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Using the AdS=CFT correspondence we consider the retarded Green’s function in the background of
rotating near-extremal anti–de Sitter ðAdSÞ4 black holes. Following the canonical AdS=CFT dictionary
into the asymptotic boundary we get a conformal field theory ðCFTÞ3 result. We also take a new route and
zoom in on the near-horizon region, blow up this region and show that it yields a CFT2 result. We argue that
the decoupling of the near-horizon region is akin to the decoupling of the near-throat region of a D3-brane,
which led to the original formulation of the AdS=CFT correspondence, thus implying that the Kerr/CFT
correspondence follows as a decoupling of the standard AdS=CFT correspondence applied to rotating
black holes. As a byproduct, we compute the shear viscosity to entropy density ratio for the strongly
coupled boundary CFT3, and find that it violates the 1=ð4πÞ bound.
DOI: 10.1103/PhysRevD.104.066020

I. INTRODUCTION

One of the conceptual legacies of the AdS=CFT
correspondence [1–3] is its geometrization of the renorm-
alization group flow in quantum field theories. The
interpretation of the radial direction of the asymptotically
anti–de Sitter (AdS) spacetime as the renormalization
group scale has been widely discussed [4–10]. Most of the
existing literature, however, has focused on the holo-
graphic counterpart of the field theory living at the
asymptotic boundary and in spherically symmetric sit-
uations. In this manuscript we explore some implications
of considering a rotating asymptotically AdS black hole
background and an emergent IR conformal field
theory ðCFTÞ2.
The emergence of a Virasoro algebra as asymptotic

symmetries in the near-horizon region of extremal Kerr
black holes in asymptotically flat spacetimes is at the heart
of the Kerr/CFT correspondence [11]; through the Cardy
formula, this algebra microscopically reproduces the
Bekenstein-Hawking entropy. This correspondence, origi-
nally formulated in the near-horizon region of an extremal
asymptotically flat Kerr black hole, has been generalized to
near-extremal asymptotically flat and asymptotically AdS

Kerr-Newman black holes [12–16]. The question we
pursue in this manuscript is: what are the implications
of embedding the Kerr/CFT correspondence in a larger
AdS=CFT context? We will see that this embedding
provides a framework for a UV completion and justifies
the Kerr/CFT correspondence as a stand-alone conjecture.
An important motivation to revisit the status of the Kerr/

CFT correspondence in the larger context of AdS=CFT
embeddings comes from recent developments in the
physics of rotating, electrically charged, asymptotically
AdS black holes. These black holes in dimensions four,
five, six and seven, have recently been provided a micro-
scopic foundation for their Bekenstein-Hawking entropy
using the superconformal index of the dual CFT’s [17–
24]. Alternatively, a universal and unifying description
à la Kerr/CFT that provides a microscopic foundation for
the Bekenstein-Hawking entropy of all these black holes
by focusing only on a certain near-horizon region, its
CFT2 and applying the Cardy formula was implemented
in [25–27].
The general situation is one in which for an asymptoti-

cally AdSdþ1 rotating black hole, we can apply the
AdSdþ1=CFTd correspondence in the asymptotic boundary
region and, concurrently, the Kerr/CFT correspondence in
the near-horizon region. The near-horizon region has a
local AdS3 factor, instead of the AdS2 arising in previous
studies [8,10], and correspondingly insinuates a holo-
graphic renormalization group flow connecting a CFTd
in the UV and a CFT2 in the IR (Fig. 1). The Kerr/CFT
correspondence works not only for AdS black holes but
also for much wider classes of rotating black holes,
however, the AdS black holes have the particularly nice
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feature of providing a UV completion via the dual
conformal field theory as depicted in Fig. 1.
In this manuscript we define a master equation for the

retarded Green’s function in the full background. Following
the canonical AdS=CFT dictionary into the asymptotic
boundary we obtain a result that can be naturally inter-
preted in as a CFT3 result. We also take an alternative new
route and zoom in on the near-horizon region, blow up this
region and show that it yields a result for the retarded
Green’s function that fits in a CFT2 framework. The near-
horizon approach is consistent because the particular near-
horizon limit led to a background that, by itself, satisfies the
equations of motion. This decoupling of the near-horizon
region is akin to the decoupling of the near-throat region of
a D3-brane, which lead to the original formulation of the
AdS=CFT correspondence. We, therefore, argue that in this
context the Kerr/CFT correspondence follows as a decou-
pling of the standard AdS=CFT correspondence applied to
rotating AdS black holes.
Having computed the retarded Green’s function, an

interesting observable which we determine is the shear
viscosity in the background of near-extremal rotating AdS4
black holes, generalizing the results first obtained in [28]
for black 3-branes which were further expanded and
applied to AdS black holes in [29–32] with many sub-
sequent following works. We find that, due to the presence
of angular momentum, the shear viscosity to entropy
density ratio is lower than the 1=ð4πÞ bound, vanishes in
a particular extremal limit, and grows quadratically for
small temperatures, η=s ∼ T2.

