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We calculate quantum gravitational corrections to the entropy of black holes using the Wald entropy
formula within an effective field theory approach to quantum gravity. The corrections to the entropy are
calculated to second order in curvature and we calculate a subset of those at third order. We show that, at
third order in curvature, interesting issues appear that had not been considered previously in the literature.
The fact that the Schwarzschild metric receives corrections at this order in the curvature expansion has
important implications for the entropy calculation. Indeed, the horizon radius and the temperature receive
corrections. These corrections need to be carefully considered when calculating the Wald entropy.
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Black holes are fascinating objects for many different
reasons. Hawking’s groundbreaking intuition that black
holes are not black but have a radiation spectrum that is
very similar to that of a black body makes black holes an
ideal laboratory to investigate the interplay between quan-
tum mechanics, gravity and thermodynamics. This has led
to the notion of Bekenstein-Hawking entropy or black hole
entropy which has attracted much attention over the last
almost 50 years. The calculation of quantum corrections to
this entropy has been the subject of many publications, see,
e.g., [1,2] for reviews.
In this work we revisit the calculation of the entropy of a

Schwarzschild black hole in quantum gravity and identify
new important subtleties that have been overlooked in
previous calculations. To be very specific, we use effective
field theoretical methods to calculate quantum gravitational
corrections to the entropy of this black hole using the Wald
entropy formula [3]. We highlight new intriguing relations
between the quantum corrections to the entropy, the Euler
characteristic and quantum corrections to the metric of
the Schwarzschild black hole. Previous calculations within
the effective theory approach to quantum gravity [4–6]
have used the Euclidean path integral formulation of the
entropy. We present a systematic approach that can easily
be extended to any order in perturbation theory or to any
black hole metric.
The Wald approach to the calculation of a black hole

entropy is very elegant and does not involve the Wick
rotation to Euclidean time which is known to be tricky in
quantum gravity. The Wald entropy formula reads [3]

SWald ¼ −2π
Z

dΣϵμνϵρσ
∂L

∂Rμνρσ

����
r¼rH

; ð1Þ

where dΣ ¼ r2 sin θdθdϕ, L is the Lagrangian of the
model, Rμνρσ is the Riemann tensor and rH is the horizon
radius. Furthermore, ϵμνϵμν ¼ −2, ϵμν ¼ −ϵνμ. The inte-
gral is over the perimeter of the horizon of the black hole
and we thus need to determine the location of the horizon
with radius rH. This is our first observation: to calculate
the entropy of the black hole, we do not only need the
Lagrangian of the gravitational action, but we also need to
verify whether the metric receives quantum corrections as
these could impact the position of the horizon. This
important point had simply been overlooked in previous
calculations for Schwarzschild black holes.
As explained before, we are using the effective action to

quantum gravity [7–13]. At second order in curvature, one
has

SEFT ¼
Z ffiffiffiffiffi

jgj
p

d4x

�
R

16πGN
þ c1ðμÞR2 þ c2ðμÞRμνRμν

þ c3ðμÞRμνρσRμνρσ þ Lm

�
; ð2Þ

for the local part of the action and the nonlocal part is
given by

Γð2Þ
NL ¼ −

Z ffiffiffiffiffi
jgj

p
d4x

�
αR ln

�
□

μ2

�
Rþ βRμν ln

�
□

μ2

�
Rμν

þ γRμναβ ln

�
□

μ2

�
Rμναβ

�
; ð3Þ

where □ ≔ gμν∇μ∇ν.
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It is straightforward to show [14,15] that there are no
corrections up to second order in curvature to the
Schwarzschild metric using the nonlocal Gauss-Bonnet
identity [15]

Z ffiffiffiffiffi
jgj

p
d4xRμναβ

�
c3ðμÞ − γ ln

�
□

μ2

��
Rμναβ

¼ þ4

Z ffiffiffiffiffi
jgj

p
d4xRμν

�
c3ðμÞ − γ ln

�
□

μ2

��
Rμν

−
Z ffiffiffiffiffi

jgj
p

d4xR

�
c3ðμÞ − γ ln

�
□

μ2

��
R

þOðR3Þ þ boundary terms: ð4Þ

This identity can be proven using [16,17]

log
□

μ2
¼

Z
∞

0

ds
e−s − e

−s□
μ2

s
ð5Þ

and [11]

□Rαβμν ¼ ∇μ∇αRνβ −∇ν∇αRμβ −∇μ∇βRνα

þ∇ν∇βRμα − 4Rα
σ
½μ
λRβσν�λ þ 2R½μ

λRαβλν�

− Rαβ
σλRμνσλ; ð6Þ

which follows from the Bianchi identity. One obtains
[16,18–20]

