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Liquid argon time projection chambers (LArTPCs) are a class of detectors that produce high resolution
images of charged particles within their sensitive volume. In these images, the clustering of distinct
particles into superstructures is of central importance to the current and future neutrino physics program.
Electromagnetic (EM) activity typically exhibits spatially detached fragments of varying morphology and
orientation that are challenging to efficiently assemble using traditional algorithms. Similarly, particles that
are spatially removed from each other in the detector may originate from a common interaction. Graph
neural networks (GNNs) were developed in recent years to find correlations between objects embedded in
an arbitrary space. The graph particle aggregator (GrapPA) first leverages GNNs to predict the adjacency
matrix of EM shower fragments and to identify the origin of showers, i.e., primary fragments. On the
PILArNet public LArTPC simulation dataset, the algorithm achieves a shower clustering accuracy
characterized by a mean purity of 99.4%, a mean efficiency of 99.6% and a primary identification accuracy
of 99.8%. It yields a relative shower energy uncertainty of ð4.1þ 1.4=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðGeVÞp Þ% and a shower direction

uncertainty of ð2.1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðGeVÞp Þ°. The optimized algorithm is then applied to the related task of clustering

particle instances into interactions and yields a mean purity of 99.8% and a mean efficiency of 99.5% for an
interaction density of Oð1Þ m−3.

DOI: 10.1103/PhysRevD.104.072004

I. INTRODUCTION

In recent years, accelerator-based neutrino oscillation
experiments in the United States have been designed to use
liquid argon time projection chambers (LArTPCs) as their
central neutrino detection technology [1]. Charged particles
that traverse these detectors ionize the noble liquid. The
electrons so produced are drifted in a uniform electric field
toward a readout plane. The location of the electrons
collected on the anode, combined with their arrival time,
offers mm-scale resolution images of charged particle
interactions [2]. This level of tracking precision—coupled
to the detailed calorimetric information that a totally active
detector provides—is believed to be the key to resolving
some of the ambiguities observed in previous experiments
and to extending their energy reach to probe the MeV-scale
physics sector [3,4].
The short baseline neutrino program (SBN) [5] aims to

clarify an anomalous signal observed by the MiniBooNE

experiment [6]. It will eventually make use of three
LArTPCs of varying sizes: the short baseline near detector
(SBND, 112 t), MicroBooNE (90 t) [7], and ICARUS
(600 t) [8]. The DUNE experiment [9] will use the
LArTPC technology to measure long-baseline neutrino
oscillations with unprecedented precision. It will consist
of a near detector (105 t) and a far detector (40 kt). The
main signal for these physics endeavors is the unambigu-
ous appearance of electron neutrinos—which manifest
themselves as electron showers—in a beam of muon
neutrinos. Their success thus centrally depends upon
the accurate reconstruction of showers and specifically
of their initial positions, directions, and energies. Both
experiments also face the substantial challenge of assem-
bling particles into complete neutrino interaction events,
which are often accompanied by unrelated activity.
Detectors located close to the surface, such as those of
the SBN program, suffer from a high rate of cosmic rays,
while the future DUNE near detector will observe a high
rate of pileup events, with up to twenty neutrino inter-
actions per beam pulse.*drielsma@stanford.edu
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Electromagnetic (EM) showers exhibit an incoherent
branching tree structure in LArTPCs. As an electron
propagates through the dense detector medium, it loses
energy through ionization and stochastically emits photons
until it comes to a stop. The emitted photons propagate
through the noble liquid with a mean free path of 15–30 cm,
for energies in the range 10–1000 MeV, before they
either produce an electron-positron pair or emit a
Compton electron [10]. A single electron or photon creates
a cascade of spatially distinct EM particles—referred to as
fragments in this study—that may be far removed from one
another in the image. Assembling these fragments into
coherent shower objects has been a persistent challenge in
LArTPCs that has not yet been fully resolved using
traditional analysis techniques.
Early LArTPC experiments employed time-intensive

and nonscalable methods which consisted in physicists
scanning images and identifying individual shower pixels
by eye [11]. More recent studies have made use of the
PANDORA multialgorithm software package [12], which
relies on the successful identification of an interaction
vertex to reconstruct showers. The vertex is leveraged as a
reference point to build a system of polar coordinates
around it and to merge shower fragments that fit inside a
common cone. The PANDORA paper provides distribu-
tions of shower clustering efficiency (referred to as com-
pleteness) and purity which can be readily compared to
those provided later in this article. The MicroBooNE
neutral pion reconstruction paper [10]—the most recent
analysis making use of this method—shows that clustering
inefficiencies dominate the energy smearing, currently in
the range of 15%–20%.
Graph neural networks (GNNs) became popular in

recent years as a way to leverage the concept of receptive
field developed in the context of convolutional neural
networks and generalize it to arbitrary objects [13]. The
receptive field is no longer exclusively determined by a
square neighborhood of pixels in an image but rather
defined by an adjacency matrix whose elements indicate
whether objects are connected by an edge in a graph. This
development is ideally suited to the clustering of EM
showers in LArTPCs as they may each be represented by a
collection of shower fragments (the graph nodes) that are
connected by invisible photons (the graph edges). The task
is then to identify the edges that connect fragments within a
shower and to tag the fragments that initiate showers, i.e.,
the primary fragments. Similar methods have been used for
other particle aggregation tasks, mostly in collider experi-
ments [14].
In the case of interaction clustering, distinct sources of

activity in the detector can be clustered into separate groups
using a GNN by building a graph in which particles are
nodes and edges represent correlations between particles.
The task in then is to identify the edges that connect
particles that belong to the same interaction.

The study presented in this paper is reproducible
using a singularity [15] software container,1 imple-
mentations available in the lartpc_mlreco2 repository
and a public simulation sample [16] made available by the
DeepLearnPhysics collaboration.3

Section II presents the architecture of the reconstruction
chain, as applied to the shower clustering task, from the
LArTPC image input to the inference stage. Section III
outlines the studies that were conducted to optimize the
chain. Section IV shows a detailed analysis of the shower
reconstruction performance on this sample. Section V
describes how the algorithm was adapted to the particle
interaction clustering task and provides some performance
metrics.

