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In this work we study the Σπ and Λπ production off free nucleons driven by the strangeness-changing
weak charged current. We calculate the total cross sections for all possible channels and estimate the flux-
averaged total cross sections for experiments like MiniBooNE, SciBooNE, T2K, and Minerva. The model
is based on the lowest order effective SU(3) chiral Lagrangians in the presence of an external weak charged
current and contains Born and the lowest-lying decuplet resonant mechanisms that can contribute to these
reaction channels. We also compare and discuss our results with others following similar and very different
approaches.
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I. INTRODUCTION

The neutrino and antineutrino-nucleus cross sections are
necessary inputs for the analyses of the neutrino scattering
and oscillation experiments [1–5]. One of the main ingre-
dients in the (anti)neutrino-nucleus cross sections is the
primary (anti)neutrino-nucleon interaction model. It is very
important that these models provide accurate predictions
when compared with experimental data on nucleon targets,
before embedding these elementary interactions within the
nuclear medium, where relevant nuclear effects may distort
the final signal in experiments. In the few GeV energy
regions, where most of the present [6–8] and future [9–11]
oscillation experiments take data, single pion production
channels may play a crucial role.
The Cabibbo enhanced single pion production off

nucleons is a long-standing theoretical process that has
been studied [12–38] and measured [39–61] since many
decades ago up to date. However, its Cabibbo suppressed
counterpart, where a pion is produced along with a S ¼ −1
hyperon (Σ or Λ) in the final state, is a scarcely studied set
of reactions.

In the previous works [62–65], different approaches have
been followed. In Ref. [62] a coupled-channel chiral
unitary approach is used to dynamically generate the
Λð1405Þ resonance, which plays a major role in the πΣ
reaction channel. In Refs. [63,64] a nonrelativistic 3-quark
model, effective V − A theory with experimental form
factors, and the relativistic quark model with harmonic
interaction of Feynman, Kislinger, and Ravndal [66] are
used to calculate the cross section for Σ�0ð1385Þ resonance
production off proton, among other channels. Finally, in
Ref. [65] a model with background or Born terms is used to
calculate a plethora of reactions producing strange par-
ticles, in particular the πY production channel, but explic-
itly excluding N� and Y� exchange mechanisms.
The kind of reactions studied in this work can only be

induced by antineutrinos, due to the selection rule for
the strangeness-changing weak charged current, ΔS ¼
ΔQ ¼ −1, for the hadrons. Given that the strangeness-
changing weak current changes an u quark into a s quark
(or a s̄ antiquark into an ū one), there are also the selection
rules ΔI ¼ 1

2
and ΔIz ¼ − 1

2
¼ ΔQ

2
, where ðI; IzÞ are the

strong isospin and its third component.
Though the present work centered around strangeness

changing pion production, the hyperon produced in the
final state holds an added advantage. For instance, the
inclusive hyperon (Λ or Σ) production below the energy
threshold for associated KY production is going to be
dominated by the quasielastic (QE) hyperon production
channel [63,67–71] and by the reactions studied in this
work. In particular, the direct Σþ production in QE hyperon
reactions off nucleons is not allowed; the final appearance
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of Σþ particles in reactions taking place off nuclear targets
is due to the final-state interactions (FSI) or re-scattering
experienced by the other hyperons inside the nucleus
[67,69,70]. However, in the inelasticðΔS ¼ −1Þ channel,
Σþ can be produced in primary antineutrino interaction off
protons(for a complete list of final states, please see Sec. II),
which is expected to be dominant source of Σþ production
below the KY threshold. Also, a direct consequence of FSI
and nuclear effects is the absorption of produced (primary)
pions on a large scale; however, the secondary pions
produced from hyperon decay will not suffer a strong
absorption thanks to the long lifetime of hyperons.
In this work, we developed a model for (anti)neutrino-

induced πY production on the nucleon induced by the
charged current interactions. The present model is largely
based on the models that have been well tested in the
past, like in K-production [72–74], π-production [27] etc.
While the nonresonant mechanism relies on the chiral
Lagrangian and SU(3) flavor symmetry, the resonant
mechanism involves both nonstrange [Δð1232Þ� and
strange [Σ�ð1385Þ� resonances.
The structure of this work is as follows: in Sec. II we

discuss the formalism in detail; in Sec. III we present our
results; and finally, in Sec. IV we summarize our findings.

II. FORMALISM

In this work we are interested in the following set of
antineutrino induced reactions

ν̄lðkÞ þ NðpÞ → lþðk0Þ þ πðpmÞ þ YðpYÞ; ð1Þ

where N can be either a proton or neutron, Y is a Σ or Λ
hyperon, and the four-momenta of particles are given in
parentheses. For induced reactions off protons, the allowed
Yπ final states areΛπ0,Σ0π0,Σþπ−, andΣ−πþ; while for the
neutron channel the possibilities are Λπ−, Σ0π−, and Σ−π0.
Our model, shown in Fig. 1, is very similar to that of

Ref. [65], but also includes the lowest lying decuplet
resonances like Δð1232Þ and Σ�ð1385Þ as explicit degrees
of freedom [shown in Fig. 1(b)], in the line of previous
works such as those of Refs. [72–75]. We use effective
V − A strangeness-changing weak charged current with
vector and axial-vector form factors for the N − Y 0 tran-
sitions. The vector form factors are related to the electro-
magnetic nucleon form factors using the Cabibbo theory,
i.e., assuming that the strangeness-changing weak vector
current belongs to an SU(3) octet of flavor currents. For the
axial-vector currents, D-type (symmetric) and F-type
(antisymmetric) couplings arise between two octets f8g ⊗
f8g that are connected through a SU(3) octet axial current.
Whereas, the q2-dependence is introduced by assuming a
similar form for both D and F couplings, taken to be of
dipole form [67,75]. For the πNN0 and πYY 0 strong vertices
we assume pseudovector couplings with the derivative of
the pseudoscalar meson field. These assumptions are fully
consistent with the lowest order baryon-meson chiral
Lagrangians in the presence of a weak charged external
current, as discussed in [76].

A. Total cross section

The unpolarized differential cross section corresponding
to Eq. (1) is

FIG. 1. Feynman diagrams included in our model for the Cabibbo suppressed πY production process off nucleons induced by
antineutrinos.
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d9σ ¼ δ4ðpþ q − pY − pmÞ
1

ð2πÞ54MEν̄

×
d3k0

2E0
lðk0Þ

d3pm

2EmðpmÞ
d3pY

2EYðpYÞ
XX

jMj2; ð2Þ

where the matrix element M is

−iM ¼ −i
GFffiffiffi
2

p lμJ
μ
H; ð3Þ

with GF ¼
ffiffi
2

p
g2

8M2
W
¼ 1.1664 × 10−5 GeV−2 as the Fermi

coupling constant and lμðJμHÞ is the lepton (hadron)
current. For the final calculations, we use JμH given as
the sum of the hadronic currents of Eqs. (27)–(31) and
(38)–(39). The symbol

PP jMj2 stands for the sum over
final fermion spins and average over initial ones if these are,
on average, unpolarized. In the present calculations, we
take initial nucleons as unpolarized; however, antineutrinos
are fully polarized, which leads to

XX
jMj2 ¼ 2G2

FL
μνðk; k0Þ

X
λN;λY

JHμ ðJHν Þ�: ð4Þ

In the above expression, Lμνðk; k0Þ is the lepton tensor

Lμνðk; k0Þ ¼ kμk0ν þ kνk0μ − gμνðk · k0Þ − iϵμναβkαk0β; ð5Þ

with ϵ0123 ¼ 1. Finally, the sum over the spins of the initial
and final baryons ðλN;YÞ gives rise to traces over chains of
Dirac matrices, of the form

Wμν ¼
X
λN;λY

JHμ ðJHν Þ�

¼
X
λN;λY

½ūλY ðpYÞjμuλN ðpÞ�½ūλN ðpÞγ0j†νγ0uλY ðpYÞ�

¼ Tr½jμðpþMÞγ0j†νγ0ðpY þMYÞ�; ð6Þ

where jμ is the total hadron current JHμ , but without Dirac
spinors as given in Eqs. (27)–(31) and (38)–(39). For the
calculation of Dirac traces, we have used the Mathematica
package FEYNCALC [77–79].
The Eq. (2) can be further solved with the help of the

δ-function. The delta integration then fixes the cosine of the
polar angle theta ðθ0m ¼ cos−1½q̂ · p̂m�Þ:

cos θ0m ¼ M2
Y þ q2 þ p2

m − ðM þ q0 − EmÞ2
2jqjjpmj

; ð7Þ

and the Eq. (2) thus reduces to,

d5σ ¼ 1

ð2πÞ54MEν̄

jk0j
8jqj

XX
jMj2

× Θð1 − cos2θ0mÞdE0
ldΩk̂0dEmdϕm; ð8Þ

where ϕm is the azimuthal angle of the three-momentum of
the π meson on the reaction plane measured with respect to
the ν̄ − lþ scattering plane. The step function (Θ) puts a
constraint on the cosine of theta (θ0m).
Finally, integrating Eq. (8) with respect to all the

variables for a fixed antineutrino energy Eν̄, we obtain

σðEν̄Þ ¼
1

ð2πÞ54MEν̄

Z
dΩk̂0

Z
E0
lmax

ml

dE0
l
jk0j
8jqj

×
Z

Emax
m

mπ

dEmΘð1 − cos2θ0mÞ

×
Z

2π

0

dϕm

XX
jMj2: ð9Þ

For the upper limits of integration in the energies of the
final lepton and the π meson, we have chosen E0

lmax ¼
Eν̄ þM −MY −mπ and Emax

m ¼ Eν̄ − E0
l þM −MY .