Rαβμν□Rαβμν ¼ 4Rαβμν∇α∇μRβν þOðR3Þ: ð7Þ

It is straightforward to generalize this result to higher power
of the Laplacian. Inserting this relation into the Lagrangian
and using partial integrations and the contracted Bianchi
identity, we obtain the nonlocal Gauss-Bonnet identity. As
the Riemann tensor can be eliminated from the dynamical
part of the action at second order in curvature, we find that
there are no corrections to the field equations at this order
for vacuum solutions of general relativity [15].
As there are no corrections to the metric, the horizon

radius is unchanged and we can calculate the Wald entropy
at second order in a straightforward manner using (2)
and (3)1

Sð2ÞWald ¼
A

4GN
þ 64π2c3ðμÞ

þ 64π2γðlog ð4G2
NM

2μ2Þ − 2þ 2γEÞ ð8Þ

where A ¼ 16πðGNMÞ2 is the area of the black hole. A
similar answer was obtained using the Euclidean path

integral formulation. Note that the entropy is renormaliza-
tion group invariant and finite. As there are no corrections
to the metric, the temperature remains unchanged and the
classical relation TdS ¼ dM receives a quantum correc-
tion. Indeed we find TdS ¼ ð1þ γ16π=ðGNM2ÞÞdM.
A possible interpretation of this result is that the nonlocal

quantum effects generate a pressure for the black hole. The
first law of thermodynamics is then given by

TdS − PdV ¼
�
1þ γ

16π

GNM2

�
dM ¼ dM þ γ

16π

GNM2
dM;

ð9Þ

where P is the pressure of the black hole. Its volume is
given by V ¼ 4=3πr3H, where rH ¼ 2GNM is the horizon
radius. We can then identify TdS ¼ dM and γ16π=
ðGNM2ÞdM ¼ −PdV with dV ¼ 32πG3

NM
2dM. We thus

obtain

P ¼ −γ
1

2G4
NM

4
; ð10Þ

which can be negative as γ is positive for spin 0, 1=2, and 2
fields or positive as γ is negative for spin 1 fields. Indeed, one
finds γ0 ¼ 2=ð11520π2Þ [21], γ1=2 ¼ 7=ð11520π2Þ [21],
γ1 ¼ −26=ð11520π2Þ [21] and γ2 ¼ 424=ð11520π2Þ [8].
We note that Dolan had discussed the possibility that black
holes would have a pressure [22] in the context of gravita-
tional models with a cosmological constant. It is remarkable
that quantum gravity leads to a pressure for Schwarzschild
black holes. Note that this is the main difference with
previous results [4–6] who did not study quantum corrections
to the metric. Because there is no dynamical correction to
the metric at this order in curvature, the interpretation of the
correction to the entropy as a pressure term is forced upon us.
At third order in curvature, we need to add the following

operators to the effective action

Lð3Þ ¼ c6GNRμν
ασRασ

δγRδγ
μν; ð11Þ

where c6 is dimensionless. As pointed out by Goroff and
Sagnotti [23], there is only one invariant involving only
Riemann tensors in vacuum, as RαβγδRα

ϵ
γ
ζRβϵδζ can be

rewritten in terms of Rμν
ασRασ

δγRδγ
μν and terms involving

the Ricci scalar or Ricci tensors which both vanish in
vacuum. There is a corresponding nonlocal operator
Rμν

ασ log□Rασ
δγRδγ

μν. While the Wilson coefficient is
known in a specific gauge [23], it is not known for the
unique effective action and we will thus neglect this term.
The dimension six local operator leads to a correction to

the metric. We find

ds2 ¼ −fðrÞdt2 þ 1

gðrÞ dr
2 þ r2dΩ2 ð12Þ

1Note that we need to use this basis for the calculation of the
entropy, as we have not calculated the boundary term generated
by Gauss-Bonnet identity explicitly.
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with

dΩ2 ¼ dθ2 þ sinðθÞ2dϕ2; ð13Þ

fðrÞ ¼ 1 −
2GNM

r
þ 640πc6

G5
NM

3

r7
; ð14Þ

gðrÞ¼1−
2GNM

r
þ128πc6

G4
NM

2

r6

�
27−49

GNM
r

�
: ð15Þ

The corrections to the metric implies a shift of the
horizon radius

rH ¼ 2GNM

�
1 − c6

5π

G2
NM

4

�
: ð16Þ

Clearly for astrophysical black holes the correction to the
classical Schwarzschild radius goes to zero very quickly
but it can be an order one correction for quantum black
holes with masses of the order of the Planck scale.
The ϵμν tensors also need to be redefined. We have

ϵμν ¼

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ=gðrÞp

if ðμ; νÞ ¼ ðt; rÞ;
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ=gðrÞp

if ðμ; νÞ ¼ ðr; tÞ;
0 otherwise:

ð17Þ

One can easily verify that ϵμνϵμν ¼ −2, ϵμν ¼ −ϵνμ, and
ϵμν ¼ 0, if μ; ν ≠ t, r.
At third order in curvature, we thus obtain the following

correction to the entropy:

Sð3ÞWald ¼ Sð2ÞWald þ 128π3c6
GN

Atot
; ð18Þ

where we neglect third order nonlocal terms which would
compensate for the scale dependence of c6.