II. RECONSTRUCTION CHAIN

A. Data

The graph particle aggregator (GrapPA) is schematically
illustrated for the shower clustering task in Fig. 1. The input
LArTPC dataset, PILArNet [16], consists of rasterized 3D
energy deposition images of simulated ionizing particle
interactions in liquid argon. An image corresponds to a
∼12 m3 cubic volume of liquid argon with an edge length
of 768 voxels (1 voxel ¼ 33 mm3). Each image includes a
multiple-particle vertex, i.e., a set of particles originating
from a common vertex, overlayed with randomly located
tracklike cosmic muon trajectories and showerlike
instances. An example image is shown in Fig. 2. This
image contains three tracks and two showers originating
from the vertex in addition to two muon tracks and a
detached shower.
Figure 3 shows the distributions of the number of

particles coming from a common vertex in each image,
the number of overlayed particles and their respective
type compositions. These data emulate a particle density
above that expected in an SBN program LArTPC
detector. The data is split in two data samples: a
training set of 125480 images and a validation set of
22439 images. This dataset is an idealized simulation
with no detector-related effects, but it preserves the
realistic interaction geometries necessary to demonstrate
the viability of a GNN as a particle aggregator. The
exact influence of electron recombination, electron life-
time and digitization on reconstruction performance,
particularly in real data, will be studied in future
publications.
For the shower clustering task, the set of input voxels is

constrained to those associated with electromagnetic (EM)
activity. In the scope of this paper, the particle type of each
voxel is assumed to be known, as it has been demonstrated

1https://singularity-hub.org/containers/11757
2https://github.com/DeepLearnPhysics/lartpc\_mlreco3d
3https://osf.io/6gvf4/
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that semantic segmentation neural network can identify EM
voxels with a 99.4% voxel-wise accuracy [17]. A similarly
designed neural network has been shown to work on real
data from the MicroBooNE LArTPC detector [18]. The
exact effect of using the aforementioned algorithm on
the shower clustering accuracy will be addressed in a
separate paper studying the performance of the end-to-end
reconstruction chain.

B. Fragment clustering

A shower object encompasses all energy deposition
associated with a single primary4 electron or photon and
all its subsequent EM daughters. A shower fragment is
defined as a spatially dense subset of voxels of a shower
instance such that each voxel is in the Moore neighborhood
of at least one other voxel in the fragment, i.e., at least
“touches” it diagonally. As the ground truth5 fragments are
not known a priori, EM voxels are clustered using the
density based spatial clustering of applications with
noise (DBSCAN) algorithm [19] with a Euclidean distance

FIG. 2. Example image from the simulated LArTPC input
dataset. The colors correspond to the semantic type of the particle
that deposited the energy: “EM” stands for electromagnetic,
“track” for protons, pions and muons, “Michel” for muon decay
electrons, “Delta” for delta electrons and “LE” for low energy
scatters (low energy EM and nuclear activity). Axes values
represent voxel coordinates.

FIG. 3. Distribution of the number of particles, showers and
tracks in each image, originating from a common vertex (blue),
randomly scattered (orange) and combined (green).

FIG. 1. Architecture of the graph particle aggregator (GrapPA) for shower clustering and primary identification. The input set of
voxels associated with electromagnetic showers is passed through a density-based clustering algorithm that forms dense shower
fragments. Each fragment is encoded into a set of node features in a graph connected by arbitrary edges carrying edge features. Edge and
node features are updated through a series of message passing composed of edge and node updaters. The updated edge features are used
to constrain the connectivity graph and the updated node features to identify primaries.

4A primary electron or photon does not have an EM parent and
is neither a delta ray, a Michel electron nor a deexcitation photon.

5In the field of computer vision, ground truth refers to the data
labels, i.e., a predefined target for the reconstruction.
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scale set to 1.9.6 This ensures that DBSCAN does not break
ground-truth fragments, by definition, as any two touching
voxels are merged by this algorithm. It can, however, merge
two or more fragments that belong to separate shower
instances into one. Purity is defined as the maximum
fraction of voxels in a predicted fragment that belongs
to a single instance. In this dataset, fragments reconstructed
with DBSCAN contain more than one ground-truth label in
0.2% of cases and appear in ∼2% of images. Figure 4
shows the purity distribution of the small fraction of
fragments that do contain an overlap. It is mostly uniform
between 0.5 and 1, with a peak close to 1. DBSCAN
fragments with a purity < 1 reduce the overall purity of the
shower reconstructed downstream of this process.
Fragments strictly smaller than 10 voxels are not

included in the input to the clustering task. This selection
(i) emulates detector inefficiencies at low energy;
(ii) removes most spherical fragments, including those

from nuclear activity, which lack directionality;
(iii) reduces the overall number of fragments to cluster.

The exact value of this cut might be revisited or possibly
removed entirely in the future if the detector under study
allows it and if the trade-off between threshold effects and
clustering accuracy is deemed advantageous.
To characterize the impact of the above selection on the

shower energy resolution, primary showers that are at least
95% contained in the image volume are selected. The
fraction of the total shower energy deposited in fragments
of size 10 and above is represented as a function of shower
energy in Fig. 5. The shower completeness is on average
∼82.6%, for showers of 100 MeV and above. For lower
energy showers, the fraction of energy deposited in small
fragments decreases slightly. This selection introduces an

average relative uncertainty of 4.2% on the final energy
reconstruction.
Figure 6 shows the fragments constructed upon the

shower voxels of an image using the DBSCAN algorithm.
The goal of the clustering algorithm is to cluster these
fragments together into shower objects.

