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New physics through Drell-Yan standard model EFT measurements at NLO
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Drell Yan production is a sensitive probe of new physics and as such has been calculated to high order in
both the electroweak and QCD sectors of the standard model, allowing for precision comparisons between
theory and data. Here we extend these calculations to the standard model effective field theory and present
the next-to-leading order QCD and electroweak contributions to the neutral Drell-Yan process.
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I. INTRODUCTION

The measurement of the neutral Drell-Yan (DY) process,
pp — Z*,y* — 717, has provided important validation of
standard model (SM) predictions, has served as a testing
ground for searches for high mass Z’ bosons and other new
physics scenarios, and most recently has served as a probe
of deviations from the SM in an effective field theory
context. For all of these applications, precise theoretical
predictions both in the SM and in the effective field theory
are crucial.

The SM results for the neutral DY process, along with
next-to-leading order (NLO) QCD [1,2] and NLO electro-
weak [3,4] corrections were derived many years ago. QCD
results at NNLO [5-11] are known for both the total
cross section and for some differential distributions. Further
QCD results exist to N°LL + NNLO and to N3LO [12-16].
The combined NNLO QCD and NLO electroweak (EW)
corrections to high mass DY pairs have been studied in
detail [17-24]. The state of the art DY predictions are in
excellent agreement with experimental results [25,26]
suggesting that possible new physics affecting DY pro-
duction is either at a very high energy scale or is extremely
weakly coupled such that current experiments are only
weakly sensitive to these effects. In the effective field
theory context, the new physics effects can show up as
enhancements at large partonic energy scales, where the
effects of electroweak Sudakov logarithms are relatively
large [27,28], mandating precision calculations in the
effective field theory beyond the existing SM results.
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Without the discovery of new high mass particles, the
search for beyond the standard model physics can be
pursued using an effective field theory. The SM effective
field theory (SMEFT) [29] assumes that the Higgs particle
is contained in an SU(2), doublet and that weak scale
interactions can be described by the Lagrangian,

Cc?
Ol (1)
where the operators O’ have dimension-n and contain only
SM particles and A parametrizes the ultraviolet (UV) cutoff
scale. Beyond the SM physics is then described by nonzero
values of the coefficient functions C’. Since the operators
have a dimension greater than 4, they typically generate
effects that grow with energy and can be searched for in the
tails of distributions.

There has been considerable progress in the development
of simulation tools for the SMEFT [30,31]. At present, the
SMEFT dimension-6 operators can be included at NLO
QCD using these tools. There are also numerous special-
ized studies of individual processes that include NLO QCD
[32-35]. The NLO electroweak (EW) corrections, however,
are currently performed on a case by case basis. Most of the
NLO EW studies involve decays: H — bb [36-38], H —
vy [39-42], H - ZZ* [43], H — Zy [43,44], H > WW*
[41], Z — ff [45,46], and t — Wb [47]. The only 2 — 2
particle scattering process that has been studied at the NLO
EW level is DY. Our previous DY study [48] concentrated
on the effect of a single operator, while the current study
represents the first NLO EW study of a 2 — 2 process that
includes the effects of multiple operators.

At tree level in the dimension-6 truncation of the
SMEFT, the DY process depends on operators that affect
the input parameter relationships and on four-fermion
operators that can dominate the rate at high energy and
distort the shapes of kinematic distributions [49-51]. The Z
pole resonance contributions to lepton pair production at

L~Lgy+Z,
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NLO QCD and NLO EW in the SMEFT similarly involve
many additional coefficients beyond those occurring at tree
level [45]. In this work, we extend our previous DY
calculation [48] to include the complete set of SMEFT
bosonic operators [52] that contribute at NLO QCD and
EW to the process, gg — y*, Z* — [T1~. Our results are of
particular interest in the low energy limit of UV models that
do not generate four-fermion operators at tree level. This
interesting class of models includes models with SU(2)
scalar singlets, doublets and triplets, as well as models with
vectorlike fermions [53]. If four-fermion operators arise at
tree level (as is the case in models with a heavy Z’ boson),
the tree-level SMEFT effects from these operators will
likely dominate over the NLO EW loop effects. We are
therefore motivated by the case where four-fermion oper-
ators are not generated at the UV scale and where the NLO
EW effects may play a significant role in low energy DY
phenomenology. We emphasize, however, that our results
are independent of model assumptions and represent an
important step in the NLO EW SMEFT program.