2 Note that
while the dimension six operator has been considered
before [24], our result differs from that paper as the metric
corrections were not taken into account in that work.
With corrections to the metric that deviate from the

Schwarzschild solution, one may wonder whether the Euler
characteristic given by

χ ¼ 1

32π2

Z
1=T

0

dtE

Z
∞

rH

dr
Z

π

0

dθ
Z

2π

0

dϕ
ffiffiffiffiffi
jgj

p

× ðR2 − 4RμνRμν þ RμνρσRμνρσÞ ð19Þ

remains 2 for black holes. It is however easy to see that this
is the case, because there is also a correction to the
temperature which is given by

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðrHÞg0ðrHÞ

p
4π

¼ 1

8πGNM

�
1þ 2πc6

�
1

G2
NM

4

��
:

ð20Þ

With this in mind, it is easy to verify that χ ¼ 2 is fulfilled,
which is required for our results to be consistent. One can
also easily verify that the thermodynamic law TdS ¼ dM
holds at order of Oðc6Þ with the modified temperature and
entropy. The nonlocal correction to the action at third order
in curvature would lead to a contribution to the pressure
which is much smaller than the seconder order correction
obtained in Eq. (10). A back of the envelop calculation
shows that, as expected, the third order curvature nonlocal
correction to the pressure is suppressed by a factor
ðGNM2Þ−1 in comparison to the leading second order term
that we have calculated.
Our work has interesting implications for quantum black

holes. The temperature of black holes can be seen as an
indicator of how quantum a black hole is. A black hole with
a mass of the order of ten times the reduced Planck mass
M̄P would still be a very good approximation and have a
temperature close to its classical value

TQBH ¼ 1

8πGNM̄P

�
1þ 128π3c6

M̄4
P

M4
QBH

�
: ð21Þ

Assuming that c6 is of order unity, we see that the classical
temperature receives an order one correction from the
third order curvature term in the action for MQBH ¼ M̄P,
but these corrections are very tiny for quantum black holes
with masses of the order of MQBH ∼ 10M̄P. This justifies
the geometrical cross section adopted for quantum black
holes in the framework of low scale quantum gravity at
colliders [25–28]. The semiclassical approximation
appears to be an excellent one. Describing quantum black
holes with the classical Schwarzschild metric is clearly a
good approximation as well as long as their masses are
larger than Oð10M̄PÞ.
In this work we have calculated quantum gravitational

corrections to the entropy of black holes using the Wald
entropy formula within an effective theory approach to
quantum gravity at third order in curvature. We first have
revisited the calculation of the entropy of black holes at
second order in curvature and have found that the quantum
gravitational correction to the entropy can be interpreted as a

2We can estimate the magnitude of the nonlocal correction of
the entropy (albeit in the de Donder gauge, the actual calculation
in the unique effective action would be much more involved)
using the result in [23] for the two-loop divergences of Einstein
gravity Γ∞ ¼ 209

2880ð4πÞ4
1
ϵ

R
d4x

ffiffiffiffiffiffi−gp
Rμν

ασRασ
δγRδγ

μν. This diver-
gent term fixes the renormalization group equation for c6 and
thus the Wilson coefficient of the term Rμν

ασ log□Rασ
δγRδγ

μν.
For the entropy to be renormalization group invariant at third
order in curvature, the nonlocal correction to the entropy must go
as 209

2880ð4πÞ4 GN=Atot logð4G2
NM

2μ2Þ. These corrections are thus
very small in comparison to those obtained in Eq. (8).
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pressure term in the first law of thermodynamics for black
holes. This pressure can be positive or negative depending
on the field content of the theory. Furthermore, we have
shown that at third order in curvature, there are interesting
issues that had not been considered previously in the
literature. The fact that the Schwarzschild metric receives
corrections at this order in the curvature expansion has
important implications for the entropy calculation. Indeed,
the horizon radius and the temperature receive corrections.
These corrections need to be carefully considered when
calculating the Wald entropy, knowing the corrections to
the Lagrangian is not enough. The reason why previous
entropy calculations at second order in curvature match our

results is that there are no correction to the Schwarzschild
metric at that order. We can actually justify this result with
our approach. Finally, our results have interesting conse-
quences for the lightest black holes of Planckian masses
[29,30] which are much more classical than naively
expected.
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