C. Graph representation

A graph GðV; EÞ is a collection of nodes V and edges
E ⊆ V × V. Each shower fragment represents a node in a
graph. There is an arbitrary number of ways to build a
graph between the nodes. The optimal choice of input
edges is discussed in Sec. III B. Each node is encoded as a
vector of Fv features and each edge as a vector of Fe

FIG. 4. Distribution of the purity of overlapping shower frag-
ments built using DBSCAN with a distance scale of 1.9. In the
top box plot, the blue diamond represents the mean, the orange
line the median, the box the IQR and the whiskers span from the
10th to the 90th percentiles.

FIG. 5. Fraction of the energy deposited by a shower in
fragments of size 10 voxels and above. The orange markers
on the top pad represent the mean and their error bars the RMS;
the latter is shown on its own in the bottom pad. The green line is
a constant fit to the markers above 100 MeV.

FIG. 6. Image of the EM shower voxels with a color scale that
represents the DBSCAN cluster ID. Axes values represent voxel
coordinates.6This is equivalent to a Chebyshev distance of 1.
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features. Multiple ways of extracting these features are
studied and optimized in Sec. III B.

D. Message passing

Message passing is used to communicate information
within a graph [13,20]. During the information propagation
process, at step sþ 1, edge attributes are updated by
combing the features coming from the nodes it connects
together with its own through

esþ1
ij ¼ ψΘðxsi ; xsj; esijÞ; ð1Þ

with xi, xj the node feature vectors associated with nodes i
and j, respectively, eij the features of the edge connecting i
to j and ψ a differentiable function such as a multilayer
perceptron (MLP) [21]. In order to update the node
features, the message coming from node j communicated
to node i at step sþ 1 is defined as

msþ1
ji ¼ ϕΘðxsj; esþ1

ji Þ; ð2Þ

with ϕΘ a differentiable function such as an MLP. The
messages coming from the neighborhood N ðiÞ7 of node i
are then aggregated with its own at each step to update its
features following

xsþ1
i ¼ χΘðxsi ;□N ðiÞmsþ1

ji Þ; ð3Þ

with χΘ a differentiable function such as an MLP and □

an aggregation function such as sum, mean, or max. The
specific implementation of the differentiable functions and
the number of message passing steps are studied and
optimized in Sec. III D.

E. Loss definition

Downstream of the message passing steps, two fully
connected linear layers reduce the edge and node features
separately to two channels each. The outputs are passed
through the softmax function and the second channel is
used to create a vector of Nv primary scores for nodes, sv,
and a vector of Ne adjacency scores for edges, se. The
binary cross-entropy loss is then applied to node and edge
scores alike as follows:

Lv ¼ −
1

Nv

X

i

yi lnðsvi Þ þ ð1 − yjÞ lnð1 − svi Þ; ð4Þ

Le ¼ −
1

Ne

X

ði;jÞ∈E
aij lnðseijÞ þ ð1 − aijÞ lnð1 − seijÞ; ð5Þ

with yi the primary label of node i and aij the adjacency
label of the edge connecting node i to node j. The primary
label, yi, is 1 if the fragment initiated the shower, 0
otherwise. The definition of the target adjacency matrix,
A, which determines the adjacency labels, is discussed in
Sec. III E. The total loss is defined as L ¼ Lv þ Le.

F. Inference

The network predicts an edge score matrix, Se, which
tries to replicate the predefined ground-truth adjacency
matrix, A. In a graph partition problem, A should be
designed such that, if aij ¼ 1, then nodes i and j belong
to the same group. The converse statement does not have to
hold, as nodes i and jmay not be connected directly as long
as they are linked through an indirect path.
Figure 7 schematically illustrates how the score matrix is

converted into a node partition prediction. At the inference
stage, one has to find the optimal node partition, ĝ, such
that, if seij is close to 1, nodes i and j are encouraged to be
put in the same true group. Mathematically, this corre-
sponds to minimizing the partition cross-entropy loss
defined as

FIG. 7. Schematics of the edge selection mechanism at the inference stage. The partition loss defined in equation (6) is first calculated
for an empty graph in which each node forms its own group. Edges are sequentially added in order of decreasing score only if the new
partition they form decreases the partition loss. The edge with score 0.6 is not added to the graph because it would put the nodes
connected by the edge with score 0.1 in the same group and increase the partition loss.

7The neighborhood of node i, N ðiÞ, is the set of nodes which
are adjacent to node i in the input graph, i.e., that share an edge
with node i.
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LðSejgÞ¼−
1

Ne

X

ði;jÞ∈E
δgi;gj lnðseijÞþð1−δgi;gjÞ lnð1− seijÞ;

ð6Þ

for g, i.e., ĝ ¼ ming LðSejgÞ, with δ the Kronecker delta. If
an edge is not in the input graph, it does not contribute to
the grouping optimization loss.
The cardinality of the set of all possible partitions of a set

of n nodes, G, corresponds to the Bell number Bn. This
number grows quickly with the number of nodes to
prohibitively large values that rule out brute-force optimi-
zation. Instead, edges are considered sequentially to be
added to a predicted adjacency matrix, Â, in order of
decreasing edge score. At each step, the partition score is
evaluated by running the Union-Find algorithm [22] on the
predicted matrix. The edge is permanently added to Â if
the new partition improves the loss defined in equation (6).
The optimizer stops when the next available edge has a
score below 0.5.
Given the predicted partition of the graph nodes, ĝ, the

primary nodes are identified by picking those with the
highest primary score in each group.

G. Metrics

Three clustering metrics are used to systematically
characterize the performance of the clustering algorithms
in this paper: efficiency, purity and adjusted Rand index
(ARI) [23]. The efficiency and purity are defined as:

Efficiency ¼ 1

N

XNt

i¼1

max
j

jcj ∩ tij; ð7Þ

Purity ¼ 1

N

XNp

i¼1

max
j

jci ∩ tjj; ð8Þ

with Nt the true number of showers, Np the predicted
number of showers, N the total number of voxels
in the image, tk the kth true cluster and ck the kth
predicted cluster. The Rand index (RI) is defined as the
accuracy on binary edge classification between any two
pair of voxels; the ARI ajdusts for random chance by
shifting this measure with respect to the average RI
obtained for all possible permutations of the predicted
labels, i.e.,

ARI ¼ RI − EðRIÞ
maxðRIÞ − EðRIÞ ; ð9Þ

with E the expectation value. Note that if one of the
partitions contains a single cluster, a single voxel
mistake yields an ARI of 0, as permutations do not
affect RI.

