϵIR
− γE þ ln

�
4πμ2

m2

��
;

δBH;SLa ¼ −αem
π

�
1

2
ln2

Q2

m2
−
π2

6

�
: ð57Þ

2. Contributions of class (b)

Here, we calculate all contributions to the spacelike
process, for which the soft photon is attached to the
dilepton line. The Feynman diagram corresponding to this
correction is shown in Fig. 8 on the right. The matrix
element is given by

MBH;SL
b ¼−

e6

Q2t
N̄ðp0ÞΓαðp0;pÞNðpÞūðk0ÞγμuðkÞμ4−D

×
Z

dDl
ð2πÞD

ūðl−Þγβð−=lþ =l−þmlÞ
½ðl− l−Þ2−m2

l �

×
γμð−=lþ =l− −=qþmlÞγαð−=l− =lþ þmlÞγβvðlþÞ

½ðl− l−þqÞ2−m2
l �½ðlþ lþÞ2−m2

l �½l2�
;

ð58Þ

which in the soft-photon approximation reduces to

MBH;SL
b ¼ ie24ðl− · lþÞMBH;SL

0 μ4−D

×
Z

dDl
ð2πÞD

1

½l2 − 2l− · l�½l2�½l2 þ 2lþ · l�

¼ −e24ðl− · lþÞ
πD=2

ð2πÞDΓð1 − ϵÞ
× C0ðm2

l ; ðl− þ lþÞ2; m2
l ; 0; m

2
l ; m

2
l ÞMBH;SL

0 :

ð59Þ

As for the class (a) contribution, we need to include
counterterms. In addition to the infrared divergent piece of
the vertex counterterm as given by Eq. (54), we also need
the counterterm of the fermion self-energy, which is shown
in Fig. 10. To the first order in αem, the self-energy of a
fermion with mass mf and momentum k0 is calculated as

−iΣð=k0Þ ¼ −e2μ4−D
Z

dDl
ð2πÞD

γαð=k0 þ =lþmfÞγα
½ðk0 þ lÞ2 −m2

f�½l2�
: ð60Þ

Equation (60) has a UV divergence, which needs to be
subtracted by an appropriate counterterm. In the on-shell

scheme, this counterterm is fixed by requiring that the
fermion self-energy Σðk0Þ has a pole at k02 ¼ m2

f with
residue equal to one. This fixes the wave-function renorm-
alization constant Z2 and the mass renormalization
constant Zmf

,

Z2 ¼ 1þ dΣð=k0Þ
d=k0

				
k0¼mf

; ð61Þ

ð1 − Zmf
ÞZ2mf ¼ ΣðmfÞ: ð62Þ

The evaluation of Σðk0Þ and its derivative results in the
renormalization constants

Z2 ¼ 1 −
αem
4π

��
1

ϵUV
− γE þ ln

�
4πμ2

m2
f

��

þ 2

�
1

ϵIR
− γE þ ln

�
4πμ2

m2
f

��
þ 4

�
; ð63Þ

Z2Zmf
¼ 1 −

αem
4π

�
4

�
1

ϵUV
− γE þ ln

�
4πμ2

m2
f

��

þ 2

�
1

ϵIR
− γE þ ln

�
4πμ2

m2
f

��
þ 8

�
: ð64Þ

The renormalized self-energy is then given by

Σ̃ðk0Þ ¼ Σðk0Þ − ðZ2 − 1Þ=k0 þ ðZ2Zm − 1Þmf; ð65Þ

and in the soft-photon limit, in which we only extract the IR
divergence, we find

Σ̃sðk0Þ ¼
αem
2π

ð=k0 −mfÞ
�
1

ϵIR
− γE þ ln

�
4πμ2

m2
f

��
: ð66Þ

Adding the counterterms of the vertex and fermion self-
energy to Eq. (59), we find for the total contribution the
infrared divergent part

δBH;SLb;IR ¼ αem
π

�
1þ β2sll
2βsll

ln

�
1þ βsll
1 − βsll

�
− 1

�

×

�
1

ϵIR
− γE þ ln

�
4πμ2

m2
l

��
; ð67Þ

and the finite part

δBH;SLb ¼ −
αem
π

�
1þ β2sll
2βsll

��
2Li2

�
2βsll

βsll þ 1

�

þ 1

2
ln2

�
1 − βsll
1þ βsll

�
− π2

�
: ð68Þ

In the limit of small lepton masses, i.e., m2
l ≪ sll, we find

FIG. 10. Left panel: fermion self-energy at one-loop order.
Right panel: counterterm for fermion self energy.
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δBH;SLb;IR ¼ αem
π

�
ln

sll
m2

l

− 1

��
1

ϵIR
− γE þ ln

�
4πμ2

m2
l

��
;

δBH;SLb ¼ −
αem
π

�
1

2
ln2

sll
m2

l

−
2

3
π2
�
: ð69Þ

3. Contributions of class (c)

In this section, we calculate all diagrams, in which a soft-
photon connects the electron line with the dilepton line.
We show the contributing diagrams of this class in Fig. 11.
For the contribution of class (c), no counterterm diagrams
have to be considered.
The first diagram in Fig. 11 is calculated as

MBH;SL
c1 ¼ e6

t
N̄ðp0ÞΓαðp0; pÞNðpÞμ4−D

×
Z

dDl
ð2πÞD

ūðk0Þγμð=lþ =kþmÞγβuðkÞ
½ðlþ kÞ2 −m2�½ðlþ k − k0Þ2�½l2�

×
ūðl−Þγβð=l− þ =lþmlÞγμð=l− − =qþmlÞγαvðlþÞ

½ðlþ l−Þ2 −m2
l �½ðl− − qÞ2 −m2

l �
;

ð70Þ

which in the soft-photon limit can be reduced to

MBH;SL
c1 ¼ −ie24ðk · l−Þμ4−DMBH;SL

0

×
Z

dDl
ð2πÞD

1

½l2�½l2 þ 2k · l�½l2 þ 2l− · l�

¼ e24ðk · l−Þ
πD=2

ð2πÞDΓð1 − ϵÞ
× C0ðm2; ðk − l−Þ2; m2

l ; 0; m
2; m2

l ÞMBH;SL
0 :

ð71Þ

Evaluating the three-point function C0, we find that the
infrared divergent part is given by

δBH;SLc1;IR
¼ αem

π

k · l−
λkl−ðk − l−Þ2

ln

�
γ−kl−ð1 − γþkl−Þ
ð1 − γ−kl−Þγþkl−

�

×

�
1

ϵIR
− γE þ ln

�
4πμ2

m2

��
; ð72Þ

and the finite part is given by

δBH;SLc1 ¼ αem
π

k · l−
λkl−ðk − l−Þ2

�
− lnð−λkl−Þ

�
ln

�
γþkl− − 1

γþkl−

�
þ ln

�
γ−kl−

γ−kl− − 1

��
þ 1

2
ln2ð−γþkl−Þ −

1

2
ln2ðγ−kl−Þ

−
1

2
ln2ð1 − γþkl−Þ þ

1

2
ln2ðγ−kl− − 1Þ − Li2

�
1 − γ−kl−
λkl−

�
− Li2

�
γþkl−
λkl−

�
þ Li2

�
γþkl− − 1

λkl−

�
þ Li2

�
γ−kl−
λkl−

�

− ln

�
γ−kl−ð1 − γþkl−Þ
ð1 − γ−kl−Þγþkl−

�
ln

�
−ðk − l−Þ2

m2

��
; ð73Þ

where

λkl− ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk · l−Þ2 −m2m2

l

q
ðk − l−Þ2

; γ�kl− ¼
�
m2

l − k · l−
ðk − l−Þ2

� λkl−
2

�
: ð74Þ

FIG. 11. Virtual photon corrections of class (c) to the spacelike
BH proces. The crossed diagrams with l− and lþ interchanged
yield the same correction.
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We now consider two limits for this correction, in which
the expressions simplify. The first limit corresponds to
the case where the electron mass is small compared to all
other scales. In this limit, we find for the infrared divergent
contribution

δBH;SLc1;IR
¼ αem

π
ln
�
2k · l−
mml

��
1

ϵIR
− γE þ ln

�
4πμ2

m2

��
; ð75Þ

and for the finite contribution

δBH;SLc1 ¼ αem
2π

�
1

2
ln2

�
m2

2k · l−

�
−
1

2
ln2

�
2k · l−

2k · l− −m2
l

�

þ 1

2
ln2

�
m2

l

2k · l− −m2
l

�

− ln

�
4ðk · l−Þ2
m2m2

l

�
ln

�
2k · l−
m2

�

þ Li2

�
2k · l− −m2

l

2k · l−

�
− Li2

�
m2

l

2k · l−

�
þ π2

6

�
:

ð76Þ

If in addition to m2 ≪ k · l−, also ml ¼ m, i.e., considering
electron-pair production, we find

δBH;SLc1;IR
¼ αem

π
ln

�
2k · l−
m2

��
1

ϵIR
− γE þ ln

�
4πμ2

m2

��
;

δBH;SLc1 ¼ −
αem
π

�
1

2
ln2

2k · l−
m2

−
π2

6

�
: ð77Þ

The second diagram in the first row of Fig. 11 can
be related to the previous one using Eq. (71) with the
replacement l− → lþ together with a sign change,

MBH;SL
c2 ¼ −e24ðk · lþÞ

πD=2

ð2πÞDΓð1 − ϵÞ
× C0ðm2; ðk − lþÞ2; m2

l ; 0; m
2; m2

l ÞMBH;SL
0 :

ð78Þ

Therefore, the correction on the level of the cross section is
given by

δBH;SLc2;IR
¼ −δBH;SLc1;IR

jl−→lþ ; δBH;SLc2 ¼ −δBH;SLc1 jl−→lþ : ð79Þ

The first diagram in the second row of Fig. 11 is given by

MBH;SL
c3 ¼ e6

t
N̄ðp0ÞΓαðp0; pÞNðpÞμ4−D

×
Z

dDl
ð2πÞD

ūðk0Þγβð=lþ =k0 þmÞγμuðkÞ
½ðlþ k0Þ2 −m2�½ðl− kþ k0Þ2�½l2�

×
ūðl−Þγβð=l− − =lþmlÞγμð=l− − =qþmlÞγαvðlþÞ

½ðl− l−Þ2 −m2
l �½ðl− − qÞ2 −m2

l �
;

ð80Þ

which reduces to

MBH;SL
c3 ¼ −ie24ðk0 · l−Þμ4−DMBH;SL

0

×
Z

dDl
ð2πÞD

1

½l2 þ 2k0l�½l2 − 2l−l�½l2�

¼ e24ðk0 · l−Þ
πD=2

ð2πÞDΓð1 − ϵÞ
× C0ðm2; ðk0 þ l−Þ2; m2

l ; 0; m
2; m2

l ÞMBH;SL
0 :

ð81Þ

In this case, the second argument of the three-point function
is positive. Therefore, an analytic continuation of this
function to the timelike region has to be performed. This
yields

δBH;SLc3;IR
¼ αem

π

ðk0 · l−Þ
λ̃k0lðk0 þ l−Þ2

ln

�
γ̃−k0l−ð1 − γ̃þk0l−Þ
ð1 − γ̃−k0l−Þγ̃

þ
k0l−

�

×

�
1

ϵIR
− γE þ ln

�
4πμ2

m2

��
; ð82Þ

and

δBH;SLc3 ¼ αem
π

ðk0 · l−Þ
λ̃k0lðk0 þ l−Þ2

�
1

2
ln2

�
λ̃k0l

1 − γ̃þk0l−

�
þ ln2 ð1 − γ̃−k0l−Þ − ln2ðγ̃−k0l−Þ − ln2 ð1 − γ̃þk0l−Þ þ ln2ðγ̃þk0l−Þ

þ Li2

�
λ̃k0l

1 − γ̃−k0l−

�
þ Li2

�
−
γ̃−k0l−
λ̃k0l

�
þ 1

2
ln2

�
λ̃k0l
γ̃−k0l−

�
þ Li2

�
γ̃þk0l− − 1

λ̃k0l

�
þ Li2

�
λ̃k0l
γ̃þk0l−

�
−
5π2

3

− ln

�
γ̃−k0l−ð1 − γ̃þk0l−Þ
ð1 − γ̃−k0l−Þγ̃þk0l−

�
ln

�ðk0 þ lÞ2
m2

��
; ð83Þ
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where

λ̃k0l− ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0 · l−Þ2 −m2m2

l

q
ðk0 þ l−Þ2

;

γ̃�k0l− ¼
�
m2

l þ k0 · l−
ðk0 þ l−Þ2

� λ̃k0l−
2

�
: ð84Þ

We consider the two limits like before. In the limit of a
small electron mass, we find for the infrared divergent
contribution

δBH;SLc3;IR
¼−αem

π
ln

�
2k0 · l−
mml

��
1

ϵIR
−γEþ ln

�
4πμ2

m2

��
; ð85Þ

and for the finite contribution

δBH;SLc3 ¼ αem
2π

�
1

2
ln2

�
2k0l−
m2

l

�
− ln2

�
2k0l−
m2

�
þ ln2

�
2k0l−

2k0l− þm2
l

�
þ 1

2
ln2

�
4ðk0l−Þ2

m2ð2k0l− þm2
l Þ
�

− ln2
�

m2
l

2k0l− þm2
l

�
þ ln

�
m2m2

l

4ðk0l−Þ2
�
ln

�
m2

2k0l− þm2
l

�
þ Li2

�
−

m2
l

2k0l−

�
þ Li2

�
2k0l−

2k0l− þm2
l

�
−
3

2
π2
�
: ð86Þ

Considering electron production, ml ¼ m, we find

δBH;SLc3;IR
¼ −

αem
π

ln

�
2k0 · l−
m2

��
1

ϵIR
− γE þ ln

�
4πμ2

m2

��
;

δBH;SLc3 ¼ αem
π

�
1

2
ln2

2k0 · l−
m2

−
2

3
π2
�
: ð87Þ

For the second diagram in the second row of Fig. 11, we
can derive the correction in the soft-photon approximation
from the previous result, leading to

δBH;SLc4 ¼ −δBH;SLc3 jl−→lþ : ð88Þ

Note that from Eqs. (77), (79), (87), and (88) we can see
that the sum of all class (c) corrections is antisymmetric
with respect to interchanging lþ ↔ l−. This is in contrast to
the contributions of classes (a) and (b), which are sym-
metric with respect to the interchange of lþ and l−.

B. Corrections to the timelike Bethe-Heitler process

In this section, we calculate the soft-photon corrections
for the timelike process. We show that they lead to exactly
the same corrections as in the spacelike process.
The first diagram in Fig. 12 is given by

MBH;TL
a ¼ e6

sllt
N̄ðp0ÞΓαðp0; pÞNðpÞūðl−ÞγμvðlþÞμ4−D

×
Z

dDl
ð2πÞD

ūðk0Þγβð=k0 þ =lþmÞ
½ðk0 þ lÞ2 −m2�

×
γμð=k0 þ =q0 þ =lþmÞγαð=kþ =lþmÞγβuðkÞ
½ðk0 þ q0 þ lÞ2 −m2�½ðkþ lÞ2 −m2�½l2� ;

ð89Þ

which in the soft-photon limit reduces to

MBH;TL
a ¼ −ie24ðk · k0Þμ4−DMBH;TL

0

×
Z

dDl
ð2πÞD

1

½l2�½l2 þ 2k · l�½l2 þ 2k0 · l�

¼ e24ðk · k0Þ πD=2

ð2πÞDΓð1 − ϵÞ
× C0ðm2; ðk − k0Þ2; m2; 0; m2; m2ÞMBH;TL

0 :

ð90Þ

After adding the counterterms, on the level of the cross
section, the same correction as for the spacelike process is
found,

δBH;TLa ¼ δBH;SLa : ð91Þ
Analogously, the second diagram in Fig. 12, including

counterterms, yields the same correction as for the space-
like process from Eqs. (67) and (68),

δBH;TLb ¼ δBH;SLb : ð92Þ

FIG. 12. Virtual corrections of class (a) (left) and class
(b) (right) to the timelike BH process. One also has to consider
the corresponding counterterm diagrams. For the correction, the
crossed diagrams with Δ and q0 interchanged yield the same
result.