In Sec. II, we review the SMEFT formalism relevant for
this study, along with the lowest order SMEFT result for the
DY process. Section III contains the details of our SMEFT
calculation and our results are summarized in Sec. IV. Our
complete analytic result is attached as Supplemental Material
[54] which can be included in existing Monte Carlo
programs.

II. SMEFT BASICS

The SMEFT Lagrangian contains an infinite tower of
SU(3) x SU(2), x U(1), invariant operators constructed
from SM fields. In this work, we restrict ourselves to the
dimension-6 operators, assume all coefficients are real and
do not consider the effects of CP violation. We use the
Warsaw basis [55,56] and normalize the coefficients as in
Eq. (1). We include flavor indices on our results and
compute amplitudes to linear order in the dimension-6
SMEFT coefficients and at one loop in the QCD and
electroweak couplings. The electroweak sector is described
by three input parameters which we take to be My, M,
and G, while the electromagnetic coupling, «, is a derived
quantity. We define w = M%,, z =M%, and v to be the
(VEV)? of the Higgs field.'

The input parameters are related to the gauge couplings
g, and g, in the Lagrangian to (’)(%) as [57-59]

1__
—9192C¢WB>-

L,
2 (3@ B+
@)

1 . ..
Note our unconventional definition of »!

Dimension-6 four-fermion operators give contributions to
the decay of the y, changing the relation between the vev
squared, v, and G,,,

1
G, =—-—
s \/Ev
V2

2A2

1
W(sz.znz + Cir1221)

572 (ot + Cin). (3)
where the subscripts refer to the generation. When we
perform our NLO calculations, /v is always defined as the
minimum of the potential, as in Ref. [60].

In the dimension-6 truncation of the SMEFT, the
amplitude for the DY process can be written to one-loop
order as

o Dy
A~Agyt+ 2 A2AzL0+ZJ 67 2A2AJNL01 (4)

where Agy, A% ), and A? ~Lo are the SM, dimension-6 tree

level, and dimension-6 one-loop contributions, respec-
tively. We define the linear SMEFT result as

e
|Alin = |Asuil* + 2Re (ZiAsM FA?w)
D6 p
oK <2 A Tonz ) Nw) (5)

We note that Eq. (5) is not positive definite. For our
purposes, we define the quadratic SMEFT result as

e 6
|A|quad - |ASM + Z A2At LO + 2] 16 2A2A6NL0|2' (6)

The quantity defined in Eq. (6) is what is typically used in
SMEFT phenomenology studies and in global fits. There
are, however, two types of “quadratic” O(%) terms that
are not included in Eq. (6). These are the interference
of the dimension-8 operators with the SM result [61] and
the double insertions of the dimension-6 operators in the
amplitude that are beyond the scope of current NLO EW
SMEFT calculations.

A. LO Drell-Yan results

We write the helicity amplitudes for g(p;)g(p,) —
I*(p3)I~(p4) in terms of the matrix elements,

Myxy = [a(p2)y,Pxu(p1)] - [@(p3)r* Pyu(ps)], (7)

with P; p = IWS . The tree-level helicity amplitudes are

AXY,LO = GXYMXY (8)
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with
Gyy = GYY + 6Gxy. )

Summing over helicity amplitudes and averaging over the
spin and color,

- 1
|ALo(s.1)|* = EZXY|GXY|2|MXY|2,

1
= = lAsol” (10)

The spin and color averaged partonic cross sections are

ds 1

The SM contribution is

G — 4v2w(z — w) G, 0,0 L _9i9

z K s —M%’
oo _ W2z =w) G,0,0 L 99
LR = 2
z K s —Mj
GM _ 42w(z —w) G0y Qi + 9r9L
RL = 2’
z N N _MZ
o — 4v2w(z — w) G, 0,0 n 9rIk (12)
z K N —M%

—=——{(|GLL P+ |Gre*)u® + (|G &> + |Gr[})1*}. =
dt 48n’s2{(|0 LL| | RR| ) (| LR| | RL| ) } with 9’{ _ \/EGﬂZ[Tf—ZQf(l _%)L Tf _ :i:l, g;; _
6Lo0= 16752 /_S dt|ALo(s.1), (11) \/V2G,z[-20/(1 —=%)], and Qy is the fermion charge.
The tree-level SMEFT contribution is given in
where s = (p; +p,)* t = (p1 — p3)*andu = (p, — p4)*>.  Appendix A and depends on the coefficients
|
3 3 1 3 1
Cows>  Cyp- Cf/lz),n’ C((;z?zzﬂ C((/;z?zw Cpe2as C((/;q),nv C((/)q),ll’ Courrs  Coanrs
3 1
Cimrs Cugiize Chomrte Chgoors Caenizs Cuzonis Ciamonts Ceazpirs Couannnl: (13)