II. MASTER EQUATION FOR RETARDED
GREEN’S FUNCTION

The asymptotically AdS4 Kerr black hole is given by the
metric

ds2 ¼ −
Δr

ρ2

�
dt −

a sin2 θ
Ξ

dϕ

�
2

þ ρ2

Δr
dr2 þ ρ2

Δθ
dθ2

þ Δθ

ρ2
sin2 θ

�
adt −

r2 þ a2

Ξ
dϕ

�
2

; ð1Þ

whereρ2≡r2þa2cos2θ; Ξ≡1−
a2

L2
;

Δr≡ðr2þa2Þ
�
1þ r2

L2

�
−2Mr; Δθ≡1−

a2cos2θ
L2

;

ð2Þ

where a is the rotation parameter and L denotes the AdS4
radius. The thermodynamic quantities, energy, angular
momentum, temperature, entropy and angular velocity
are given by

E ¼ M
Ξ2

; J ¼ Ma
Ξ2

; T ¼
rþ½1þ a2

L2 þ 3r2þ
L2 − a2

r2þ
�

4πðr2þ þ a2Þ ;

S ¼ πðr2þ þ a2Þ
Ξ

; Ω ¼ að1þ r2þ
L2Þ

r2þ þ a2
; ð3Þ

with rþ denoting the outer horizon position, the largest root
of Δr ¼ 0. The extremal limit is achieved when Δr has a
double root, which is equivalent to fixing M as a function
of a, i.e., M ¼ MextðaÞ [33].
The first step toward the retarded Green’s function is to

consider the wave equation of an uncharged massless scalar
in the background (1),

∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΨÞ ¼ 0: ð4Þ

Here we consider a massless scalarto highlight certain
properties. When compared to the standard AdS=CFT
situation, we note that the typical translational symmetry
along the directions of the brane is broken by in the
context of the rotating black hole background. Such
situation has been considered recently in [34]; a previous
relevant discussion was given in [35]. Breaking transla-
tional symmetry is quite relevant to address more realistic
aspects of transport in condensed matter applications.
The rotating black hole background breaks some trans-
lational symmetry in a natural way. There are, however,
other ways of breaking the translational symmetry. For
instance, a particular class of models has been discussed in
[36,37], where the translational symmetry is broken by
certain scalars in the theory whose classical solution is
linear in coordinates yielding an equation for the shear
perturbation of the metric which behaves as a massive
scalar equation.
To solve (4), we assume an Ansatz of the form

Ψ ¼ e−iωtþimϕRðrÞSðθÞ. It is known that one can
separate the wave equation (4) into its radial and angular
parts [38],

d
dr

�
Δr

d
dr

RðrÞ
�
þ VðrÞRðrÞ ¼ 0; ð5Þ

FIG. 1. Renormalization group flow in a rotating AdS black
hole.
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1

sin θ
d
dθ

�
Δθ sin θ

d
dθ

SðθÞ
�
−

ðmΞÞ2
Δθsin2θ

SðθÞ

þ
�
2mωaΞ
Δθ

−
a2ω2sin2θ

Δθ

�
SðθÞ þ KSðθÞ ¼ 0; ð6Þ

where K is the separation constant, and the potential
VðrÞ is

VðrÞ≡ −K þ ½ωðr2 þ a2Þ − amΞ�2
ΔrðrÞ

: ð7Þ

The strategy for solving (4) is fairly standard. We
consider the wave equation (4) focusing on two regions:
(a) the asymptotic boundary region (r → ∞) and (b) the
near-horizon region (ωr ≪ 1). After solving in these
regions separately, we then glue the solutions in some
overlapping region (see Fig. 2 which contains more
details). The canonical form of the AdS=CFT correspon-
dence stipulates that from these solutions we can construct
observables in the dual CFT3 at the asymptotic boundary.
Our new observation is that by zooming in on the near-
horizon region we will also define observables in an
effective dual CFT2. We argue that this process of zooming
in is an explicit holographic realization of a renormalization
group connecting these conformal fixed points of different
dimensions, namely, CFT3 (defined in the asymptotic
region) and CFT2 (defined in the near-horizon region).
Let us now discuss some technical details that are crucial

to understand the regime of validity of our approximations.
As we have seen in Eqs. (5) and (6), the scalar wave
equation (4) in the full AdS4 black hole geometry factorizes
into the radial part and the angular part as a consequence of
the existence of Killing-Yano tensor [38]. This separation
allows us to focus on the radial part of equation and treat it
in the standard AdS=CFT prescription we would apply to a
stationary black hole or the black D3 brane background. Of
course, we need to recall that the separation constant K is,
in general a fairly complicated quantity that, in practice,
needs to be determined numerically, as demonstrated in
[35]. We can, for simplicity, focus on states with quantum
number m ¼ 0 above and with very low energies ω but
should keep in mind that the general situation is quite more
involved technically and requires a numerical treatment.
Focusing on the radial part of the scalar Laplace

equation (5) gives us a clue to understand the unification
of the retarded Green’s function for the boundary CFT3 and
the near-horizon CFT2 and how there is an interpolation
between the two. The solutions to the wave equation have a

fairly generic behavior in the large-r limits. If we neglect all
subleading terms, including of the form a=r, the solution in
the asymptotic boundary region takes the form,

