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We determine the effect on the computational complexity of a conformal anomaly using the
complexity ¼ action prescription of the gauge/gravity correspondence. To allow the involvement of said
anomaly, we extend previous studies to include arbitrary values for the anisotropic parameter and the
magnetic field, respectively, on the Mateos-Trancanelli and D’Hoker-Kraus holographic models. Our main
result is that the rate of change of the computational complexity is independent of the conformal anomaly in
both cases. In addition, this allows us to show that, if so desired, the saturation of Lloyd’s bound at infinite
time can be used as a renormalization condition.
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I. INTRODUCTION

In recent years, the AdS=CFT correspondence [1] has
served as a bridge that connects concepts of quantum
information theory and gravity. The holographic dictionary
[2,3] typically relates bulk and boundary physical quan-
tities, such as the entanglement entropy, whose holographic
dual is the area of an extremal surface in the bulk of the
spacetime [4,5], and the entanglement of purification,
which is dual to the area of the minimal cross section of
the entanglement wedge [6]. However, there is now
evidence that the black hole interior also encodes important
information about the dual gauge theory, concerning not
only information theory [7–9] but other systems as well,
such as superconductors [10]. An important step in this
direction was the conjecture, based on studies of the time
evolution of the entanglement entropy [11], that the
computational complexity of the boundary state is also
affected by the interior of the black hole.
There are two main proposals for this connection—

namely, the complexity ¼ volume (CV) [12,13] and the

complexity ¼ action (CA) [14,15] conjectures. In the CV
conjecture, the complexity is dual to the volume of a certain
extremal region in the bulk [16]. However, the precise
prescription includes some unsatisfactory features like the
introduction of an arbitrary scale and the necessity for a
special foliation of spacetime. While these issues were
tackled, the CA conjecture was proposed as a refinement in
which complexity is dual to the action of the gravitational
theory evaluated in a region known as the Wheeler-DeWitt
(WDW) patch [14,15], with the precise relation being

C ¼ SWDW

π
: ð1Þ

The WDW patch is the region enclosed by past and future
light sheets sent into the bulk from a constant time slice on
the boundary, where the complexity is meant to be
evaluated. In other words, the WDW patch is the domain
of dependence of any Cauchy surface in the bulk which
asymptotically approaches said time slice at the boundary.
The gravity setup considered in [14,15] was a two-sided

black hole geometry. From the point of view of the gauge
theory, this is dual to a thermofield double (TFD) state
which, denoting the two asymptotic regions as the left (L)
and right (R) boundaries, can be written schematically as

jTFDi ¼ 1

Z
1
2

X
n

e−
βEn
2 e−EnðtLþtRÞjEniLjEniR; ð2Þ

where β is the inverse of the temperature. It is important to
note that the TFD state is invariant under time evolution
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with the Hamiltonian H ¼ HL −HR, which means that the
state is invariant under the transformations tL → tL þ Δt
and tR → tR − Δt. This implies that the TFD state depends
only on time through the combination τ ¼ tL þ tR.
The late-time behavior of the rate of change

of the complexity of certain black holes was studied in
[14,15] using both the CVand CA conjectures. In the case
of a planar five-dimensional anti–de Sitter (AdS)-
Schwarzschild black hole, the CV late-time calculation
leads to

lim
t→∞

dC
dτ

¼ 4πE; ð3Þ

while in the case of CA the behavior is

lim
t→∞

dC
dτ

¼ 2E
π

; ð4Þ

which is consistent with Lloyd’s bound [17] on the rate of
computation by a system with energy E,

dC
dτ

≤
2E
π

: ð5Þ

It was later shown [18] that the correct evaluation of the
gravitational action over the WDW patch requires the
addition of boundary terms Ssurf resulting from the codi-
mension-1 null hypersurfaces that delimit part of it, and of
joint terms Sjoint arising from the codimension-2 intersec-
tions of the light sheets with the boundary and the
singularity. It was also observed that there is an ambiguity
in Ssurf coming from the normalization of normal vectors to
the null segments of the boundary, and that it is necessary to
add a counterterm Snull in order to remove it. Hence, the full
action can be written schematically as

S ¼ Sbulk þ Ssurf þ Sjoint þ Snull: ð6Þ

The complete action (6) made it possible in [19] to study
the behavior at all times for the rate of change of the
complexity. It was shown that, for the black holes that they
consider, the CV prescription saturates Lloyd’s bound (5)
from below at late times, while the CA prescription
saturates it from above. In other words, it was shown that
the CA prescription violates Lloyd’s bound for any finite
time, saturating it only at infinite time. This led to question
the validity of Lloyd’s bound in the holographic context,
whether it is reasonable to expect it to hold, and under
which conditions it would hold [20]. For instance, it was
found in [21] that Lloyd’s bound is violated for non-
conmutative supersymmetric Yang-Mills theories, and the
same was shown in [22,23] for the case of Lifshitz and
hyperscaling violating theories, even at late times. Other
examples of violations of Lloyd’s bound can be found in
[24–27]. There is also the question of exactly what kind of

complexity is dual to the holographic complexity [28]. For
example, Nielsen’s circuit complexity [29] for a charged
thermofield double state was compared to the holographic
result using CA in [30], with different saturation times for
Lloyd’s bound obtained depending on the approach.
Recently, the effect that a spatial anisotropy in the gauge

theory can have on the rate of change of the complexity was
studied in [31] using certain limits of the Cheng-Ge-Sin
model, the Mateos-Trancanelli (MT) anisotropic model
[32,33], and the D’Hoker-Krauss (DK) magnetic model
[34]. The results show that at late times Lloyd’s bound is
saturated from above for small anisotropies in the case of
the MT model and for an infinite magnetic field intensity in
the case of the DK model. However, both models feature a
conformal anomaly for any nonvanishing a in the case of
the MT model and any nonvanishing b in the case of the
DK model. The conformal anomaly (also known as the
Weyl or scale anomaly) was first studied in the holographic
context in [35], where it was shown that the Lagrangian of
the theory is no longer invariant under rescalings of the
holographic radial coordinate when a logarithmic diver-
gence appears in the holographic renormalization pro-
cedure [36–39]. It was shown in [40] that this is related
to the appearance of a reference energy scale that is
independent of those in the classic counterpart. The
existence of this parameter that is not present in the
classical theories manifests itself by making some physical
observables, such as the expectation value of the stress-
energy tensor of the gauge theory, to have anomalous
behavior under scale transformations. The nontrivial man-
ner in which the conformal anomaly present [35–37,40] in
both the MT and DK models can affect the physics of the
theory was not studied as part of the limits above, as it
becomes a subdominant contribution of order ða=TÞ4
[32,33] for the first of these models, while the second
undergoes a dimensional reduction [41] in the b=T2 → ∞
limit that renders the four-dimensional conformal anomaly
inapplicable.
The main objective of this work is to determine the effect

that the conformal anomaly has on the complexity of the
state, and in particular whether or not it has an impact on
Lloyd’s bound. In order to achieve this, we extend the study
presented in [31] to include arbitrary anisotropies and
magnetic field intensities, finding as our main result that,
even if the complexity itself is affected by the conformal
anomaly, its rate of change is not, making it independent of
the renormalization scale. Given that the energy of the state
depends on this scale, we also show that the saturation of
Lloyd’s bound at infinite time can be used, if so desired, as
a renormalization condition and use a scheme related
constant that appears in the construction to preserve it at
all values of a=T in the MT model and of b=T2 for the
DK case.
The manuscript is organized as follows. In Sec. II we

review the construction of both the MT and DK models,
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explaining the role of the conformal anomaly in both cases.
Details about the construction of the interior solutions can
be found in the Appendix A. In Sec. III we explain the
construction of the WDW patch for both models, and in
Sec. IV we compute the complexity of the TFD state, along
with its rate of change, using the CA prescription. We close
by discussing our results in Sec. V.