III. OPTIMIZATION

A. Training regiment

In this section, the reconstruction steps are optimized to
maximize the clustering accuracy in a model that uses
ground-truth shower fragments as an input and does not
attempt to predict shower primaries. Variations are studied
with respect to a baseline model in which

(i) the input node and edge features are geometric;
(ii) the input graph is a complete graph;
(iii) the number of message passings is 3;
(iv) the ground-truth adjacency matrix corresponds to a

cluster graph built upon groups;
(v) the batch size is 128;
(vi) the Adam optimizer [24] is used with a learning rate

is 0.0025.
The reconstruction chain is trained for 25 epochs of the
training set for each configuration under study. The edge
classification accuracy and cross-entropy loss are cross-
validated with 10000 events from the validation set every
∼1 epoch to check for overtraining.

B. Feature extraction

Each shower fragment has to be encoded into a set of
node features and each edge in the input graph can be
provided with a set of features of its own. Two methods of
feature extraction have been considered in the context of
this paper and are presented and compared in this sub-
section: Geometric and CNN.
Geometric features are a list of summary statistics of the

distribution of fragment voxels in Euclidean space. It
includes the following 22 features:

(i) normalized covariance matrix (9 features);
(ii) normalized principal axis (3 features);
(iii) centroid (3 features);
(iv) number of voxels (1 feature);
(v) initial point (3 features);
(vi) normalized initial direction (3 features).

In this study, the initial point of a fragment is acquired by
picking the center of the voxel, vs, closest the true
simulated particle first energy deposition. In a realistic
setting, it will be reconstructed using the point proposal
network (PPN) [25]. Figure 8 shows the distribution of the
distance between the point with the highest PPN score in a
given fragment and the true initial fragment point. The
point is closer than 3 voxels from the true point in 96.3%
of cases.
The initial direction, d̂, is estimated by calculating the

normalized mean direction from the initial point, vs, to all
the other fragment voxels within a neighborhood distance
Rn of the initial point, i.e.,

d̂ ¼ hvi=jhvij; hvi ¼ 1

Nn

X

fijdsi≤Rng
ðvi − vsÞ; ð10Þ
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with dsi the Euclidean distance between vi and vs and Nn ¼
#fijdsi ≤ Rng the number of voxels in the neighborhood.
The radius was optimized to Rn ¼ 5 by minimizing the
spread of the angle between this direction estimate and the
true normalized particle momentum, d ¼ p=jpj, as shown
for multiple radial cut values in Fig. 9. In the following,
the importance of the initial point and direction for the
clustering task is studied by training the model without
them (referred to as NI).
The geometric edge features include 19 components:
(i) closest points of approach (CPAs) (6 features);
(ii) displacement between CPAs (3 features);
(iii) outer product of displacement (9 features);
(iv) length of displacement (1 feature).
The CNN feature extractor treats each fragment as an

individual node image—by masking out voxels that are not
associated with it in the image—and each pair of fragments

as an edge image. Images are passed through a convolu-
tional neural network (CNN) which consists of alternating
ResNet blocks [26] and strided convolutions which pro-
gressively reduce the spatial size of each image while
increasing the number of features in each channel. Sparse
convolutions are used to efficiently handle mostly empty
images [27]. In this study, the kernel size is set to 5, the
number of strided convolutions to 8 and the input number
of filters to 32. The features of the most spatially com-
pressed 33 voxels image are average pooled to form a
vector of 64 features per node and 64 features per edge.
Figure 10 shows the training and validation curves for

each type of feature extractor, produced using the training
and validation datasets, respectively. Removing the initial
point and initial direction (NI) from the geometric features
reduces the edge prediction accuracy by ∼1%. The CNN as
a stand-alone encoder quickly and dramatically overfits the
training set. The addition of the CNN features to the
baseline geometric features does not measurably improve
the global edge classification loss.

C. Input graph

The input set of fragments is partitioned into groups
based on an adjacency score matrix. An edge is given a
score only if it appears in the input graph. Several graph
construction methods were studied to find the optimal
receptive field for nodes:

(i) complete graph (all possible pairwise edges);
(ii) Delaunay graph (edges in the spatial Delaunay

triangulation of the input voxels only);
(iii) MST graph (edges in the spatial minimum spanning

tree of the input voxels only);
(iv) 5NN graph (edges connecting each node with its 5

nearest neighbors only).
These graphs are all defined undirected, so that if a message
path exists from node i to node j, its reciprocal path exists
as well. The network is trained to activate both reciprocal
paths if two nodes belong to the same group.

FIG. 8. Distance between the point with the highest PPN score
within a fragment and the true initial point of the fragment. In the
top box plot, the blue diamond represents the mean, the orange
line the median, the box the IQR and the whiskers span from the
10th to the 90th percentiles.

FIG. 9. Box plot of the angle between the reconstructed
direction of a shower fragment, d̂, and the normalized true
particle momentum, d, as a function of the neighborhood cut, Rn.
The blue diamonds represent the means, the orange lines the
medians, the boxes the IQRs and the whiskers extend at most
150% of the IQR on either side of the box.

FIG. 10. Edge score loss and edge prediction accuracy for the
different encoders under considerations. The training curves are
represented as lines and the validation points as round markers
with statistical error bars.