The subscripts are generation indices, and the coeffi-
cients in the square brackets are four-fermion operators.
The numerical impact of the tree level four-fermion
operators has been explored in many places [51,62-65].
In this work, we will ignore the four-fermion contributions
and focus instead in the impact of the subleading (in s)
universal coefficients that involve the bosonic operators at
one loop. Our goal is to begin the exploration of the effects
in Drell-Yan production of operators that first arise at one-
loop order. Typically, the four-fermion and bosonic oper-
ators occur in different types of UV theories. A complete
classification of the quantum numbers of high scale
particles that generate the various operators at tree level
is given in Ref. [53]. For example, models with UV scalars
typically do not generate four-fermion operators [66,67],
while a model with a sequential Z' gauge boson will
generate such operators [53] that can be probed using
kinematic observables in DY production [49,68].

It has been pointed out in Ref. [69] that due to the large
Drell-Yan cross section, information not from the high
energy tail can potentially yield important information on
SMEFT cross sections and so the coefficients of the

|

|

dimension-6 operators could be significantly restricted
by Drell-Yan scattering, even at relatively low energies.
In fact, the one-loop EW contributions to Z decays in the
SMEFT can be as large as O(10 —20)% at LHC energies
[45,70]. Reference [71] computed a set of SMEFT con-
tributions to the neutral DY process and found that the high
luminosity LHC will have significant sensitivity to these
effects. Here we extend that calculation to include the full
set of SMEFT QCD and electroweak corrections from
bosonic operators.

III. NLO CALCULATION OF DRELL-YAN
PRODUCTION IN THE SMEFT

A. Virtual contributions to NLO SMEFT
Drell-Yan results

In this section we detail the calculation of the virtual
NLO corrections to the Drell-Yan process in the SMEFT.
We follow the notation of [41,43,45,48]. The operators
that appear in one-loop amplitudes are those in Eq. (13)
together with

3 1 3 1
Cwo Cyoe Cowe Cope Cuwzze Cuszze Coluw Colua Copeaarr Chraar Comaar Cowaar Cotaar  (14)
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FIG. 1.

where the subscript aa = 11, 22, 33 is a generation index.

It is convenient to separate the contributions to the vir-
tual NLO corrections into box contributions, vertex con-
tributions, propagator contributions, and the contributions
from renormalization counterterms. These are shown sche-
matically in Fig. 1. As we clarified in the introduction,
we do not include four-fermion operators in our calcula-
tion, since we are interested in effects which first occur at
one loop. Furthermore, we calculate only the NLO cor-
rections that interfere with the LO amplitudes. As a result of
these restrictions, the only topologies that enter in our
calculations are the ones already present at the SM level.

The virtual corrections to Drell-Yan results suffer from
UV divergences, along with soft and collinear infrared (IR)
divergences. We regularize the UV divergences by working
in d =4 — 2¢ dimensions, while the IR divergences are
regularized with the introduction of small fermion masses
(my) and infinitesimal masses for the photon (m,) and the
gluon (m,) [72,73]. This approach has the advantage of
clearly separating the divergences according to their origins
and proves to be particularly advantageous in the calcu-
lation of the box contributions.

We extract the box contributions by contracting the NLO
one-particle-irreducible (1PI) amplitudes with M yy since in
the limit of massless fermions, these matrix elements act as
projectors. However, the presence of y5 requires particular
care when working in d # 4 dimensions. As is well known,
75 1s a fundamentally four-dimensional object and is not
well defined in d # 4 dimensions, where it is generally
necessary to introduce a scheme to perform traces involving
y5 matrices in a consistent way (e.g., [74-76]). The draw-
back of these schemes is the violation of Ward identities,
that require the introduction of further counterterms.
However, when the traces involve less than four Dirac
matrices and a ys, the results obtained using the naive
dimensional regularization (NDR), where the y5 is treated
as an anticommuting object in d dimensions and the Ward
identities are conserved, are identical to those obtained
using more sophisticated schemes.

In the case of the SMEFT, the contractions of the 1PI
amplitudes with the My generate traces involving at least
four Dirac matrices and a ys5, and the NDR cannot be
consistently used. However, when the four-fermion oper-
ators are neglected at one loop and the IR divergences
are regularized with finite masses, the box contributions
are finite in the limit d — 4. We use these properties to
calculate the contractions with the My directly in d = 4,
thus avoiding the problem of defining a scheme for the y5.

