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We formulate an equivalence between the 2-dim σ-model spectrum expanded on a nontrivial massive
vacuum and a classical particle Hamiltonian with variable mass and potential. By considering methods of
analytic Galoisian nonintegrability on the appropriate geodesics of the Hamiltonian system we
algebraically constrain the particle masses at fixed time, such that integrability is allowed. Through
our equivalence, this explicitly constrains the masses of the excited spectrum of the dual 2-dim theory in
such a way to imply the S-matrix factorization and no particle production. In particular, the integrability of
the classical particle system implies the factorization of the S-matrix in the dual quantum 2-dim theory. Our
proposal provides also nontrivial evidence on the connection between integrability and S-matrix
factorization for large class of theories with interactions that break Lorentz invariance.
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I. INTRODUCTION

Integrable field theories have been known to play a
pivotal role in understanding physical structures such as the
bosonization and the properties of the factorization of
scattering [1,2]. On the other hand, integrable field theories
are very few and hard to find in nature; their population is
usually resembled by a small region of islands in a large
ocean of water. The standard study on the integrable
structures is done by the construction of the Lax pair for
the relevant sigma model—a complicated task with no
standard methodology that can be based on the symmetries
or properties of the theory. It has been practically more
applicable in theories that admit a deformation of integrable
parent theories where one keeps track of the Lax pair
deformation, with several modern and older applications
including [1,3–8].
Due to these reasons, there is extensive research of

alternative methods for the study of integrability. A natural
development in this direction are formalisms focusing on
the necessary conditions for the existence of integrability.
Such are the methods of analytic nonintegrability which are
primarily based on the connection of differential Galois
theory with the Hamiltonian equations and the way that
the integrable systems behave under certain fluctuations

[9–12]. The idea can be implemented by the Kovacic
algorithm where the question of (non)integrability boils
down to simpler algebraic statements [13]. More recently
the method has found application in cosmological and
holographic models, initiated holographically with the
string dynamics in black hole environments [14], while
the literature so far focuses on the application of the method
in different theories with aim to classify their integrability
status including [15–26].
An independent criterion of integrability is generated by

the classical S-matrix on a 2-dimmassive theory. The higher
conserved charges imply equal sets of masses and momenta
before and after the collision and the absence of particle
production. The locality and causality impose factorization
of the n → n amplitudes into products of 2 → 2 ones.
Therefore, the integrability simply requires that the S-matrix
factorizes and satisfies the conditions of the no particle
production in Lorentz invariant theories with a massive
spectrum [27–29]. However, even for theories where the
Lorentz invariance is broken by the interactions and a
massless spectrum exists, which still may not contribute
to the amplitudes, the relation between integrability and
factorization scattering is assumed [30,31]. Nevertheless,
formal proofs exist only for theories that preserve the
Lorentz invariance, for example [32]. Our current work
provides systematic evidence for a large class of theories for
the validity of this statement. It is interesting, that while the
S-matrix factorization has been related to integrability since
the very early studies, only recently has it been used as an
application to classify nonintegrable structures [31,33–35].
In this paper we initiate a study of combining the ideas of

the two methods, by applying analytic nonintegrability
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methods on configurations that contain the nontrivial
vacuum of the world sheet S-matrix. In particular, in the
formalism we develop we show that the σ-model massive
field excitations around a nontrivial vacuum are related to
the dynamics of classical particle systems of variable mass
with a potential that depends on the details of the equivalent
2-dim theory and the vacuum chosen. On the resulting
effective particle Hamiltonian on which the string system is
reduced, the analytic Galoisian methods provide a non-
trivial algebraic relation on the particle’s mass parameter,
imposing strong fine tuning to allow the integrability of the
classical system. The formalism is fundamental, universal,
and generic, and has concrete applications to a large
number of theories. This is based on the general fact that
the masses of the excited spectrum of the dual 2-dim theory
and also because the methods of analytic nonintegrability
both rely on second order expansion on certain strings.
An especially interesting question concerns the inter-

pretation of the (non)integrability particle constraints, when
mapped on the 2-dim world sheet theory. By computing the
spectrum excitations on the chosen vacuum and the relevant
amplitudes we find that the classical particle integrability
conditions imply the no-particle production and factoriza-
tion of the S-matrix of the quantum 2-dim σ-model. Our
proposal therefore breaks new ground for the applications
on the nonintegrability techniques on the S-matrix vacua,
which goes beyond the classification of nonintegrable
theories used so far as e.g., in [16–19].