HELLER, KEIL, and VANDERHAEGHEN PHYS. REV. D 104, 073007 (2021)

073007-14



The same argument also applies to the four diagrams of
class (c), shown in Fig. 13, which yield the same correction
as for the spacelike process,

δBH;TLc1 ¼ δBH;SLc1 ; δBH;TLc2 ¼ δBH;SLc2 ;

δBH;TLc3 ¼ δBH;SLc3 ; δBH;TLc4 ¼ δBH;SLc4 : ð93Þ

C. Corrections to the Compton process

In this section, we list the corrections for the Compton
scattering, as shown in Fig. 14, which in the soft-photon
limit lead again to the same results as before for spacelike
and timelike Bethe-Heitler processes. Therefore, on the
level of the cross section, the correction in the soft-photon
approximation can be factorized for the total process and is
given by

δdVCSa ¼ δBH;SLa ; δdVCSb ¼ δBH;SLb ;

δdVCSc1 ¼ δBH;SLc1 ; δdVCSc2 ¼ δBH;SLc2 ;

δdVCSc3 ¼ δBH;SLc3 ; δdVCSc4 ¼ δBH;SLc4 : ð94Þ

D. Sum of all virtual soft-photon corrections

Adding all contributions from classes (a), (b), and (c), we
define the virtual soft-photon corrections on the cross
section as

dσs;v ¼ dσ0ð1þ δs;vÞ: ð95Þ

The correction can be separated in the IR divergent
contribution

δIRs;v ¼
αem
π

��
ln

�
Q2

m2

�
þ ln

�
2k · l−
mml

�
− ln

�
2k · lþ
mml

�

− ln

�
2k0 · l−
mml

�
þ ln

�
2k0 · lþ
mml

�
− 1

�

×

�
1

ϵIR
− γE þ ln

�
4πμ2

m2

��

þ
��

1þ βsll
1 − βsll

�
ln
�
1þ βsll
1 − βsll

�
− 1

�

×

�
1

ϵIR
− γE þ ln

�
4πμ2

m2
l

���
; ð96Þ

and a finite contribution

δs;v ¼ δa þ δb þ δc1 þ δc2 þ δc3 þ δc4 : ð97Þ
For convenience of the reader, we summarize all formulas
derived in the previous sections,

δa ¼ −
αem
π

�
1

2
ln2

�
Q2

m2

�
−
π2

6

�
; ð98Þ

δb ¼ −
αem
π

�
1þ β2sll
2βsll

��
2Li2

�
2βsll

βsll þ 1

�

þ 1

2
ln2

�
1 − βsll
1þ βsll

�
− π2

�
; ð99Þ

FIG. 14. Virtual corrections of class (a) (top left), class (b) (top
right), and class (c) (lower two rows) to the dVCS process. One
also has to consider the corresponding counterterm diagrams.
The crossed diagrams with q and q0 interchanged yield the same
result.

FIG. 13. Contributing diagrams from class (c) for the timelike
Bethe-Heitler process. The crossed diagrams with Δ and q0
interchanged yield the same result.
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δc1 ¼
αem
2π

�
1

2
ln2

�
m2

2k · l−

�
−
1

2
ln2

�
2k · l−

2k · l− −m2
l

�
þ 1

2
ln2

�
m2

l

2k · l− −m2
l

�

− ln

�
4ðk · l−Þ2
m2m2

l

�
ln

�
2k · l−

2k · l− −m2
l

�
þ Li2

�
2k · l− −m2

l

2k · l−

�
− Li2

�
m2

l

2k · l−

�
þ π2

6

�
; ð100Þ

δc2 ¼ −δc1 jl−→lþ ; ð101Þ

δc3 ¼
αem
2π

�
1

2
ln2

�
2k0 · l−
m2

l

�
− ln2

�
2k0 · l−
m2

�
þ ln2

�
2k0 · l−

2k0 · l− þm2
l

�
þ 1

2
ln2

�
4ðk0 · l−Þ2

m2ð2k0 · l− þm2
l Þ
�

− ln2
�

m2
l

2k0 · l− þm2
l

�
þ ln

�
m2m2

l

4ðk0 · l−Þ2
�
ln

�
m2

2k0 · l− þm2
l

�
þ Li2

�
−m2

l

2k0 · l−

�
þ Li2

�
2k0 · l−

2k0 · l− þm2
l

�
−
3

2
π2
�
; ð102Þ

δc4 ¼ −δc3 jl−→lþ : ð103Þ

For the electroproduction of an e−eþ pair, the formula simplifies as

δs;v ¼ −
αem
2π

�
ln2

�
Q2

m2

�
þ ln2

�
sll
m2

�
− ln2

�
2k0 · l−
m2

�
þ ln2

�
2k0 · lþ
m2

�
þ ln2

�
2k · l−
m2

�
− ln2

�
2k · lþ
m2

�
−
5

3
π2
�
: ð104Þ

One can expect that the above considered soft-photon
approximation works well in the case when the neglected
single log terms are small in comparison to the corre-
sponding double log terms which appear in the expression
of Eq. (104). In the energy regions which we consider
here, terms of the order lnðsll=m2Þ or lnðQ2=m2Þ are an
order of magnitude smaller than their double logarithmic
counterparts ln2ðsll=m2Þ or ln2ðQ2=m2Þ. We can therefore
expect the single log terms to be subdominant in com-
parison to the double log terms. This was also confirmed
in our previous studies [38–40], where we have performed
a full one-loop calculation for the radiative corrections to
the γp → eþe−p process and compared with the result in
the soft-photon approximation. In those works, we also
found that the soft-photon approximation provides an
overestimate of the radiative corrections by around 20%
for the kinematics of relevance to this work. Therefore, we
expect that also in the present work for the e−p →
e−peþe− process we get an upper bound for the full
one-loop corrections by studying radiative corrections in
the soft-photon approximation.

V. SOFT-PHOTON BREMSSTRAHLUNG

To cancel the IR divergences of the virtual soft-photon
corrections, we need to include soft real radiation (soft
bremsstrahlung). On the level of a cross section, the IR
divergences cancel, resulting in a finite physical result.

The contribution due to soft bremsstrahlung stems from
Feynman diagrams in which an additional soft photon is
emitted from an external fermion line. Denoting the
momentum of the fermion line with l and the momentum
of the soft photon by kγ, this corresponds to the amplitude

Ms ¼ �eQf
ε� · l
kγ · l

M0; ð105Þ

with a þ sign, if the fermion is outgoing, and a − sign if
it is incoming, where Qf denotes the charge of the lepton
and where M0 denotes the amplitude without soft-photon
emission.
The evaluation of the bremsstrahlung contribution

requires integrating over the momentum of the unobserved
soft photon up to an energy cutoff ΔEs. The integration
has to be performed in a reference frame in which the
dependence of the integral on the photon momentum is
isotropic. The choice of this frame depends on the
experimental condition. In the present work, we consider
the process e−p → e−l−lþp where the dilepton momenta
l− and lþ are measured, and the scattered proton with
momentum p0 remains unobserved. Thus, the bremsstrah-
lung integral has to be performed in a system in the rest
frame of the unobserved proton and soft photon. Defining
the missing momentum pm ≡ p0 þ kγ , this frame is defined
by the condition p⃗m ¼ 0. The bremsstrahlung contribution
to the cross section in this frame is given by
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dσs;r ¼ dσ0
−e2

ð2πÞ3
Z
jk⃗γ j<ΔEs

d3k⃗γ
2k0γ

�
m2

l

ðkγ · lþÞ2
þ m2

l

ðkγ · l−Þ2
þ m2

ðkγ · kÞ2
þ m2

ðkγ · k0Þ2
−

2lþ · l−
ðkγ · lþÞðkγ · l−Þ

−
2k0 · lþ

ðkγ · k0Þðkγ · lþÞ
þ 2k0 · l−
ðkγ · k0Þðkγ · l−Þ

−
2k0 · k

ðkγ · kÞðkγ · k0Þ
−

2k · l−
ðkγ · kÞðkγ · l−Þ

þ 2k · lþ
ðkγ · kÞðkγ · lþÞ

�
; ð106Þ

where the maximal soft-photon energy in that frame is denoted by ΔEs. The expression after performing the integration in
Eq. (106) is lengthy and complicated in the general case. Here, we give explicit results only in the limit of a small electron
mass; i.e., we only keep the logarithmic dependence on m. For the calculation, one considers the basic integral Iij
corresponding to the interference of two terms like Eq. (105) from two fermion lines. This basic integral has been worked
out in [54] for a generic lepton mass. In the limit m → 0, we find