CLUSTERING OF ELECTROMAGNETIC SHOWERS AND … PHYS. REV. D 104, 072004 (2021)

072004-7



Restricting the number of edges in the input graph can
potentially simplify the clustering task by allowing for the
nodes to only focus on messages coming from nodes that
are adjacent in the input graph. To be suitable, an input
graph must include at least one essential path from each
node to at least one other node that belongs to the same
group, without passing through a node that does not.
Figure 11 shows the fraction of essential edges that appear
in the input graph, i.e., the fraction of nodes that are
reachable through an essential path. It shows that the MST
graph is the most inefficient proposed network, on average
missing a prohibitively large ∼2.3% of the edges necessary
to make correct predictions. All the other graphs are viable
options, although their accuracy will be limited in images
missing essential edges.
Figure 12 shows the training and validation curves for

the aforementioned input graph structures. Figure 13 shows
the adjusted Rand index clustering metric on the test set for
each configuration. The complete graph, which is the one

that includes all possible message passing routes, performs
best. Delaunay graphs perform similarly—at a much
greater computational cost—while other input graphs fail
to yield a similar precision. This demonstrates the ability of
the network to prioritize messages purely based on the
features that it is provided with.

D. Message passing

At a message passing step sþ 1, the edge features are
updated by an edge updater which maps 2Fs

v þ Fs
e features

coming from the nodes it connects and its own features to
Fsþ1
e features, with Fs

v the number of node features at step s
and Fs

e the number of edge features at step s. In this study,
regardless of the step number, Fsþ1

e is set to 64. The edge
updater MLP consists of three linear layers, each preceded
by a 1D batch normalization layer and followed by a
LeakyRELU layer of leakiness 0.1. The first linear layer
brings the number of features to 64, the other two maintain
that number.
The nodes are updated from Fs

v features to Fsþ1
v features

by a function of neighboring nodes and the edge attributes
that connect them, as summarized by equations (2) and (3).
Five Pytorch Geometric [28] layers were studied in
the context of this paper: MetaLayer, NNConv, EdgeConv,
GATConv and AGNNConv.
The MetaLayer [20] uses two successive MLPs to

combine the edge features, the node features and their
neighbor features. The first MLP combines the Fs

v source
node features together with the Fsþ1

e edge features using
three linear layers, each preceded by a 1D batch normali-
zation and followed by a LeakyRELU layer of leakiness
0.1. This produces one message per edge eij, m

sþ1
ij , each

containing Fsþ1
v features. The second MLP combines the

Fs
v target node features with the averaged Fsþ1

v message
features using the same architecture as the first MLP.
At each message passing step, Fsþ1

v is set to 64.

FIG. 11. Fraction of the edges necessary to make perfect
clustering predictions that appears in an image for the different
input graphs under study. In the top box plot, the blue diamonds
represent the means, the orange lines the medians and the
whiskers span from the 10th to the 90th percentiles.

FIG. 12. Edge score loss and edge prediction accuracy for the
different input graphs under consideration. The training curves
are represented as lines and the validation points as round markers
with statistical error bars.

FIG. 13. Adjusted Rand index (ARI) distributions on the test
dataset for the four input graphs under consideration. In the top
box plot, the blue diamonds represent the means, the orange lines
the medians, the boxes the IQRs and the whiskers span from the
10th to the 90th percentiles.
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The NNConv [29] layer is defined as

xsþ1
i ¼ Θxsi þ

X

j∈N ðiÞ
xsj · hΘðesþ1

j;i Þ; ð11Þ

withΘ an Fsþ1
v × Fs

v matrix of weights and hΘ an MLP that
maps Fsþ1

e edge features to an Fsþ1
v × Fs

v matrix. In this
study, the MLP is composed of three layers of a batch
normalization, a linear layer and a LeakyReLU function of
leakiness 0.1. The first layer increases the number of
features from Fe to Fsþ1

v × Fs
v and the following two keep

it constant.
The EdgeConv [30] layer is defined as

xsþ1
i ¼

X

j∈N ðiÞ
hΘðxsikxsj − xsi Þ; ð12Þ

with k the concatenation operator and hΘ anMLP that maps
2Fs

v concatenated features to Fsþ1
v features. The imple-

mentation of the MLP uses an identical implementation to
that of the NNConv layer.
The GATConv [31] layer uses the concept of attention:

xsþ1
i ¼ αiiΘxsi þ

X

j∈N ðiÞ
αijΘxsj;

αsij ¼
expðLRðaT ½ΘxsikΘxsj�ÞÞP

j∈N ðiÞ∪fig expðLRðaT ½ΘxsikΘxsj�ÞÞ
; ð13Þ

with LR ¼ LeakyReLU and a the attention weight vector
of size 2Fs

v. The weight of the message coming from each
node in the neighborhood of i is explicitly learned as a
function of the node features.
The AGNNConv [32] node updater uses a slightly

different attention mechanism:

Xsþ1 ¼ PsXs;

Ps
ij ¼

expðβ cosðxsi ; xsjÞÞP
j∈N ðiÞ∪fig expðβ cosðxsi ; xsjÞÞ

; ð14Þ

with β a learnable parameter. Note that for both of the
attention-based layers and the EConv layer, the node
features do not take into account the edge features explicitly.
Figure 14 shows the training and validation curves for the

functions under study and for three iterations of message
passing. The MetaLayer node updater performs best,
NNConv is comparable but overtrains faster at a large
number of epochs. Note that, for this task, the added
complexity through the use of an MLP is evidently useful.
All layers that explicitly include the edge features—or the
difference between node features as a substitute in the
EdgeConv function—perform similarly. Figure 15 shows
the training and validation curves using theMetaLayer node
updater with a number of message passing varying between
1 and 5. Addingmore than three message passing steps does
not measurably improve the edge classification accuracy.