II. THE SETUP

A generic background of d space-time dimensions with
Minkowski signature and with n cyclic coordinates is
described by

ds2 ¼ giidxidxi þ 2gijdxidxj;

where i < j and i; j ¼ 1;…; d and the metric fields are
functions of the noncyclic coordinates, while we assign the
indices i ≥ d − n to label the cyclic angles. The Polyakov
Lagrangian L is given by the following integrand

S ¼
Z

dσdτgiiðxi02 − _xi2Þ þ 2gijðxi0xj0 − _xi _xjÞ;

where the dotted and primed derivatives are with respect to
the world sheet coordinates ðτ; σÞ.
The equations of motion for the noncyclic angles αi ≔ xi

with i < d − n are

∂αiLþ 2∂τðgii _αi þ gij _αjÞ − 2∂σðgiiαi0 þ gijαj0Þ ¼ 0; ð1Þ

where still i < j and here the i index is not summed since it
labels the field of the corresponding equation of motion.
The cyclic angles ϕi ≔ xi for i ≥ d − n have simpler
equations of motion

∂τðgii _ϕi þ gij _ϕjÞ − ∂σðgiiϕ0
i þ gijϕ0

jÞ ¼ 0; ð2Þ

where the index i is not summed. The Virasoro constraints
take the compact form

gii _xix0i þ gij _xix0j ¼ 0; ð3Þ

giiðxi02 þ _xi2Þ þ 2gijðxi0xj0 þ _xi _xjÞ ¼ 0; ð4Þ

where all the indices sum.

III. THE FORMULATION

In this section we describe the method and the general
mapping of the particle-string system. We consider a
holographic Lorentz invariant geometry, with a metric
written in the diagonal form

ds2 ¼ ds2Mðx; yÞ þ ds2YðyÞ: ð5Þ

The space-time M has a boundary and Y is an internal
space. The geometry is parametrized by x and y respec-
tively, while y is one of the noncyclic angles of Y. Let us
denote the nontrivial classic vacuum which we expand
on for the study of the world sheet S-matrix to be para-
metrized by fx̃ðτ; σÞ; y0g where y0 denotes a particular
value and could be, for example, a Gubser-Klebanov-
Polyakov (GKP) type of string, or another string
solution. One of the key ingredients for the equivalence
we propose, is to find the appropriate extended configu-
ration fxðτ; σÞ; yðτ; σÞg which localizes consistently to the
vacuum solution at the y0, as illustrated in Fig. 1.
Once we have chosen the vacuum and its appropriate

string configuration that localizes to it, we reduce the
full system of equations consistently to an effective
Hamiltonian of a particle with nontrivial potential, as in
Fig. 2, using the equations of Sec. II. In Appendix A we
show that, in general, the Hamiltonian can be brought to the
form

H ¼ p2
x

2mðyÞ þ p2
y þ Vðx; yÞ; ð6Þ

FIG. 1. An example of a string motion in the curved spacetime,
to be mapped to the particle classical Hamiltonian. The nontrivial
vacuum for the world sheet scattering is the localized string
configuration at y0.
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where through the kinetic terms we can read the effective
mass mðyÞ of the particle, related to the corresponding
background metric fields (5). In general, we can have a
nontrivial mass in the y-kinetic term, but this does not affect
the conclusions of this section. In most cases it can be
rescaled to the presented form using the symmetries of the
theory. The origin of the kinetic terms in general is due to
motion on the noncyclic coordinates and of the potential
due to the cyclic ones. At the point y0, where we recover the
vacuum, our prescription is to perform transverse fluctua-
tions on the solution as δy ¼ y0 þ ηðσÞ. The Eq. (1) of y
using all the equations of motion, as we discuss in
Appendix A, gives a second order homogeneous differ-
ential equation for η of the form