Iij ≡
Z
jk⃗γ j<ΔEs

d3k⃗γ
k0γ

pi · pj

ðkγ · piÞðkγ · pjÞ

¼ −2π
�
1

4

�
ln2

�
m2

4E2
i

�
þ ln2

�
m2

4E2
j

��
þ Li2

�
1 −

2EiEj

pi · pj

�
þ π2

3
þ ln

�
2pi · pj

m2

��
1

ϵIR
− γE þ ln

�
4πμ2

4ΔE2

���
: ð107Þ

Using this expression and the general one for finite lepton masses from [54], we can now easily perform the integration in
Eq. (106). Let us stress again that we only keep the dependence of the electron massm in the logarithms while for the lepton
mass ml we keep the full dependence of the soft-photon integral. For the infrared divergent contribution, we then find

δIRs;r ¼ −
αem
π

��
ln

�
Q2

m2

�
þ ln

�
2k · l−
mml

�
− ln

�
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�
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�
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�
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���
; ð108Þ

while for the finite part we find

δs;r ≡ δs;ra þ δs;rb þ δs;rc ; ð109Þ

δs;ra ¼ −
αem
π

�
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�
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; ð110Þ

δs;rb ¼ −
αem
π
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δs;rc ¼ −
αem
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Ẽ2
− −m2

l

q ����
− ðl− → lþÞ; ð112Þ

where
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v≡ βsllsll

2ðẼ− − 1−βsll
1þβsll

ẼþÞ
; ð113Þ

β̃∓ ¼ ð1 −m2
l =Ẽ

2∓Þ1=2; ð114Þ

where Ẽ� denotes the energy of the lepton with momentum
l� in the rest frame of the soft photon and recoil proton, and
Ẽ (Ẽ0) denotes the energy of the electron with momentum
k (k0) in the same system.
Adding Eqs. (96) and (108), we verify that the IR

divergences from real and virtual soft-photon corrections
cancel on the level of the cross section.
As mentioned before, the integration of the soft-photon

bremsstrahlung is performed up to a small energy cutoff
ΔEs. This cutoff can be related to the experimental
resolution of the detector. In the frame p⃗m ¼ 0, we find

ΔEs ¼ Δ
�
p2
m −M2

2
ffiffiffiffiffiffi
p2
m

p �
≈
Δp2

m

2M
; ð115Þ

where to the first order we have used p2
m ≈M2 in the

denominator, and where Δp2
m denotes the resolution in the

missing mass squared. In order to express ΔEs in terms of
Lab quantities, one needs to calculate the missing mass in
that frame. Neglecting the lepton masses, we find

p2
m ¼ ðq − q0 þ pÞ2
¼ M2 þ sll −Q2 − 2q · q0 þ 2p · ðq − q0Þ
¼ ½M2 þ 2Mq0 þ 4E−Eþ sin2 θll=2þ 2jq⃗jjq⃗0j cos θγγ
− 4EE0 sin2 θkk0=2 − 2ðq0 þMÞðEþ þ E−Þ�Lab;

ð116Þ

where all quantities on the rhs have to be given in the Lab
frame, where θkk0 denotes the scattering angle between the
incoming electron with momentum k and the outgoing with
momentum k0 and where θll denotes the Lab angle between
the lepton pair momenta. Equations (115) and (116) allow
one to express the maximal soft-photon energy ΔEs
(defined in the system p⃗m ¼ 0) in terms of Lab quantities
and detector resolutions.
In the following, it is convenient to express the energies

Ẽ�, Ẽ and Ẽ0 in terms of kinematic invariants. For the case
of a large lepton mass, for which the formulas are lengthy
and complicated, we use the formulas given in Appendix A
and then boost to the rest frame of the recoiled proton and
soft photon to calculate the energies numerically. In the
case of electron-pair production in which we can neglect
the mass m compared to other quantities, the formulas
become more compact. In that case, we also find more
compact expressions for the bremsstrahlung corrections.
We find

δs;r ¼ −
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: ð117Þ

The energies Ẽ�, Ẽ, and Ẽ0 in the rest frame of the recoil protonþ soft photon are given by

Ẽ∓ ¼ pm · l∓ffiffiffiffiffiffi
p2
m

p ≈
1

M
ðqþ p − q0Þ · l∓

¼ 1

4M
fðW2 −M2 − sllÞ � ½ðW2 −M2 − sllÞ2 − 4M2sll�1=2βsll cos θ�l g; ð118Þ

Ẽ ¼ pm · kffiffiffiffiffiffi
p2
m

p ≈
1

M
ðqþ p − q0Þ · k

¼ 1

2MððW2 −M2 þQ2Þ2 þ 4M2Q2Þ fQ
2½tðW2 þM2 þQ2Þ − 2M2ðQ2 þ sllÞ�

þ ðs −M2Þ½ðW2 −M2ÞðW2 −M2 þQ2 − sll þ tÞ þQ2ð−sll − tþ 4M2Þ�
þ 2Q cosðΦÞ½sðs −M2 −Q2Þ −W2ðs −M2Þ�1=2
× ½−tðW2 −M2ÞðW2 −M2 þQ2 − sll þ tÞ −M2ððQ2 − sll þ tÞ2 þ 4sllQ2Þ�1=2g; ð119Þ
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Ẽ0 ¼ Ẽ −
W2 −M2 − sll þ t

2M
: ð120Þ

VI. RESULTS

A. Observables

We use our setup to study the e−p → e−pl−lþ process,
including the first-order radiative corrections in both the
low- and high-energy regimes. For both cases, we study the
effect of these corrections in the soft-photon approximation
on the cross section and on the forward-backward asym-
metry AFB, as well as on the beam-spin asymmetry A⊙.
These asymmetries are, respectively, defined as

AFB ¼ dσθ�l ;ϕ�
l
− dσπ−θ�l ;ϕ�

lþπ

dσθ�l ;ϕ�
l
þ dσπ−θ�l ;ϕ�

lþπ
; ð121Þ

A⊙ ¼ dσþ − dσ−

dσþ þ dσ−
; ð122Þ

where dσθ�l ;ϕ�
l
in AFB stands for the unpolarized cross

section measured at lepton angles θ�l and ϕ�
l (defined in

the l−lþ rest frame) and where dσ� in A⊙ stand for the
polarized cross sections for a polarized electron beam with
helicity�1=2, respectively. In the following, we show plots
ranging from θ�l ¼ −180° to θ�l ¼ þ180°. This allows us to
show forward and backward cross sections economically in
one plot, since dσðθ�l ;ϕ�

l þπÞ¼dσð−θ�l ;ϕ�
l Þ. The forward-

backward asymmetry can therefore also be written as

AFB ¼ dσðθ�l ;ϕ�
l Þ − dσðπ − θ�l ; π þ ϕ�

l Þ
dσðθ�l ;ϕ�

l Þ þ dσðπ − θ�l ; π þ ϕ�
l Þ

¼ dσðθ�l ;ϕ�
l Þ − dσðθ�l − π;ϕ�

l Þ
dσðθ�l ;ϕ�

l Þ þ dσðθ�l − π;ϕ�
l Þ
; ð123Þ

and, including radiative correction explicitly, it is given by

AFB ¼ dσ0ðθ�l Þð1þ δðθ�l ÞÞ − dσ0ðθ�l − πÞð1þ δðθ�l − πÞÞ
dσ0ðθ�l Þð1þ δðθ�l ÞÞ þ dσ0ðθ�l − πÞð1þ δðθ�l − πÞÞ :

ð124Þ

From Eq. (124) one can see that corrections that are
symmetric under the interchange l− ↔ lþ, corresponding
with θ�l ↔ θ�l − π, drop out in the ratio. Therefore, to the
first order, only corrections of class (c) give a contribution
to the asymmetry,

AFB ¼ A0
FB þ δc=ð1þ δa þ δbÞ

1þ A0
FBδc=ð1þ δa þ δbÞ

≈ A0
FB þ δcð1 − ðA0

FBÞ2Þ; ð125Þ

where A0
FB denotes the uncorrected asymmetry.

On the other hand, the radiatively corrected beam-spin
asymmetry (BSA), given by

A⊙ ¼ dσþð1þ δþÞ − dσ−ð1þ δ−Þ
dσþð1þ δþÞ þ dσ−ð1þ δ−Þ ; ð126Þ

does not get modified in the soft-photon approximation,
since the corrections are the same for both helicity cross
sections, i.e., δþ ¼ δ−, and therefore drop out in the ratio.