E. Objective

The target adjacency matrix may be defined in different
ways. The only requirement is that it forms at least a tree
within each group of nodes, so that the true partition can be
predicted on an edge basis. One possibility is to set the value
of edges that connect two nodes within the same group to 1
and all others to 0. This encourages the network to build a
cluster graph, i.e., a disjoint union of complete graphs.
The second possibility uses the score predictions to define

an objective. A tree of n − 1 edges is built on each true group
of n nodes so as to maximize the sum of adjacency scores of
the tree edges. The CE loss is then only applied to those
edges in the trees and those separating different node groups.
This allows the network freedom as towhich edge to turn on,
as long as it builds a forest, i.e., a disjoint union of trees. In
the following discussion, the first objective is referred to as
the cluster target and the second as the forest target.
Figure 16 shows the training edge accuracy and edge loss

for the two objectives defined above. Figure 17 shows their
adjusted Rand index (ARI) [23] distribution on the test set.
Both targets yield very similar results with a small lead for

FIG. 14. Edge score loss and edge prediction accuracy for the
different node updater architecture. The training curves are
represented as lines and the validation points as round markers
with statistical error bars.

FIG. 15. Edge score loss and edge prediction accuracy for the
different number of message passing steps. The training curves
are represented as lines and the validation points as round markers
with statistical error bars.
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the baseline cluster target. Note that the forest target does not
require the post-processing described in section II F, as not
all edges connecting nodes within a group are trained to be
activated. This also means that a single edge incorrectly
turned on in a forest introduces mistakes at the infer-
ence stage.

IV. RESULTS

A. Training

The baseline model is trained for 25 epochs8 on the edge
and node prediction tasks using the DBSCAN-formed
shower fragments and achieves a loss and accuracy
summarized in Fig. 18. The edge classification accuracy
is not affected by the addition of the node classification task
nor the use of DBSCAN. The primary classification
accuracy is close to 1 when initial points are known.
The overall scale difference between the node and edge
losses does not affect the training: if more weight is given to
the node loss, the network trains slower, as the edge
classification is essential to the node classification. The
results presented in this section are produced using the
baseline model.

B. Shower grouping

Figure 19 shows example outputs of the shower
reconstruction algorithm for the four events that contain
the most fragments in the test set. All four events have a
high clustering accuracy, only missing or merging
small fragments incorrectly. The bottom event highlights
the importance of the partition loss optimization at the
inference stage. Some edges are connecting two separate
showers together but the loss minimization allows for the
recovery of an almost perfect partition. The bottom left
group of the fourth event originates from the same shower

but the primary is out of volume. The network correctly
associated them together but would not be penalized for
making a mistake there. Also note that there is no primary
identification mistake in these examples.
Figure 20 shows the clustering metrics associated with

the baseline model applied to the test set. The cases with
ARI ¼ 0 represent ∼1% of all events in this test set and are
omitted from the ARI distribution. Figure 21 shows the
number of reconstructed showers as a function of the
number of true showers in a single image. To prevent small
fragments that are either omitted or merged to affect the
histogram content, only shower instances with more than
100 voxels (∼60 MeV) are included. In 95% of events, the
estimated shower count is exact.

C. Primary identification

Figure 22 shows the distributions of primary scores for
ground-truth primary and secondary nodes in the test set.

FIG. 16. Edge score loss and edge prediction accuracy for the
different objectives under consideration. The training curves are
represented as lines and the validation points as round markers
with statistical error bars.

FIG. 17. Adjusted Rand Index (ARI) distributions for the
different objectives under consideration. In the top box plot,
the blue diamonds represent the means, the orange lines the
medians and the whiskers span from the 10th to the 90th
percentiles.

FIG. 18. Cross-entropy loss and classification accuracy of
edges and nodes for the full shower reconstruction model, with
and without initial points. The training curves are represented as
lines and the validation points as round markers with statistical
error bars.

8The validation set accuracy does not improve beyond this
mark.
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FIG. 19. Shower clustering predictions for the four events with the highest number of shower fragments in the test dataset (one event
per row). Left: ground-truth shower labels (color) and edges representing the true fragment parentage. Middle: primary node scores
represented as a node color ranging from 0 (blue) to 1 (red) and edges with an adjacency score > 0.5 (the closer to 1, the darker the
edge). Right: inferred shower labels (color) and selected edges. Axes values represent voxel coordinates.
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This study shows that 0.08% of secondary fragments have a
score larger than 0.5 and 0.84% of primary fragments have
a score below 0.5.
Given the partition predicted by the network, a single

primary fragment is assigned to each shower group by
selecting the one with highest score. This scheme yields a
group-wise primary identification accuracy of 99.77% for
showers consisting of two or more fragments. This task is
relatively trivial given an understanding of the direction of
travel of the shower. The prior knowledge of fragment
initial points helps, but even without them, the primary
identification accuracy is still at 98.94%.

D. Shower energy resolution

For each ground-truth shower instance in the dataset, the
total amount of energy that it deposits inside the image
volume is integrated—including the fragments smaller
than size 10 that are not in the input to the reconstruction
chain—to form the ground-truth shower energy, E. For

each true shower, the reconstructed cluster with the highest
overlap is selected and the energy of its voxels is summed
to form an energy estimate, Ê. This estimate is multiplied
by a fudge factor of 1.211 to compensate for the energy
lost in small fragments measured in Fig. 5. In order to
assess the importance of the calorimetric information
on the shower energy resolution, the energy is also
estimated using the voxel count alone divided by a factor
1.69, obtained by fitting the relation between the true
number of EM voxels and the energy deposition, as shown
in Fig. 23.
Figure 24 shows a distribution of the relative

shower energy residuals for the showers that are at least
95% contained inside the images of the test dataset.
The residuals are provided with and without leveraging
the calorimetric information. These results show that the
uncertainty on the shower energy is significantly driven by
the prior fragment size selection. Figure 25 shows the 1σ
energy uncertainty as a function of the shower energy.

FIG. 20. Distributions of the three clustering metrics for the
shower clustering task. In the top box plot, the blue diamonds
represent the means, the orange lines the medians and the
whiskers span from the 10th to the 90th percentiles.

FIG. 22. Fragment primary scores of ground-truth primary
nodes and ground-truth secondary nodes. In the top box plot,
the blue diamonds represent the mean scores and the orange lines
the median scores.