η00ðσÞ þ h1ðx̃ðσÞÞη0ðσÞ þ ∂2
ymðy0Þh2ðx̃ðσÞÞηðσÞ ¼ 0: ð7Þ

This is the normal variational equation (NVE) in the
appropriate form necessary for the application of the
Kovacic algorithm. The functions h1 and h2 depend on
the effective potential V in the particle description,
or equivalently on the geometry of the σ-model in the
dual string picture. The parameter mðy0Þ is a constant at
the point where the vacuum in the string picture is
recovered.
The differential Galois group analysis relates the absence

of integrability with the absence of Liouvillian solutions of
the NVE. Therefore, we obtain the nonintegrability con-
straints on the second derivative of the effective mass of the
particle mðy0Þ to restrict it to a set of values A, such that
only for these values the integrability of the classic system
may exist.
In our formalism the effective particle mass is related to

the mass of a field in the spectrum of the world sheet
excitations on the vacuum. To confirm this statement we
study the world sheet scattering where we consider the
bosonic string sigma model on the 2-dim vacuum
fx̃ðt; sÞ; y0g. Instead of fluctuating the extended string
solutions around the vacuum, as in the method described

above, here we expand the sigma model. The spectrum is
read from the quadratic part of the Lagrangian

L2 ¼ ð∂xiÞ2 þmix2i þ ð∂yÞ2 þ ∂2
ymðy0Þy2; ð8Þ

where mi are constants depending on vacuum and
the geometry, while the presence of the second derivative
of mðyÞ matches the second-order expansion of the
Lagrangian. It is the same derivative that appears in
the integrability analysis of the particle picture (7). The
requirement of the no particle production and the factori-
zation of the amplitudes requires the ones with unequal
incoming and outgoing masses to vanish, constraining

therefore the masses of the spectrum ð ffiffiffiffiffiffi
mi

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂2
ymðy0Þ

q
Þ.

The quadratic, cubic, and quartic order Lagrangians pro-
vide the propagators and the vertices to analyze and
compute the 2 → 2 scattering at tree-level and the
higher-loop corrections to the two-point function.
According to the generic equivalence we have described

between the particle and the string picture, the requirement
of (non)integrability in the classical particle system, con-
strains the spectrum in the dual string side such that the
S-matrix factorization in the quantum 2-dim theory occurs.
Below we show explicitly how our ideas can be applied to
certain theories.

IV. THE STRING-PARTICLE MAPPING
ON THE GKP VACUUM CASE

To demonstrate explicitly the above generic formalism
we consider an example of a background included in the
class of backgrounds (5) with generic warp factors as

ds2 ¼ gαðyÞds2AdS þ gβðyÞds2Y; ð9Þ

where the y coordinates parametrize the internal space Y.
We parametrize the anti–de Sitter (AdS) as ds2 ¼
−cosh2ρ dt2þdρ2þ sinh2ρ dϕ2, where higher-dimension
AdS spaces can be considered without loss of generality.
The appropriate string configuration is parametrized on

the conformal space by t ¼ cτ;ϕ ¼ cωt, with a rigid
rotation on the holographic direction ρðσÞ and the internal
space direction yðσÞ. The equations of motion for our fields
are obtained from Eqs. (1) and (2) and are consistent with
the Virasoro constraints. The system is reduced to the
particle Hamiltonian system where the role of the time is
played by the parameter σ parametrizing the string length.
The effective Hamiltonian in terms of the conjugate
momenta py and pρ is given by

Heff ¼
p2
ρ

4gα
þ p2

y

4gβ
þ c2gαð− cosh2 ρðσÞ þ ω2 sinh2 ρðσÞÞ;

ð10Þ

and is constrained to zero by the Virasoro constraint.

FIG. 2. A string motion in the curved spacetime and its
equivalence with a particle of variable mass in an effective
potential VðρÞ. The nontrivial vacuum for the world-sheet
scattering is the localized configuration at y0. The properties
of the mass of the particle at this point, are related to the mass of
the excited fields of the 2-dim σ-model.
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We localize our rotating string around an appropriate
point y0, which we set it to 0. As long as the background
condition

∂ygαð0Þ ¼ 0 ð11Þ

holds, the equations of motion are solved consistently for a
folded string rigidly rotating, the GKP string [36]. The
solution for ρðσÞ takes the form of the Jacobi amplitude
ρðσÞ ¼ iamðicσ; 1 − ω2Þ, which is the inverse of the
incomplete elliptic integral of the first kind. The constant
cmay be adjusted to fix the period of σ to a desirable value,
for example 2π. The length of the string depends on the
value of the parameter ω. For ω close to the unit the string is
large, while for ω ¼ 1 it is infinite. For large ω the string is
short and the solution can be approximated to the spinning
string in flat space, producing the string Regge trajectory. In
fact the regular string is a one-soliton sinh-Gordon solution
while the long string limit corresponds to a two-soliton
configuration.
The NVE is obtained at the point where the string

solution is localized in the internal space and recovers the
vacuum. The variation is therefore introduced in the
classical particle system as δyðσÞ ¼ 0þ ηðσÞ and after
the appropriate manipulation of the system of equations
and the change of variable z ≔ cosh2 ρðσÞ − ω2 sinh2 ρðσÞ,
the linearized rational NVE can be identified as the linear
general Heun differential equation