Sample Feynman diagrams contributing to the one-loop virtual contribution.

The vertex contributions include the 1PI vertex ampli-
tudes and the terms obtained from the fermion wave
function renormalization. We extract the 1PI vertex con-
tribution by contracting the NLO amplitudes with the
left- and right-handed currents, [ity, P u] and [iy,Pgul.
Contrary to the box contributions, the vertex contributions
are not finite in the limit d — 4. However, since in this case
at most three Dirac gammas appear together with a y5, we
can rely on the NDR scheme when calculating the vertex
contributions. It is worth pointing out, however, that even
though we are ultimately working in the limit of massless
fermions, the calculation of the fermion wave function
renormalization has to be carried out for massive fermions.
Finally, the propagator contributions can be obtained
directly from the gauge boson two-point functions in the
SMEFT [77,78].

In the renormalization of the LO amplitude, we employ a
mixed OS/MS scheme, where the SM parameters are
renormalized in the OS scheme, while the coefficients of
the EFT operators are treated as MS objects. We use the
{G,,Mz,My} scheme for the input parameters. The
corrections to the masses of the gauge bosons are defined
according to

M3 =M}, -y (M3), (15)

where V = Z, W, the 0 indicates the bare quantities and
[y, (M%) are the two-point functions of Refs. [77,78]
computed on shell.

The relation of Eq. (3) is modified at one loop,

V2

3 3
A2 (C;z?n + Cész?zz)

1
G, + == (Cuziz + Cipiman) —
" 2\/§A2 ( 11,2112 ll,1221)

1
\/5110

where v, is the square of the minimum of the potential at
tree level and the analytic expression for Ar in the SMEFT
is given in Ref. [43].

The effective field theory coefficients of the dimension-6
operators are treated as MS quantities, defined at the
scale of the measurement, i.e., the EW scale. The
poles of the one-loop coefficients C; are extracted from
Refs. [58,79,80],

(14 Ar), (16)

1 1
Ci(MR) = CO.i - Té@yijcj’ (17)
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where p is the renormalization scale, y;; are the one-loop
anomalous dimensions,

dc; 1
C.. 18
dyR 167r2 Vifvi (18)
and &' = ¢! —yp + log(4n).

It is worth mentioning that, to obtain consistent results in
the SMEFT, the definition of renormalizability is modified
by requiring that any loop diagram with powers of 1/A
higher than the tree-level diagrams is set to zero in the
calculation. This is done to avoid the appearance of
divergences for which no counterterm can be written
without introducing higher order operators at leading order,
thus making our renormalization program fail. In our case
that means dropping any loop diagram with more than one
insertion of dimension-6 operators.

A(Gg — T )2 = —-
|A(gq — "7y D
2

$15825835545

We use the FeynRules routines [81] to convert the R;
Feynman rules for the SMEFT in the Warsaw basis
presented in [57] to a FeynArts [82] model file. We then
compute the amplitudes and reduce the one-loop integrals
to the Passarino-Veltman [83] integrals using FeynCalc [84].
The presence of the complicated momentum structure of
the SMEFT makes the calculation nontrivial.

B. Real contributions to NLO SMEFT
Drell-Yan results

The NLO result requires the real contributions from both
photon and gluon emission,
a(p1)a(p2) = 1" (p3)l=(pa)y(ps). qq—1"17g.  (19)

which gives the spin and color averaged results,

{312515S25Q12[;2(F1%R(512) + FIZQL(SIZ)) + ( LL(SIZ) + FRR(SIZ))]

+ 534535845 05 [ (F g (534) + Fp (534)) + 02 (F7 (534) + Fp(s34))]

— 010, |s3(1 =

1 ~
u) + s34 (7 —ﬁ2)+§(t+u)(ﬁ2—t2+t2—u2)

[P (Frr(s12)Frr(ssa) + Frr(s12) Fre(s34))
+ @ (Frp(s12)Fr1(534) + Frr(s12) Fre(s34))]}. (20)

where p;, p, are incoming and ps, p4, ps are outgoing and
we define S12 = (pl +p2)2’ l] (pl pj)z’ (l = 1’2’

j=3,4,5), and sjk:(pj—i—pk) (j,k=3,4,5):
i = 53y + 53,
7 = siy + 53,
U= S84+ 53,
t =813+ Sy- (21)

The functions Fyy(s;;) = 4(\/\/§Gﬂw(z - w)/z) (FSM +
SFxy) with FSM = G defined in Eq. (12) and 6Fyy
defined in Appendix B. The SMEFT contributions and the
complete real gluon emission contribution can be found in
Appendix B.