II. GRAVITY SETUP

A. Anisotropic black branes

The MT anisotropic model [32,33] is a ten-dimensional
family of solutions to type IIB supergravity (SUGRA).
However, for our purposes it suffices to consider its
reduction to five dimensions, whose action in the
Einstein frame is given by [42]

S ¼ 1

16πG5

Z
dx5

ffiffiffiffiffiffi
−g

p �
Rþ 12

L2
−
1

2
ð∂ϕÞ2 − 1

2
e2ϕð∂χÞ2

�

þ 1

16πG5

Z
dx4

ffiffiffiffiffiffi
−γ

p
2K; ð7Þ

where ϕ, χ, and gμν are the dilaton, the axion, and metric
fields, respectively. G5 is the five-dimensional Newton
constant and L is the AdS5 radius, which we will set to
unity without loss of generality [43]. The second integral is
the York-Gibbons-Hawking (YGH) surface term, in which
γij is the induced metric at the boundary and K its extrinsic
curvature.
Every member of the MT family of solutions is part of

the Ansatz

ds2 ¼ e
−ϕ
2 r2
�

dr2

r4F ðrÞ − F ðrÞBðrÞdt2
�

þ e
−ϕ
2 r2ðdx2 þ dy2 þ e−ϕdz2Þ;

χ ¼ az; ϕ ¼ ϕðrÞ: ð8Þ

Here r is the AdS5 radial coordinate, in terms of which the
boundary is located at r → ∞. All these backgrounds
feature a horizon located at r ¼ rh, where the metric
function F ðrÞ vanishes. The parameter a measures the
degree of anisotropy in the geometry and its relation to a
density of D7-branes that are smeared in the geometry from
the ten-dimensional perspective (see [32,33] for more
details). Meanwhile, the temperature of each member of
the family is given by

T ¼ e−
1
2
ϕðrhÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
BðrhÞ

p ð16r2h þ a2e
7
2
ϕðrhÞÞ

16πrh
: ð9Þ

The solutions asymptote AdS5 for any value of a and T
when the limit r → ∞ is taken. In this region the metric
functions and dilaton are given by

F ðrÞ ¼ 1þ 11a2

24r2
þ 1

r4

�
f4 −

7

12
a4 log r

�
þO

�
1

r6

�
;

BðrÞ ¼ 1 −
11a2

24r2
þ 1

r4

�
b4 þ

7

12
a4 log r

�
þO

�
1

r6

�
;

ϕðrÞ ¼ −
a2

4r2
þ 1

r4

�
121a4

4032
þ 2b4

7
þ a4

6
log r

�

þO

�
1

r6

�
: ð10Þ

The two coefficients b4 and f4 in Eq. (10) are not
determined by the equations of motion but can be read
once a numerical solution is known. It is because of this that
both are functions of the anisotropy a and temperature T of
the solution, as well as of the renormalization scale μ,
which will be discussed below.
The metric functions and the dilaton are known analyti-

cally in the limits of high and low temperature [33], while
for intermediate regimes one has to resort to numerics to
solve the equations of motion coming from Eq. (7). The
explicit integration procedure is explained in detail in [33],
where the solutions were computed outside the horizon.
However, in order to apply the CA prescription we need to
know the solutions inside the horizon, as the WDW patch
extends into this region. We describe the integration
procedure needed for this in Appendix A 1.
From the above discussion we can see that every member

of the family of solutions is characterized by the value of its
anisotropy a and temperature T, which seem to be the only
two parameters with dimensions of length, inviting us to
label each solution by the dimensionless ratio a=T.
However, it turns out that not all dimensionless physical
observables are functions of this ratio alone, indicating the
presence of a conformal anomaly [35] in the dual to any of
the backgrounds above with a ≠ 0. This anomaly can be
explicitly exhibited by taking the trace of the stress-energy
tensor in the corresponding gauge theory, obtained from the
variation with respect to the boundary metric of the on-shell
evaluations of the action (7). As it is usually the case in
holography, the result of said evaluation diverges when the
integration is taken all the way up to the boundary. To deal
with this issue, the subtraction of the divergent behavior has
to be done by adding covariant boundary terms to the
action, in a process known as holographic renormaliza-
tion [38,39].
The counterterm action for theMTmodel is given by [33]

Sct ¼
1

8πG5

�Z
d4x

ffiffiffiffiffiffi
−γ

p �
3 −

1

8
e2ϕ∂iχ∂iχ

�

þ log r
Z

d4x
ffiffiffiffiffiffi
−γ

p e4ϕ

12
ð∂iχ∂iχÞ2

þ 1

4
ðCsch − 1Þ

Z
d4x

ffiffiffiffiffiffi
−γ

p e4ϕ

12
ð∂iχ∂iχÞ2

�
; ð11Þ
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where all the integrals are performedover a constant r surface
and the limit r → ∞ is meant to be taken. Also, we are
denoting the boundary coordinates as xi, and all the con-
tractions are taken using the metric γij induced at the
boundary. The first two terms are the minimum required
to eliminate the divergences of the action (7), while the third
gives a contribution that remains finite in the r → ∞ limit.
The freedom to add such a finite term is associated with the
existence of the anisotropy related conformal anomaly
discussed above, which has as a consequence the introduc-
tion of an independent arbitrary energy scale μ. This is the
reason why some dimensionless physical quantities, such as
the energy density of the system E=T4, depend not only on
the dimensionless ratio a=T but also on any two independent
ratios that can be built from a, T, and μ.
In Eq. (11) we have fixed μ ¼ L ¼ 1 in the argument of

the logarithm of r. Any change in this renormalization scale
can be absorbed into the finite term by choosing a different
value for the Csch coefficient. We can therefore use this
coefficient to reverse the change that would be introduced
in physical quantities to keep a particular renormalization
scheme fixed as the energy scale μ is modified, attaining as a
final consequence the scheme independence of relevant
physical results. It is in this sense that Csch is a scheme-
dependent quantity (see [44] for a more detailed discussion).
With the counterterms in hand, the stress-energy tensor

of the system can be computed from the renormalized
action

Sren ¼ Sþ Sct ð12Þ

by taking its variation with respect to the boundary metric
and evaluating the result at the boundary using the
expansions (10). This procedure gives [32,33]

hTiji ¼ diagðE;P⊥; P⊥; PkÞ; ð13Þ

where E is the energy of the state, while P⊥ and Pk are,
respectively, the pressures along directions perpendicular
and parallel to the anisotropic direction. These quantities
are given by

E ¼ N
�
−3f4 −

23

7
b4 þ

2777

4032
a4 þ Csch

24
a4
�
;

P⊥ ¼ N
�
−f4 −

5

7
b4 þ

611

4032
a4 −

Csch

24
a4
�
;

Pk ¼ N
�
−f4 −

13

7
b4 þ

2227

4032
a4 þ Csch

8
a4
�
; ð14Þ

where the explicit dependence on the three parameters a, T,
and μ has to be supplemented by the one implicit in f4 and
b4 that was previously discussed, and the normalization
constant N is given by

N ¼ Vx

16πG5

; ð15Þ

with Vx the spatial volume of the boundary region under
consideration. From this expression we can see that the
trace of the stress-energy tensor is

hTi
ii ¼

N
6
a4; ð16Þ

which does not vanish for any a ≠ 0, showing the existence
of the conformal anomaly. In Fig. 1 we show the quantity
E=NT4 in the MT model as a function of a=T for three
different values of Csch, as we do not have any renorm-
alization conditions to fix the scheme at this stage.

B. Magnetic black branes

The DK model [34] is a family of solutions to the five-
dimensional gauged supergravity whose bosonic part of the
action is given by

S ¼ 1

16πG5

�Z
d5x

ffiffiffiffiffiffi
−g

p �
R − F2 þ 12

L2

�

þ 8

3
ffiffiffi
3

p
Z

A ∧ F ∧ F þ
Z

dx4
ffiffiffiffiffiffi
−γ

p
2K

�
; ð17Þ

where F and gμν are, respectively, the Maxwell and metric
fields,G5 is the five-dimensional Newton constant, and L is
the AdS5 radius, which we will set again to unity without
loss of generality. The last integral is the YGH surface term,
in which γij is the induced metric at the boundary and K its
extrinsic curvature. This theory is a consistent truncation of
ten-dimensional type IIB SUGRA [45], and the back-
grounds that we are about to study were uplifted in [46]
to turn them into configurations that solve the proper
equations of the latter theory.