η00ðzÞþ κðzÞη0ðzÞþλðzÞηðzÞ¼ 0;

κðzÞ≔ γ

z
þ δ

z−1
þ ϵ

z−c0
; λðzÞ≔ α̃βz−q

zðz−1Þðz−c0Þ
; ð12Þ

which has four regular singular points ð0; 1; c0;∞Þ on the
Riemann sphere when the condition α̃þ β − γ − δ − ϵþ
1 ¼ 0 holds. The identification happens for α̃ ¼ 1; γ ¼ δ ¼
ϵ ¼ 1

2
; c0 ¼ ω2; q ¼ 0; β ¼ −g̃αð0Þ=4, where g̃αð0Þ ≔

∂2
ygαð0Þ [37]. We immediately notice that the requirement

of integrability can constrain the second derivative of the
warp factor gαðyÞ at y ¼ 0. Does the application of the
differential Galois group analysis on the NVE provide an
algebraic analytic condition, fine tuning the acceleration of
change of mass g̃αð0Þ of the classical system to values that
allow integrability? The answer is positive and this is one
additional key ingredient of this work.

V. THE GALOISIAN NONINTEGRABILITY OF
THE PARTICLE SYSTEM

By transforming the Heun equation to a Riccati and
using the differential Galois group analysis, as described in
Appendix B. We apply analytically the Kovacic algorithm
[38] to obtain the values of the parameters for which the
differential equation has Liouvillian solutions

�ðγ þ δþ ϵþ α̃ − βÞ − 1 ¼ 2n; n ∈ Z: ð13Þ

What follows is a generic statement; the integrability of a
particle system which produce an NVE of the form (12) is
not be excluded only for the combination of the parameters
that satisfy the above condition.
Therefore the Liouvillian criterium (13) applied to our

NVE on the Riemann sphere gives the constraint

g̃αð0Þ ¼ n; n ¼ f0; 2g; ð14Þ

where the null value corresponds to the trivial linear
fluctuation. With the given identification, the effective
particle Hamiltonian can be integrable for the values of
g̃αð0Þ of the Eq. (14), which correspond to the acceleration
of the change of the particle’s mass [41].

VI. NONINTEGRABILITY WITH FACTORIZED
SCATTERING FOR THE GKP VACUUM

Let us consider the AdS space of arbitrary dimension in
Poincaré coordinates ðxμ; zÞ with boundary at z ¼ 0 and
work with the Euclidean action in the light cone gauge

LE ¼ gαðyÞ
�
_z2 þ j_xj2 þ 1

z4
ðz02 þ jx0j2Þ

�
þ z2 _y2 þ y02

z2
;

ð15Þ

with the condition
ffiffiffiffiffiffi−γp

γαβ ¼ diagð−z2; z−2Þ on the world
sheet metric. When the derivative of the warp factor of the
metric satisfies the condition (11), we find that the system
admits the generalized null cusp [42] solution which ends
on the null cusp at the boundary of the space, as in [43,44].
Following [31,45], the fluctuations around the null cusp
with z ¼ ffiffiffiffiffiffiffiffi

τ=σ
p

z̃, z̃≡ eϕ̃, x ¼ ffiffiffiffiffiffiffiffi
τ=σ

p
x̃, and world sheet

coordinate change τ̃ ¼ 2 ln τ and σ̃ ¼ 2 ln σ that makes the
induced world sheet conformally flat metric, give the
quadratic action

L2 ¼ ð∂αϕ̃Þ2 þ ð2ϕ̃Þ2 þ ð∂αx̃Þ2

þ ð
ffiffiffi
2

p
x̃Þ2 þ ð∂αyÞ2 þ ð

ffiffiffiffiffiffiffiffiffiffiffi
g̃αð0Þ

p
yÞ2; ð16Þ

where all the derivatives ∂α are with respect to ðτ̃; σ̃Þ [46].
We then identify the bosonic fluctuation spectrum from this
Lagrangian where the fields are