IV. RESULTS

The IR singularities are regulated using phase space
slicing with small photon and gluon masses, m, and m,,
|

\/§Gﬂw(z -—w) 1 w
= W
nz A2 2

|
and also a small fermion mass, m, as in Refs. [3,4,72,73].
After regulating the IR singularities by including the
collinear and soft limits of the 2 — 3 real gluon and real
photon emission contributions, these masses can be set to 0.
The soft limits of the 2 — 3 scattering processes have a
universal form that is the same for both the SM and the
SMEFT [85,86]. We define the soft contribution to have the
photon or gluon energy satisfying E,, E, < AE, where AEis
an arbitrary small cutoff. The soft partonic cross section is
defined in terms of the lowest order SMEFT cross section of
Eq. (10),

dasoft

1675 / dr|ALo(s, 1)|*(adhh (s, 1)
+ agCp8P(s)). )

‘We note that a is defined in the SMEFT and at this order, the
contributions to a come only from the definition of the Z
mass and from the SU(2)/U(1) mixing. Notice that there is
no modification due, for example, to Cd,W.

Cop +4v/w(z = w)Cywi + (2= W)[2(CY), + C) = Cuiiont = Cumia)).— (23)
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The soft functions are given by

S = 0afo(s) + Q7 f1(s) +20,0,h(s,t

CD
53)ft =Jq (s),

1 AAE? 4AE? m} my m2 2
ff(S)———{lrI( 3 >+ln< )log< >+log< )+ log? ( f>+”—},
b4 my my 2 s 3

h(s, 1) =

For soft gluons, take Q; = 0 and aQé — a,Cr. Adding the virtual one loop contributions and Eq. (24), the log(m

) () (D) ()

,) and

log(m,) dependences cancel, leaving just the log(m,) singular terms.
Consider photons emitted from the initial quark within an angle 6,. These give a contribution to the partonic cross

. a 1-28E/\5 1+y? s, 2y
&1, = o QéA dy6ro(ys) [ 0 log —02 i (25)

section [72,87],

plus an identical term for the photon emitted from the initial
q. As usual, a [Eq. (23)] and 6 [Eq. (11)] are defined in
the SMEFT.

The initial state collinear contributions to the hadronic
cross section are

) 1-24E/\5
ol 1= Qq/dxldXZ{Q(xl)Q(XZ)A dy6o(ys)
1 +y? s Op 2y
. log| ——= 1<2)7,
{l—y °g<m;2 Ty T2
a R 1-24E/\sdy _ (x
=203 [ anav{awienots) | (%)
T 0 y y
1+ y? s 8\ 2y
. 1 l<2),, (26
s () | e} 9
where in the second equality we have shifted the argument of
610 SO as to have the partonic center of mass energy be

s = x1x,8y, where Sy is the hadronic center of mass energy.
The initial state collinear contributions are absorbed into

the definition of the PDFs [72]. In the MS scheme, we have

e
() (o(2) D)
Ll

1 2 2 1 2
x{ Yy 1og< 5 ali 2) _ity }, (27)
1—y my(1—y) -y

and pp is the factorization scale. The QCD contribution is
found with the replacement aQ, — a,Cp.

-y 2mf

When the photons are emitted from the final state lepton,

Al le 0 A 2 1
Ocoll = {6752 dt|A(s, 1) ol adc!(s),
1135 1+ y? s Sey*\ 2y
Scl(s) = — S dv | —— oo [ =
c'(s) n’/o M=y Bl 2 ) Ty

(28)
For small AE,

o7 2AE\ 27°
Scl = 2log -—
“T7 2 + NG

om0 @

We write the final answer as the sum of four pieces. The

first starts with the partonic combination of variables
A 11
%a = 167212 dt|ALO(S 1)+ 8Anio(s. 1)|*. (30)

where
6ANLO(S’ t) = {5Avirl(s’ t)

1
+=Apo(s, t)[adtW (s, 1) + « CF(SQCD( )