FIG. 1. Energy density for the MT model as a function of a=T.
Blue, red, and green curves (bottom to top) correspond to
Csch ¼ f−10; 0; 10g, respectively.
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Every member of the DK family of solutions is part of
the Ansatz

ds2 ¼ dr2

UðrÞ − UðrÞdt2 þ VðrÞðdx2 þ dy2Þ þWðrÞdz2;

F ¼ bdx ∧ dy; ð18Þ

where r is the AdS5 radial coordinate, in terms of which the
boundary is located at r → ∞. All these backgrounds
feature a horizon located at rh where the metric function
UðrÞ vanishes. The magnetic field intensity b matches the
one in the dual gauge theory given that the metric
asymptotes precisely AdS5 at the boundary. From the
ten-dimensional perspective this Maxwell field is inter-
preted as an infinitesimal rotation in the compact part of the
geometry (see [45,47] for additional details). Meanwhile,
the temperature of each solution is given by

T ¼ 3rh
2π

: ð19Þ

Thus, every member of the family is characterized by the
values of its magnetic field intensity b and temperature T,
which at first sight seem to be the only two parameters with
dimensions of length, suggesting the labeling of each
solution by the dimensionless ratio b=T2.
The only known analytical members of this family are

the Schwarzschild-AdS black brane for b=T2 ¼ 0 and
BTZ × R2 for precisely b=T2 ¼ ∞. For any intermediate
values it is necessary to resort to numerical methods to
solve the equations coming from Eq. (17). The explicit
integration procedure that we follow is explained in detail
in [48] for the exterior solutions, and in [49] for the interior
solutions. We review both in Appendix A 2. The back-
grounds are constructed so that for any value of b=T2 the
geometry asymptotes AdS5 when the limit r → ∞ is taken.
In this region the functions in the line element (18) are
given by

UðrÞ¼ r2þu1rþ
u21
4
þ 1

r2

�
u4−

2

3
b2 logr

�
þO

�
1

r4

�
;

VðrÞ¼ r2þu1rþ
u21
4
þ 1

r2

�
−
1

2
w4þ

1

3
b2 logr

�
þO

�
1

r4

�
;

WðrÞ¼ r2þu1rþ
u21
4
þ 1

r2

�
w4−

2

3
b2 logr

�
þO

�
1

r4

�
:

ð20Þ

The three coefficients u1, w4, and u4 are not determined by
the equations of motion but can be read from each
numerical solution. Consequently all three coefficients
are functions of the magnetic field b and the temperature
T of the background, through dimensionless combinations

involving the renormalization scale μ that will be intro-
duced below.
While it would seem like any member of the family of

solutions can be characterized by the dimensionless ratio
b=T2, not every physical observable is solely a function of
this ratio. Just like the MT model, the dual of any solution
with nonvanishing magnetic field b ≠ 0 features a con-
formal anomaly. In order to obtain the stress-energy tensor
required to support the latter claims, it is necessary to
compute the on-shell action (17) and take its variation with
respect to the boundary metric. The result of this once again
diverges when the integration is taken all the way up to the
boundary.
The counterterm action for the DK model is given by

[50,51]

Sct ¼ −
1

16πG5

Z ffiffiffiffiffiffi
−γ

p ð6 − FijFij log rþ CschFijFijÞ;

ð21Þ

where the integral is performed over a constant r surface
and the limit r → ∞ is meant to be taken. The first two
terms are the minimum required to remove the divergences
in the action (7), while the third gives a finite contribution
in the limit r → ∞. As discussed previously for the MT
model, the freedom to add a finite term to the action is
related to the existence of a conformal anomaly in the
theory, which introduces an arbitrary energy scale μ. We
fixed this scale to μ ¼ L ¼ 1 in Eq. (21).
The stress-energy tensor of the system can be computed

from the renormalized action

Sren ¼ Sþ Sct ð22Þ

by taking its variation with respect to the boundary metric
and evaluating the result at the boundary using the
expansions (20). The result of doing this is [50,51]

hTiji ¼ diagðE;P⊥; P⊥; PkÞ; ð23Þ

where E is the energy density of the state in the gauge
theory, while P⊥ and Pk are, respectively, the pressures
along directions perpendicular and parallel to the magnetic
field. This quantities are explicitly given by

E ¼ N ð−3u4 − 2Cschb2Þ;
P⊥ ¼ N ð−u4 − 2w4 − b2ð1þ 2CschÞÞ;
Pk ¼ N ð−u4 þ 4w4 þ 2Cschb2Þ; ð24Þ

where u4 and w4 depend on b, T, and μ as previously
discussed, and the normalization constantN is the same as
in Eq. (15). Using these expressions we can take the trace of
the stress-energy tensor to find
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hTi
ii ¼ −2N b2; ð25Þ

which is nonvanishing for any b ≠ 0, showing the existence
of the conformal anomaly. In Fig. 2 we show the quantity
E=NT4 in the DK model as a function of b=T2 for three
different values of Csch.

C. Penrose diagram

In this section we will derive the Penrose diagram for
both the MT and DK models. The metric Ansätze for both
are of the form

ds2 ¼ grrðrÞdr2 þ gttðrÞdt2 þ gxxðrÞdx2
þ gyyðrÞdy2 þ gzzðrÞdz2; ð26Þ

where we are including the gauge theory spatial directions,
even if they are not relevant to the derivation of the Penrose
diagram. That being said, it is important to know that the
metric functions grr and gtt strongly depend on the source
of the anisotropy, either a or b. These two functions are
such that gtt has a zero at rh, while grr has a simple pole
there [52].
In order to construct the Penrose diagram for the metric

(26) we first change to the tortoise coordinate r⋆, which is
given by the solution to the equation

dr⋆
dr

¼ signðgrrÞ
ffiffiffiffiffiffiffiffiffiffi���� grrgtt

����
s

; ð27Þ

which satisfies the boundary condition r⋆ð∞Þ ¼ 0. Note
that this coordinate automatically satisfies r⋆ → logðr −
rhÞ as r → rh because of the simple pole of grr and the zero
of gtt at rh. Next we transform to the Kruskal-Szekeres
coordinates, which are given by

U ¼ þe−2πTðt−r⋆Þ; V ¼ −e2πTðtþr⋆Þ ðleft exteriorÞ;
U ¼ −e−2πTðt−r⋆Þ; V ¼ þe2πTðtþr⋆Þ ðright exteriorÞ;
U ¼ þe−2πTðt−r⋆Þ; V ¼ þe2πTðtþr⋆Þ ðfuture interiorÞ;
U ¼ −e−2πTðt−r⋆Þ; V ¼ −e2πTðtþr⋆Þ ðpast interiorÞ;

ð28Þ

where T is the temperature of the black hole. Finally, we
change to the compact coordinates

X ¼ arctanV − arctanU
2

; Y ¼ arctanV þ arctanU
2

;

ð29Þ

which leave the metric as

ds2 ¼ � gttðX; YÞe−4πTr⋆
4ðπTÞ4 ð1þ V2Þð1þ U2Þð−dY2 þ dX2Þ:

ð30Þ

We present the Penrose diagram for both models, at
different values of a=T and b=T2, in Figs. 4 and 6,
respectively. Note that in the case of the DK model in
Fig. 6 the position of the singularity changes as b=T2

increases, as explained in Appendix A 2. For the following
analysis it is also relevant to notice that the hypersurface
t ¼ 0 corresponds to a horizontal line in the middle of the
Penrose diagram of either model.

III. WDW PATCH

The WDW patch is the region enclosed by past and
future light sheets extending into the bulk from a constant
time slice on the boundary, where the complexity is meant
to be evaluated. Because the TFD state depends on time
only through the combination tL þ tR, without loss of
generality we will adopt the convention tL ¼ tR ¼ t0 [53].
The direct evaluation of the action on the WDW patch is
divergent, as it extends to the boundary at r ¼ ∞ and to the
singularity at r ¼ rs. To avoid this, we regularize it by
introducing the cutoffs rmax near the boundary and rmin
near the singularity. At the end of the calculation we will
remove these regulators by taking the limits rmax → ∞ and
rmin → rs.
For a given boundary time t0, the light sheets that delimit

the WDW patch are given by

r⋆ðrÞ þ t ¼ t0 ðright future light sheetÞ;
r⋆ðrÞ − t ¼ −t0 ðright past light sheetÞ;
r⋆ðrÞ − t ¼ t0 ðleft future light sheetÞ;
r⋆ðrÞ þ t ¼ −t0 ðleft past light sheetÞ: ð31Þ

FIG. 2. Energy density for the DK model as a function of b=T2.
Blue, red, and green curves (top to bottom) correspond to
Csch ¼ f−5; 0; 5g, respectively.
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The names are determined by which of the singularities the
light sheet reaches for t0 ¼ 0. Note that the difference in
signs between the left and right regions comes from the fact
that in the left region the flow of time is reversed, but we are
taking t0 ¼ tL ¼ tR by definition.
At early times, close to t0 ¼ 0, the WDW patch

intersects both the past and future singularities, which,
as we will see in the following, makes its volume constant
for some period of time 0 ≤ t0 ≤ tc. However, for later
times t0 > tc, the WDW patch no longer intersects the past
singularity and its volume reduces as time passes. This tc is
known as the critical time and is given by

tc ¼ −r⋆ðrsÞ; ð32Þ

where we used the equations for the past light sheets in
Eq. (31) to find the t0 for which they intersect exactly at the
singularity. Thus, for 0 ≤ t0 ≤ tc and any ðx; y; zÞ we can
naturally divide the WDW patch into four regions:

I ¼ fðt; rÞjr ∈ ½rmin; rh�; t ∈ ½−t0 þ r⋆ðrÞ; t0 − r⋆ðrÞ�g;
II ¼ fðt; rÞjr ∈ ½rh; rmax�; t ∈ ½t0 þ r⋆ðrÞ; t0 − r⋆ðrÞ�g;
III ¼ fðt; rÞjr ∈ ½rmin; rh�; t ∈ ½t0 þ r⋆ðrÞÞ;−t0 − r⋆ðrÞ�g;
IV ¼ fðt; rÞjr ∈ ½rh; rmax�; t ∈ ½−t0 þ r⋆ðrÞ;−t0 − r⋆ðrÞ�g:

ð33Þ

We illustrate these regions in the Penrose diagram in Fig. 4(a)
for the MT model and in Fig. 6(b) for the DK model.
For later times the WDW patch does not reach the past

singularity and instead ends on a minimal radius rm given
by the intersection of the left and right past light sheets.
Thus, it is defined implicity by the solution of the equation

r⋆ðrmÞ ¼ −t0 ð34Þ

as a function of the fixed boundary time t0. It will be useful
to have an expression for the derivative of rm with respect
to t0. We can manipulate the derivative of the previous
expression to get

drm
dt0

¼ −signðgrrÞ
ffiffiffiffiffiffiffiffiffiffi���� gttgrr

����
s ����

r¼rm

; ð35Þ

where we have used Eq. (27). The critical time for
Schwarzschild-AdS5 can be computed analytically, and
the result is

tc ¼
1

4T
: ð36Þ

We show the WDW patch at t0 > tc in the Penrose
diagram for the MT model in Fig. 4(b) and for the DK
model in Fig. 6(b). The definitions of regions I, II, and IV

are still given by Eq. (33), while the one for region III
changes to

III ¼ fðt; rÞjr ∈ ½rmðt0Þ; rh�; t ∈ ½t0 þ r⋆ðrÞ;−t0 − r⋆ðrÞ�g:
ð37Þ

A. MT model

The behavior of the critical time as a function of the
anisotropic parameter a=T is shown in Fig. 3. From this it
can be seen that tcðaÞ=tcð0Þ decreases as a=T increases or,
in other words, that the anisotropy has the effect of making
the WDW patch withdraw from the past singularity at
earlier times than in the a ¼ 0 case. This result coincides
with what was found in [31] for a=T ≪ 1.
In Fig. 4 we present the Penrose diagram and the WDW

patch for the MT model at a=T ¼ 242. Figure 4(a)
corresponds to t0=tc ¼ 0, which is an early-time configu-
ration because it satisfies t0 < tc, while Fig. 4(b) corre-
sponds to t0=tc ¼ 1.86, which is a late-time configuration
with t0 > tc. In both cases the red and blue lines represent
the right and left light sheets, respectively, the points denote
the joints, and the dashed curves correspond to the
boundary regulator at r ¼ rmax. We also show explicitly
the four regions defined in Eqs. (33) and (37): I (dark blue)
is the future interior, II (red) is the right exterior, III (green)
is the past interior, and IV (light blue) is the left exterior. It
can be seen that in Fig. 4(a) the WDW patch reaches the
past singularity, and thus there is a total of eight joints to
consider in the evaluation of the holographic complexity.
On the other hand, Fig. 4(b) shows that for t0 > tc the
WDW patch no longer reaches the past singularity, and thus
there is now a total of seven joints.

B. DK model

We show in Fig. 5 how the critical time depends on the
magnetic field intensity b=T2 for the DK model. From this

FIG. 3. Critical time tcðaÞ=tcð0Þ as a function of a=T for the
MT model.
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it can be seen that tcðbÞ=tcð0Þ decreases as b=T2 increases,
that is, like the anisotropy in the MT model, the magnetic
field has the effect of making the WDW patch withdraw
from the past singularity at earlier times relative to the
b ¼ 0 case.
In Fig. 6 we show the Penrose diagram and the WDW

patch for the DK model at b=T2 ¼ 152.20. Fig. 6(a)
corresponds to an early time t0 < tc given by t0=tc ¼ 0,
while Fig. 6(b) corresponds to t=tc ¼ 3.22, which is a late-
time configuration with t0 > tc. Note that, as mentioned in
Sec. II B, the position of the singularity in the r coordinate

changes with the magnetic field. For b=T2 ¼ 152.20, the
singularity is located at rs=rh ¼ −0.06. As before, the red
and blue lines represent the right and left light sheets,
respectively, the points denote the joints, and the dashed
curves corresponds to the boundary regulator at r ¼ rmax.
The Penrose diagram conveniently displays the four
regions defined in Eqs. (33) and (37): I (dark blue) is
the future interior, II (red) is the right exterior, III (green) is
the past interior, and IV (light blue) is the left exterior. Just
as in the MT model, it can be seen in Fig. 6(a) that the
WDW patch reaches the past singularity, and thus there is a
total of eight joints to consider in the evaluation of the
holographic complexity. On the other hand, Fig. 6(b) shows
that for t0 > tc the WDW patch no longer reaches the past
singularity, and thus there is now a total of seven joints.

IV. HOLOGRAPHIC COMPLEXITY

In this section we compute the holographic complexity
using the CA prescription. We closely follow the analysis
presented in [31] but offer additional details regarding the
particularities of our numerical solutions, such as the
conformal anomaly. As previously explained, the evaluation
of the action over the WDW patch requires the addition of
extra boundary terms to make sure that the variational
principle is well posed. Thus, the full action has three types
of contributions: one related to the bulk, another related to
boundary surfaces, and the last one for the joints between
these surfaces, i.e.,

(a) (b)

FIG. 4. Penrose diagram and WDW patch for the MT model. (a) Configuration with t0=tc ¼ 0 showing that the WDW patch reaches
both the future and past singularities. (b) Late-time configuration with t0=tc ¼ 1.86. It can be seen that the WDW patch no longer
reaches the past singularity. In both cases the red and blue lines represent the right and left light sheets, respectively, the points denote the
joints, and the dashed curve corresponds to the boundary regulator at r ¼ rmax. The four regions of the WDW patch are displayed: I
(dark blue) is the future interior, II (red) is the right exterior, III (green) is the past interior, and IV (light blue) is the left exterior. In both
figures the anisotropy is a=T ¼ 242.

FIG. 5. Critical time tcðbÞ=tcð0Þ as a function of b=T2 for the
DK model.
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SWDW ¼ Sbulk þ Ssurface þ Sjoint; ð38Þ

where the schematic form of each term is

Sbulk ¼
1

16πG5

Z
M

d5x
ffiffiffiffiffiffi
−g

p
L;

Ssurface ¼
1

16πG5

Z
B
d4x

ffiffiffiffiffi
jγj

p
2K þ 1

16πG5

Z
B0
dλd3θ

ffiffiffi
h

p
2κ;

Sjoint ¼
1

16πG5

Z
Σ0
d3x

ffiffiffi
σ

p
2a: ð39Þ

The first expression in Eq. (39) is the bulk action of the
theory, where M refers to the interior of the WDW patch.
The first integral on the right-hand side on the second line
of Eq. (39) is the YGH surface term for the spacelike and
timelike segments B of the boundary of the WDW patch,
which is written using the induced metric γ and the extrinsic
curvature K. The second integral on the same expression is
the surface term for the null segment B0 of the boundary of
the WDW patch, defined by the induced metric h and the
function κ, which measures the failure of the null gen-
erators to be affinely parametrized. Finally, Sjoint denotes
the joint terms, where σ is the determinant of the induced
metric on this codimension-2 surface. The integrand of this
expression takes different forms depending on which kind

of intersection is considered. For the three possible cases
we explicitly have

a ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

ϵ log jt · kj for space-null joint with

ϵ ¼ −signðt · kÞsignðŝ · kÞ;
ϵ log js · kj for time-null joint with

ϵ ¼ −signðs · kÞsignðt̂ · kÞ;
ϵ log

��� k1·k22

��� for null-null joint with

ϵ ¼ −signðk1 · k2Þsignðk̂1 · k2Þ;