B. Born terms model

Following Refs. [76,80] we can write the lowest order
chiral Lagrangian in the SU(3) flavor scheme for mesons in
the presence of an external weak charged current as

Lð2Þ
M ¼ f2π

4
Tr½DμUðDμUÞ†� þ f2π

4
Tr½χU† þUχ†�; ð10Þ

where fπ ¼ 93 MeV is the pion decay constant, U is
the SU(3) representation of the pseudoscalar octet meson
fields

UðxÞ ¼ exp

�
i
ϕðxÞ
fπ

�

ϕðxÞ ¼

0
BBB@

π0 þ ηffiffi
3

p
ffiffiffi
2

p
πþ

ffiffiffi
2

p
Kþ

ffiffiffi
2

p
π− −π0 þ ηffiffi

3
p

ffiffiffi
2

p
K0

ffiffiffi
2

p
K−

ffiffiffi
2

p
K̄0 − 2ffiffi

3
p η

1
CCCA: ð11Þ

DμU is the covariant derivative, given by

DμU ¼ ∂μU − irμU þ iUlμ; ð12Þ

where lμ and rμ are left and right-handed external currents
coupled to the meson fields. In the particular case of the
weak charged current, these currents are

rμ ¼ 0 lμ ¼ −
gffiffiffi
2

p ðWþ
μ Tþ þW−

μT−Þ; ð13Þ
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withW�
μ the weak vector boson fields, g the weak coupling

constant, and T� the 3 × 3 matrices containing the
Cabibbo-Kobayashi-Maskawa matrix elements relevant
for the three flavor scheme,

Tþ ¼

0
BB@

0 Vud Vus

0 0 0

0 0 0

1
CCA; T− ¼

0
BB@

0 0 0

Vud 0 0

Vus 0 0

1
CCA: ð14Þ

Finally, in Eq. (10), the symbol Tr denotes a trace over
flavor space. The second term in Eq. (10) is not relevant for
our study. It incorporates the explicit breaking of chiral
symmetry due to the finite quark masses. With the
Lagrangian given in Eq. (10) we can obtain the relevant
WKπ and WK̄ vertices necessary for the KP and KF
diagrams shown in Fig. 1(a).
The lowest order interaction between the octet baryons,

the octet meson and the weak external current can also be
introduced following Ref. [76] as

Lð1Þ
MB ¼ Tr½B̄ðiD −MÞB�

þD
2
Tr½B̄γμγ5fuμ; Bg� þ

F
2
Tr½B̄γμγ5½uμ; B��; ð15Þ

where BðxÞ is the SU(3) representation of the baryon fields

B ¼

0
BB@

1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ Σþ p

Σ− − 1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ n

Ξ− Ξ0 − 2ffiffi
6

p Λ

1
CCA: ð16Þ

The covariant derivative of the baryon fields is given in
terms of the connection Γμ as

DμB ¼ ∂μBþ ½Γμ; B�; ð17Þ

with

Γμ ¼
1

2
½u†ð∂μ − irμÞuþ uð∂μ − ilμÞu†�: ð18Þ

In Eq. (18) we have introduced u ¼ ffiffiffiffi
U

p ¼ exp ði ϕðxÞ
2fπ

Þ.
Also, in Eq. (15), the definition of the so-called vielbein,
uμ, is given by

uμ ¼ i½u†ð∂μ − irμÞu − uð∂μ − ilμÞu†�: ð19Þ

In Eq. (15), M represents the baryon mass matrix in the
exact SU(3) limit with Dð¼ 0.804Þ and Fð¼ 0.463Þ as
the symmetric and antisymmetric couplings, respectively.
The two independent couplings appear because in the
Clebsch-Gordan series expansion of two SU(3) octets
f8g ⊗ f8g, the f8g representation is contained twice.
These couplings can be measured from the baryon semi-
leptonic decays within the Cabibbo model [81]. The
Lagrangian of Eq. (15) allows to extract all the necessary
vertices NYK, NYKπ, NYWπ, and the leading order vector
and axial-vector terms for the N − Y strangeness-changing
weak transitions for the diagrams depicted in Fig. 1(a). The
latter can be written as

hYðp0
YÞjVμjNðpÞi ¼ ūYðp0

YÞ
�
fNY
1 ðq2Þγμ þ i

fNY
2 ðq2Þ

M þMY
σμνqν þ

fNY
3 ðq2Þ

M þMY
qμ
�
uNðpÞ ð20Þ

hYðp0
YÞjAμjNðpÞi ¼ ūYðp0

YÞ
�
gNY
1 ðq2Þγμγ5 þ i

gNY
2 ðq2Þ

M þMY
σμνγ5qν þ

gNY
3 ðq2Þ

M þMY
qμγ5

�
uNðpÞ: ð21Þ

where ðgNY
i ÞfNY

i , i ¼ 1, 2, 3 are the (axial-)vector form
factors. The Lagrangian of Eq. (15) provides the values for
the vector and axial couplings (form factors at q2 ¼ 0)
fNY
1 ð0Þ and gNY

1 ð0Þ, but not for the others, which may
appear at higher orders of the chiral expansion. However,
using symmetry arguments, one can get rid of some of
them. For example, the weak electricity [gNY

2 ðq2Þ] and the
scalar [fNY

3 ðq2Þ] form factors transform as second-class
currents [82] under G-parity and are neglected for present

calculations.1 In the present scheme the most standard way
to obtain the f2ð0Þ couplings is to include the relevant

1We assume that G-parity is a good quantum number for the
strong interactions and that in the Standard Model there are no
second-class currents. Therefore, from here onward we neglect
the contribution of g2 and f3. For an exhaustive discussion and
implications of their effects in some observable if second-class
currents are sizable, the reader is referred to Ref. [83] and
references therein.
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pieces of the next higher order meson-baryon chiral
Lagrangian [84] and to match the low energy constants
to well-known f2ð0Þ transition form factors, which can be
obtained from Table I of Ref. [81].
Similar results could have been achieved by invoking

exact SU(3) symmetry and the hypothesis that the weak
vector currents and the electromagnetic one belong to the
same octet of current operators of the SU(3) group. As the
octet f8g representation appears twice in the Clebsch-
Gordan series for the tensor product of two octets

f8g ⊗ f8g
¼ f1g ⊕ f8g ⊕ f80g ⊕ f10g ⊕ f10g ⊕ f27g; ð22Þ

this means that any octet operator connecting two octet
baryons has two independent irreducible matrix elements.
Therefore, it is necessary to explicitly calculate two
independent matrix elements for an octet operator. Later,
using the SU(3) Wigner-Eckart theorem, all the nonvanish-
ing matrix elements between octet states connected through
an octet current operator can be related through the SU(3)
Clebsch-Gordan coefficients, which can be found in
Ref. [85], with the previous explicitly calculated two matrix
elements. In the case of the octet of vector currents, these
two irreducible matrix elements can be written in terms of
the proton and neutron electromagnetic current matrix
elements, hpjJμemjpi and hnjJμemjni. This facilitates us to
express all the N⇌Y transition vector form factors in terms
of those, fp;n1;2 ðq2Þ, of the electromagnetic interaction, that is
well measured. They are summarized in Table I, and for
present work we use the Galster parametrization [86] for
the electromagnetic form factors.
A similar argument may be given for the axial-vector

currents in the Cabibbo model. However, in this case, there
are not two well-measured independent transition matrix
elements to be used to define univocally the rest of the
transition matrix elements driven by the weak axial current.

The only known parameter we have is for the n → p weak
transition, from where one can extract the axial coupling
of the nucleon, gAð0Þ ¼ gnp1 ð0Þ ¼ 1.267. Normally, its
q2-dependence is assumed to have a dipole form with an
axial mass of MA ¼ 1.03 GeV,

gAðq2Þ ¼
gAð0Þ

ð1 − q2

M2
A
Þ2
; ð23Þ

where gAð0Þ ¼ Dþ F. One assumption that has been
extensively used in past works [67,70,75,83,87] assumes
that the q2-dependence acquired by the D and F couplings
is identical and driven by the dependence on q2 of the
nucleon axial form factor gAðq2Þ. Under this assumption we
can write

gNY
1 ðq2Þ ¼ aDAðq2Þ þ bFAðq2Þ ¼

aDþ bF

ð1 − q2

M2
A
Þ2

¼ aDþ bF
Dþ F

gAð0Þ
ð1 − q2

M2
A
Þ2

¼ aDþ bF
Dþ F

gAðq2Þ; ð24Þ

where a and b are SU(3) Clebsch-Gordan coefficients, and
DA and FA are normalized to D and F couplings at q2 ¼ 0.
The values for these axial-vector form factors are tabulated
in Table II for the transitions of interest for our work.
Finally, invoking partial conservation of the axial current

(PCAC) in the chiral limit, we can relate the induced
pseudoscalar gNY

3 ðq2Þ form factor with the axial one,
gNY
1 ðq2Þ:

gNY
3 ðq2Þ ¼ −gNY

1 ðq2Þ ðM þMYÞ2
q2

: ð25Þ

Finally, to take into account the nonvanishing meson
masses, the denominator is extrapolated from q2 to a kaon

TABLE I. Dirac and Pauli vector form factors for the weak strangeness-changing transitions considered in this
work.

i ¼ 1, 2 Y ¼ Λ Y ¼ Σ0 Y ¼ Σ−

fpYi ðq2Þ −
ffiffi
3
2

q
fpi ðq2Þ − 1ffiffi

2
p ðfpi ðq2Þ þ 2fni ðq2ÞÞ 0

fnYi ðq2Þ 0 0 −ðfpi ðq2Þ þ 2fni ðq2ÞÞ

TABLE II. gNY
1 ðq2Þ axial-vector form factors for the weak strangeness-changing transitions considered in this

work. The definition of x ¼ F
DþF is taken for simplicity in the formulae.