2 soft soft
+W%+%Qmm®+wﬂM}6D

and S8A,i(s,7) is the one loop renormalized amplitude
calculated in Sec. III and as always A; o and a are SMEFT
quantities. We note that Eq. (31) is a finite object and we are
free to apply it at linear or quadratic order in the SMEFT
following Egs. (5) and (6).
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The term dppp arises from the contribution of Eq. (27)
that is proportional to the LO partonic cross section,

o= (-2 2
(25w o

Numerical results for 0Ayn;o are given in the auxiliary
material as a fortran code using the QCDLoop [88] notation
|

for the one loop integrals. This can be included in existing
Monte Carlo codes and is the major result of this paper.
Note that d6, has no dependence on m,, m, or my. dé,
contributes to the hadronic cross section,

o) = / dxyds g (o1 )G pe)6a + (1 2). (33)

The second class of contribution comes from the mass
factorization of the PDFs,

R 1-2AE/ /s d _(x _ X
Op —/dxldXZ{GLO(S)A 7)) [‘I(MMF)Q(;Z,P!F) +Q(xl’//‘F)Q<;21/‘F>:|

. <aQ§+ascF> ! Fl—’;yzlog<s(l ‘y)2%> +1 —y} +(1 o 2)}, (34)

T

y

Wiy

2

The next contribution is the hard, noncollinear contribution from the 2 — 3 process,

oc = /dx1dxzq(x1’ﬂF)C_I(x%/iF)[G(qEI = I*I7y)[E, > AE, 0 > )

+0(qq — I"I"g)[E, > AE.0 > 5y, (35)

where 6 is the angle between the outgoing photon or gluon
and the relevant fermions. The combination 64 4+ 65 + o
is independent of 6y and AE.

Finally, there is the contribution from the 2 — 3 proc-
esses gq(q) = ["1"g. These can be found by crossing
from the real amplitudes given in the text and in
Appendix B. We neglect the SMEFT contributions from
initial state photons, as these effects are highly suppressed.
As a check of our calculation, we have reproduced the well
known SM electroweak and QCD NLO corrections to DY
production.

pp — 1"1,VS=14 TeV
SMEFT QCD and EW, A=1 TeV
102 e e e e

— C,=.17
101 CW=1
- W

do/dM,, [EFT] /do/dM,, [SM]

P R I T U I R R R
093
o 100 200 300 400 500 600 700 800 900 1000

M, (GeV)

|

In Fig. 2 we show the effects of Cjy and Cyy 5 at NLO.
Note that the values of Cyy and Cyyy 5 that we have used are
larger than those allowed by recent global fits [89,90],
emphasizing the smallness of these effects. (An NLO fit to
EWPOs [45] gives the allowed 95% C.L. ranges, —.0079 <
Cywp < .0016 and —4.8 < Cy, < .48). The effects of the
Cyw NLO corrections to DY are a few percent for allowed
values of the coefficients. As an example, in Fig. 3 we show
the size of the NLO EW effects for the case with tagged
photons with py > 2 GeV for several coefficients that are

pp — I'T,VS=14 TeV
SMEFT QCD and EW, A=1 TeV

L L s B B 1 B e B B
1.04 -

12| 4
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094 "o .
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FIG. 2. NLO QCD and EW SMEFT contributions to neutral DY production, normalized to the SM NLO predictions.
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with py > 2 GeV with the linear and quadratic approximations defined as in Egs. (5) and (6).

poorly constrained by the global fits. The size of the effects
is of the order of a few percent. It is interesting that the
inclusion of the quadratic terms has a small effect. This is
consistent with the results of [90].

V. CONCLUSIONS

We have calculated the complete set of NLO electroweak
and QCD corrections in the SMEFT to Drell-Yan produc-
tion arising from bosonic operators, such as those arising in
UV models with high scale vectorlike fermions or scalars.
The calculation of the virtual EW corrections represents a
significant advance in the program of computing NLO EW
effects for scattering processes in the SMEFT.” The results
are presented in a form that can be implemented in existing
Drell-Yan Monte Carlo programs. Our results suggest that
the NLO corrections from the bosonic operators are on the
|

0Gr = A? 3s(z—s)

Z
3(z —s)A?
1
- 3(z —s)A?
(w=s)(z—w)
3s5(z—s)

+

+4

3
(2(Cc(}51?11 + C¢l,22> - Cll,1221 - Cll~2112)7

order of a few percent in DY processes and presents a target
future HL-LHC DY measurements.
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APPENDIX A: TREE-LEVEL SMEFT RESULTS
FOR gq —» 1*1~

The tree-level SMEFT results as defined in Eq. (9) for up
quark initial states are

_ Copwp 168/w(w —5)\/z=w Cyp4(sz—w?)