ð40Þ

where s, t, and k are the normalized outward unit normal
one-forms to the spacelike, timelike, and null surfaces
under consideration, respectively, while k1 and k2 are two
normal outward one-forms to different but intersecting null
surfaces. The sign ϵ in each case is determined by the
auxiliary vectors ŝ, t̂, and k̂1, which are normal to the
spacelike, timelike, and null surfaces, respectively. We will
explicitly write this vectors and one-forms below, following
the procedure and conventions outlined in [54].
As first explained in [18], there are certain ambiguities

associated with the null surface contributions. In particular,
the action depends on the parametrization chosen for the
null generators as, for example, an affine parametrization

(a) (b)

FIG. 6. Penrose diagram and WDW patch for the DK model. (a) Early-time configuration with t0=tc ¼ 0. The WDW patch reaches
both the future and past singularities. (b) Late-time configuration with t0=tc ¼ 3.22. The WDW patch no longer reaches the past
singularity. In both cases the red and blue lines represent the right and left light sheets, respectively, the points denote the joints, and the
dashed curve corresponds to the boundary regulator at r ¼ rmax. The four regions of the WDW patch are displayed: I (dark blue) is the
future interior, II (red) is the right exterior, III (green) is the past interior, and IV (light blue) is the left exterior. In both figures
the magnetic field intensity is b=T2 ¼ 152.20, which means that the singularity is located at rs=rh ¼ −0.06.
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sets κ ¼ 0 and eliminates the null surface contributions
from the action altogether. In order to remove this ambi-
guity, it is necessary to add the counterterm

Snull ¼
1

16πG5

Z
dλd3θ

ffiffiffi
h

p
2Θ logðlnullΘÞ; ð41Þ

where Θ is the expansion of the null generators defined as

Θ ¼ ∂λ logð
ffiffiffi
h

p
Þ: ð42Þ

While Eq. (41) is by itself dependent on the parametrization
of the null generators, the full action turns out to be
invariant when adding it. Thus, we will follow the usual
conventions and chose an affine λ. Also note that Snull
introduces an arbitrary length scale lnull, which is related to
the freedom of choosing a reference state in the dual theory
[55]. We will leave it arbitrary and show that it does not
modify the late-time behavior of the rate of change of the
complexity for the type of geometries that we consider.
The inclusion of this term does not affect certain aspects

of the complexity, such as the complexity of formation [56]
or the late-time behavior of the complexity in the case of the
eternal black hole [19]. However, it can modify other
aspects [57] like the structure of the UV divergences
[55,58]. Here we will consider Snull to determine whether
it is affected by the presence of the conformal anomaly.

A. Before the critical time: 0 ≤ t0 ≤ tc
We first compute the bulk contribution. In order to do

this, we need to evaluate the action on each of the four
regions that constitute the WDW patch,

Sbulk ¼ SI þ SII þ SIII þ SIV: ð43Þ

Given that the metric and the Lagrangian depend only on r,
when evaluating Sbulk we can integrate along the ðx; y; zÞ
directions and obtain an overall factor of Vx. The integra-
tion over time is also easily performed using the definition
of each region given in Eq. (33). Thus, we have

SI ¼ 2N
Z

rh

rmin

dr
ffiffiffiffiffiffi
−g

p
LðrÞðt0 − r⋆ðrÞÞ;

SII ¼ SIV ¼ −2N
Z

rmax

rh

dr
ffiffiffiffiffiffi
−g

p
LðrÞr⋆ðrÞ;

SIII ¼ 2N
Z

rh

rmin

dr
ffiffiffiffiffiffi
−g

p
LðrÞð−t0 − r⋆ðrÞÞ; ð44Þ

and by substituting them into Eq. (43) we obtain

Sbulkð0 ≤ t0 ≤ tcÞ ¼ −4N
Z

rmax

rmin

dr
ffiffiffiffiffiffi
−g

p
LðrÞr⋆ðrÞ: ð45Þ

At this stage we note two important things. The first is that
the t0 dependence has been completely eliminated from
Eq. (45). This is because the volume of the WDW patch
remains constant for any 0 ≤ t0 ≤ tc, and any member of
the family of solutions of either the MT or DK model is
static. The second is that this integral is divergent as the
limit rmax → ∞ is taken.
Next we turn to the surface integrals. As previously

explained, by choosing an affine parameter we eliminate
the contribution coming from the second term on the
second line of Eq. (39). Hence, we are left with the
integrals at the two spacelike and two timelike surfaces
at r ¼ rmax and r ¼ rmin, respectively. Schematically we
have

Ssurface ¼ Sfuture þ Sright þ Spast þ Sleft; ð46Þ

where Sfuture denotes the integral evaluated at the regulator
near the future singularity, Spast is the analogous term for
the past singularity, and Sright and Sleft correspond to the
integrals at the regulators near the right and left boundaries,
respectively. In all cases the integral to consider is the YGH
term, given by the induced metric in the surface γij and the
extrinsic curvature

Kij ¼
∂xμ
∂yi

∂xν
∂yj ∇μnν; K ¼ γijKij; ð47Þ

where yi are the coordinates on the surface defined by xμ ¼
xμðyiÞ and nμ are the components of the corresponding unit
outward normal one-form. The latter are explicitly given by

s ¼
ffiffiffiffiffiffiffiffiffi
jgrrj

p
dr for r ¼ rmax;

t ¼ −
ffiffiffiffiffiffiffiffiffi
jgrrj

p
dr for r ¼ rmin: ð48Þ

Applying the previous expressions for both the MT and
DK models, it can be shown that the integrand of the YGH
term is a function of r only,

2
ffiffiffiffiffi
jγj

p
K ¼ �GðrÞ; ð49Þ

where the plus sign is used for the r ¼ rmax surfaces and the
minus sign is used for the near singularity regulators at
r ¼ rmin. Using this fact we can easily evaluate the surface
integrals, which gives

Sfuture ¼ −2NGðrminÞðt0 − r⋆ðrminÞÞ;
Sright ¼ Sleft ¼ −2NGðrmaxÞr⋆ðrmaxÞ;
Spast ¼ −2NGðrminÞð−t0 − r⋆ðrminÞÞ; ð50Þ

and thus after substitution into Eq. (46) the result is

Ssurfaceð0 ≤ t0 ≤ tcÞ ¼ −4NGðrÞr⋆ðrÞjrmax
rmin : ð51Þ
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Note that once again, this contribution is independent of t0.
This is because the rmax surfaces suffer only a time
translation, while the area in which the future rmin surface
gains is exactly the area in which the past rmin one loses. In
other words, the t0 dependence of Sfuture exactly cancels the
one coming from Spast. Also note that Ssurface diverges as the
limit rmax → ∞ is taken.
Next we have the contribution coming from the joint

terms. As can be seen in Figs. 4(a) and 6(a), there are eight
joints to consider for 0 ≤ t0 ≤ tc, and all of them are of the
space null or the time null type. In order to evaluate Sjoint we
need to define the auxiliary vectors appearing in Eq. (40).
As explained in [54], these vectors need to live in the
tangent space of the corresponding surface, be orthogonal
to the joint, and point outward to the WDW patch. Note that
these vectors do not need to be normalized, as can be seen
from the way they enter into Eq. (40). For the space-null
joints we have

ŝ� ¼ �∂t; ð52Þ

where the plus sign is used for the joints at the future
singularity regulator, and the minus sign for the ones at the
past singularity regulator. On the other hand, for the time-
null joints we use

t̂� ¼ �∂t; ð53Þ

where the plus sign is used for the joints at the future light
sheets, while the minus sign is used for the joints at the past
light sheets. We also need the outward normal one-forms to
the null hypersurfaces, which are specified by an expres-
sion of the form ΦðxμÞ ¼ 0 [explicitly given in Eq. (31)].
Thus, the normal one-forms are given by αdΦ, where α > 0
is an arbitrary but positive normalization constant. While
this is another ambiguity that comes from the fact that the
WDW patch contains null segments, as we will see below
this arbitrary constant affects the value of the complexity of
the state, but the late-time behavior of the rate of change of
the complexity is unaffected by it (see [18,19,54] for a
detailed discussion). For each light sheet we have

k1 ¼ α

 
signðgrrÞ

ffiffiffiffiffiffiffiffiffiffi���� grrgtt
����

s
drþ dt

!
ð54Þ

for the right future and left past light sheets, and

k2 ¼ α

 
signðgrrÞ

ffiffiffiffiffiffiffiffiffiffi���� grrgtt
����

s
dr − dt

!
ð55Þ

for the right past and left future light sheets.
After substituting Eqs. (48), (52), (53), and (55) into