Y ¼ Λ Y ¼ Σ0 Y ¼ Σ−

gpY1 ðq2Þ −
ffiffi
1
6

q
ð1þ 2xÞgAðq2Þ

1ffiffi
2

p ð1 − 2xÞgAðq2Þ 0

gnY1 ðq2Þ 0 0 ð1 − 2xÞgAðq2Þ
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pole, q2 −M2
K , for strangeness-changing axial weak

charged currents. This is called the kaon-pole dominance
[88], and it is equivalent to assume that the induced
pseudoscalar form factor is generated through the coupling
of theW− boson to the baryons through aK−, as depicted in
Fig. 2. Although the kaon-pole dominance is expected to
work worse than the pion-pole dominance for nonstrange-
ness-changing weak axial currents, the contribution of the
pseudoscalar form factor gNY

3 ðq2Þ is proportional to qμ and
hence to the lepton mass; therefore, its contribution would
be too small for muon and electron antineutrinos induced
reactions.
While deriving Eq. (25), the baryons in Fig. 2 are taken

as on-shell. The off-shellness of intermediate baryons can
be restored by replacing the ðM þMYÞ in the numerator
with an operator that reduces this factor when both baryons
are on-shell. That can easily be achieved by substituting the
axial vertex of Eq. (21) by

hYðp0
YÞjAμjNðpÞi

¼ gNY
1 ðq2ÞūYðp0

YÞ
�
γμγ5 −

qμq
q2 −M2

K
γ5

�
uNðpÞ; ð26Þ

where we used the relationship,

ūYðp0
YÞqγ5uNðpÞ ¼ ðM þMYÞūYðp0

YÞγ5uNðpÞ

when both baryons are on-shell.
Now, applying the Feynman rules to the vertices and

propagators appearing in Fig. 1(a), which can be extracted
from the Lagrangians given in Eqs. (10) and (15), we obtain
the following hadron currents for the Born term diagrams:

JμCT ¼ iVusAN→Yπ
CT FDðq2ÞūYðpYÞ½γμ − aN→Yπγμγ5�uNðpÞ

ð27Þ

JμKP ¼ iVusAN→Yπ
KP FDðq2Þ

qμ

q2 −M2
K
ūYðpYÞ

×

�
q −

ðMY −MÞ
2

�
uNðpÞ ð28Þ

JμKF ¼ iVusAN→Yπ
KF FDðq2Þ

2pμ
m − qμ

ðpm − qÞ2 −M2
K
ðMY þMÞ

× ūYðpYÞγ5uNðpÞ ð29Þ

Jμs−Y0 ¼ iVusAN→Yπ
s−Y0 ūYðpYÞpmγ5

pþ qþMY 0

ðpþ qÞ2 −M2
Y 0

× ½Vμ
NY 0 ðqÞ − Aμ

NY 0 ðqÞ�uNðpÞ ð30Þ

Jμu−N0 ¼ iVusAN→Yπ
u−N0 ūYðpYÞ½Vμ

N0YðqÞ − Aμ
N0YðqÞ�

×
p − pm þM

ðp − pmÞ2 −M2
pmγ5uNðpÞ; ð31Þ

where Y; Y 0 ¼ Σ;Λ; N;N0 ¼ p, n; FDðq2Þ is a global
dipole form factor2

FDðq2Þ ¼
1

ð1 − q2

M2
D
Þ2
; MD ≃ 1 GeV: ð32Þ

for the CT, KP and KF diagrams. In Eqs. (27)–(31), the
AN→Yπ

i are global constants that depend on the particular
reaction given in Table III.
Finally, the vector and axial-vector weak vertices of

Eqs. (30) and (31) are given by

Vμ
NY 0 ðqÞ ¼ fNY 0

1 ðq2Þγμ þ ifNY 0
2 ðq2Þ

M þMY 0
σμνqν

Aμ
NY 0 ðqÞ ¼ gNY 0

1 ðq2Þ
�
γμ −

qμq
q2 −M2

K

�
γ5;

with the vector fNY 0
1;2 ðq2Þ and axial-vector gNY 0

1 ðq2Þ form
factors given in Tables I and II, respectively.
The fact that the CT and KP diagrams for the p → Σ−πþ

channel are zero and not for the other ones can be explained
with the help of Figs. 3(a) and 3(b). The key is not to need
to emit gluons in these diagrams, i.e., that the virtual sū pair
(K−) in which the W− decays could be redistributed along
with the quarks of the initial nucleon in the two final
hadrons, the hyperon and the pion, but without the need of
emitting gluons to create a qq̄ pair of the same flavor. It
seems to be a kind of OZI forbidding rule because the
valence quarks of the initial W−N state get fully redistrib-
uted into the final Yπ state without any gluon emission.
This is totally possible for all the channels except for the
W−p → Σ−πþ as shown in Fig. 3(b). Notice that the ū

FIG. 2. Feynman diagram illustrating the generation of the
pseudoscalar term in the axial-vector current.

2This same assumption for this global dipole form factor has also
been taken in previous works such as those of Refs. [62,72–74].
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antiquark coming out from the decay of the W− is not
present in the final state. Therefore, it is completely
necessary to annihilate it with an u quark via gluon
emission to have the right quarks in the final state.
As the sū quark-antiquark pair has the same quantum

numbers as the K−, this argument holds not only for the CT
diagram, but for the KP as well.
It is worth noting that these findings are in agreement

for the tree level amplitudes for the reaction channel p →
Σ−πþ with those of Ref. [62], where the authors consider
the CT, KP and KF reaction mechanisms.
This argument also explains why in Ref. [75] there were

no CT and KP amplitudes at tree level.

C. Resonance model

To describe the currents of the resonance diagrams
depicted in Fig. 1(b), we follow the prescription discussed
in Refs. [27,34,73–75] and include the lowest lying
resonances belonging to the decuplet representation of
the SU(3) group. The resonant states which may appear
in the s-channel and u-channel are Σ�ð1385Þ and Δð1232Þ,
respectively.

Though the Δð1232Þ resonances are widely studied in
the literature, there is less information available for the
Σ�ð1385Þ resonances. However, we know that both
Σ�ð1385Þ and Δð1232Þ are members of the same decuplet,
therefore under the assumption of exact SU(3) flavor
symmetry for the couplings and using the Eq. (22), the
weak transition form factors connecting an octet state to a
decuplet state can be obtained. One should notice that as the
weak charged current belongs to the octet representation of
current operators of the SU(3) group, and couples one octet
state with a decuplet state, the representation f10g appears
only once in the Clebsch-Gordan series of Eq. (22).
Therefore, there is only one independent reduced matrix
element. We will take for the latter the transition matrix
element as:

hΔþðpRÞjjμΔS¼0jnðpÞi ¼ ūαðpRÞΓαμðp; qÞuðpÞ; ð33Þ

with pR ¼ pþ q. In Eq. (33), Γαμðp; qÞ is the vertex
function given by

TABLE III. Constants AN→Yπ
i and aN→Yπ (for the axial-vector piece of the CT diagram) for each reaction and diagram in our model.

Reaction AN→Yπ
CT aN→Yπ AN→Yπ

KP AN→Yπ
KF AN→Yπ

s−Σ AN→Yπ
u−N0 AN→Yπ

s−Λ

ν̄l þ p → lþ þ π0 þ Λ
ffiffi
3

p
2
ffiffi
2

p
fπ

F þ D
3 −

ffiffi
3

p
2
ffiffi
2

p
fπ

− ðDþ3FÞ
2
ffiffi
6

p
fπ

Dffiffi
3

p
fπ

DþF
2fπ

0

ν̄l þ n → lþ þ π− þ Λ
ffiffi
3

p
2fπ

F þ D
3 −

ffiffi
3

p
2fπ

− ðDþ3FÞ
2
ffiffi
3

p
fπ

Dffiffi
3

p
fπ

DþFffiffi
2

p
fπ

0

ν̄l þ p → lþ þ π0 þ Σ0 1

2
ffiffi
2

p
fπ

F −D − 1

2
ffiffi
2

p
fπ

ðD−FÞ
2
ffiffi
2

p
fπ

0 DþF
2fπ

Dffiffi
3

p
fπ

ν̄l þ p → lþ þ π− þ Σþ 1ffiffi
2

p
fπ

F −D − 1ffiffi
2

p
fπ

ðD−FÞffiffi
2

p
fπ

− F
fπ

0 Dffiffi
3

p
fπ

ν̄l þ p → lþ þ πþ þ Σ− 0 0 0 0 F
fπ

DþFffiffi
2

p
fπ

Dffiffi
3

p
fπ

ν̄l þ n → lþ þ π− þ Σ0 − 1
2fπ

F −D 1
2fπ

ðF−DÞ
2fπ

F
fπ

DþFffiffi
2

p
fπ

0

ν̄l þ n → lþ þ π0 þ Σ− 1
2fπ

F −D − 1
2fπ

ðD−FÞ
2fπ

− F
fπ

− DþF
2fπ

0

FIG. 3. Two possible Feynman diagrams in terms of quarks and gluons to explain why the CT and KP diagrams are forbidden for the
p → Σ−πþ reaction channel but not for the others. The colored quark lines represent their possible colors in QCD to make colorless
initial and final hadrons.
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Γαμðp; qÞ ¼
�
CV
3

M
ðgαμq − qαγμÞ þ CV

4

M2
ðgαμq · ðpþ qÞ − qαðpþ qÞμÞ þ CV

5

M2
ðgαμq · p − qαpμÞ þ CV

6 g
αμ

�
γ5

þ
�
CA
3

M
ðgαμq − qαγμÞ þ CA

4

M2
ðgαμq · ðpþ qÞ − qαðpþ qÞμÞ þ CA

5 g
αμ þ CA

6

M2
qαqμ

�
; ð34Þ

ūαðpRÞ is a Rarita-Schwinger spinor describing spin-3
2

particles, and jμΔS¼0 is the strangeness-preserving weak
charged current coupled to an incoming Wþ boson.
A systematic way of obtaining the relationships (SU(3)

factors) between the weak vertices for all the allowed
transitions and that for the n → Δþ [given in Eq. (34)] is to
use the lowest order Lagrangian that couples the decuplet
baryons with the octet baryons and mesons in the presence
of an external current [89,90] and that was already used in
Refs. [73–75]. Its form is

Ldec ¼ CðϵabcT̄μ
adeðuμÞdbBe

c þ ϵabcB̄c
eðuμÞbdTμ

aedÞ; ð35Þ

where B is given by Eq. (16), uμ is the vielbein of Eq. (19),
and Tμ

aed is the SU(3) representation of the Rarita-
Schwinger fields for the decuplet baryons. This represen-
tation is completely symmetric in the three flavor indices,
and an implicit sum over flavor indices (a; b;… ¼ 1, 2, 3)
is understood in Eq. (35). It is worth relating the Tabc
representation to the physical states3:

T111 ¼ Δþþ; T112 ¼
Δþffiffiffi
3

p ; T122 ¼
Δ0ffiffiffi
3

p

T222 ¼ Δ−; T113 ¼
Σ�þffiffiffi
3

p ; T123 ¼
Σ�0ffiffiffi
6

p

T223 ¼
Σ�−ffiffiffi
3

p ; T133 ¼
Ξ�0ffiffiffi
3

p ; T233 ¼
Ξ�−ffiffiffi
3

p

T333 ¼ Ω−: ð36Þ

The Lagrangian of Eq. (35) only provides the leading
weak axial coupling CA

5 ð0Þ for all the allowed weak
transitions. Knowing that CA

5 ð0Þjn→Δþ ≃ 2Cffiffi
3

p with C ∼ 1

[73,75], we can relate all the other leading axial couplings
for the other weak transitions to the n → Δþ one. These
relative factors are then applied to all the vector CV

i ðq2Þ and
axial CA

i ðq2Þ form factors, thus assuming exact SU(3)
symmetry for the couplings.4 We choose the form factors
for the n → Δþ transition given in Ref. [27] with the
exception that for strangeness-changing processes