RðrÞ ¼r→∞
Cr−Δ− þDrΔ−−d ⇒ GCFT3

R ∼
D
C
; ð8Þ

with d ¼ 3 and Δ− ¼ 0 in this case; this is the expected
behavior for a Green’s function in a CFT3. In the near-
horizon region, we define an effective radial coordinate r̃
[see the precise definition in Eq. (18)] in terms of which the
solution takes the form

Rðr̃Þ ¼r̃→∞
Ar̃−h þ Br̃h−1 ⇒ GCFT2

R ∼
B
A
; ð9Þ

where h → 0 in the low-energy limit (ω → 0, m → 0),
signaling a result in a CFT2.
It is important to verify that the near-horizon geometry

satisfies the equations of motion on its own. This seemingly
banal statement is quite crucial, note, for example, that for
generic non-extremal configurations the limit might not
even exist as a smooth geometry due to the divergences that
remain when explicitly applying the limiting procedure
dictated by the Eq. (18). When the near-horizon geometry
is smooth and independently solves the equations of
motion, we can then view that geometry and its field
theory dual as a stand-alone correspondence. The proto-
typical example is the D3-brane and its near-horizon
geometry AdS5 × S5, where the latter leads to a stand-
alone correspondence that needs not refer any more to the
starting D3-brane geometry. Here too, having a near-
horizon geometry that solves the equations of motion on
its own allows us to view the Kerr=CFT2 as a stand-alone
conjecture. Of course, from the RG flow point of view, the
Kerr=CFT2 is the IR of a well-defined AdS4=CFT3 setup
for rotating black holes.
To implement the near-horizon limit, it is convenient that

we can work in truncated gauged supergravity theories. For
example, one can view the background (1) as a solution of
4d minimal gauged supergravity. More generally, this class
of solutions can be uplifted to 10d or 11d. In fact, there are
different ways of truncating the 10d or 11d gauged super-
gravity theories to lower dimensions, including the ones
without dilatons (see [26] and the references therein) and
the ones with dilatons [39–41]. In the class of solutions
with dilatons, [42] has found a near-horizon AdS3 from a
charged dilatonic AdS5 black hole. Although the near-
horizon AdS3 in [42] was not used to perform a
AdS3=CFT2 similar to the Kerr/CFT, it was emphasized
in [42] that the near-horizon solution uplifted to 10d is
indeed by itself a solution to the equations of motion of IIB
supergravity.
In general, for a solution RðrÞ to a differential equation

R00ðrÞ þ PR0ðrÞ þQRðrÞ ¼ 0, we can prove a master
equation for the retarded Green’s function [43,44],

FIG. 2. The near-horizon and the asymptotic boundary regions.
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ImGCFT
R ∼ lim

r→∞
r−2Δ̃

WðrÞ
2iR�ðrÞRðrÞ ; ð10Þ

where Δ̃ can beΔ− or h above, and we used theWronskian,

WðrÞ≡ e
R

r Pðr0Þdr0 ½R�ðrÞ∂rRðrÞ − RðrÞ∂rR�ðrÞ�: ð11Þ

Equations (10) and (11) apply to both the asymptotic
boundary CFT3 and the near-horizon CFT2. When applied
to the near-horizon CFT2, the r in (10) and (11) should be
replaced by r̃ which starts its life as a near-horizon
coordinate but it is later assumed to run as an infinite
affine parameter. Given incoming boundary conditions at
the horizon, the Master Equation (10) governs the retarded
Green’s function along the whole RG flow, because the
WroskianWðrÞ is conserved along r, i.e., ∂rWðrÞ ¼ 0. We
argue that focusing on different regions of the geometry is
akin to implementing a Kadanoff style coarse-graining.
Namely, following the canonical AdS=CFT dictionary and
applying (10) we will get a CFT3 result. We also take a new
route and zoom in on the near-horizon region, blow up this
region out and show that in this case the Master Equation
(10) yields a CFT2 result.