A? 3s(z—5)

(6Cpu11 —4Cpern +3Ceu0011)

([<6Cpu11 +4Cpe2a]w = 3Cey201159)

3)

*Our major results are contained in the auxiliary files posted at https://quark.phy.bnl.gov/Digital_Data_Archive/dawson/drellyan_21.
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_ Copwn2y/w(8w =3s)\/z=w  Cyp (sz2—8w?)

oGY, = -2
LL A2 3s(z —s) A? 6s(z—5)
z 3 1 3 1 3 1
T3 9)A (3C§q,)2211 - SCEq,)zzn + 3Ct<]5q),11 - 3C((pq).11 + Ciw?zz + ng).zz)
w 3 1 3 1
C3(z-95)A? (=6Cyy 11 +6Cy011 = 4Cy)n —4C,))
s 3 1
- m (_3C§q,)2211 + 3C5q,)2211)
8w(w—2)+s2w+z ;
S 6szz Z i) ) (2(C((p31?11 + C((;z?zz) = Cui221 = Cu2in2),
SGU . — Cown 2yw(Bw = 55)\/z=w _ Cyp (sz = 4n?)
LR A2 3s(z =) A? 3s(z—ys)
< (3) (1)
HEPETTS (3Cqe122 =6Cy 11 +6Cy011 = Cpenn)
1 3 1
+ 3(z = 5)A2 ([6C((pq>,11 - 6C,(p;.11 +4Cpe]w = 3Cye 11229)
s—4dw)(w—z 3 3
(3s(z)—s)) (Z(C;)l?ll + C((/)z?zz) = Cui221 = Cuin),
st — Cown 4y/w(dw = 35)\/z=w  Cyp 2(sz —2w*)
RLA2 3s(z—s) A 3s(z—y)
L (3) (1
+ 3z A2 (3Cua11 +3Cpu11 = 4C 10 —4Cy )
1! o) (n
T 3(z - 5)A2 ([=6Cpu11 +4Cy 0 + 4Cy 50]w = 3C120115)
2(s =2w)(w—z 3 3
: 3s(z>—<s) ) (2(C<(;51?11 + C((pz?zz) = Cii221 = Cuzin)s

and the numerical subscripts are generation indices. The results for down quark initial states are

_Cypwp8yw(w—s)\/z—w N Cyp 2(sz — w?)

6G4, = 92
kR A? 3s(z—s) A 3s(z—s)
z
— (6C 2C 3C
T 3(z— S)Az( pant T 2Cpe0n +3Ca11)
1
+ 3(z—s)A? ([6Cga11 = 2Cpeo]w = 3Cea119)
P Ul [ oo N N PSRN
3s(z— ) g1 T Cpin 1221 ~ Cupin2)s
sGd — Cown 2yw(4w)/Z=w  Cyp (sz +4w?)
LL A? 3s(z =) A? 6s(z—5)
3l 1) 3) 1 3 A0
+ 3(z—5)A2 (3C§q,)22]l + 3C§q.221] + 3C((]5q,ll + 3C,(,sq),n - C((,sl,zz = Cyin)
lid (3) (1) 3) (1)
- 3(z—s)A2 (6C¢q,11 +6C 11 +2Cm + 2C¢1,22)
5 (3) (1)
T 3(z — 5)A? (_3Clq.2211 - 3Clq,2211>
dw(w —z) + s(4w —z) 3 3
6s(z—s) (2(C((;1?11 + C((/;z?zz) = Cuioo1 — Cuinn),
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_Cows2V/w(dw —5)\/T=w _ Cyp (s2+20?%)
A? 3s(z—s) A 3s(z—s)
< (3) (1
WBC‘I@-”H +6Cy011 +6Cy0 11— Cpen)
1
3(z—s5)A?
(s +20)(w=2) ) ),
W (Z(C((pl).u + Cﬁpz?zz) = Cii001 — Cu,znz),
5Gd _ _Cf/’WB 2\/‘/_V(4W - 3s)\/2—__‘; + C(/)D (SZ - 2W2)
REA2 3s(z—s) A% 3s(z—5)

z
3(z—s5)A?
1
3(z—s5)A?
(s =2w)(w—72)

3 3
T A(i—s) (2(C§/)z),11 + Cf/,z?zz) — Cua221 = Ci2112)- (A2)

+

([6Cf/,3q)‘11 + 6C£slq>,11 +2Cpemlw +3Che 11228)

3 1
+ (3C1a2011 +3Cpg 11 + ch(pz?zz + 2C((pz?22)

- ([-6Cypan1 — 2Cf;222 - 2Cz(ﬁll?22]w =3Cla2119)