CA
6 ðq2Þ ¼ CA

5 ðq2Þ
M2

M2
K − q2

; ð37Þ

which appears when one imposes PCAC for the transition
similar to Fig. 2 with the final hyperon replaced by the
Σ�ð1385Þ resonance. Note that the strong coupling C ≃ 1 is
obtained to match the Δ width at its nominal mass. If we
apply the Feynman rules to the diagrams depicted in
Fig. 1(b), we obtain the following amplitudes:

Jμs−Σ� ¼ iVusAN→Yπ
s−Σ�

pβ
m

p2
Σ� −M2

Σ� þ iMΣ�ΓΣ�
ūYðpYÞPβαðpΣ� Þ

× Γαμðp;qÞuNðpÞ ð38Þ

Jμu−Δ ¼ iVusAN→Yπ
u−Δ

pβ
m

p2
Δ −M2

Δ þ iMΔΓΔ
ūYðpYÞΓ̃μαðpY; qÞ

× PαβðpΔÞuNðpÞ; ð39Þ

where pΣ� ¼ pþ q, pΔ ¼ p − pm, Γ̃μαðpY; qÞ ¼
γ0½ΓαμðpY;−qÞ�†γ0, PαβðpDÞ is the spin-3

2
projector oper-

ator appearing in the propagator of Rarita-Schwinger fields,
and given by

PαβðPÞ ¼ −ðPþMDÞ
�
gαβ −

1

3
γαγβ

−
2

3

PαPβ

M2
D

þ 1

3

Pαγβ − Pβγα
MD

�
; ð40Þ

with MD the corresponding mass of the decuplet baryon,
either the Δ or the Σ�, and P the four-momentum carried by

TABLE IV. Constants AN→Yπ
i for each reaction and the reso-

nances (s-Σ� and u-Δ) diagrams of Fig. 1(b) in our model.

Reaction AN→Yπ
s−Σ� AN→Yπ

u−Δ

ν̄l þ p → lþ þ π0 þ Λ Cffiffi
2

p
fπ

0

ν̄l þ n → lþ þ π− þ Λ C
fπ

0

ν̄l þ p → lþ þ π0 þ Σ0 0
2

ffiffi
2
3

q
C
fπ

ν̄l þ p → lþ þ π− þ Σþ Cffiffi
6

p
fπ

C
ffiffi
6

p
fπ

ν̄l þ p → lþ þ πþ þ Σ− − Cffiffi
6

p
fπ

ffiffi
2
3

q
C
fπ

ν̄l þ n → lþ þ π− þ Σ0 − Cffiffi
3

p
fπ

− 2Cffiffi
3

p
fπ

ν̄l þ n → lþ þ π0 þ Σ− Cffiffi
3

p
fπ

2Cffiffi
3

p
fπ

3Note that there is a typographical mistake in T233 for the Ξ�−
state in the footnotes of Refs. [73,74].

4In Appendix, we give an equivalent formulation based on
flavor SU(3) symmetry.

GALAN, ALAM, and SIMO PHYS. REV. D 104, 073005 (2021)

073005-8



these particles. The constantsAN→Yπ
i appearing in Eqs. (38)

and (39) are given in Table IV.
Finally, in Eq. (38), ΓΣ� is the energy dependent

Σ�ð1385Þ width, given by

ΓΣ� ¼ ΓΛπ þ ΓΣπ þ ΓNK̄ þ ΓΣη þ ΓΞK;

where the different strong partial widths ΓBϕ can be
calculated with the vertices from the Lagrangian given
in Eq. (35). Their expressions are always the same up to an
SU(3) factor and are given as

ΓD→Bϕ ¼ CBϕ

192π

�
C
fπ

�
2 ðW þMBÞ2 −m2

ϕ

W5

× λ3=2ðW2;M2
B;m

2
ϕÞΘðW −MB −mϕÞ; ð41Þ

where λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2xz − 2yz is the
Källen λ-function, MB and mϕ are the final baryon and
meson masses in the decay of the Σ�, Θ is the unit step
function allowing a partial width to decay into channels
Bϕ, only when the invariant mass squared W2 ¼ ðpþ qÞ2
carried by the resonance is higher than the threshold
ðMB þmϕÞ2. Finally, the SU(3) factors CBϕ are 1 for
Λπ and Ση, while they are 2

3
for the Σπ, NK̄ and ΞK.

In Eq. (39), for the Δð1232Þ appearing in u-channel
diagram we take ΓΔ → 0 for the present kinematics, as the
four momentum pΔð¼p − pmÞ squared is always below the
decay threshold. Indeed,

p2
Δ ¼ M2 þm2

π − 2MEπ⩽ðM −mπÞ2 < ðM þmπÞ2
< M2

Δ: ð42Þ

This leads to the Δ width equals zero as p2
Δ < ðM þmπÞ2

holds for all the kinematics regions under consideration.

III. RESULTS

A. Total cross sections

In Figs. 4–6 we show results for the total cross sections
off proton and neutron targets, as a function of the muon-
antineutrino energy in the LAB frame. In order to under-
stand the dynamics of the reaction channels, we show
the contribution due to individual diagrams of Figs 1(a) and
1(b), wherever applicable. One may notice that we do not
give the results for all the channels due to the KP diagram
of Fig. 1(a). This is because the hadron tensor associated
with the KP diagram alone is proportional to qμqν, and
when contracted with the lepton tensor will be proportional
to the square of lepton mass, making their individual
contributions negligible for electron and muon antineutri-
nos. However, they are present in “full-model.” A detailed
discussion over the individual contributions of all the
diagrams will be given later in this section.
The Λπ final state on neutron and proton target are

shown in Fig. 4. Apart from the individual contributions,

FIG. 4. Total cross sections for the Λ hyperon production off neutrons (left panel) and protons (right panel). Some of the contributions
of individual diagrams of Figs. 1(a) and 1(b) have been singled out. Note that the nature is identical in both panels, except the scale in the
vertical axis. This is because the total cross section for neutrons is exactly twice that for protons (see Appendix).

FIG. 5. Total cross sections for the Σ0π− and Σ−π0 production
off neutrons. We present here results for Σ0π− production only.
The results for the Σ−π0 are identical as the hadron amplitude is
the same up to a relative sign (see Appendix). We also present
individual contributions of some of the diagrams following Fig. 4.
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we also present results for the background terms, where we
add all the Feynman amplitudes of Fig. 1(a) coherently. We
find that the background terms are comparable with the
resonance contribution. One particular feature for the Λπ
production is that the cross section off the neutron target is
exactly twice as that for proton target; see Appendix for the
SU(3) relationships derived for the different amplitudes
(hadronic currents).
A similar trend can be found for Σπ-production cross

sections off neutrons, as depicted in Fig. 5. In this case, the
possible Σπ-final states are Σ0π− and Σ−π0. However, it
turns out that the cross section for both channels is exactly
identical and is shown for one of the channels
(ν̄μ þ n → μþ þ Σ0 þ π−). This can be understood from
their isospin relations as given in Appendix, where the
modulus of the isospin factors are the same for both the
channels. While the individual diagrams contribute sim-
ilarly to Λπ production, the full model grows faster for the
Σπ reaction.
The relative size of the contributions of many mecha-

nisms depicted in Figs. 1(a) and 1(b) can be understood in
terms of their couplings alone, given by the constants
AN→Yπ

i of Tables III and IV. For instance, the smallness of
the KF contributions in the reaction channels producing Σ
hyperons (Figs. 5 and 6) can be explained because their
cross sections are proportional to the square of (D − F),
while for the reactions producing Λ hyperons, these are
proportional to the square of ðDþ 3FÞ, which is much
larger. Further, if we compare Λπ with Σπ final states close
to threshold energies, Λπ cross section is higher than that of
Σπ asMΛ < MΣ, thus allowing a larger phase space for the
same antineutrino energies. However, the overall contri-
bution of KF diagram is relatively low, as the virtual K in
the KF diagram is carrying a four-momentum which is
highly off-shell,

p2
K ¼ ðp − pYÞ2⩽ðM −MYÞ2 ≪ M2

K; ð43Þ

which also suppresses its contribution.
In fact, if one looks at the studies carried out in

Refs. [72–74], this kind of contributions is more sizeable
when the mass of the exchanged meson is lighter, as it is the

case of the πP diagrams with respect to the ηP ones, if one
inspects some of the figures depicted in Refs. [72–74].
Next, we explore the crossed-nucleon diagrams. In

general, the crossed-nucleon diagrams are important
because of two main reasons: the constants of the diagrams
AN→Yπ

u−N0 are proportional to (Dþ F) coupling coming from
the NN0π vertex (see Table III), which is also large; and
because the four-momentum squared carried by the inter-
mediate nucleon is closer to its squared mass, given that the
mass of the final π meson is light (see Eq. (42) with M2

Δ
replaced by M2). Therefore, in this case, the difference in
the intermediate nucleon propagator, ðp − pmÞ2 −M2, is
smaller in absolute value than for the crossed-Δ propagator.
The relative size of the crossed-diagrams for the different
channels can be understood using Table III along with
Tables I and II. For example, in Fig. 6, the ratio
σu−N0 ðΣ0π0Þ∶σu−N0 ðΣ−πþÞ is 1∶4, due to the square of
constantsAi and the square of the ratio of vector and axial-
vector transition form factors for p → Σ0 and n → Σ− in
Tables I and II. Something similar happens with the neutron
induced Σπ reactions of Fig. 5, but in this case the factors
compensate, giving the same contribution (1∶1 ratio) to the
cross section.
In the s-channel we find that, normally, the direct Λ

contributions are larger than the direct Σ ones off protons
by a factor ∼3 when both diagrams are present in the same
reaction channel. This can be more or less understood
because Dffiffi

3
p ∼ F and if one neglects (which is not a bad

approximation for the vector form factors) the contribution
of the charge fn1ðq2Þ [certainly not good for the magnetic
fn2ðq2Þ] form factor, the ratio of direct Λ over direct Σ is
roughly ðDFÞ2 ∼ 3. Of course, the pure axial-vector contri-
bution and the interference vector-axial in those diagrams
seem to have a trend to cancel because otherwise, the ratio
3∶1 would not be so accurate as it happens to be.
The contribution of direct Σ� resonance channel is very

important for the final Λπ production reactions of Fig. 4,
and gradually decreases for Σπ production off neutrons
(Fig. 5) and off protons (Fig. 6). The reason is two-fold: on
the one hand, the ratio An→Σπ

s−Σ� ∶An→Λπ−
s−Σ� is 1∶

ffiffiffi
3

p
, and hence

a factor 3 of reduction in the cross section is obtained off
the neutron channels; similarly, for the reaction off protons