FIG. 21. Number of predicted showers as a function of the
number of true showers in an event. Only shower instances with
over 100 voxels are included.

FIG. 23. Number of shower voxels contained in shower frag-
ments of size 10 and above as a function of the total energy
deposited by the shower.
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The uncertainty decreases as the shower energy increases
and reaches an accuracy around 5% at 1 GeV.

E. Shower angular resolution

For each ground-truth shower in the dataset, its true
direction is obtained by normalizing its primary momentum
vector to its norm, d ¼ p=jpj. In practice, the fitted
direction, d̂, is estimated by taking the mean direction
from the predicted primary initial point to the primary
points with a neighborhood radius Rn, as shown in
Eqs. (10). Setting Rn to a constant is suboptimal because
the geometry of primary fragments can vary significantly
from one shower to another. Smaller radii are preferable for

FIG. 24. Reconstructed relative shower energy residual distri-
bution. In the top box plot, the blue diamonds represent the
means, orange lines the medians, the boxes the IQRs and the
whiskers span from the 10th to the 90th percentiles. “True” uses
the true energy of true clusters, “calorimetry” the true energy
depositions of reconstructed clusters and “count” a constant
factor applied to the reconstructed voxel count.

FIG. 25. Reconstructed relative shower energy residual distri-
bution as a function of the shower energy. The orange markers on
the top pad represent the means and their error bars the RMS; the
latter is shown on its own in the bottom pad.

FIG. 26. Reconstructed shower direction residual distribution.
In the top box plot, the blue diamonds represents the means, the
orange lines the medians, the boxes the IQRs and the whiskers
span from the 10th to the 90th percentiles.

FIG. 27. Reconstructed shower direction residual distribution
as a function of the shower energy. The orange markers on the top
pad represent the mean and their error bars the RMS; the former is
shown on its own in the bottom pad.

FIG. 28. Primary scores for an ambiguous shower start with a
color scale that ranges from 0 (black) to bright yellow (1).
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FIG. 29. Shower clustering predictions with the largest mistakes in three categories and one with an ARI of 0 (one event per row). Left:
ground-truth shower labels (color) and edges representing the true fragment parentage. Middle: primary node scores represented as a
node color ranging from 0 (blue) to 1 (red) and edges with an adjacency score >0.5 (the closer to 1, the darker the edge). Right: inferred
shower labels (color) and selected edges. Axes values represent voxel coordinates.
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fragments that curve or branch out a lot, but larger radii are
advantageous for mostly linear showers.
The radius is optimized in order to minimize the relative

deviation of the points from a straight line. The primary
fragment points are ordered from closest to farthest from
the initial point, fvgni¼1. The mean, v̄k, and covariance
matrix, Σk, are first evaluated for the closest three points (as
the covariance matrix is undefined for k < 3). The mean
and covariance matrix are then iteratively updated for k ¼
4;…; n following

v̄k ¼
1

k
ððk − 1Þv̄k−1 þ vkÞ; ð15Þ

Σk ¼
k − 1

k
Σk−1 þ

1

k − 1
ðvk − v̄kÞðvk − v̄kÞT: ð16Þ

For each combination of points, k, the ordered eigenvalues
of the covariance matrix, fλk;ig3i¼1, are evaluated. The
optimal neighborhood of points minimizes the spread
around the principal axis, i.e.,

k� ¼ min
k

λk;1 þ λk;2
λk;3

: ð17Þ

Figure 26 shows the angular distribution between the
true direction and the estimate, θ ¼ arccos ðd̂ · dÞ, for all
the true showers in the dataset. The residual angle
distribution has a mode of ∼2°, a mean of 6.1° and a
median of 3.8°, when using the optimized neighborhood,
R�
n. The distributions for fixed neighborhood radii perform

significantly worse. A radius of 5, while on average
optimal for all fragments as shown in Fig. 9, carries a
large uncertainty when used for primary fragments.
Figure 27 shows the angular uncertainty as a function
of the shower energy. It shows that the uncertainty
decreases significantly with energy to reach a mean as
low as ∼2.0°.

F. Mistakes analysis

A study of the events with low clustering purity reveals
that the algorithm occasionally merges showers when the
direction vector of one of its fragments can clearly be
back-propagated to another shower fragment from a
distinct instance. This may stem from an inconsistency
between the true photon momentum and the local direc-
tion estimate of the fragment. The top row of Fig. 28
shows an event with a purity of 0.51 in the test set. Events
with a purity < 0.9 represent ∼1% of this dataset. The
middle row shows an event with an efficiency of 0.54 in
test set. Events with an efficiency < 0.9 represent ∼0.7%
of this dataset. This event showcases the difficulty to
choose whether to merge large colinear fragments or to
separate them. The third row shows the event with the
lowest ARI and the fourth with an ARI of 0. The last

example highlights that a clustering may have an ARI of 0
but be mostly accurate, if the number of true or predicted
showers is one.
There is a total of 119 showers in the whole test set that

have a misidentified primary. The majority of those
mistakes stem from an incorrect partition of the nodes.
The remaining mistakes can be attributed to ambiguous
shower starts that do not have a fragment clearly upstream
of the others. An example is provided in Fig. 29. The
network picks the leftmost fragment but the one directly to
its right is the labeled shower start. The network shows its
uncertainty by giving scores of 0.76 and 0.13 to the left
and right fragments, respectively.

FIG. 30. Particle labels of a superimposition of two events in
the test set. Axes values represent voxel coordinates.

FIG. 31. Edge score loss and edge prediction accuracy for the
different interaction clustering models. The training curves are
represented as lines and the validation points as round markers
with an error bar.