APPENDIX B: REAL SMEFT CONTRIBUTIONS
1. Real photon emission
The SMEFT contributions to ¢g — [~y are defined in Eq. (20) and G3}! is defined in Eq. (12). The functions §F%, are

q q 3UGSM
SFy(s) = % + Sffyz +

3 3
(Cuiz21 + Cupinn — Z(C((/)z?n + C((/;z?zz)) (B1)

[Our notation is w = M3,,v = (VEV)? = \/E;G’Z = M2 as in the main text.]
m

2w
fo=—5 WCyp +4(z = w)Cpwpr).
A
1
v = e {Cyp (24w 4+ 22w?z 4+ wz? = 22%) /(w — 2) + 4[Cpwpr(24w? — 28wz + 72?)

1 3 1 3
+z(z—4w) (C;sl)zz + Césl)zz) +3z(2w - Z)(Cf(pq)n - C((ﬁq)ll)]}’
1
62\
+22(z = 4w)Cpus + 1220w = 2) (Ch, = Con )}

fie= {Cyp(—12w? + wz + 22%) + 24C sy pr(2w* — 3wz + 2?)

1
fi, = e {Cpp(—6W? + wz +22%) + 8Cyypr(3w? — Swz + 22°)

+ (6w = 32)zCy11 + 42(z —w) (64(1511)22 + Cc(;l)zz)}v
. 2z=w)
RR = 372

{(3W + 2Z)C¢D + 12(2 — W)C¢WBVW + 2ZC¢€22 — 3ZC¢u1 1 }, (BZ)
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w
fi= _ZW(WC(/)D +4(z = w)Cywa?),

1

d = T30 {Cyn(12w? — 8W?z + wz? = 22°)/(w — 2) + 4[Cpwpr(—12w? + 8wz + 22)

+z2(z +2w) (Cc(ﬁll)zz + 61(1131)22) +3z(2w — Z)(Ct(ﬁlq)ll + C((ffq)ll)]}’
fip = #{C¢D(6w2 +wz +22%) + 24Cyprw(z — w)

o+ 22(2 + 2)Cgenn + 1220w = 2) Cpory + Chun) -
[ = # {Cyp (3w = 22) (2w + z) — 8Cywpr (3w — 22) (W — 2)

+6(2w — 2)2Cpa11 + 42(w — Z)(C((plz)zz + Cz(f)3l>22)}

(w—2)
3zA2

for= {(Bw +22)Cyp + 12(z = w)Cywprw + 22Cpe2 + 62Cpar1 }

where C¢WB” = 4 /Z—LWCCPWB'

2. Real gluon emission

The total spin and color averaged amplitude squared for gg — [Tl g is

|A|2 _ CFS'§4
63155'

with Hyy = 2g,(HSM + 6Hyy).
The SM contributions are

H?(I\;I(SM) = G§AY4(534)-

The SMEFT contributions, 6H yy, are

g hi | hiy , vGRy CNPE)
SHyy(s) = n +— T + N2 (Cuazzr + Cuaiiz = 2(Cypy + Cyian))-
; 4w
hO = 3z A2 {C(/,DW + 4C¢WBF(Z - )}
th 6 A2 {C¢D(Z — 8W2) + 4C¢WB"(8W - 11WZ + 3Z )

+22[(z = 4w) (Cliy + Cona) + 32w = 2)(Chh; = Coh T}
1
th = W {C¢D(Z2 - 4W2) + 2C¢WBI"(8W2 - 13WZ + 5Z2)
+z[(z - 4W)C¢e22 +6(w— Z)(Cf(plq)n - ng)u)]’
1
h%L = W {C(/)D (2Z2 - 4W2) + 4C(/)WBF(4W2 - 7WZ + 3Z2)

+ 2[4z = w)(Chihy + Ciiha) + (6w = 32)Chuni]}

. 2z=w)
hiew = =387
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—2w
d_
hg = 3772

{Cyppw +4Cywpr(z—w)},

1
h’ZL = W{CIPD(ZZ + 4W2) + 16C¢WBI"W(Z - W)

+22[(z + 2w) (Chihy + Ciohy) +3(2w = 2)(CYhy + Coh T}

1
th = W {C(/)D(Zz -+ 2W2) — ZC¢WBF(4W2 - SWZ + Z2)

1 3
+ 20z +2W)Cperr + 6w — 2) (Clp)yy + Ch ).

1

h;i?L = W{C(pD(sz - Z2) - 2C¢WBI"(4W2 - 7WZ + 3Z2)
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