FIG. 6. Total cross sections for the Σ hyperon production off protons, Σ0π0 on the left panel, Σ−πþ on the middle one and Σþπ− on the
right. The individual contribution is also shown, similar to Fig. 4.
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a factor 6 of reduction in the cross section is found.
Additionally, on the other hand, at low energies, the Λπ
production channel dominates over Σπ because of the
threshold effect. This threshold effect, together with smaller
couplings for Σπ channels, reduces the contribution of the
Σ� resonance for the final production of Σπ.
On the other hand, the crossed Δ diagrams are important

for the Σπ reaction channels, especially when induced off
protons (see Fig. 6). In fact, from Table IV the cross
sections for the channels p → Σþπ−, p → Σ0π0, n → Σπ
and p → Σ−πþ are found in the relative ratios 9∶4∶2∶1,
respectively.
In general, the interferences between the different

mechanisms (diagrams) are significant and destructive,
except for the p → Σþπ− channel, see Fig. 6. For all other
channels under consideration, we find that the interferences
are important and reduce the total cross section compared
with the incoherent sum of the singled-out contributions. In
some cases, like in the reaction ν̄μ þ p → μþ þ Σ− þ πþ

(see Fig. 6) a single mechanism is much larger than the total
cross section. Similar results are found for the Λπ pro-
duction, as might be seen in Fig. 4. Here we must point out
that the chiral Lagrangian fixes the relative sign between all
(nonresonant) diagrams, at least close to the threshold.

In Fig. 7, we present the total cross sections for the full
model corresponding to all the possible Yπ channels
induced by muon antineutrinos off nucleons as a function
of the antineutrino energy in the LAB frame. It is
interesting to see that the total cross sections have the
same order of magnitude as those of the single K and K̄
production (1K=K̄) cross sections off nucleons studied in
Refs. [72,73]. While the 1K=K̄ cross sections are smaller
than the single pion cross sections because of the smallness
of the Cabibbo angle; the Yπ cross section misses the strong
Δð1232Þ-like mechanism, apart from the threshold effect.
Finally, in Fig. 8 we show the comparison between the

electron antineutrino and muon antineutrino induced Yπ
production total cross sections as a function of the anti-
neutrino energy in the LAB frame. As expected, the cross
sections for electron antineutrinos are larger than their
muon counterparts because of their lower production
thresholds due to the smallness of the final electron mass
than the muon one. A similar trend is found for all other
reaction channels.

B. Comparisons with other models

This work presents a detailed analysis of the Yπ
production cross section induced by antineutrinos. To
the best of our knowledge, our calculations are one of
the first in studying these processes. However, there are
independent calculations where the authors calculate the
quasifree production of an on-shell Σ�0ð1385Þ resonance
[63]. In order to make a comparison with the Σ�0ð1385Þ
production, we consider only the s-channel Σ� diagram. To
compare the production cross sections of specific Yπ
channels, we have taken into account the primary decay
channels of Σ�: Λπ0 and Σπ with branching ratios 87% and
11.7% respectively [91]. Further, the inclusive Σπ decay
channel may have different candidates, viz, Σ�π∓ and
Σ0π0. The individual contribution of these final states can
be obtained by multiplying by the appropriate (square of)
Clebsch-Gordan coefficients, which is zero for Σ0π0 and 1

2

for Σ�π∓. The results are shown in Fig. 9. In the left panel
of Fig. 9, where the two models show a remarkable
coincidence, the solid lines correspond to our model, while

FIG. 7. Plot of the total cross sections for Yπ production off
nucleons induced by muon antineutrinos as a function of the
antineutrino energy in the LAB frame.

FIG. 8. Comparison between electron antineutrino and muon antineutrino induced total cross sections off nucleons in terms of the
antineutrino energies in the LAB frame. In the left panel we display the Λπ reaction channels. In the middle panel we show the Σπ
production channels off neutrons. Finally, in the right panel we plot the Σπ reactions off protons.
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the dashed lines are those of Ref. [63] with the V-A
approach. They use an axial mass MA ¼ 1.05 GeV for the
axial form factor CA

5 ðq2Þ, as being used in the present
model.5 Off-shell effects present in our model show a slight
discrepancy at the highest energies shown in the left panel
for the Σ�π∓ production channel. Also on this panel we
show as dotted lines with filled squares the corresponding
results of Ref. [64], where again the coincidence for the
decay channel p → Σ�0ð1385Þ → Λπ0 at the higher ener-
gies shown in the plot is remarkable.
In the right panel of Fig. 9, we compare our results with

the nonrelativistic 3 quark model (NR3QM-single) dis-
cussed in Ref. [63]. In this case, the discrepancies are larger
at smaller antineutrino energies; however, this is expected
as the cross sections calculated within the NR3QM-single

approach were already smaller than those calculated within
the V-A approach (see Fig. 10 in Ref. [63]). Nonetheless,
we find that the cross sections are of the same order of
magnitude, even when comparing with the most unfavor-
able approach.
Figure 10 shows a similar comparison as in Fig. 9 but

with the results of Ref. [63] for the reactions induced by
electron antineutrinos off protons. In this latter case, the
thresholds are a bit lower, but the general features found in
Fig. 9 remain the same. One should note that the com-
parison on the left panel of Fig. 10 with the V-A approach
of Ref. [63] is expected as both models are identical, except
for the off-shell treatment of Σ�0ð1385Þ resonance.
However, on the right panel of Fig. 10, the agreement
with the NR3QM-single approach is more inadequate as it
already was in the right panel of Fig. 9.
Finally, in Fig. 11 we show the comparison between the

results of the total cross sections for the three charge Σπ
states production channels off protons in our model (solid
lines) versus the results of Ref. [62] (short-dashed lines).

FIG. 9. Comparison for the reaction of Cabibbo suppressed single pion production off protons with the mechanism of intermediate Σ�0

alone. We compare with the results obtained in Ref. [63], where the authors calculate the quasi-free production of an on-shell Σ�0 off
protons induced by muon antineutrinos. Solid lines represent our model with only s-Σ� reaction mechanism, while dashed lines are the
results of Ref. [63] for the V-A approach(left panel); and the NR3QM-single approach(right-panel). On the left panel, we also display as
dotted lines with filled squares the results of Ref. [64].

FIG. 10. Same as Fig. 9 but for the reactions induced by electron antineutrinos off protons. Panels and lines have the same meaning as
in Fig. 9.

5The readers should note that this axial mass used in the
nucleon-to-resonance transition axial-vector form factor CA

5 is
different from the axial mass appearing in Eq. (23) for the
nucleon axial form factor.
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The model of Ref. [62] is based on a chiral unitary
approach where all the meson-baryon pairs with S ¼ −1
produced in a primary CT, KP or meson-in-flight (MF)
diagram are allowed to interact in a coupled channels
approach to dynamically generate the Λð1405Þ resonance
by solving the Bethe-Salpeter equation with an interaction
potential derived from the lowest-order chiral Lagrangian
of Eq. (15).
If we inspect Fig. 11, we observe that the total cross

sections derived in our model are generally much larger
than those of Ref. [62], especially important is the enhance-
ment for the Σþπ− channel, which amounts to almost a
factor 6 at Eν̄ ¼ 2 GeV. More moderate is the enhancement
for the Σ0π0 channel, and for the Σ−πþ one, where our cross
section is smaller than its counterpart of Ref. [62].
Nonetheless, close to threshold the three cross sections
are larger in Ref. [62] than in our model, even although we
explicitly incorporate a resonant diagram with a Σ�ð1385Þ
resonance which is below the Λð1405Þ resonance and
above the Σπ threshold. This clearly means that the
Λð1405Þ plays an important role in the description of these
reactions close to threshold for the Σπ production channels.
Probably the reason for this is that the Λð1405Þ appears in
s-wave coupled channels and these are going to be much
more important close to threshold. However, the Σ�ð1385Þ
is a p-wave resonance like the Δ, and its contribution,
already small due to its couplings (as shown in Fig. 6) for
these reactions, starts to contribute more at higher anti-
neutrino energies.
However, theΛð1405Þ resonance is not going to play any

role for the Λπ0 production off protons because it appears
in the I ¼ 0 channel and the final one has I ¼ 1. In the
coupled channel approach of Ref. [62] there is the
possibility of producing a final Λπ0 through a loop of
K̄N intermediate states produced in the weak vertices
coupled to I ¼ 1. And indeed, these K̄N states couple
directly (at the level of Vij in the nomenclature of Ref. [92])
to Λπ0 (see Cij coefficients of Table I of [92] for the

couplings of the two K̄N states to Λπ0). Based on these
arguments, we think the most reliable and unaffected by the
presence of higher lying strange resonances are those
reaction channels with a Λ-particle as a final state.
One similarity between the results of Ref. [62] and ours is

that the order of the channels with larger cross sections
matches significantly, i.e., the cross section for Σþπ−

production is larger than that for Σ0π0 followed by Σ−πþ
production, and the above trend is consistent in both
approaches. This extends the reliability in the presentmodel.
Also note that in the calculations of Ref. [62], a non-

relativistic reduction of the amplitudes was carried out.
These approximations can also have an impact in the
differences observed in the size of the cross sections for
the same range of antineutrino energies shown in Fig. 11.
However, we cannot at the present moment quantify how
much of the difference comes from the nonrelativistic
approximation and/or from other relevant ingredients
present in the model of Ref. [62] and absent in ours, or
vice versa.
Finally, it is also worth noticing that the way these cross

sections rise in our model is very similar to how the crossed
or u-channel diagrams do it, especially the crossed Δ
diagrams plotted in Fig. 6, which are very relevant by
themselves, especially for the Σþπ− and Σ0π0 reaction
channels, which are those with the largest cross sections.
This could point to the importance of crossed diagrams, not
only for Δ intermediate states, but also for N� resonances
not considered here.