FIG. 15. Kinematic quantities entering the exchange dVCS
amplitude for the e−p → e−pe−eþ process in the Δð1232Þ
region. In the upper panel, we show the c.m. energy Wex, as
function of θ�e, compared with the value W ¼ 1.25 GeV of the
direct process. In the lower panel, we compare the θ�e dependence
of both photon virtualities in the exchange dVCS amplitude with
their constant values for the direct dVCS amplitude.
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FIG. 16. θ�l dependence of the e−p → e−pl−lþ cross section (upper panels), forward-backward asymmetry (middle panels), and
beam-spin asymmetry (lower panels) for e−eþ production (left panels) and μ−μþ production (right panels) in the Δð1232Þ region, for
Φ ¼ 90°. The curves show the predictions for BH and BHþ dVCS for two models showing the sensitivity to the low-energy constant
b3;0. The black solid curves show the effect of the radiative corrections for the hadronic model of the green dashed-dotted curves (these
curves exactly coincide in the lower panels).
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In the following, we show our numerical results for the
e−p → e−pl−lþ observables including the first-order soft-
photon radiative corrections.

B. Results for dVCS observables in the Δð1232Þ region
In this section, we show our results in the low-energy

regime in which we choose the dVCS center-of-mass
energy W ¼ 1.25 GeV. We model the dVCS amplitude
in terms of the Born amplitude and the first proton
excitation, the Δð1232Þ resonance. As was found in
Ref. [21], this model can reproduce the full calculation
based on empirical structure functions from Ref. [55]
with an accuracy in the few percent range for the process
γp → e−eþp (i.e., for a real photon). Therefore, we can
safely assume that the Born + Δ-pole model describes the

dVCS amplitude sufficiently well also in the virtual-photon
process for sufficiently small photon virtualities.
In order for the dVCS model to be also accurate for the

e−p → e−pe−eþ process, in which we need to antisym-
metrize the full amplitude under exchange of both final
electrons as given by Eq. (12), we choose the kinematics
in such a way that also for the exchange dVCS amplitude
the c.m. energy Wex remains in the Δð1232Þ resonance
region, and the photon virtualities entering the exchange
process remain sufficiently small. As can be seen from
Fig. 15 (upper panel), for the choice of an electron beam of
0.6 GeV, we find that Wex (blue dotted curve) is roughly
of the same magnitude as W (dashed red curve), varying
between 1.18 and 1.33 GeVas a function of θ�e. Note that a
larger electron beam energy leads to a larger value of Wex.
From the lower panel of Fig. 15, we furthermore see that

FIG. 17. θ�e dependence of the e−p → e−pe−eþ cross section (upper panels) and forward-backward asymmetry (lower panels) in
the Δð1232Þ region for Φ ¼ 30° (left panels) and Φ ¼ 45° (right panels). Curve conventions as in Fig. 16.
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both photon virtualities in the exchange dVCS amplitude,
denoted byQex (blue dotted curve) and sll;ex (green dashed-
dashed curve), are both below 0.18 GeV2 for the full range
of the lepton angle θ�e. We are thus in a kinematic regime
where we can study the sensitivity of the full amplitude to
the low-energy constant b3;0 described in Sec. III A.
Having studied the appropriate kinematics to describe

both the direct and the exchange dVCS amplitude within
the same model, we next explore the sensitivity of the
e−p → e−pl−lþ observables on the low-energy constant
b3;0 introduced in the low-energy expansion of Eq. (29).
This low-energy constant is the main unknown in the
determination of the OðQ4Þ term of the subtraction
function T̄1ð0; Q2Þ entering the theoretical calculation of
the μH Lamb shift.
In Fig. 16, we show the dependence on the lepton angle

θ�l of the e−p → e−pl−lþ differential cross section (upper
panels) and the forward-backward asymmetry (middle
panels) as well as the beam-spin asymmetry (lower panels)
for both e−eþ and μ−μþ production (left and right panels,
respectively). We choose the kinematics as in Fig. 15. As
can be seen from the upper panel, the interference between
the dVCS process with the BH process amplifies the cross
sections for both e−eþ and μ−μþ production by roughly a
factor of two as compared with the BH process itself.
Furthermore, the spread between the different theoretical
estimates for the low-energy constant b3;0, as shown in
Table I, increases the cross sections additionally by
approximately 15% in both cases.
We also study the effect of the soft-photon radiative

corrections on the cross section, as given by Eqs. (97)–(103),
(109)–(112), and (117). For the real soft-photon emission
correction, we choose the soft-photon energy cutoff of
ΔEs ¼ 0.01 GeV, which corresponds to approximately
1.5% of the lepton beam energy. As can be seen from
Fig. 16, the effect of the first-order radiative corrections is
found to be quite sizeable on the level of cross sections. In
the case of e−eþ production, the effect leads to a decrease
of the cross section by around 30%, whereas for μ−μþ
production, it leads to a decrease of the order of 15%.
Therefore, although the cross section by itself has a relatively
high sensitivity on the low-energy constant b3;0, for an
experimental extraction of b3;0, the inclusion of the radiative
corrections is imperative. A comparable importance of the
radiative corrections was also found in the extraction of the
proton generalized polarizabilities from the cross sections of
the VCS process e−p → e−pγ [7,37].
The situation is different for the asymmetries. For the

forward-backward asymmetry AFB, we find for the kin-
ematics of Fig. 16 only a small sensitivity to the dVCS
amplitude and its underlying hadronic model. However,
this is mainly due to the choice of Φ ¼ 90°, for which the
forward-backward asymmetry is completely dominated
by the BH process. The sensitivity can be increased by
varying Φ. In Fig. 17, we show the cross sections and

forward-backward asymmetries for the same kinematics,
but for smaller angles between the ðk⃗; k⃗0Þ and ðq⃗; q⃗0Þ
scattering planes in Fig. 3: Φ ¼ 30° and Φ ¼ 45°. For
these cases, we find a 20% shift of the forward-backward
asymmetry for the case including the Δ resonance com-
pared to the BH process by itself. Including the range of
theoretical values for the dVCS low-energy constant b3;0,
we find a further shift of the asymmetry of up to 5%
on AFB, while the inclusion of radiative corrections is
found to have a very small effect, around or below the 1%
range on AFB.
For the beam-spin asymmetry A⊙, we find a significantly

higher sensitivity on b3;0 than for the forward-backward
asymmetry, as shown in the lower panels of Fig. 16.
Note that the result for Bornþ Δ-poleþ b3;0 (green
dashed-dotted curves) and the result which in addition
also includes the radiative corrections (black solid curves)
coincide, since in the soft-photon approximation the
radiative corrections drop out in the ratio of cross sections
calculated for the BSA, as discussed above. Including
the range of theoretical values for the dVCS low-energy
constant b3;0 leads to an absolute shift in the BSA up to
around 15% for e−eþ production and up to around 10% for
μ−μþ production.
As the BSA and AFB are basically not affected by

the radiative corrections, a combined analysis of the cross
section, the AFB, and the BSA holds promise to extract the
dVCS low-energy constant b3;0.
In Fig. 18, we show in more detail how the radiative

corrections to the e−p → e−pe−eþ process vary when the

FIG. 18. Radiative corrections for the e−p → e−pe−eþ process
in the Δð1232Þ region in the limit Q2 → 0 for the comparable
kinematic setup as was studied before for the γp → e−eþp
process in Ref. [40]. The corrections are for soft-photon cutoff
energy of ΔEs ¼ 0.01 GeV.
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initial photon approaches the real photon limit, i.e.,
Q2 → 0. In this limit, only the class (b) corrections
contribute. We choose the kinematics comparable to
Ref. [40], in which we studied the effect of radiative
corrections for the process γp → e−eþp. In that study,
we found corrections of roughly 8% for the full set of one-
loop QED corrections for the kinematics shown in Fig. 18.
In the soft-photon approximation, the corrections are
somewhat overestimated, as can be seen from the blue
dotted curve corresponding with a correction of roughly
13%. Comparing the blue dotted curve with the red dashed-
dotted one, we see that for quasireal photons with a
virtuality from 10−4 to 10−3 GeV2 the inclusion of all
corrections is important, and the description as a real
photon underestimates the corrections by 10%–15%.
Note that in the region around Q2 ≈ 0.03 GeV2 the two

outgoing electrons with momenta k0 and l− are becoming
collinear. This explains the spiked behavior in the red
dashed-dotted curve, since the logarithm with the argument
proportional to the scalar product k0 · l− is becoming large.
In Fig. 19 (upper panels), we study in more detail the

relative size of the radiative corrections due to the three
different diagram classes (a), (b), and (c). While for e−eþ
production the corrections due to classes (a) and (b) are
dominant and negative, for μ−μþ production the main
correction arises from class (a) as it involves the vertex
correction on the beam electron, whereas the corrections
between the produced μ−μþ pair are small and positive.
Comparing left and right panels, one can clearly see that
the biggest difference between e−eþ and μ−μþ production
is due to the corrections of class (b), which correspond
with the corrections from the produced dilepton pair.