III. CFT3 RETARDED GREEN’S FUNCTION FROM
ASYMPTOTIC BOUNDARY

In the asymptotic region corresponding to r → ∞ (r
larger than any other scale in the problem) near the
asymptotic conformal boundary, we keep only terms of
order up to Oðr−4Þ in the radial part of the wave
equation (4), i.e., (5), which can be expressed as

R00ðrÞ þ
�
4

r
−
2ða2 þ L2Þ

r3

�
R0ðrÞ þ ω2L4 − KL2

r4
RðrÞ ¼ 0:

ð12Þ

This differential equation has the following analytical
solution:

RðrÞ¼C1 · 1F1

�
ω2L4−KL2

4ða2þL2Þ ;−
1

2
;−

a2þL2

r2

�

þC2

ða2þL2Þ32
r3

· 1F1

�
3

2
þω2L4−KL2

4ða2þL2Þ ;
5

2
;−

a2þL2

r2

�
;

ð13Þ

with the constants C1;2 determined by gluing the asymp-
totic boundary and the near-horizon solutions, which will
be discussed in the next section.
Let us be more careful in explaining the regime in which

we detect a CFT3 behavior. The exact analytic solution (13)
contains various terms. We can roughly track their origins
direction in the Eq. (12). Namely, there are terms of the

form: 1
r ;

a2

r3 ;
L2

r3 as well as those proportional to 1
r4 that we

have kept. We can further consider the low-energy limit
(ω → 0, K → 0) for which the first term in the analytic
solution (13) has the asymptotic (as r → ∞) behavior
1þOðr−2Þ while the second term goes as
ða2þL2Þ32

r3 þOðr−5Þ. This behavior, together with the phase

factor corresponds to the wave e−iωtþimϕSðθÞða2 þ L2Þ32=r3
for r → ∞. Hence, the second term in (13) can be seen to
correspond to an incoming wave due to its negative phase
velocity. Neglecting further the effects of rotation (factors
proportional to a) in the far UV region, basically neglect-
ing, contributions of the form ∼ a2L

r3 , the wave equation has
the asymptotic solution near the boundary,

RðrÞ ¼r→∞
C1 · rΔþ−d ¼ C1 · r−Δ− ; ð14Þ

whereΔ� ¼ d
2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4μ2L2

p
for a scalar with mass μ in

AdSdþ1 space. For the massless scalar (μ ¼ 0) close to the
boundary of the AdS4 black hole there should be

Δþ ¼ 3; Δ− ¼ 0; d ¼ 3; ð15Þ

which exactly matches the asymptotic behaviors of
the two terms near the boundary (r → ∞) in (13). This
result is at the core of the AdS=CFT correspondence [2,3],
particularly for a boundary CFT3 since the scalar in the bulk
will couple to a boundary operator with the conformal
dimension Δþ ¼ 3 and the 2-point spinless correlator
hOðxÞOðyÞi ∼ 1=jx − yj2Δþ . We need to be, of course, a
bit more careful with this analysis, as we have neglected all
traces of the rotation, and no factors of a=r have been kept
in this limit. We could, restore that dependence in a way
that will imply a departure from the correlator we have
written, which naturally corresponds to a field theory
defined on R3, rather than on S1 × S2 as we have been
discussing.
In principle, this expression is only valid at the UV

conformal fixed point, and we cannot simply read off the IR
CFT2 correlator from the solution near the asymptotic
boundary. To obtain the information of the IR CFT2, we
need to analyze the solution in the near-horizon region of
the AdS black hole. As discussed before, we glue the
asymptotic boundary and the near-horizon solutions at
r → ∞ to fix the constantC1 in (13). We can do it in a more
precise way by gluing them at some intermediate rB in the
overlapping region with L ≪ rB ≪ ω−1. Consequently, the
retarded Green’s function of the boundary CFT3 is affected
by the renormalization scale rB, i.e., GRðω; m; K; rBÞ. In
the low-energy limit, GRðrBÞ ∼ 1þOðr−4B Þ, which trivially
satisfies the Callan-Symanzik equation M ∂

∂MGRðrBÞ ¼ 0

with M ∼ rB=L2, implying the vanishing of the anomalous
dimension of a certain dimension-3 operator [2].
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IV. NEAR-HORIZON CFT2 RETARDED
GREEN’S FUNCTION

In the near-horizon region (ωr ≪ 1), we can expand
ΔrðrÞ to quadratic order in r − rþ,