Eq. (40), for the joints in regions I and III we have

Sjoint ¼ 2N
ffiffiffi
σ

p
log

�
αffiffiffiffiffiffiffiffijgttj

p �����
r¼rmin

; ð56Þ

while for the joints in regions II and IV we have

Sjoint ¼ −2N
ffiffiffi
σ

p
log

�
αffiffiffiffiffiffiffiffijgttj

p �����
r¼rmax

: ð57Þ

Hence, the full joint contribution is

Sjointð0 ≤ t0 ≤ tcÞ ¼ −8N
ffiffiffi
σ

p
log

�
αffiffiffiffiffiffiffiffijgttj

p �����rmax

rmin

: ð58Þ

Note also that Sjoint is independent of t0.
Finally, we have the contribution coming from the null

counterterm (41). The generators for each hypersurface are
given by Eq. (31); hence, we parametrize the null surfaces
with θi ¼ ðx; y; zÞ and the induced metric is given by

hAB ¼ gαβ
dxα

dθA
dxβ

dθB
: ð59Þ

From Eq. (59) we see that for metrics with the structure of
Eq. (26) that we are considering, hAB is equal to the induced
metric on the joints σAB. To make the above consistent with
our previous calculations, we need to choose an affine
parameter for the null generators. A direct substitution of
the normal vectors as written in Eq. (55) in the geodesic
equation yields

kα∇αkμ ¼ 0 ð60Þ

for any constant α > 0. Hence, when we use the fact that

kμ ¼ dxμ

dλ
; ð61Þ

the affine parameter λ is given by the solution to the
equations

dr
dλ

¼ αffiffiffiffiffiffiffiffiffiffiffiffiffijgrrgttj
p ;

dt
dλ

¼ � α

gtt
; ð62Þ

in whose derivation we have used Eq. (35).
With the previous choices, the integration over θA in

Eq. (41) gives a factor of Vx, while we can employ Eq. (62)
to perform a change of variables such that the integration
over λ is converted to be over r, resulting in

Snull ¼
2N
α

Z
dr

ffiffiffiffiffi
jgj

p
Θ logðlnullΘÞ: ð63Þ

We can also use Eq. (62) to evaluate Θ while applying the
chain rule, which gives
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Θ ¼ αffiffiffiffiffijgjp ∂r
ffiffiffi
σ

p
: ð64Þ

Substitution of this last expression further simplifies
Eq. (63) into

Snull ¼ 2N
Z

dr log

�
αlnullffiffiffiffiffijgjp ∂r

ffiffiffi
σ

p �
∂r

ffiffiffi
σ

p
: ð65Þ

The crucial point extracted from the previous calcula-
tions is that the integrand is independent of t0. For any
0 ≤ t0 ≤ tc the integration over the four light sheets runs
from rmin to rmax,

Snullð0≤ t0 ≤ tcÞ¼ 8N
Z

rmax

rmin

dr log

�
αlnullffiffiffiffiffijgjp ∂r

ffiffiffi
σ

p �
∂r

ffiffiffi
σ

p
:

ð66Þ

Hence, Snull does not depend on t0.
We thus conclude that SWDW, and as a consequence the

complexity of the state, is constant for 0 ≤ t0 ≤ tc.

B. After the critical time: t0 > tc
As before, we start by evaluating the bulk contribution in

Eq. (39) by using the definition of each region given in
Eqs. (33) and (37). We have

SI ¼ 2N
Z

rh

rmin

dr
ffiffiffiffiffiffi
−g

p
LðrÞðt0 − r⋆ðrÞÞ;

SII ¼ SIV ¼ −2N
Z

rmax

rh

dr
ffiffiffiffiffiffi
−g

p
LðrÞr⋆ðrÞ;

SIII ¼ 2N
Z

rh

rm

dr
ffiffiffiffiffiffi
−g

p
LðrÞð−t0 − r⋆ðrÞÞ: ð67Þ

Note that the t0 dependence in SIII is no longer canceled
out by SI. To see explicitly how this happens let us rewrite
SIII as

SIII ¼ −2N
Z

rm

rmin

dr
ffiffiffiffiffiffi
−g

p
LðrÞð−t0 − r⋆ðrÞÞ

þ 2N
Z

rh

rmin

dr
ffiffiffiffiffiffi
−g

p
LðrÞð−t0 − r⋆ðrÞÞ; ð68Þ

where we use the fact that rmin < rm. Thus, using Eq. (45),
the bulk action evaluated at the WDW patch for later times
can be written as

Sbulkðt0> tcÞ¼ Sbulkð0≤ t0 ≤ tcÞ

þ2N
Z

rm

rmim

dr
ffiffiffiffiffiffi
−g

p
LðrÞðt0þ r⋆ðrÞÞ: ð69Þ

Note that Sbulkðt0 > tcÞ diverges as the regulator rmax is
taken to infinity, but this behavior is contained in the t0-
independent term Sbulkðt0 < tcÞ.
Next we turn to the surface integrals. Once again we set

the contribution of the null hypersurfaces to zero by
choosing an affine parameter. As the WDW patch no
longer reaches the past singularity, we are left with

Ssurface ¼ Sfuture þ Sleft þ Sright: ð70Þ

Using the previous expressions for the extrinsic curvature
and induced metric on the hypersurfaces and the definition
of the regions, we can compute the corresponding integrals.
For each one we have

Sfuture ¼ −2NGðrminÞðt0 − r⋆ðrminÞÞ;
Sright ¼ Sleft ¼ −2NGðrmaxÞr⋆ðrmaxÞ; ð71Þ

and thus the total surface action is

Ssurfaceðt0 > tcÞ ¼ −4NGðrmaxÞr⋆ðrmaxÞ
− 2NGðrminÞðt0 − r⋆ðrminÞÞ: ð72Þ

Note that the t0 dependence coming from the integration at
the future singularity regulator is no longer canceled out.
Explicitly we have

Ssurfaceðt0 > tcÞ ¼ Ssurfaceð0 ≤ t0 ≤ tcÞ
− 2NGðrminÞðt0 þ r⋆ðrminÞÞ; ð73Þ

where the rmax → ∞ divergence is contained in
Ssurfaceð0 ≤ t0 ≤ tcÞ, which is independent of t0.
Next we have the contribution coming from the joints.

For later times we have only seven joints to consider, of
which six are of the space null and time null type, as can be
seen in Figs. 4(b) and 6(b). We can evaluate these using the
one-forms and auxiliary vectors defined in the previous
subsection. For the joints in region I we have

Sjoint ¼ 2N
ffiffiffi
σ

p
log

�
αffiffiffiffiffiffiffiffijgttj

p �����
r¼rmin

; ð74Þ

while for the joints in regions II and IV we have

Sjoint ¼ −2N
ffiffiffi
σ

p
log

�
αffiffiffiffiffiffiffiffijgttj

p �����
r¼rmax

: ð75Þ

In order to evaluate the contribution coming from the null-
null joint, we need to define the auxiliary vector appearing
in Eq. (40). Following [54] we have
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k̂1 ¼ signðgrrÞ
ffiffiffiffiffiffiffiffiffiffi���� grrgtt

����
s

∂r − ∂t; ð76Þ

which lives on the left past light sheet. Substitution of this
into Eq. (40) gives

Snull-null ¼ 2N
ffiffiffi
σ

p
log

�
α2

jgttj
�����

r¼rm

: ð77Þ

After adding all the joint contributions we have

Sjointðt0 > tcÞ ¼ −8N
ffiffiffi
σ

p
log

�
αffiffiffiffiffiffiffiffijgttj

p �����
r¼rmax

þ 4N
ffiffiffi
σ

p
log

�
αffiffiffiffiffiffiffiffijgttj

p �����
r¼rmin

þ 2N
ffiffiffi
σ

p
log

�
α2

jgttj
�����

r¼rm

: ð78Þ

Note that the t0 dependence is implicit in rm. To isolate this
time dependence we can rewrite the previous expression as

Sjointðt0 > tcÞ ¼ Sjointð0 ≤ t0 ≤ tcÞ

− 4N
ffiffiffi
σ

p
log

�
αffiffiffiffiffiffiffiffijgttj

p �����
r¼rmin

þ 2N
ffiffiffi
σ

p
log

�
α2

jgttj
�����

r¼rm

: ð79Þ

Finally, we have the contribution coming from the null
counterterm. For later times the two past light sheets no
longer reach the singularity and end at rm instead. Thus, we
explicitly have