FIG. 19. Upper panels: θ�l dependence of the radiative corrections to the e
−p → e−pl−lþ cross section in the Δð1232Þ region for e−eþ

production (left) and μ−μþ production (right), for the different classes of radiative corrections for ΔEs ¼ 0.01 GeV. Lower panels: θ�l
dependence of the total radiative correction for different values of ΔEs for both e−eþ production (left) and μ−μþ production (right).
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FIG. 20. θ�l dependence of the e−p → e−pl−lþ cross section in the DDVCS regime for e−eþ production (left panels) and μ−μþ
production (right panels), for different values of the dilepton invariant mass sll. The curves show the predictions for BH and BHþ dVCS
for two models showing the sensitivity to the D term in the GPD parametrization. The black solid curves show the effect of the radiative
corrections for the hadronic model of the green dashed-dotted curves.
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Furthermore, Fig. 19 illustrates, as mentioned above, that
the corrections of classes (a) and (b) are symmetric under
the interchange of lþ and l−, corresponding to the angular
shift θ�l → θ�l − π, while class (c) is antisymmetric. As only
class (c) contributes to the forward-backward asymmetry
to lowest order, the smallness of the corrections of class
(c) also explains why the AFB is largely unaffected by the
radiative corrections.
Furthermore, in Fig. 19 (lower panels), we show the sum

of all three types of corrections also for a twice larger value
of the soft-photon cutoff energy ΔEs. One notices the
positive contribution to the cross section correction δ upon
increasing the value of ΔEs.

C. Results for high-energy DDVCS observables

In this section, we show our results for the e−p →
e−pl−lþ observables in the high-energy regime, in which
we use GPDs to model the dVCS amplitude in the deeply
virtual regime, the so-called DDVCS process, as described
in Section III B. We explore the sensitivity of this process
to the modeling of the GPDs, in particular, the D-term
contribution, and quantify the effect of the radiative
corrections in the soft-photon approximation.
As is conventional in the high-energy regime, we give

the differential cross section with respect to the Bjorken
scaling variable instead of the c.m. energy W describing
the Compton process. Therefore, in this section, we show
differential cross sections with respect to the quantity ξ,
which is related to the kinematical invariants through
Eq. (30). The cross section differential with respect
to ξ is related to the cross section differential with respect
to W2 as�

dσ
dQ2dξdΦdtdslldΩ�

l

�

¼
�
Q2 þ sll
2ξ2

�
×

�
dσ

dQ2dW2dΦdtdslldΩ�
l

�
: ð127Þ

In Fig. 20, we show a comparison of e−p → e−pl−lþ
cross sections for e−eþ production (left panels) vs μ−μþ
production (right panels). The cross sections are shown
for an incoming electron beam energy of 11 GeV,
which corresponds to the experimental setup of the
CLAS12@JLab experiment and of the SoLID@JLab
project. We show the cross sections for ξ ¼ 0.175,
Q2 ¼ 2.75 GeV2, −t ¼ 0.25 GeV2, and Φ ¼ 90° and for
three values of the dilepton invariant mass sll. While for
e−eþ production one observes a pronounced peak around
θ�e ≈ −20° for all three cross sections, the cross sections for
μ−μþ production appear flatter. Furthermore, the cross
sections for e−eþ production are 4–15 times larger than
the cross sections for μ−μþ production at the same value of
sll. This significant difference is due to the contribution of
the exchange diagrams, which only contribute to e−eþ

production to satisfy the Pauli principle. Naively, one
would expect the cross sections to be of roughly the same
magnitude, since even for sll ¼ 0.5 GeV2 the dilepton
invariant mass is 10 times larger than the μ−μþ production
threshold, such that effects from the lepton mass do not
play a crucial role. However, the antisymmetrization of the
final-state electrons for e−eþ production yields a large
contribution of the exchange diagrams, which increases
with increasing values of sll.
Furthermore, one can see from Fig. 20 that the BH

process again serves as an amplifier of the dVCS process,
and the BHþ dVCS cross section is roughly 50% larger
than the BH cross section. The cross section therefore has a

FIG. 21. Upper panel: θ�l dependence on the soft-photon
radiative corrections to the e−p → e−pl−lþ cross section in
the DDVCS regime for different values of sll. Upper (lower)
panel is for e−eþ (μ−μþ) production, respectively. The correc-
tions are for a soft-photon cutoff energy of ΔEs ¼ 0.05 GeV.
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strong sensitivity to the underlying GPD model. In par-
ticular, through such interference, the D-term contribution
to the GPD, using the dispersive estimate of Ref. [52],
decreases the cross section by up to approximately 20%
(green dashed-dotted curves vs red dashed curves).
In order to use the e−p → e−pl−lþ as a tool to access the

DDVCS amplitude, it is important to quantify the radiative
corrections, which is an aim of this work. In Fig. 20, we
show the impact of the radiative corrections on the cross
section. For the real soft-photon emission correction, we
choose the soft-photon energy cutoff of ΔEs ¼ 0.05 GeV,
which is roughly 1% of the e − p center-of-mass energy

ffiffiffi
s

p ¼ 4.64 GeV (corresponding to an electron beam of
11 GeV). We see from Fig. 20 that the soft-photon radiative
corrections are very sizeable in the DDVCS regime,
decreasing the cross sections by up to 50% for e−eþ
production and by up to 35% for μ−μþ production (black
solid curves vs green dashed-dotted curves).
In Fig. 21, we show the θ�l dependence of the soft-photon

radiative correction factor on the e−p → e−pl−lþ cross
section in more detail, for the three values of sll, corre-
sponding to the cross sections shown in Fig 20. As
mentioned above, using ΔEs ¼ 0.05 GeV, the corrections
in the DDVCS regime vary between −60% and −45% for

FIG. 22. Upper panels: θ�l dependence of the radiative corrections to the e
−p → e−pl−lþ cross section in the DDVCS regime for e−eþ

production (left) and μ−μþ production (right) for the different classes of radiative corrections for ΔEs ¼ 0.05 GeV. Lower panels: θ�l
dependence of the total radiative correction for different values of ΔEs for both e−eþ production (left) and μ−μþ production (right).
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e−eþ production, while for μ−μþ production they are
slightly smaller and vary between −45% and −30%.
In Fig. 22 (upper panels), we show the relative size of the

corrections to the unpolarized cross sections stemming
from the three different classes of diagrams for the central
value of the squared dilepton mass, sll ¼ 1.0 GeV2. We
show both the virtual corrections (labeled “virt”), corre-
sponding with Eqs. (97)–(103), as well as the virtualþ real
soft-photon corrections, with the real corrections given by
Eqs. (109)–(112) and (117).
While the corrections of class (a) are just constant and

negative, the corrections of classes (b) and (c) have a
nontrivial dependence on the dilepton scattering angle θ�l .
For class (b), this dependence is coming entirely from the
real photon emission correction, since the dilepton energies
in the soft-photon frame depend on the lepton scattering
angle θ�l , see Eq. (118). Comparing the soft-photon
radiative corrections to e−eþ and μ−μþ production, we
see that the largest difference is again coming from class
(b), which is expected since it is most sensitive to the lepton
mass ml. Let us note that, as discussed before for the low-
energy case, classes (a) and (b) are symmetric with respect
to the interchange lþ and l−, while class (c) is antisym-
metric. Therefore, to the first order only, class (c) contrib-
utes to the AFB.
In the lower panels of Fig. 22, we show the sum of all

corrections for two different values of the soft-photon
energy cutoff of ΔEs ¼ 0.05 GeV (blue dotted curve)
and ΔEs ¼ 0.1 GeV (red dashed curve). The difference
between both curves is a constant proportional to
lnΔE2

s=m2. For the twice higher value of the soft-photon
energy, we find in absolute values smaller corrections
shifted by approximately 10%. Furthermore, we see that
the sum of all corrections is in absolute value smaller by
more than 10% for μ−μþ production compared to e−eþ
production. As mentioned above, the difference is coming
mainly from corrections of class (b) which are (in absolute
value) smaller for μ−μþ production.
In Fig. 23, we show the soft-photon radiative corrections