ΔrðrÞ ¼ kðr − rþÞðr − r�Þ þOððr − rþÞ3Þ; ð16Þ

where k ¼ 1þ a2

L2
þ 6r2þ

L2
;

r� ¼ rþ −
1

krþ

�
r2þ − a2 þ 3r4þ

L2
þ a2r2þ

L2

�
: ð17Þ

To zoom in on the near-horizon region we follow a
limiting procedure first discussed for asymptotically flat
spacetimes in [45] and implemented for asymptotically
AdS ones in [16],

r→
rþþ r�

2
þ ϵr0r̃; t→ t̃

r0
ϵ
; ϕ→ ϕ̃þΩHt̃

r0
ϵ
; ð18Þ

where ΩH ≡ aΞ
r2þþa2, rþ − r� ¼ λϵr0, r20 ≡ r2þþa2

k , and ϵ is a

small positive scaling parameter, which will be eventually
sent to zero, while the parameter λ characterizes how far the
near-extremal black hole is from extremality. In the limit
ϵ → 0, we obtain the near-horizon metric for the near-
extremal AdS4 Kerr black hole [16],

ds2 ¼ ΓðθÞ
�
−
�
r̃ −

λ

2

��
r̃þ λ

2

�
dt̃2

þ dr̃2

ðr̃ − λ
2
Þðr̃þ λ

2
Þ þ αðθÞdθ2

�

þ γðθÞ
�
dϕ̃þ p̃

�
r̃ −

λ

2

�
dt̃

�
2

; ð19Þ

with the corresponding factors,

ΓðθÞ¼ ρ2þr20
r2þþa2

; αðθÞ¼ r2þþa2

Δθr20
;

γðθÞ¼Δθsin2θðr2þþa2Þ2
ρ2þΞ2

; p̃¼ ar20Ξðrþþ r�Þ
ðr2þþa2Þ2 ;

ρ2þ ¼ r2þþa2cos2θ: ð20Þ

The goal is to study the wave equation (4) in the
background (19) obtained by the limit ϵ → 0 above.
This limiting procedure on the gravity side resembles
Kadanoff’s original block spin coarse-graining.
We implement the following Ansatz for the solution to

the wave equation. Note that the frequencies are scaled to
the superradiant bound [14],

Ψ¼ e−iω̂ t̃þimϕ̃Rðr̃ÞSðθÞ; with ω̂
ϵ

r0
≡ω−mΩH: ð21Þ

A Kerr black hole has superradiant instabilities, which for a
massless scalar happen when ω < mΩH (see e.g., [46]).
Therefore, as long as we consider ω̂ ≥ 0, our near-horizon
solution is free of superradiant instability.
For the radial part of the wave equation, we can solve an

alternative equation, which in the near-horizon limit
(ω̂r ≪ 1, r ≥ rþ) and close to the superradiant bound
(ω̂a ≪ 1) is equivalent to the original radial equation (5)
with the near-horizon scaling (18) at the leading order,

d
dr̃

��
r̃2−

λ2

4

�
dRðr̃Þ
dr̃

�
þ λ

r̃− λ
2

ÂRðr̃Þ

þ λ

r̃þ λ
2

B̂Rðr̃ÞþĈRðr̃Þ¼0;

where Â≡ω̂2

λ2
; B̂≡−

�
ω̂

λ
−
2rþmΩH

k

�
2

; Ĉ≡−
K̂
k
; ð22Þ

and K̂ is a separation constant. This equation can also be
obtained directly in the near-horizon geometry (19) instead
of taking the near-horizon limit of the full wave equa-
tion (5), and these two derivations lead the same equa-
tion (22) in the limits ω̂r ≪ 1 and ω̂a ≪ 1.
In the coordinate z̃≡ r̃−λ=2

r̃þλ=2, the radial wave equation (22)
in the near-horizon region has an exact solution,

Rðz̃Þ ¼ z̃α̂ð1 − z̃Þβ̂2F1ðâ; b̂; ĉ; z̃Þ; ð23Þ

with α̂≡ −i
ffiffiffiffî
A

p
; β̂≡ 1

2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Ĉ

p �
;

â≡ α̂þ β̂ þ i
ffiffiffiffiffiffiffi
−B̂

p
; b̂≡ α̂þ β̂ − i

ffiffiffiffiffiffiffi
−B̂

p
;

ĉ≡ 1þ 2α̂: ð24Þ
In the region very close to the horizon (z̃ → 0), the
asymptotic behavior of Rðz̃Þ is

Rðz̃Þ ¼z̃→0z̃α̂ð1þOðz̃ÞÞ ∼
�
1

λ

�
r̃ −

λ

2

��
−iω̂λ

: ð25Þ

Hence, the wave solution Ψ ¼ e−iω̂ t̃þimϕ̃Rðr̃ÞSðθÞ can be
interpreted as an infalling wave at the horizon due to its
negative phase velocity.
To obtain the asymptotic behavior of Rðz̃Þ at r̃ → ∞ or

equivalently z̃ → 1 in the near-horizon region, we use some
properties of the hypergeometric function 2F1ða; b; c; zÞ to
rewrite the solution (23). In the coordinate r̃, the asymptotic
behavior of Rðr̃Þ for r̃ → ∞ is

Rðr̃Þ ¼r̃→∞
Ar̃ĥ−1 þ Br̃−ĥ; ð26Þ

where ĥ≡1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4Ĉ

p �
; A≡λ1−ĥ

ΓðĉÞΓðĉ− â− b̂Þ
Γðĉ− âÞΓðĉ− b̂Þ ;