Snullðt0 > tcÞ ¼ 4N
Z

rmax

rmin

dr log

�
αlnullffiffiffiffiffijgjp ∂r

ffiffiffi
σ

p �
∂r

ffiffiffi
σ

p

þ 4N
Z

rmax

rm

dr log

�
αlnullffiffiffiffiffijgjp ∂r

ffiffiffi
σ

p �
∂r

ffiffiffi
σ

p
:

ð80Þ

In order to isolate the t0 dependence of the last expression
we rewrite the second term as an integral from rmin to rmax
minus an integral from rmin to rm, which gives

Snullðt0 > tcÞ ¼ Snullð0 ≤ t0 ≤ tcÞ

− 4N
Z

rm

rmin

dr log

�
αlnullffiffiffiffiffijgjp ∂r

ffiffiffi
σ

p �
∂r

ffiffiffi
σ

p
;

ð81Þ

where we have used Eq. (66).
We can now proceed to compute dSWDW=dt0. By taking

the derivative of Eq. (69) with respect to t0 we obtain

dSbulk
dt0

¼ 2N
Z

rm

rmin

dr
ffiffiffiffiffiffi
−g

p
LðrÞ; ð82Þ

where the contribution coming from the upper integration
limit vanishes because of the equation that defines rm
[Eq. (34)]. On the other hand, the derivative of the surface
integral (73) gives

dSsurface
dt0

¼ −2NGðrminÞ; ð83Þ

while the joint contribution is

dSjoint
dt0

¼ 2N
ffiffiffiffiffiffiffiffiffiffi
−
gtt
grr

r � ffiffiffi
σ

p g0tt
gtt

þ σ0

2
ffiffiffi
σ

p log

�
α2

gtt

������
r¼rm

; ð84Þ

where the prime denotes the derivative with respect to r and
we have used the expression for the derivative of rm with
respect to t0 [Eq. (35)]. We have also used the fact that
gttðrmÞ > 0 and grrðrmÞ < 0. Finally, the t0 derivative of
the null counterterm (81) is

dSnull
dt0

¼ −4N
ffiffiffiffiffiffiffiffiffiffi
−
gtt
grr

r
σ0

2
ffiffiffi
σ

p log

�
αlnullffiffiffiffiffijgjp σ0

2
ffiffiffi
σ

p
�����

r¼rm

: ð85Þ

Putting it all together, we obtain the derivative of SWDW
with respect to t0 for t0 > tc as

dSWDW

dt0
¼ 2N

�Z
rm

rmin

dr
ffiffiffiffiffiffi
−g

p
LðrÞ − GðrminÞþ

ffiffiffiffiffiffiffiffiffiffi
−
gtt
grr

r � ffiffiffi
σ

p g0tt
gtt

−
σ0ffiffiffi
σ

p log
�

σ0lnull
2σ

ffiffiffiffiffiffiffiffiffi−grr
p

������
r¼rm

�
: ð86Þ

Note that, as it should, the addition of the null counterterm
has eliminated the arbitrary normalization constant α, but
the dependence on the arbitrary length scale lnull remains.
However, as we will explicitly show numerically in the next
section, this term vanishes in the limit t0=tc → ∞ for all
the geometries that we consider. We also present in

Appendix B an analytical proof of this vanishing that
applies to metrics of the general form of Eq. (26) that we are
considering. Wewould like to stress that, even if we used an
affine parametrization in all of the previous calculations,
the end result (86) would be invariant under reparametri-
zations of the null generators.
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Given that both the MT and DK families of solutions are
not analytical, we need to evaluate this integral numerically.
We will show the result of said evaluation below. It follows
from Eq. (1) that the rate of change of the complexity of the
TFD is related to dSWDW=dt0 by

dC
dτ

¼ 1

2

dSWDW

dt0
: ð87Þ

C. Counterterms and the renormalization scheme

From Eq. (86) we can see that all the terms that diverge in
the rmax → ∞ limit were eliminated by the time derivative,
rendering dSWDW=dt0 finite. This is because the r ¼ rmax
surfaces only undergo a time translation and, given that
both families of solutions are static, any boundary integral
evaluated at this surface will be independent of t0. This is
true for the counterterm actions (11) and (21), which is why
we did not include them in the evaluation of SWDW. It
should be noted, though, that SWDW itself is a divergent
quantity. The counterterms necessary to remove said
divergences were computed in [55] and later applied in
[59] for a Bañados-Teitelboim-Zanelli (BTZ) black hole.
These counterterms do not modify the late-time behavior of
the complexity rate of change; thus, we omitted them from
the previous computation.
Usually, when computing thermodynamic quantities

such as the free energy of the state, the gravitational action
is evaluated in the exterior region. The boundary of this
region is constituted by the surfaces at r ¼ rmax and r ¼ rh,
but the counterterms vanish when evaluated at the horizon.
However, as the WDW patch boundary includes the r ¼
rmin surfaces, the counterterms need to be evaluated there
too. We explicitly checked numerically that, for any
solution in either model, the contribution coming from
this vanishes when the limit rmin → rs is taken. This means
that SWDW, and as a consequence the complexity of the
TFD state, is independent of the finite term determined
by Csch.

D. Results for the MT model

For the case of the MT model we have, after using the
equations of motion,

LðrÞ ¼ −8; ð88Þ

GðrÞ ¼ r4e−
5
4
ϕðrðFBÞ0 þ BF ð8 − 3rϕ0ÞÞffiffiffiffi

B
p ; ð89Þ

σðrÞ ¼ r6e−
5
2
ϕ: ð90Þ

With these expressions at hand, we can easily evaluate
Eq. (86) numerically, which allows us to compute the rate
of change of the complexity of theTFDstate as a function of τ

for any value of the anisotropic parameter.We show the result
of said evaluation in Fig. 7 for lnull ¼ L ¼ 1 and the three
values of the anisotropy a=T ¼ f19.57; 41.14; 85.46g, dis-
played from bottom to top. This shows that the general effect
of the anisotropy is to increase the value of dC=dτ for any
given τ.We can also see that, for any a=T, at τ shortly after τc
the rate of change of the complexity decreases as time passes,
reaches a minimum, and then increases to a constant value,
which wewill denote as dC

dτ
τ∞ , for late times τ ≫ τc. We have

placed dashed horizontal lines in Fig. 7 to mark these
asymptotic values and have plotted them as a continuous
function of a=T displayed as a red line in Fig. 8. While the
early-time behavior can be modified by changing lnull, the

FIG. 7. Rate of change of the complexity dC=dτ in units of
NT4 as a function of τ for the MTmodel. Each curve corresponds
to a different value for the anisotropic parameter, that is, a=T ¼
f19.57; 41.14; 85.46g from bottom to top. The horizontal dashed
lines correspond to the late-time behavior of each curve, with the
precise values being dC

dτ
τ∞ ¼ f329.42; 419.58; 533.99g, respec-

tively. For all cases we fixed lnull ¼ L ¼ 1.

FIG. 8. Check of Lloyd’s bound for the MT model as a function
of a=T. The red curve (on the lower right side) corresponds to
dC
dτ

τ∞ , while the curves in shades of blue correspond to the energy
of the TFD state 2E=π for Csch ¼ f−2;−3;−5g from left to right.
All quantities are given in units of NT4.
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late-time behavior is independent of this arbitrary constant. It
is also important to note that, for a given τ, the rate of change
of the complexity depends only on the dimensionless
parameter a=T. We checked that this was the case numeri-
cally by varying a and T independently. We conclude from
this that dC=dτ is independent of the energy scale μ, and thus
is unaffected by the conformal anomaly.
As mentioned above, in Fig. 8 we show the late-time

behavior of the rate of change of the complexity dC
dτ

τ∞ as a
function of a=T (red curve) and compare it to the energy of
the state to see whether Lloyd’s bound is verified at infinite
time for the MT model, as this was the case for a ¼ 0. As
explained in Sec. II, we have set the renormalization scale
as μ ¼ L ¼ 1, but up to this point we still do not have a
physical reason to fix the value of Csch. Thus, in Fig. 8 we
plot the energy of the state as a function of a=T for Csch ¼
f−2;−3;−5g shown by the curves from left to right, in
addition to the one representing dC

dτ
τ∞ . We see that at any

value of a=T Lloyd’s bound at infinite time can be satisfied,
saturated, or violated depending on the value of Csch, as we
exemplify for a=T ¼ 6.10, shown by the vertical dashed
line in Fig. 8. For this to be an actual bound regardless of
how large the anisotropy is, it would be necessary to push
Csch all the way to∞, invalidating all physical calculations.
Instead, we suggest choosing the value of Csch that, at each
a=T, leads to the saturation of Lloyd’s bound. We show this
value of Csch as a function of a=T in Fig. 9. Physically, this
amounts to using the saturation of Lloyd’s bound at infinite
time as a renormalization condition and letting Csch run
with a=T to satisfy it.