for the e−p → e−pe−eþ process, for roughly the same
kinematics as in Ref. [40], in which we studied the effect of
radiative corrections for the timelike Compton scattering
(TCS) process, γp → e−eþp, with an on-shell incoming
photon. In the soft-photon approximation, the corrections
to that process are equivalent to that of class (b) studied in
the present work. Therefore, we find for corrections of class
(b) the same order of magnitude of approximately −25% as
in [40] (blue dotted curve). Including also corrections of
classes (a) and (c), we find that the corrections increase with
increasing Q2 values, varying from −35% to −50% when
varying Q2 from 10−5 to 10−1 GeV2 (red dashed curve).
Furthermore, one observes around Q2 ¼ 1 GeV2 the same
spiked behavior as in the low-energy case in Fig. 18. The
reason is again that in this kinematics the two outgoing
electrons with momenta k0 and l− become collinear which

leads to a large logarithm in the corrections of type (c). For
an experiment, such a kinematic region should be avoided.
In Fig. 24, we show a comparison of both beam-spin and

forward-backward asymmetries in the DDVCS regime,
both for e−eþ and μ−μþ production and for a dilepton
invariant mass squared of sll ¼ 1.0 GeV2.
Studying the DDVCS process in this energy regime is of

particular interest as it allows us to extend the DVCS beam-
spin asymmetry measurements of GPDs into the so-called
ERBL domain [34,35]. The BSA is proportional to the
imaginary part of the DDVCS amplitude of Eq. (37) and
allows us to access the GPDs directly unlike the real part of
the amplitude which depends on a convolution integral over
the GPDs. The numerator of the BSA directly yields for
both the cases ξ0 > 0 (Q2 > q02) and ξ0 < 0 (Q2 < q02),

σþ − σ− ¼ cHsingletðξ0; ξ; tÞ þ � � � ; ð128Þ

with −ξ < ξ0 < ξ. In Eq. (128), c is a known factor,
originating from the BH amplitude dependent on the
nucleon elastic form factors, and the ellipses stand for
the subdominant contribution of GPDs beyond Hsinglet.
As Hsinglet is an odd function in its first argument, we

thus see that the BSA for the DDVCS process changes sign
when crossing the point ξ0 ¼ 0. The BSA for the DVCS and
TCS limits have the same magnitude but opposite signs,
expressing the fact that the GPD information content in
both limits is the same.
Given that the real BH process does not yield a BSA

by itself, we see from Fig. 24 that the BSA has a
significant sensitivity to the GPDs, yielding asymmetries

FIG. 23. Radiative correction for the e−p → e−pe−eþ proc-
ess in the TCS limit Q2 → 0 in a kinematic setup comparable
to Ref. [40].
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between −25% and þ10% for e−eþ production and
between −25% and −5% for μ−μþ production. The differ-
ence between both cases is mainly due to the effect of
antisymmetrization in both outgoing electrons for e−eþ
production. Furthermore, unlike the DVCS and TCS cases,
the BSA for DDVCS is also sensitive to the D-term
contribution to the GPD, as it also yields a contribution
to the imaginary part of the DDVCS amplitude. By
comparing the red dashed and black solid curves in
Fig. 24, we notice that the sensitivity to the D term induces
a change of the BSA by 5% or more over a large angular
range. As noticed above, the radiative correction drop out
of the BSA in the soft-photon approximation.
We also show the forward-backward asymmetry in

Fig. 24 and notice that the antisymmetrization induces

already a large effect for the BH process itself (blue dotted
curves in Fig. 24). Adding the dVCS contribution changes
the forward-backward asymmetry by up to 25% over a
large angular range, while the effect of radiative corrections
(black solid curves) is in the few percent range only. The
sensitivity on the D term for the forward-backward asym-
metry is much smaller; comparing the curve including
the D term (green dotted-dashed line) and the curve
excluding the D term (red dashed line), we find a difference
of up to approximately 5%.
For the calculation of the e−p → e−pe−eþ cross sec-

tions shown in Fig. 20 (left panels) and the corresponding
asymmetries shown in Fig. 24 (left panels), we have to
ensure that the model used for the dVCS amplitude is
applicable for both the direct and the exchange terms.

FIG. 24. θ�l dependence of the e−p → e−pl−lþ beam-spin asymmetry A⊙ (upper panels) and forward-backward asymmetry AFB
(lower panels) in the DDVCS regime, for e−eþ production (left) and μ−μþ production (right). Curve conventions as in Fig. 20.
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In Fig. 25, we show the two photon virtualities entering the
dVCS tensor for the exchange diagrams. One can see that in
the kinematics considered one of the two virtualities is
around or above 2 GeV2 for nearly all lepton angles, which
corresponds with the lower limit for which the QCD
factorization in terms of GPDs is expected to hold. This
justifies the use of the handbag description of Sec. III B in
terms of GPDs also for the exchange term.
Furthermore, in Fig. 25 (lower panel), we show the

scaling variables entering the DDVCS tensor for the
exchange diagrams. While ξex and ξ̃ex both are roughly
constant as function of the dilepton angle, close to the value
of ξ ¼ 0.175 for the direct diagram, one notices a large

angular variation for ξ0ex and ξ̃0ex. Compared to the constant
value ξ0 ¼ 0.0758 entering the direct diagram, ξ0ex varies
between −0.08 and 0.08. Thus, the e−p → e−pe−eþ
process has the unique feature, due to the antisymmetriza-
tion in both outgoing electrons, that by varying the dilepton
angle θ�e one performs a systematic scan in the scaling
variable ξ0ex in the ERBL domain of the GPDs.
In Fig. 26, we also show the dilepton momenta and

scattering angles measured in the Lab frame as a function of
the dilepton rest frame angle θ�l . From the upper panel of
that figure, it becomes clear that most of the region is
experimental accessible. Except for angles around 0° and
�180°, over most of the dilepton angular range, the lepton
momenta are larger than 0.1 GeV, which makes it quite

FIG. 25. Upper panel: photon virtualities entering the dVCS
amplitude in the exchange diagrams of the e−p → e−pe−eþ
process for the kinematics of Fig. 24. Lower panel: scaling
variables entering the GPDs for the exchange diagrams.

FIG. 26. Lab momenta (upper panel) and Lab scattering angles
(lower panel) of the dilepton pair as function of dilepton rest
frame angle θ�l for the kinematics of Fig. 24.
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feasible to detect the particles. The scattering angles
measured in the Lab system are shown in the lower panel
in Fig. 26. In the region where the Lab momenta of the
dilepton pair are larger than 0.1 GeV, they range from −50°
to 50°. This initial study seems promising for a measure-
ment of the e−p → e−pe−eþ process over a large range of
scattering angles.

VII. CONCLUSIONS

In this paper, we studied the soft-photon radiative
corrections to the process e−p → e−pl−lþ, where l ¼ e
or l ¼ μ. The process contains two distinct contributions:
first, the spacelike and timelike Bethe-Heitler processes
which only depend on the nucleon elastic form factors
and second the double-virtual Compton scattering process.
The latter is sensitive to the underlying hadronic model
describing the virtual photon-nucleon interaction, and a
measurement of e−p → e−pl−lþ observables can therefore
be used to test and study nucleon structure models for
different energy regimes. In the present work, we studied
the e−p → e−pl−lþ process in two different energy
regimes.
In the low-energy regime, in which the center-of-mass

energy is close to the Δð1232Þ-resonance, and in which
both photon virtualities are typically below or around
0.1 GeV2, we described the interaction using a Δ-pole
model together with a low-energy expansion of the dVCS
amplitude. This regime is motivated to better constrain the
hadronic corrections to precision atomic spectroscopy.
In particular, for the muonic hydrogen Lamb shift, the
main hadronic unknown to date results from a low-energy
nucleon structure constant, denoted by b3;0, which enters
the empirical determination of the OðQ4Þ term in the
subtraction function T1ð0; Q4Þ of the forward double-
virtual Compton amplitude. We found that the spread
between the different theoretical estimates for the low-
energy constant b3;0 increases the e−p → e−pl−lþ cross
section by approximately 15% both for e−eþ and μ−μþ
productions. Furthermore, we also found that the beam-
spin asymmetry and the forward-backward asymmetry,
resulting from an interchange in the kinematics of the
produced dilepton pair, are sensitive to the low-energy
constant b3;0. For the beam-spin asymmetry, the range of
theoretical values for this low-energy constant leads to a
shift in the asymmetry up to 15% for e−eþ production and
up to around 10% for μ−μþ production. A measurement of
the e−p → e−pl−lþ observables in this low-energy regime
is thus promising to extract the nucleon structure constant,
which could help to reduce the main uncertainty in the
theoretical μH Lamb shift estimate.
For the high-energy deeply virtual regime, we modeled