C. Flux-integrated total cross sections

In this work, we have also estimated the flux-folded total
cross sections for antineutrino fluxes of several experiments
like MiniBooNE [93], SciBooNE [94], T2K [95,96], and
Minerva [97]. The energy dependence of these fluxes is
shown in Fig. 12. We choose antineutrino fluxes that peak
at intermediate energies, i.e., hEν̄i ≃ 1–3 GeV. At these
energies, the four-momentum transfers are expected to be
low enough to carry chiral expansions, making the present
model more reliable.
The definition of the flux-integrated total cross section,

hσi, for a given antineutrino flux ΦðEν̄Þ of some experi-
ment, can be obtained as

hσi ¼
R
Emax

Eth
ν̄

ΦðEν̄ÞσðEν̄ÞdEν̄R
Emax

0 ΦðEν̄ÞdEν̄
: ð44Þ

In Eq. (44), the lower limit in the integral of the numerator
can be also zero, but it is not necessary, because the total
cross section σðEν̄Þ is zero for Eν̄ < Eth

ν̄ , where Eth
ν̄ is the

threshold antineutrino energy in the LAB frame for the
reaction to take place. Its expression is given by

FIG. 11. Comparison between the total cross sections for the
three Σπ reaction channels for our model (solid lines) and that of
Ref. [62] (short-dashed lines).

CABIBBO SUPPRESSED SINGLE PION PRODUCTION OFF THE … PHYS. REV. D 104, 073005 (2021)

073005-13



Eth
ν̄ ¼ ðMY þmπ þmlÞ2 −M2

2M
; ð45Þ

thus giving Eth
ν̄ ≃ 0.515 GeV for final Λ production and

Eth
ν̄ ≃ 0.630 GeV for final Σ production induced by muon

antineutrinos. While, the Emax depend upon the flux and
their values are 20 GeV for Minerva and T2K, 3 and 4 GeV
for MiniBooNE and SciBooNE, respectively.
In Table V we show the flux-folded total cross sections

for muon antineutrinos fluxes from different experiments:
MiniBooNE [93], SciBooNE [94], T2K [95,96], and
Minerva [97].
The T2K (both at the near detector ND280 and at Super-

Kamiokande one) and Minerva fluxes have larger tails
ranging up to 20 GeV. Our model, which is based on a
chiral expansion, is not going to be reliable for these higher
energies, where high momentum transfers and high invari-
ant masses become accessible with the increase of the
antineutrino energies. In order to overcome this difficulty,
we have put a constraint on the final invariant hadronic
mass,W < 1.4 GeV. This solves two problems: on the one
hand, we are sure that higher lying strange resonances
above the Σ�ð1385Þ, such as the Λð1405Þ (which has been
shown in Fig. 11 to contribute significantly to the Σπ

production channel near threshold), are not going to
contribute for these kinematically constrained total cross
sections; on the other hand, the total cross sections when
the cut in the invariant mass is imposed, do not grow
rapidly and hence allow to calculate a well-defined flux-
averaged total cross section with the low energy fluxes like
T2K and Minerva (low energy mode). In addition, this cut
has also a virtue, because it can be also experimentally
imposed, thus rejecting the Yπ events with measured
invariant masses W > 1.4 GeV.
In order to analyze the results shown in Table V, it is

important to remark that the flux-folded total cross sections
do not depend on the total flux, because they are normal-
ized to it. They depend basically on the shape of the flux
and where they are mostly peaked and if their tails are
longer or shorter. And also on how large is the total cross
section in the zone where the flux is sizeable. With this in
mind, we can understand the calculations shown in Table V.
The first comparison we analyze is between the flux-

averaged cross sections for MiniBooNE [93] and
SciBooNE [94] experiments. Note that the flux taken for
MiniBooNE, Ref. [93], corresponds to the antineutrino
enhanced sample, while the flux taken from Fig. 1 of
Ref. [94] corresponds also to the ν̄μ flux, but in this case

FIG. 12. Fluxes from different experiments. On the left panel, the ν̄μ fluxes from MiniBooNE [93] and SciBooNE [94]. On the right
panel, the T2K fluxes at the near detector ND280 and at the Super-Kamiokande far detector [95,96], and the enriched ν̄μ Minerva flux
[97]. The fluxes are normalized to their total flux, i.e., the integral of the fluxes shown in this figure is 1.

TABLE V. Flux-folded total cross sections for ν̄μ fluxes from different experiments, in units of 10−42 cm2. The cut
in the final invariant hadronic mass W⩽1.4 GeV has been applied to the calculations for the T2K and Minerva
fluxes. The uncertainties are in the last significant figure.

Reaction MiniBooNE SciBooNE T2K ND280 T2K SK Minerva

ν̄μ þ p → μþ þ π0 þ Λ 3.42 1.95 2.17 1.68 23.8
ν̄μ þ n → μþ þ π− þ Λ 6.84 3.90 4.33 3.36 47.7
ν̄μ þ p → μþ þ π0 þ Σ0 0.935 0.713 0.0684 0.0546 0.623
ν̄μ þ p → μþ þ π− þ Σþ 2.88 2.13 0.290 0.231 2.85
ν̄μ þ p → μþ þ πþ þ Σ− 0.369 0.254 0.111 0.0887 1.36
ν̄μ þ n → μþ þ π− þ Σ0 1.38 0.954 0.263 0.211 2.96
ν̄μ þ n → μþ þ π0 þ Σ− 1.38 0.954 0.263 0.211 2.96
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this is not the larger component of the flux, because the
latter is the muon neutrino component.
From Table V, we find that the results from MiniBooNE

and SciBooNE differ significantly, though the fluxes do not
look strikingly different in nature, see left panel of Fig. 12.
The reason for the differences is that the SciBooNE flux
peaks at antineutrino energies below the threshold for the
reaction to take place. However, the SciBooNE flux has a
longer tail which decreases a bit slowly than the
MiniBooNE one. The flux averaged cross sections are
always higher for MiniBooNE than for SciBooNE because
the MiniBooNE flux is larger in the region between 0.5 and
2 GeV, and the presence of the SciBooNE tail has little
importance (specially for the Λπ production channels) even
although in this region the cross section is growing (without
the cut in the hadronic invariant mass).
It is worth noting that there is a difference between the

averaged cross sections for the reactions p → Λπ0 and p →
Σþπ− in both experiments. The first reaction has a higher
flux-folded cross section with the MiniBooNE flux, while
the opposite happens with the SciBooNE one. The reason
for this has to be looked for in the behavior of the cross
sections for these two reactions in the higher energy tails of
the fluxes. Indeed, the p → Σþπ− cross section grows
clearly steeper with the antineutrino energy than the p →
Λπ0 one does, as can be seen in Fig. 7. Therefore, the
SciBooNE slowly decreasing tail has a compensating effect
for the p → Σþπ− reaction, because in the region of this
tail, the cross section for p → Σþπ− is much larger than
that for the p → Λπ0 channel, thus making the flux-folded
p → Σþπ− cross section the second in magnitude for the
SciBooNE flux, while it was the third in size with the
MiniBooNE one.
For the flux-folded total cross sections with the T2K near

detector ND280, and Super-Kamiokande far detector fluxes
[95,96], and with the Minerva flux [97], we have applied
the cut W ≤ 1.4 GeV in the final hadronic invariant mass.

This cut has the obvious effect of reducing the size of the
total cross sections, as can be observed in Fig. 13. However,
the reduction in size is much more prominent for the Σπ
reactions than for the Λπ ones. The reason for this behavior
is because the cut in the invariant mass is much closer to
the threshold for Σπ production (WΣπ

th ¼ MΣ þmπ ≃
1.33 GeV) than it is for the Λπ production channels
(WΛπ

th ¼ MΛ þmπ ≃ 1.25 GeV). In fact, obviously, if the
applied cut had been below the Σπ threshold, all these cross
sections would have been exactly zero.
Therefore, this huge reduction in the size of the total

cross sections for the Σπ reaction channels when the cut in
the invariant mass is applied explains why the flux-
averaged total cross sections with the T2K and Minerva
fluxes are so small if compared with their Λπ counterparts
in Table V. The reduction due to the cut in the invariant
mass amounts to a roughly one order of magnitude smaller
for the Σπ reactions. There is even a reaction channel,
p → Σ0π0, where the reduction of the cross section due to
the cut in the invariant mass is specially significant, as it can
be observed in the right panel of Fig. 13, because it is the
smallest cross section of the Σπ channels, while this was
not the case when there was no cut in the final hadronic
invariant masses. In fact, for this particular reaction
channel, the reduction in the flux-averaged total cross
sections is already two orders of magnitude than for the
Λπ reactions. For this reason, we have plotted in loga-
rithmic scale the cross sections for the Σπ channels when
comparing them with the cut and without it in the right
panel of Fig. 13, because in a linear vertical scale the cross
sections with the cut in the invariant mass were almost not
visible.
Of particular curiosity is the similarity of the flux-folded

total cross sections for the p → Σþπ− channel and the n →
Σπ (both final charge channels have exactly the same cross
section) one when the cut in the invariant mass is applied,
even for so different fluxes such as those of T2K and

FIG. 13. Plots of the total cross sections for the Yπ production as a function of the antineutrino energy with the effect of the kinematic
cut in the final hadronic invariant massW ≤ 1.4 GeV. In the left panel we show the results for Λπ production, while in the right one we
display those for the Σπ case. For this latter case the y-axis is logarithmic because of the huge reduction in the cross sections when the cut
W ≤ 1.4 GeV is imposed.
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Minerva, which are peaked at totally different antineutrino
energies and have really different tails, as shown in the right
panel of Fig. 12. However, as the reduced total cross
sections (due to the cut) for both channels are so similar
(compare blue and black dashed lines in the right panel of
Fig. 13), their flux-averaged total cross sections shown in
Table V for the T2K and Minerva fluxes are also very
similar. Nonetheless, the flux-averaged cross section for the
p → Σþπ− channel is larger than those of the n → Σπ ones
for the T2K fluxes because these are peaked below 1 GeV,
where the cross section for the p → Σþπ− production
channel is a bit larger. For the Minerva flux the result is
the opposite because this flux is peaked around 3 GeV,
although the differences, as discussed, are really minor.
It is also worth mentioning that even although both T2K

fluxes at near and far detectors are almost equal (see the
right panel of Fig. 12), the flux-folded total cross sections
are systematically smaller when convoluted with the flux at
the SK detector for all the reactions (the reader can compare
the numbers in the fourth and fifth columns of Table V).
The reason for this has to be searched in the slightly smaller
tail of the T2K flux at SK, compared with that at the
ND280, especially in the region between 1 and 4 GeV of
muon antineutrino energies, where its contribution is still
relevant for the flux-integrated total cross section.
Finally, the large numbers for the flux-averaged total

cross sections with the Minerva flux shown in the last
column of Table V, especially for the Λπ production
channels, and if compared with the same numbers for
the T2K fluxes, can be explained because the Minerva flux
is peaked around 3 GeV, where the cross sections are much
larger than in the region where the T2K fluxes are peaked.
And, additionally, the larger and slowly decreasing tail of
the Minerva flux (solid cyan line on the right panel of
Fig. 12) has also a very important role in the enhancement
of the flux-convoluted total cross sections for this experi-
ment, in comparison with the results obtained for T2K.