B≡λĥ
ΓðĉÞΓðâþ b̂− ĉÞ

ΓðâÞΓðb̂Þ : ð27Þ
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Due to the condition ωL ≪ 1, which is a consequence of
rþ=L ≪ 1 and ωT ≪ 1, the asymptotic boundary region
(r ≫ L) and the near-horizon region (ωr ≪ 1) have some
overlapping region (L ≪ r ≪ ω−1). Hence, we can glue the
asymptotic solution (13) with the near-horizon solution
(23) in the overlapping region L ≪ r ≪ ω−1 (see Fig. 2).
We follow the approach in [28] by comparing the r → ∞

behavior (26) of the solution in the near-horizon region,

RðrÞ⟶r→∞
1 for ω̂; m; K̂ → 0; ð28Þ

with the r → ∞ behavior (13) of the solution in the
asymptotic boundary region,

RðrÞ⟶r→∞
C1 for ω; K → 0; ð29Þ

which fixes the constant C1 to be

C1 ¼ 1: ð30Þ

The explicit value of C2 can be fixed by requiring that the
ratio of the shear viscosity and the entropy density
approaches the known value 1=ð4πÞ in the nonrotating
limit a → 0. The result is

C2 ¼
24

ffiffiffi
2

p

πðωLÞ72 : ð31Þ

Although the value of C2 is large due to ωL ≪ 1, for r →
∞ the first term in (13) of order Oðr0Þ is still the dominant
one compared to the second term of order Oðr−3Þ.
With the following identifications of parameters:

T̂L ≡ k
4πrþΩH

; T̂R ≡ kr0
4πaΞ

λϵ;

ω̂L ≡m; ω̂R ≡ r0k
aΞ

�
ω̂ −

λrþmΩH

k

�
ϵ; ð32Þ

the retarded Green’s function can be computed

GR ¼
B
A
¼ λ2ĥ−1

Γð1−2ĥÞ
Γð2ĥ−1Þ

Γðĥ− i ω̂L

2πT̂L
ÞΓðĥ− i ω̂R

2πT̂R
Þ

Γð1− ĥ− i ω̂L

2πT̂L
ÞΓð1− ĥ− i ω̂R

2πT̂R
Þ :

ð33Þ

Its imaginary part exactly matches the absorption cross
section in the near-horizon region, and it is exactly the
CFT2 retarded two-point function of the CFT2 operator
with hL ¼ hR ¼ ĥ dual to the scalar field [14,16].

V. SHEAR VISCOSITY FROM AdS4
KERR BALCK HOLE

Let us now turn to a particular property of the strongly
coupled boundary CFT3 dual to the rotating asymptotically

AdS4 black hole—the shear viscosity to entropy density
ratio—by following the pioneering work [28]. More
precisely, the authors of [28] originally considered the
black brane background, similar analysis were later applied
to more general AdS black holes in [29,30].
For rotating AdS4 black holes, translational symmetry is

broken and, consequently, the shear viscosity has only one
independent component, which is the counterpart of ηxyxy
for the AdS5 case defined in [47]

ηxyxy ¼ −lim
ω→0

1

ω
ImGR

TxyTxyðω; k ¼ 0Þ

¼ lim
ω→0

1

2ω

Z
dtdx⃗eiωth½Txyðt; x⃗Þ; Txyð0; 0Þ�i: ð34Þ

The boundary geometry of an AdS4 Kerr black hole is the
time circle together with a rotating two-sphere, this is
obtained by taking r → ∞ in the metric (1). The resulting
background breaks translational symmetry but still has the
rotational symmetry. We denote the rotation axis of S2 as
the z-direction, while in the limit r → ∞ the boundary S2

locally can be viewed as flat R2; hence, we use the
coordinates x and y on R2 to denote the directions
perpendicular to the rotation axis, i.e., the z-direction,
and the corresponding component of the energy momentum
tensor is denoted by Txy. Alternatively, the coordinates x
and y can also be obtained from the conformal mapping of
S2 to R2 via a stereographic projection. Although the
standard fluid/gravity correspondence on curved back-
grounds was formulated for stationary backgrounds [48],
small fluctuations around the equilibrium have also been
considered when keeping the first dissipative gradient terms
(see e.g., [49]). Hence, the energy momentum tensor of the
CFT on the boundary of an AdS4 Kerr black hole has been
shown to still obey the hydrodynamics equations.
The fact that the energy momentum tensor satisfies the

hydrodynamics equations allows us to turn to the Kubo
formula, according to which the shear viscosity is related to
the correlator of the stress tensor as [28,37]