ðm2
x̃; m

2
ϕ̃
; m2

yÞ ≔ ð2; 4; g̃αð0ÞÞ ð17Þ

and the bosonic propagator is diagonal. As expected by our
construction the square of the mass of the fields y, is related
to the variable particle mass in the dual particle
Hamiltonian description (10). The factorization of scatter-
ing requires that all the 2 → 2 amplitudes with incoming
particles of a certain mass going to different mass vanish.
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Therefore according to (17) all amplitudes of an integrable
theory must vanish, unless g̃αð0Þ ¼ ð2; 4Þ. To constrain the
set of g̃αð0Þ further it is necessary to compute the
amplitudes. The cubic and quartic interaction vertices
can be read off the relevant order Lagrangians

L3 ¼ −4ϕ̃ðx̃ − x̃0Þ2 þ 2ϕ̃ð _̃ϕ2 − ϕ̃02Þ þ 2ϕ̃ð_y2 − y02Þ
þ g̃αð0Þy2ð _̃ϕ − ϕ̃0Þ þ… ð18Þ

and

L4 ¼ 8ϕ̃2ðx̃ − x̃0Þ2 þ 2ϕ̃2
h
ð∂αϕ̃Þ2 þ

2

3
ϕ̃2

i
þ 2ϕ̃2ð∂αyÞ2

þ g̃αð0Þ
2

y2
�
2ϕ̃2 þ 4ϕ̃

X
α

∂αϕ̃þ ð∂αϕ̃Þ2 þ ðx̃þ _̃xÞ2

þ ðx̃ − x̃0Þ2
�
þ…: ð19Þ

All the tree amplitudes turn out to behave qualitatively in
the same way, so let us study the tree level contributions of
the amplitude xx → yywhich come from a contact diagram
and the s-channel to obtain

Acðxx → yyÞ ¼ g̃αð0ÞA1ðp1; p2Þ;
Asðxx → yyÞ ¼ g̃αð0ÞA1ðp1; p2ÞA2ðp1; p2Þ;

where A1;2 are unequal functions of the light cone momenta
of the incoming particles. By considering the total con-
tribution to the amplitude summing both channels and since
A2ðp1; p2Þ is a nontrivial function of momenta, the fac-
torization forces g̃αð0Þ to be either 0, so that the amplitude
vanishes, or 2 so that the masses are equalmx ¼ my and the
factorization does not impose any further condition. By
summing the contact, the s and tþ u-channel contributions
of the different amplitudes, as in [31], it turns out that we
have already constrained the system enough and the
factorization happens for g̃αð0Þ ¼ 0 where the amplitudes
vanish, or for g̃αð0Þ ¼ 2. Remarkably, the S-matrix fac-
torization in string picture constrains the spectrum and the
theory to the set of values (14), obtained already by the
equivalent particle picture and the Galoisian integrability of
the effective particle Hamiltonian (10). Moreover, the
nonintegrability analysis (14) fully specifies the integrable
conditions for the theory.

VII. DISCUSSION

We have formulated an equivalence between the 2-dim
σ-model spectrum expanded on a nontrivial massive
vacuum and an effective classical particle Hamiltonian
with nontrivial masses and potential. The equivalence holds
for large classes of backgrounds and vacua. We have
demonstrated explicitly the formalism in a theory with

warp factors of AdS and internal space and a chosen GKP
vacuum, where the mass of the excitations of the 2-dim
σ-model spectrum is dual to the acceleration of the particle’s
variable mass change. The analytic Galoisian nonintegr-
ability on appropriate geodesics of the Hamiltonian system
sets an algebraic constraint on the particle masses, such that
integrability is allowed. It is remarkable that when this
condition is translated to the 2-dim theory through our
equivalence, it constrains the spectrum of the theory such
that the factorization of theS-matrix occurs. In particular, the
integrability of the classical particle system implies the
factorization of the S-matrix in the dual quantum 2-dim
theory. Our proposal initiates the study of analytic non-
integrability techniques on the S-matrix vacua in relation to
factorization, which goes beyond the classification tech-
niques used so far.
The particle-string equivalence we have established

relies on the fact that the methods of analytic nonintegr-
ability and the spectrum of the 2-dim σ-model, although
independent, are based on the same order expansions; this
is the reason our formulation applies well to the tree-level
factorization. This is also the reason that this relation is
entirely fundamental, universal, and generic. Moreover, our
formalism provides nontrivial evidence beyond any
assumptions, on the connection between integrability and
the S-matrix factorization for large class of theories with
interactions that may break Lorentz invariance. The (non)
integrability constraints obtained in the particle picture are
in agreement in the dual quantum picture with the S-matrix
factorization, therefore establishing such a connection for a
large classes of theories. Our proposal provides a possible
ground to develop a formal proof or to clarify explicitly the
requirements for the validity of this relation.
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APPENDIX A: THE HAMILTONIAN
DERIVATION