the dVCS amplitude in terms of GPDs. We studied the
sensitivity of the e−p → e−pl−lþ process to the modeling
of the GPDs, in particular, the so-called D-term

contribution. In kinematics of future experiments at
JLab, we found that dispersive estimates for the D-term
contribution to the GPDs induce around 20% change in the
e−p → e−pl−lþ cross section. Furthermore, we also found
a large sensitivity to the GPD model for the beam-spin as
well as the forward-backward asymmetry. The beam-spin
asymmetry is of particular interest as it does not involve any
convolution over GPDs but is directly proportional to the
GPDs, mostly in a linear way, through interference with the
Bethe-Heitler process. For the e−p → e−pe−eþ process,
the beam-spin asymmetry has the unique feature, due to the
antisymmetrization in both outgoing electrons, that by
varying the dilepton angle one performs a systematic scan
in the average quark momentum fraction in the ERBL
domain of the GPDs, due to the exchange term.
In order to use the e−p → e−pl−lþ process in either the

low-energy or high-energy regime as a probe of nucleon
structure, we also studied the QED radiative corrections
on the observables, in the soft-photon approximation. We
found that the radiative corrections have a large impact on
the cross sections. In the low-energy regime, we find that
these corrections lead to a decrease of the cross section of
up to 30% for e−eþ production and around 15% for μ−μþ
production. In the high-energy deeply virtual regime, the
corrections even range up to 50% for e−eþ production,and
around 35% for μ−μþ production in JLab kinematics. For
the forward-backward and beam-spin asymmetries, the
situation is different. For the AFB, the radiative corrections
were found to affect the asymmetry only around or below
the 1% level, whereas the beam-spin asymmetry is not
affected at all in the soft-photon approximation. A com-
bined analysis of the cross section and of both asymmetries
thus holds promise to access the hadronic structure infor-
mation in both regimes.
A next step to interpret future measurements of e−p →

e−pl−lþ observables would consist in performing a full
one-loop radiative correction calculation, beyond the soft-
photon approximation. Such a calculation can build upon
the work of Refs. [39,40], in which such a study was
performed for the related γp → l−lþp process. The latter
study has shown that the soft-photon approximation can
be expected to somewhat overestimate the full one-loop
corrections on the cross sections, while the beam-spin and
forward-backward asymmetries remain nearly unaffected
by the radiative corrections.
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APPENDIX A: KINEMATICS IN γ�p
REST FRAME

In this Appendix, we derive expressions for the four-
momenta in the rest frame of a proton and the momentum
transfer of the scattered electron, i.e.,

q⃗ ¼ k⃗ − k⃗0 ¼ −p⃗: ðA1Þ

We align this system along the z-axis, such that the energy
of the virtual photon with momentum q is given by

q0cm ¼ W2 −M2 −Q2

2W
; ðA2Þ

and the z-component of the three-momentum by

qcm ≡ qz

¼ 1

2W
½ððW þMÞ2 þQ2ÞððW −MÞ2 þQ2Þ�1=2:

ðA3Þ

The energy of the incoming electron with momentum k is
given by

k0 ¼ s −M2 −m2 −Q2

2W
: ðA4Þ

In order to write the three-momentum k⃗, we define rk,
which is the magnitude of the three-momentum in x and y
directions,

rk ¼
Q

2Wqcm
½sðs −M2 −Q2Þ −W2ðs −M2Þ

−m2ððW2 −M2Þ2=Q2 þ 2sþW2 þM2Þ þm4�1=2;
ðA5Þ

such that k⃗ is given by

kx ¼ rk cosΦ;

ky ¼ rk sinΦ;

kz ¼
WQ2 þ q0cmðs −m2 −M2 −Q2Þ

2qcmW
: ðA6Þ

Using these quantities, we can write down the momenta
of the incoming and outgoing electrons k and k0 as

k ¼

0
BBB@

k0

rk cosΦ
rk sinΦ

kz

1
CCCA; k0 ¼

0
BBB@

k0 − q0cm
rk cosΦ
rk sinΦ
kz − qcm

1
CCCA: ðA7Þ

The energy of the photon with momentum q0 is given by

q00cm ¼ W2 −M2 þ sll
2W

; ðA8Þ

and its three-momentum by

q0cm ≡ jq0!cmj

¼ 1

2W
½ððW þMÞ2 − sllÞððW −MÞ2 − sllÞ�1=2: ðA9Þ

The angle θγγ is defined as the angle between the two
virtual photons with momenta q and q0. It can be calculated
in terms of invariants via

2qcmq0cm cosðθγγÞ ¼
ðW2 −M2 −Q2ÞðW2 −M2 þ sllÞ

2W2

þ t − sll þQ2: ðA10Þ

We can now write the four-momentum of l−,

l− ¼

0
BBBBBBBBB@

q00cm
2



1þ q0cm

q00cm
βsll cos θ

�
l

�
q00cm
2



βsll cos θ

�
l þ q0cm

q00cm

�
sinðθγγÞ þ

ffiffiffiffi
sll

p
2
βsll sin θ

�
l cosϕ

�
l cosðθγγÞffiffiffiffi

sll
p
2
βsll sin θ

�
l sinϕ

�
l

q00cm
2



βsll cos θ

�
l þ q0cm

q00cm

�
cosðθγγÞ −

ffiffiffiffi
sll

p
2
βsll sin θ

�
l cosϕ

�
l sinðθγγÞ

1
CCCCCCCCCA
: ðA11Þ

The momentum lþ of the other lepton can be obtained via the transformation

cos θ�l → − cos θ�l ; cosϕ�
l → − cosϕ�

l ; sinϕ�
l → − sinϕ�

l : ðA12Þ

The momentum p of the incoming proton is aligned to the z axis. The energy and the z component are given by
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p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2cm

q
; pz ¼ −qcm: ðA13Þ

The momentum p0 of the outgoing proton can be calculated
using energy-momentum conservation. The energy and
three-momentum are given by

p00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ jq0!j2

q
; p0! ¼ −q0

!
: ðA14Þ

Having derived all four-momenta in the γ�p center-of-
mass frame, one can easily perform a Lorentz transforma-
tion to get the four-momenta in any other system. In
particular, one can perform the boost to the recoil protonþ
soft-photon rest frame, which is needed to calculate the
soft-photon integrals from Sec. V.

APPENDIX B: THREE-POINT FUNCTIONS

In this Appendix, we give analytic expressions for the
three-point functionwhichwe need for thevirtual soft-photon

corrections. The results are taken from Ref. [56]. The three-
point function with equal masses is given by

C0ðm2; s; m2; 0; m2; m2Þ

¼ 1

sβ

�
1

ϵIR
ln

�
β − 1

β þ 1

�
þ 2Li2

�
β − 1

2β

�
þ ln2

�
β − 1

2β

�

−
1

2
ln2

�
β − 1

β þ 1

�
−
π2

6

�
; ðB1Þ

where we defined

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

s

r
: ðB2Þ

The above expression is valid in the spacelike region in
which s < 0.
The three-point function with two different masses m

and ml is given by

C0ðm2; s; m2
l ; 0; m

2; m2
l Þ ¼

1

2λ

�
−
μ2

s

�
ϵIR
�

1

ϵIR
ln ðxþx−Þ − ln

�
−
λ

s

�
ðlnðxþÞ þ lnðx−ÞÞ þ

1

2
ln2ð−γþÞ

þ 1

2
ln2ðγ− − 1Þ − 1

2
ln2ð−γ−Þ þ 1

2
ln2ð1 − γþÞ − Li2

�
s − sγ−

λ

�

− Li2

�
sγþ

λ

�
þ Li2

�
sγþ − s

λ

�
þ Li2

�
sγ−

λ

��
; ðB3Þ

with

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−sþm2 þm2

l Þ2 − 4m2m2
l

q
; γ� ¼ 1

2

�
1þm2

l −m2

s
� λ

s

�
; x− ¼ −γ−

1 − γ−
; xþ ¼ γþ − 1

γþ
: ðB4Þ

As above, the expression is valid in the spacelike region with s < 0.
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