η ¼ lim
ω→0

1

2ω

Z
dtdx⃗eiωth½Txyðt; x⃗Þ; Txyð0; 0Þ�i

¼ lim
ω→0

1

2ωi
½GAðωÞ −GRðωÞ�: ð35Þ

Similar to the often-discussed AdS5 black hole case, it is
more convenient to consider the AdS4 black hole uplifted to
11d. More preciely, we consider in the following an 11d
space asymptoting to AdS4 × S7, which can be viewed as
the near-horizon limit of M2-branes. Based on the
AdS=CFT correspondence the absorption cross section
σðωÞ of a graviton with frequency ω is also related to
the correlator of the dual field theory,
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σðωÞ ¼ κ211
ω

Z
dtdx⃗eiωth½Txyðt; x⃗Þ; Txyð0; 0Þ�i: ð36Þ

Therefore,

η ¼ 1

2κ211
σð0Þ; ð37Þ

where κ11 is related to the 11-dimensional
Newton’s constant by κ11 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8πG11

p
. In asymptotically

AdS4 × S7 solutions we further have N
ffiffiffi
2

p ð2π2κ11Þ1=3 ¼
6Ω7L6=ð ffiffiffi

2
p

κ11Þ [50].
Thus, Eq. (37) allows us to compute the viscosity by

computing the absorption cross section σ. According to the
AdS=CFT dictionary, we interpret the two terms in the
asymptotic boundary solution (13) as the background
(source) and the incoming wave (response) respectively.
Following [28], we first compute the absorption probability
P given by the ratio of the flux at r ¼ rþ and the flux from
the incoming wave near the boundary r ¼ L,

P¼ jΨðr¼ rþÞj2 · areaðr¼ rþÞ
jΨðr¼LÞj2 · areaðr¼LÞ ¼ π2ω7r2þL11

1152ða2þL2Þ3 : ð38Þ

Let us remark that in [28], Eq. (38) was applied to static
black branes. For the near-extremal AdS4 Kerr black
hole considered in this paper, this relation still holds in
the presence of rotation, because, for sufficiently low
energies, the wave equation in this background completely
factorizes into the radial part and the angular part, as we can
see from Eqs. (5) and (6). The absorption cross section σ is
then related to the absorption probability P for AdS4 × S7

by [51]

σð0Þ ¼ 384π3P
ω7

¼ π5r2þL11

3ða2 þ L2Þ3 : ð39Þ

Combining Eqs. (37) and (39), we obtain the shear
viscosity η,

η ¼ N
3
2r2þL2

3
ffiffiffi
2

p ða2 þ L2Þ3 : ð40Þ

We can restore the Newton’s constant G4 ¼ 3L2

2
ffiffi
2

p
N3=2 and

compute the entropy density,

s ¼ 2
ffiffiffi
2

p
N

3
2πða2 þ r2þÞ

3L2ðL2 − a2Þ : ð41Þ

Collecting all the previous partial results, we obtain

η

s
¼ r2þL4ðL2 − a2Þ

4πða2 þ r2þÞða2 þ L2Þ3 : ð42Þ

The result (42) shares some features with the AdS5 case
studied recently in [34]. A few remarks are in order. First,
as expected, the value of η=s approaches the bound 1

4π in the
nonrotating limit a → 0, which has been computed in [32]
for nonrotating AdSD (D ≥ 3). Second, the viscosity to
entropy density ratio, η=s, decreases from the value 1=ð4πÞ
as the black hole angular momentum (∼a) increases,
consistent with the result from breaking translational
symmetry [52]. For near-extremal AdS4 Kerr black holes,
this phenomenon can be understood in terms of the
temperature T, which also decreases as a increases. In
Fig. 3 we indicate how at very small temperatures we find
numerically η=s ∼ T2. This result precisely agrees with
other approaches to breaking translational symmetry such
as those of [37,53,54] and follows from the scaling
properties of the near-extremal, near-horizon geometry
[37]. The reason is that when the near-extremal, near-
horizon geometry has an emergent IR scaling symmetry,
the most relevant scale is the temperature, and consequently
following the analysis of entropy production in [37] we can
conclude that the low-temperature behavior is η=s ∼ T2,
which is indeed the case in this paper. More interesting, for
extremal AdS4 Kerr black holes η=s vanishes when a → L,
because the entropy density blows up in this limit [37].