IV. CONCLUSIONS

In this work we have studied the Cabibbo suppressed
single pion production off nucleons induced by antineu-
trinos. This process, which is the strangeness-changing
counterpart of the largely studied single pion production
without change of strangeness, has been very scarcely
analyzed so far. In these reactions, the final pion is emitted
along with a Σ or Λ hyperon.
It is well-known that its Cabibbo enhanced counterpart is

largely driven by the weak excitation of the Δ resonance,
therefore we have also considered in our model the relevant
(S ¼ −1) Σ�ð1385Þ resonance, belonging to the same
decuplet as the Δ. In fact, we have found that this
mechanism is indeed the dominant one for the Λπ reac-
tions, but of minor importance for the Σπ channels. We
have also found that crossed Δ or nucleon-pole diagrams
are also important, especially for some of the Σπ reactions.

This could indicate that the inclusion of N� resonances in
the u-channel can be necessary, but the absence of
experimental data on these reactions refrains us from doing
any categorical statement about this.
We have also compared our results with others found in

the recent and past literature. The main conclusion is that
the Λð1405Þ resonance plays an important role close to
threshold, especially due to its S-wave character, in
comparison with the P-wave character of the Σ� resonance.
However, when one goes to higher antineutrino energies,
other mechanisms and higher partial waves start to play an
important role. Because the Λð1405Þ is an isospin 0 state,
we can say that this resonance is not going to have any
impact in the Λπ reactions (which are those with the largest
total cross sections in our model up to antineutrino energies
of 2 GeV in the LAB frame) because there cannot be any
coupling due to conservation of strong isospin. Therefore,
our most reliable results are expected to be those producing
final Λπ hadrons for the range of antineutrino energies
explored in this work.
We have also studied the flux-convoluted total cross

sections of these reaction channels with the antineutrino
fluxes of past (MiniBooNE, SciBooNE) and current (T2K
near and far detectors, Minerva) neutrino oscillation and
scattering experiments. The numbers obtained for these
flux-folded total cross sections, and given in Table V,
together with the conclusions drawn for the same observ-
able with the antineutrino Minerva flux (also with invariant
mass cut) in Table III of Ref. [75], indicate that these cross
sections can be measured in Minerva experiment, espe-
cially the cross sections for final Λπ production.
Compared to ΔS ¼ 0 pion production, the smallness of

cross section makes πY processes hard to detect. This
means that the feasibility of detecting these channels in
experiments is also limited. However, in some recent
experiments like Minerva [45,58,59], the reconstructions
of the incident neutrino/antineutrino energy and the invari-
ant hadronic mass were shown to be feasible for semi-
inclusive samples containing charged pions [45,58] and a
single neutral pion [59] in charged current muon neutrino
and antineutrino scattering off hydrocarbon (CH) target,
respectively. In fact, the experimental data for the total
cross section as a function of the antineutrino energy for the
single neutral pion sample was shown in Fig. 10(b) of
Ref. [45]. In the lowest energy bin, the cross section has a
value of 19.8 × 10−41 cm2=nucleon, although with more
than 100% of uncertainty. For larger energy bins, the
uncertainties are much smaller. Nevertheless, we can also
provide our results for larger antineutrino energies, where
the experimental data are expected to be less uncertain. The
caveat here is that we have to apply the cut in the invariant
mass to ensure that our model for the primary interaction is
more reliable. Moreover, the cross section is comparable at
these energies for the π0 production channels; for example,
see Fig. 7. Our values shown in this figure are about one
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order of magnitude smaller than that for the semi-inclusive
process studied in [45]. Thus, with higher statistics we
think they can be measured experimentally. Finally, FSI
experienced by pions in nuclear targets can indeed distort
the final signal, changing the identity of the final pion
through mechanisms like charge exchange; however, they
may get compensated by the secondary pions produced
from hyperons. Detailed analysis must be required where
our results may be used as the input for the effects like FSI.
The primary pions produced in the reactions studied

here have a significant probability of being absorbed in
the nucleus, but the hyperons are long-lived particles
(τ ∼ 10−10 s, except for the Σ0) with small widths even
in the nuclear medium [67,70] (this is particularly true for
the Λ) and exit the nucleus decaying weakly into secondary
pions and nucleons. If these nucleons are below the
experimental detection threshold (and therefore there is
no way of reconstructing the invariant mass of the decaying
hyperon), the final signal for the whole process could be
indistinguishable from other mechanisms for pion produc-
tion. This would contribute to the distortion of the tagging
of the different processes leading to pion production in
antineutrino-nucleus scattering.
It is also worth mentioning that, recently, a revival of

detectors (basically high-pressure time projection chambers
with adequate admixtures of argon and hydrogen-enriched
gases such as methane [98]) with high-quality momentum
resolution and using the technique of the transverse
momentum imbalance [99] has emerged with the claim
of being exquisite for the measurements of neutrino/
antineutrino-hydrogen cross sections, and the discrimina-
tion of these reaction channels from other background
nuclides present in the target material. The good point of
these detection techniques is to eliminate nuclear effects at
the price of being able to detect only final charged particles.
If finally, this kind of detector prevails, then it will be
possible to study neutrino/antineutrino cross sections off
free protons with high accuracies, such as some of the
proposed and studied in this work, particularly those where
all the final particles are charged.
Finally, we think that our model can be suitable to be

implemented in the Monte Carlo event generators as the
primary interaction, which can then be used as an input to
simulate the propagation of the πY pair inside the nuclear
medium after incorporating the relevant nuclear effects.
Nonetheless, SU(3) breaking effects can also be applied to
see its plausible outcomes on cross sections within some
model based approaches like Ref. [100], already applied in
the KΞ production channel studied in Ref. [75].
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APPENDIX: SU(3) RELATIONS BETWEEN
THE AMPLITUDES

In this Appendix we derive the relations between the
amplitudes (currents) for the seven reaction channels
discussed in this work using SU(3) group theoretical
arguments.
First of all, we have to make the assignments between the

physical states and the mathematical [or SU(3)] ones for
the meson and baryon states of the octet before applying the
Wigner-Eckart theorem. Besides, we have to identify the
irreducible tensor operator belonging to the f8g represen-
tation of SU(3) group that drives the strangeness-changing
weak transition.
The strangeness-changing weak charged current (with-

out the Vus Cabibbo-Kobayashi-Maskawa matrix element)
carries “magnetic” quantum numbers of SU(3) ðI; I3; YÞ ¼
ð1
2
;− 1

2
;−1Þ, i.e., those quantum numbers of the K− or

the Ξ−. This current operator can be written at the quark
level as

jμΔS¼−1 ¼ Q̄γμð1 − γ5ÞðF4 − iF5ÞQ
¼ −

ffiffiffi
2

p
Q̄Kμf8g

ð1
2
;−1

2
;−1ÞQ; ðA1Þ

where Kμf8g
ð1
2
;−1

2
;−1Þ ¼ − 1ffiffi

2
p γμð1 − γ5ÞðF4 − iF5Þ, with Fi ¼ λi

2

(being λi the Gell-Mann matrices). But in general Kμf8g
ð1
2
;−1

2
;−1Þ

is an irreducible tensor current operator belonging to the
f8g representation of the SU(3) group carrying the SU(3)
quantum numbers of this representation explicitly written
in the subindex. Therefore, to this operator we can apply
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the Wigner-Eckart theorem of SU(3) [101]. Therefore, from
here onwards we will work with this operator by assuming
that we do not have quarks any longer and that the vector
and axial-vector Dirac and Lorentz structure can be more
complex than simply γμð1 − γ5Þ, which is the structure at
the quark level only.
For simplicity in the notation, we will write the strange-

ness-changing current operator simply as

jμsc ≡ jμΔS¼−1 ¼ −
ffiffiffi
2

p
Kμf8g

ð1
2
;−1

2
;−1Þ; ðA2Þ

and we will calculate all the transition matrix elements
driven by the above current between initial nucleon states
and final Σπ and Λπ states. To this end, we have to fix the
phases between the physical states and the mathematical
ones for which the SU(3) Clebsch-Gordan coefficients have
been calculated [85,101] in order to appropriately use the
Wigner-Eckart theorem. For the physical states we have in
our study, this phase fixing convention for mesons and
baryons is

jpi ¼
����f8g; 12 ;

1

2
; 1

�
jni ¼

����f8g; 12 ;−
1

2
; 1

�

jΣþi ¼ −jf8g; 1; 1; 0i jΣ0i ¼ jf8g; 1; 0; 0i
jΣ−i ¼ jf8g; 1;−1; 0i jΛi ¼ jf8g; 0; 0; 0i
jπþi ¼ −jf8g; 1; 1; 0i jπ0i ¼ jf8g; 1; 0; 0i
jπ−i ¼ jf8g; 1;−1; 0i; ðA3Þ

where the convention here is to label the mathematical
states as jfNg; I; I3; Yi.
The next step is to calculate the transition matrix

elements hYπjjμscjNi. To this end, it is completely necessary
to express the tensor product jYπi in the coupled basis by
using the Clebsch-Gordan coefficients that can be found
in Ref. [85], taking care of the signs found in some
physical states of Eq. (A3). For completeness, we provide
below these expressions, although we know they are
straightforward.