CLUSTERING OF ELECTROMAGNETIC SHOWERS AND … PHYS. REV. D 104, 072004 (2021)

072004-15



FIG. 32. Interaction clustering predictions on four randomly picked events with 1, 2, 3 and 4 randomly merged images (from top to
bottom). Left: ground-truth interaction labels (color) and ground-truth cluster graph edges. Middle: edges with an adjacency score> 0.5
(the closer to 1, the darker the edge). Right: inferred interaction labels (color) and selected edges. Axes values represent voxel
coordinates.
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V. INTERACTION CLUSTERING

A. Modifications

Interaction clustering is defined as the association of
particle instances together into groups that share a common
particle ancestor. In this study, the individual particle
instances are assumed to be known a priori from the
previous reconstruction steps. In the full reconstruction
chain, the shower instances will be provided by the
reconstruction algorithm described in the previous sections
while tracks, Michel and Deltas are to be clustered by a
separate algorithm such as DBSCAN [19] or a CNN-based
dense clustering algorithm [33].
Images simulated for this dataset only contain a single

interaction vertex and multiple stray tracks and showers.
In order to teach the network to separate multiple
interaction vertices, several of these images may be
stacked together. At the training stage, the number of
images that are stacked together before being fed to the
network follows a Poisson distribution of mean 2.
Figure 30 shows an example of two stacked images
and their particle labels.
This task utilizes an identical reconstruction chain to

that used for the shower clustering. The input to the chain
consists of particle instances instead of shower fragments
and the target is interaction instances. The edge
features are identically defined while node features are
extended by adding the number-encoded particle class
(0–4 corresponding to shower, track, Michel and delta
rays, respectively), the mean and RMS energy deposition
and the terminal point of tracks (other classes do not have
well defined end points and are given a duplicate of the
initial point instead).
Downstream of the message passing stage, the

updated node features are not explicitly used to make
any prediction. The edge features are the basis for an
adjacency matrix prediction, while the groups are
extracted by using the method described in Sec. II F.
Figure 31 shows the training and validation edge classi-
fication loss and accuracy for the interaction clustering
task. These metrics are evaluated with and without the
endpoint information; adding the endpoints to the particle
instances increases the edge classification accuracy
by ∼0.2%.

B. Performance

Figure 32 shows the output of the interaction clustering
algorithm for four randomly selected events in the test set,
with one to four interaction vertices stacked together. All
four events have a high clustering accuracy, only missing or
merging small particles incorrectly.
The metrics described in Sec. II G are used to

systematically characterize the performance of the
reconstruction chain applied to the interaction clustering

task. Figure 33 shows the clustering performance as a
function of the number of images that are superimposed.
As shown in Fig. 3, each image contains one neutrino-

like interaction of 4.3� 1.6 particles overlayed with
3.8� 1.7 randomly scattered cosmic-like interactions.
For an image of ∼12 m3, this corresponds to an inter-
action density of 0.40� 0.14 interactions=m3, which
increases linearly with the number of superimposed
images. The density observed of a single image, for
instance, is equivalent to ∼120 interactions in a single
ICARUS image, far above the expected rate [5]. A stack
of two images contains two neutrinolike interactions,
which corresponds to ∼18 such interactions in the
DUNE-ND volume, close to the maximum expected rate
[9], overlayed with ∼30 cosmic rays, which is unrealis-
tically large. This demonstrates that this algorithm should
easily deal with the expected rate of interactions in the
foreseeable future.

C. Mistakes analysis

Figure 34 shows the three events that are recon-
structed with the lowest purity, efficiency and ARI on
the first three rows, respectively, and an event with an
ARI of 0. The first event exhibits a purity of 56.1% due
to a cosmic muon crossing and overlapping one of the
vertex tracks. Events with purity < 0.9 represent ∼0.6%
of this test set. The second event has an efficiency of
49.7% as the correlation between showers is not found
sufficient by the network to associate them in an
interaction. This may be due to a direction estimate
not accurately representing the shower momentum
or the vertex not being clearly defined by a track.
Events with efficiency < 0.9 represent ∼0.8% of this
test set. The bottom two rows show an event with an
ARI of −1.3% and one with an ARI of 0. These two
examples have a very low ARI but only contain minor
mistakes, merging a small fragment it should not while
omitting another.

FIG. 33. Interaction clustering metrics as a function of the
number of interactions in the image. The diamonds represent
the means, the lines the medians, the boxes the IQRs and the
whiskers span from the 10th to the 90th percentiles.
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FIG. 34. Interaction clustering predictions with the largest mistakes in three categories and one with an ARI of 0 (one event per row).
Left: ground-truth interaction labels (color) and ground-truth cluster graph edges. Middle: edges with an adjacency score > 0.5 (the
closer to 1, the darker the edge). Right: inferred interaction labels (color) and selected edges. Axes values represent voxel coordinates.

FRANÇOIS DRIELSMA et al. PHYS. REV. D 104, 072004 (2021)

072004-18



VI. CONCLUSION

Graph neural networks (GNNs) are an ideally suited
method to tackle the clustering of spatially detached objects
in liquid argon time projection chambers (LArTPCs). A
GNN-based reconstruction chain was developed to cluster
electromagnetic showers and particle interactions. This
paper studied its performance on a generic 3D sample of
particle interactions in liquid argon and demonstrated a
clustering efficiency and purity well above 99% for both
tasks.
A good shower energy resolution is a core requirement

for the upcoming SBN program and DUNE experiment to
reach their scientific goals. The reconstruction of the
shower direction will be of central importance when
matching neutral pion decay showers together or when
back-propagating photons to a vertex. The clustering of
particle into interactions will become essential for future
high-rate LArTPCs and the GNN algorithm developed
here shows that this can be achieved. The algorithm
described in this paper will be part of an end-to-end,

machine-learning-based reconstruction chain developed at
SLAC for all LArTPCs.
The accuracy of this algorithm is expected to be affected

by that of the upstream reconstruction modules in the chain.
The performance of the reconstruction chain as a whole has
been evaluated on a the same simulated dataset and will be
the subject of an upcoming paper. Discrepancies between
data and simulations may also deteriorate the accuracy of
the GNN-based clustering algorithm. Methods for mitigat-
ing the effect of such differences are actively being
researched and will be discussed in future publications.
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