VI. AdS4 KERR-NEWMAN BLACK HOLE

For potential condensed matter applications it is instruc-
tive to introduce chemical potential by considering the
asymptotically AdS4 Kerr-Newman black hole, which is
formally given by the same metric (1) as the Kerr black hole
but with a different factor,

Δr≡ ðr2þa2Þ
�
1þ r2

L2

�
−2Mrþq2 with q2≡q2eþq2m;

ð43Þ

and an associated Maxwell field,

FIG. 3. Near-extremal Kerr AdS4 black hole η=s vs T for
L ¼ 100, with η=s ∼ T2 for small temperatures.
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A¼−
qer
ρ2

�
dt−

asin2 θ
Ξ

dϕ

�
−
qm cosθ

ρ2

�
adt−

r2þa2

Ξ
dϕ

�
:

ð44Þ

We focus on the electric case q ¼ qe; qm ¼ 0, for which
the corresponding chemical potential is read off as the
difference,

Φ ¼ Aμξ
μjr→∞ − Aμξ

μjr¼rþ ¼ qerþ
r2þ þ a2

; ð45Þ

where ξ ¼ ∂t þΩH∂ϕ with ΩH ¼ aΞ
r2þþa2. The extremal

limit is achieved when Δr has a double root, which is
equivalent to fixing M as a function of a and q, i.e., M ¼
Mextða; qÞ [33].
Similar to the AdS4 Kerr black hole case, we now

consider the wave equation for a minimally coupled
scalar field ð∇μ þ ieAμÞð∇μ þ ieAμÞΨ ¼ 0. Following
the same strategy, the wave equation is solved in the
asymptotic region and in the near-horizon region sepa-
rately. Further gluing of the solution in the overlapping
region leads to the definition of Green’s function in the
dual field theory side. As before, we compute the retarded
Green’s functions for the boundary CFT3 as well as for the
near-horizon CFT2. The solutions to the radial part of the
wave equation remain the same as the Kerr AdS4 black
hole case to the leading order. Hence, the ratio η=s
formally remains the same for the Kerr-Newman AdS4
black hole,

η

s
¼ r2þL4ðL2 − a2Þ

4πða2 þ r2þÞða2 þ L2Þ3 ; ð46Þ

although rþ depends implicitly also on the charge q. One
can verify that η=s mildly depends on the black hole

charge q. More importantly, it decreases from the value
1=ð4πÞ as the Kerr-Newman AdS4 black hole angular
momentum (∼a) increases, and it vanishes as a → L in the
extremal limit (Fig. 4).

VII. DISCUSSION

In this manuscript we have explored the retarded Green’s
function using the AdS=CFT correspondence in the back-
ground of a rotating asymptotically AdS4 black hole. We
have defined two important limits: (i) one where we
consider the full asymptotic region and thus obtained a
result compatible with AdS4=CFT2 and (ii) one where we
zoom into the near-horizon region and treat that region as
the full geometry whereby we obtained a result compatible
with a providing a basis for the Kerr=CFT2 correspon-
dence. We have shown that both limits, (i) and (ii), are
controlled by one master equation allowing to follow the
RG flow in this geometry and establishing that at both
ends one finds backgrounds describing conformal field
theories. It is worth remarking that, although the compu-
tations presented in this manuscript focused on d ¼ 3, a
similar picture should be valid for d ¼ 4, 5, 6 as implied
by the unifying picture presented for rotating, electrically
charged supersymmetric black holes in AdSdþ1 [26]. In a
concrete sense our setup provides a natural UV comple-
tion to aspects of the Kerr=CFT2 correspondence by
embedding it in AdSdþ1=CFTd for d ¼ 3, 4, 5, 6. This
embedding and its consequent IR decoupling provide a
justification for the Kerr=CFT2 correspondence as a stand-
alone conjecture. We explored the shear viscosity to
entropy density ratios for the CFT3’s dual to the Kerr-
AdS4 and the Kerr-Newman-AdS4 black holes, and found
that they vanish for a → L in the extremal limit. We also
established that η=s ∼ T2 when turning on a small temper-
ature T, which precisely matches the result from the
entropy production analysis in [37].
There are a number of open questions that our work

stimulates. It would be natural to discuss the embeddings
in other dimensions of the AdSdþ1=CFTd correspondence
in more details; we expect, however, that many of the
qualitative features of the present work will remain in this
more generic situation. Another natural direction is to
consider retarded Green’s functions of more general
operators beyond the scalar ones considered here. In
particular, fermionic operators might shed light in the
context of potential condensed matter applications as
anticipated in [35]. Indeed, for spherically symmetric
extremal black holes whose near-horizon region is
AdS2, the emergent CFT1 has been shown to realize
mechanisms relevant for strange metal physics [55] (see
also [56]). It would be quite interesting to more precisely
pursue the implications of the emergent CFT2 along those
lines. Since the asymptotic boundary of the background
(1) is topologically S1 × S2, our analysis provides the
opportunity to study field theories in curved backgrounds.

FIG. 4. Extremal Kerr-Newman AdS4 black hole η=s vs ða; qÞ
for L ¼ 100.
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Indeed, certain field theoretic behavior relevant for
condensed matter applications such as vortex accumula-
tion, can only be studied in field theories on curved
backgrounds [57]. Similarly, curved backgrounds allow us
to study the appearance and applications of the gravita-
tional anomaly in quantum Hall effects [58]. We hope to
explore similar applications within our approach in the
future.
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