jΛπ0i ¼
ffiffiffiffiffi
3

10

r
jf27g; 1; 0; 0i − 1

2
jf10g; 1; 0; 0i − 1

2
jf10g; 1; 0; 0i þ

ffiffiffi
1

5

r
jf8g; 1; 0; 0i ðA4Þ

jΛπ−i ¼
ffiffiffiffiffi
3

10

r
jf27g; 1;−1; 0i − 1

2
jf10g; 1;−1; 0i − 1

2
jf10g; 1;−1; 0i þ

ffiffiffi
1

5

r
jf8g; 1;−1; 0i ðA5Þ

jΣþπ−i ¼ −
ffiffiffi
1

6

r
jf27g; 2; 0; 0i −

ffiffiffiffiffi
1

12

r
jf10g; 1; 0; 0i þ

ffiffiffiffiffi
1

12

r
jf10g; 1; 0; 0i −

ffiffiffi
1

3

r
jf80g; 1; 0; 0i

þ
ffiffiffiffiffiffiffiffi
1

120

r
jf27g; 0; 0; 0i þ

ffiffiffi
1

5

r
jf8g; 0; 0; 0i −

ffiffiffi
1

8

r
jf1g; 0; 0; 0i ðA6Þ

jΣ0π0i ¼
ffiffiffi
2

3

r
jf27g; 2; 0; 0i þ

ffiffiffiffiffiffiffiffi
1

120

r
jf27g; 0; 0; 0i þ

ffiffiffi
1

5

r
jf8g; 0; 0; 0i −

ffiffiffi
1

8

r
jf1g; 0; 0; 0i ðA7Þ

jΣ−πþi ¼ −
ffiffiffi
1

6

r
jf27g; 2; 0; 0i þ

ffiffiffiffiffi
1

12

r
jf10g; 1; 0; 0i −

ffiffiffiffiffi
1

12

r
jf10g; 1; 0; 0i þ

ffiffiffi
1

3

r
jf80g; 1; 0; 0i

þ
ffiffiffiffiffiffiffiffi
1

120

r
jf27g; 0; 0; 0i þ

ffiffiffi
1

5

r
jf8g; 0; 0; 0i −

ffiffiffi
1

8

r
jf1g; 0; 0; 0i ðA8Þ

jΣ0π−i ¼
ffiffiffi
1

2

r
jf27g; 2;−1; 0i þ

ffiffiffiffiffi
1

12

r
jf10g; 1;−1; 0i −

ffiffiffiffiffi
1

12

r
jf10g; 1;−1; 0i þ

ffiffiffi
1

3

r
jf80g; 1;−1; 0i ðA9Þ

jΣ−π0i ¼
ffiffiffi
1

2

r
jf27g; 2;−1; 0i −

ffiffiffiffiffi
1

12

r
jf10g; 1;−1; 0i þ

ffiffiffiffiffi
1

12

r
jf10g; 1;−1; 0i −

ffiffiffi
1

3

r
jf80g; 1;−1; 0i: ðA10Þ

Now we calculate the matrix elements hYπjjμscjNi but
expressing the bras hYπj in terms of the coupled basis as
given in Eqs. (A4)–(A10), and then apply theWigner-Eckart
theorem to each matrix element because now we have an

irreducible tensor operator between states belonging to
irreducible representations of the SU(3) group. For com-
pleteness, below we write the expression of the Wigner-
Eckart theorem for SU(3), which can be also found in [101],
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hfμ3g; ðν3ÞjTfμ2g
ðν2Þ jfμ1g; ðν1Þi

¼
X
γ

� fμ1g fμ2g fμ3gγ
ðν1Þ ðν2Þ ðν3Þ

�
hfμ3gjjTfμ2gjjfμ1giγ:

ðA11Þ

In the above expression, the indices μi refer to the
irreducible representations of the SU(3) group, while the
indices νi collectively refer to the ðI; I3; YÞ “magnetic”
quantum numbers of the representation μi. The factor
between parentheses is precisely the SU(3) Clebsch-
Gordan coefficient, and finally the last term in
Eq. (A11) is the reduced matrix element, which is totally
independent of the “magnetic” quantum numbers. Note
that, in principle, a sum over γ has to be carried out. This
amounts to sum over all the times the fμ3g irreducible
representation is contained in the tensor product
fμ1g ⊗ fμ2g. However, in our case there will not be such
a sum because in the bras of Eq. (A11) there will always be
a definite fμ3gγ representation.
After having evaluated the hYπjjμscjNi matrix elements

for all the cases in our study, we can write the following
7 × 6 matrix relating the previous matrix elements with the
reduced ones,

0
BBBBBBBBBBBBB@

jμ
p→Λπ0

jμn→Λπ−

jμp→Σþπ−

jμ
p→Σ0π0

jμp→Σ−πþ

jμn→Σ0π−

jμ
n→Σ−π0

1
CCCCCCCCCCCCCA

¼

0
BBBBBBBBBBBBB@

ffiffi
3

p
10

1ffiffiffiffi
48

p −1ffiffiffiffi
48

p −
ffiffi
3

p
10

0 0ffiffi
3

pffiffiffiffi
50

p 1ffiffiffiffi
24

p −1ffiffiffiffi
24

p −
ffiffi
3

pffiffiffiffi
50

p 0 0

1
40

1
12

1
12

1
10

−1
6

−1
8

1
40

0 0 1
10

0 −1
8

1
40

−1
12

−1
12

1
10

1
6

−1
8

0 −1ffiffiffiffi
72

p −1ffiffiffiffi
72

p 0 1ffiffiffiffi
18

p 0

0 1ffiffiffiffi
72

p 1ffiffiffiffi
72

p 0 −1ffiffiffiffi
18

p 0

1
CCCCCCCCCCCCCA

0
BBBBBBBBBBBB@

jμf27g
jμf10g
jμf10g
jμf8g
jμf80g
jμf1g

1
CCCCCCCCCCCCA

;

ðA12Þ

where jμN→Yπ is a shorthand notation for hYπjjμscjNi, while
jμfNg is also a shorthand notation for the reduced matrix

element hfNgjjjμscjjf8gi, with jμsc given by Eq. (A2) and
fNg is any of the irreducible representations of the SU(3)
group appearing in the Clebsch-Gordan series of the tensor
product of two octets, given in Eq. (22).
Of course, the coefficient matrix of Eq. (A12) has more

rows than columns, because for these ΔS ¼ −1 weak
strangeness-changing transitions there are only 6 indepen-
dent matrix elements, jμfNg. However, not 6 matrix elements
of the left-hand side of Eq. (A12) can be chosen as truly
independent, because the rank of the coefficient matrix is
not 6, it is lesser. This was expectable, because there are
other independent transition matrix elements that can be
driven by the weak strangeness-changing operator of
Eq. (A2). These can be, for instance, the hN0K̄jjμscjNi

(studied in Ref. [73]), the hΞKjjμscjNi (studied in Ref. [75]),
or the hYηjjμscjNi matrix elements.
Indeed, the rank of the coefficient matrix of Eq. (A12)

is 3. It is easy to realize that the first and second rows of this
matrix are proportional. If one multiplies the second row by
a factor 1ffiffi

2
p , one obtains the coefficients of the first row. This

indicates that only one of the jμ
p→Λπ0 or j

μ
n→Λπ− can be taken

as independent. The relation between them is

hΛπ0jjμscjpi ¼ 1ffiffiffi
2

p hΛπ−jjμscjni: ðA13Þ

Due to this relation between the amplitudes for Λπ
production, the cross sections for n → Λπ− channel are
twice as large than those for the p → Λπ0 one, as can be
observed in Fig. 4.
Another easy to notice relation can be drawn by

observing the last two rows of the matrix of Eq. (A12).
One is the negative of the other, thus implying that

hΣ0π−jjμscjni ¼ −hΣ−π0jjμscjni: ðA14Þ
This is the reason because of the cross sections for Σπ
production reactions off neutrons are exactly the same, as
discussed in the caption of Fig. 5, and also the flux-averaged
cross sections shown in the last two rows of Table V.
Nonetheless, we have decided to take as independent

strangeness-changing matrix elements hΛπ−jjμscjni,
hΣþπ−jjμscjpi and hΣ−πþjjμscjpi. This can be done because
by taking the second, third and fifth rows of the matrix in
Eq. (A12), one can form a 3 × 6 sub-matrix with at least
one 3 × 3 determinant different from zero, i.e., these rows
are linearly independent.6 With this choice, we can express
three jμfNg reduced matrix elements in terms of the above
linearly independent explicit amplitudes and the other three
remaining reduced matrix elements.7 The result is,

jμf8g ¼
5

6
ðjμf10g − jμf10gÞ þ jμf27g − 5

ffiffiffi
2

3

r
jμn→Λπ− ðA15Þ

jμf80g ¼
1

2
ðjμf10g þ jμf10gÞ þ 3ðjμp→Σ−πþ − jμp→Σþπ−Þ ðA16Þ

jμf1g ¼
2

3
ðjμf10g − jμf10gÞ þ jμf27g − 4

ffiffiffi
2

3

r
jμn→Λπ−

− 4ðjμp→Σ−πþ þ jμp→Σþπ−Þ: ðA17Þ

6One could have taken equally other 3 different amplitudes
with the same properties of linear independence, but we have
decided to make this choice.

7One cannot express the six jμfNg reduced matrix elements in
terms only of the three explicit linear independent amplitudes,
because there are more unknowns than linearly independent
equations in the system, i.e., it is an underdetermined linear
system.
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Finally, if we replace the expressions for jμfNg given
in Eqs. (A15)–(A17) in the right-hand side of the lin-
ear system of Eq. (A12), and carry out the matrix
multiplication, we obtain Eq. (A13) for the first row.
And also

hΣ0π0jjμscjpi ¼ 1

2
ðhΣþπ−jjμscjpi þ hΣ−πþjjμscjpiÞ ðA18Þ

hΣ0π−jjμscjni ¼ 1ffiffiffi
2

p ðhΣ−πþjjμscjpi − hΣþπ−jjμscjpiÞ ðA19Þ

hΣ−π0jjμscjni¼−
1ffiffiffi
2

p ðhΣ−πþjjμscjpi−hΣþπ−jjμscjpiÞ ðA20Þ

for the fourth, sixth, and seventh rows of Eq. (A12),
respectively. Notice that the relationships given in
Eqs. (A19) and (A20) are fully consistent with the relation
given previously in Eq. (A14).
Finally, it is worth warning the reader that these relations

between the amplitudes are exact in the SU(3) limit, but
when one uses the different physical masses of the involved
particles, there will be SU(3) or SU(2) breaking effects.
Nonetheless, these relations can be used to check that the
AN→Yπ

i constants of the Tables III and IV satisfy them.
However, one has to be careful when checking these
AN→Yπ

i constants in some Born diagrams, where there
are additional factors hidden in the standard definitions of
the fNY

i ðq2Þ and gNY
1 ðq2Þ form factors of Tables I and II.
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