Let us write the components of the metric (5) we like to
focus as

ds2Mðx; yÞ ≔ gttðx; yÞdt2 þ gxxðyÞdx2 þ gϕϕðx; yÞdϕ2 þ…

ds2YðyÞ ≔ gyyðyÞdy2 þ…: ðA1Þ

We highlight that this is without any loss of generality, the
dots represent other directions where the stings can con-
sistently localize. We have made a rescaling on the x
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coordinate since it considerably simplifies the length of the
expressions below. We consider the configuration t ¼ κτ,
ϕ ¼ ωτ, x ¼ xðσÞ and y ¼ yðσÞ. The equations of motion
read

∂ygxxx02þ∂ygyyy02−∂ygttκ2−∂ygϕϕω2−2∂σðgyyy0Þ ¼ 0;

−∂xgttκ2−∂xgxxω2−2∂σðgxxx0Þ ¼ 0;

while the Virasoro constraint is

gttκ2 þ gϕϕω2 þ gxxx02 þ gyyy02 ¼ 0: ðA2Þ

The system of equations should be solved at the back-
ground chosen, without loss of generality let us choose the
y ¼ 0 where it can be seen that the system has a solution if

∂ygxx
gxx

����
y¼0

¼ −
∂ygϕϕ
gϕϕ

����
y¼0

¼ −
∂ygtt
gtt

����
y¼0

; ðA3Þ

where one sees that simple background solution as

∂ygiiðx; 0Þ ¼ 0: ðA4Þ

satisfy the condition. The effective particle Hamiltonian is
derived by the (A2) straightforwardly as in [19,25]

H ¼ p2
x

2gxx
þ p2

y

2gyy
þ Vðx; yÞ; ðA5Þ

where the effective potential is

Vðx; yÞ ≔ κ2gttðx; yÞ þ ω2gϕϕðx; yÞ: ðA6Þ

The Hamiltonian belongs in the form of (6) with the use of
a canonical transformation.
The NVE is then obtained by applying the fluctuation

δy ¼ y0 þ ηðσÞ on the equations of motion as

η00ðxÞ þ 1

2gyyðx; 0Þ
∂2
yVηðxÞ ¼ 0; ðA7Þ

where all the fields are evaluated at y ¼ 0. The NVE
belongs to the more general family of Eq. (7).
To apply the Kovacic algorithm on the NVE (A7)

sometimes a change of variables z ¼ fðxÞ is needed to
bring it in the appropriate form. The generated first and
second derivatives of xðσÞ from the change of variables
can be read from the Virasoro constraints and the
equations of motion, without the need of the knowledge
of the analytical form of the string solution we expand on
as in [19,25].

APPENDIX B: DIFFERENTIAL GALOIS GROUP
ON THE HEUN EQUATION

The Heun differential equation is brought to its normal
form by a transformation η → η expð− 1

2

R
κðzÞdzÞ.

The transformation between the two equations is
Liouvillian, so the integrability status between the original
and the transformed equations is equivalent. Nevertheless,
in general the differential Galois group of the two
equations are not the same. In fact the differential
Galois group of the transformed normal equation is a
subgroup of SLð2; CÞ, while for the initial Heun equa-
tion (12) this is true if and only if κðzÞ ¼ nf=f0 with n ∈ Z
and f is a differentiable function, f ∈ K. The differential
equation in its canonical form has Liouvillian solutions if
and only if, its differential Galois group is a proper
algebraic subgroup of SLð2; CÞ [47,48]. The normal
differential equation can be further transformed to the
Riccati equation with g ¼ −ðlog ηÞ0. The criterium for the
existence of integrability now takes a more tractable form:
The original Heun NVE equation has Liouvillian solu-
tions if and only if the Riccati NVE equation has an
algebraic solution with the degree of the relevant minimal
polynomial that belongs to the set f1; 2; 4; 6; 12g. By
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