E. Results for the DK model

For the case of the DK model we have, after using the
equations of motion,

LðrÞ ¼ −8 −
4b2

3V2
; ð91Þ

GðrÞ ¼ UWV 0 þ ðUWVÞ0ffiffiffiffiffi
W

p ; ð92Þ

σðrÞ ¼ WV2: ð93Þ

Employing these expressions we can evaluate Eq. (86)
numerically, which allows us to compute the complexity
rate of change on the TFD state as a function of τ for any
magnetic field intensity. In Fig. 10 we show the result of
this evaluation for lnull ¼ L ¼ 1, with the three different
values of the magnetic field intensity being, from bottom to
top, b=T2 ¼ f40.59; 47.56; 56.62g. We see that the mag-
netic field has the general effect of increasing the value of
dC=dτ for any given τ. The behavior common to the three
plots in Fig. 10 indicates that for any b=T2, at τ shortly past
τc the complexity rate of change is an increasing function of
time until it reaches a maximum, after which it becomes a
decreasing function that for τ ≫ τc tends to a constant
value, which we denote as dC

dτ
τ∞ and indicate in the three

cases of Fig. 10 as horizontal dashed lines. While the early-
time behavior can be modified by varying lnull, the late-
time behavior is unaffected by it. We also explicitly
checked to ensure that, for a given τ, the rate of change
of the complexity depends only on the dimensionless
parameter b=T2. In practice, we achieved this by varying
b and T independently. We conclude from this that dC=dτ
is independent of the energy scale μ, proving that this
quantity is unaffected by the conformal anomaly.
We show dC

dτ
τ∞ as a function of b=T2 (red curve) in

Fig. 11 and compare it to the energy of the state in order to

FIG. 9. Running of Csch with a=T to keep the renormalization
condition of saturating Lloyd’s bound in the MT model.

FIG. 10. Rate of change of the complexity dC=dτ in units of
NT4 as a function of τ for the DKmodel. Each curve corresponds
to a different magnetic field intensity, that is, b=T2 ¼
f40.59; 47.56; 56.62g from bottom to top. The horizontal dashed
lines correspond to the late-time behavior of each curve, with the
precise values being dC

dτ
τ∞ ¼ f539.36; 617.12; 718.56g respec-

tively. For all cases we fixed lnull ¼ L ¼ 1.
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check whether Lloyd’s bound is verified in the DKmodel at
infinite time, as was the case for b ¼ 0. We have fixed the
renormalization scale μ ¼ L ¼ 1 but, as explained in
Sec. II, up to this point of the analysis we do not have a
physical reason to fix Csch. Hence, in Fig. 11 we show the
plots of the energy of the state as a function of b=T2 for
Csch ¼ f0; 1; 2g (from left to right). As was the case for the
MT model and as we exemplify at b=T2 ¼ 3.99, Lloyd’s
bound at infinite time can be satisfied, saturated, or violated
for any b=T2 ≠ 0 depending on the value of Csch, and the
only way to respect Lloyd’s bound for any b=T2 is by
setting Csch ¼ ∞. Once again we decide to adjust Csch at
each value of b=T2 so that Lloyd’s bound is saturated. As
before, the latter corresponds to the physical proposal of
letting Csch run with b=T2, as we show in Fig. 12, to
maintain the renormalization condition of the saturation of
Lloyd’s bound at infinite time.

V. DISCUSSION

In this paper we employed holographic methods to
determine the effect that the conformal anomaly has on
the computational complexity. To this end, we extended the
study presented in Eq. [31] to arbitrary anisotropies and
magnetic field intensities by considering the numerical
families of solutions for both the MT and DK models.
While our results coincided with previous ones where
applicable, we were able to derive many novel results.
Our first main result is that the rate of change of the

complexity is unaffected by the conformal anomaly present
in bothmodels. The first of two reasonswhy this is the case is
that ð1=T4ÞdC=dτ, which is a dimensionless quantity,
depends only on a and T through the dimensionless ratio
a=T, proving that such a derivative is independent of the
energy scale μ, whichwe fixed to unity throughout this paper.
The second reason is that the counterterm action, which
contains the scheme-dependent coefficient Csch, does not
contribute to the derivative with respect to τ, as the integral
over the boundary regulator is constant and the integral near
the singularity vanishes as the regulator is removed.
The other main result is in regard to Lloyd’s bound. It is

expected, when using the CA prescription, that Lloyd’s
bound will be violated for any finite time, only to be
saturated when an infinite amount of time has passed.
Knowing that this was the case for a ¼ 0 and b ¼ 0, we
studied the validity of this result for arbitrary values of the
anisotropic parameter and the magnetic field. As explained
in Sec. I, the energy of the system, which appears on the
right-hand side of Lloyd’s bound (5), depends on both the
energy scale μ and the coefficient Csch. However, as just
stated, dC=dτ, which appears on the right-hand side of
Eq. (5), does not depend on any of these quantities. While
at first sight this could be interpreted as an inconsistency for
Lloyd’s bound when a conformal anomaly is present, that is
not what it is. The role of Csch is to keep physical quantities
scheme independent and, particularly for the energy, this
means to absorb any modification that it could suffer when
the value of μ is changed once, of course, a renormalization
condition has been imposed. Thus, the above results
demonstrate that, if so desired, the saturation of Lloyd’s
bound at infinite time can be used as a renormalization
condition and lets Csch be adjusted to satisfy it for any
given fμ; a; Tg or fμ; b; Tg, depending on the model.
We would like to stress the importance of dC=dτ being

independent of both μ and Csch. If it had turned out to
depend on only one of the two, there would have been no
way to cancel any arbitrary change in the other, making it a
scheme-dependent quantity, and therefore questioning the
validity of the CA conjecture. Clearly the other acceptable
option was for dC=dτ to depend on both μ and Csch, so we
find it interesting to have disproved this possibility.
It is also important to note that, to our knowledge, a

renormalization condition has not previously been pro-
posed for either the MT or DK model.

FIG. 11. Check of Lloyd’s bound for the DK model as a
function of b=T2. The red curve (to the upper right) corresponds
to dC

dτ
τ∞ , while the curves in shades of blue correspond to the

energy of the TFD state 2E=π for Csch ¼ f0; 1; 2g from left to
right. All quantities are given in units of NT4.

FIG. 12. Running of Csch with b=T2 to maintain the renorm-
alization condition of the saturation of Lloyd’s bound for the
DK model.
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APPENDIX A: INTERIOR SOLUTIONS

1. MT MODEL

In this Appendix we explain the integration procedure
needed to obtain the interior solutions for the MT model.
The equations of motion that determine the metric

functions and the dilaton and axion fields come from the
variation of the five-dimensional action (7). After the
substitution of the Ansatz (8), these equations can be
manipulated to write F and B in terms of ϕ as

F ¼ e−
1
2
ϕða2e7

2
ϕðrϕ0 − 4Þ þ 16r3ϕ0Þ
4r3ðϕ0 þ rϕ00Þ ; ðA1Þ

B0

B
¼ −16ϕ0 þ 9rϕ02 − 20rϕ00

24 − 10rϕ0 ; ðA2Þ

while the dilaton itself is given by the third order differ-
ential equation

0¼ 8rðr2ð11a2e7ϕ
2 þ96r2Þϕ002þ12a2re

7ϕ
2 ϕ000Þþ8rð12a2e7ϕ

2 ϕ00Þþð352r5−13a2r3e
7ϕ
2 Þϕ04þ2rϕ02ðr2ð23a2e7ϕ

2 −880r2Þϕ00Þ
þ2rϕ02ð5r3ϕ000ða2e7ϕ

2 þ16r2Þ−12a2e
7ϕ
2 þ960r2Þþϕ03ð8r2ð7a2e7ϕ

2 −200r2ÞÞþϕ03ðð352r6−13a2r4e
7ϕ
2 Þϕ00Þ

−2ϕ0ð32r2ða2e7ϕ
2 −30r2Þϕ00þ15r4ða2e7ϕ

2 þ16r2Þϕ002þ32r3ϕ000ða2e7ϕ
2 þ6r2ÞÞþ15r4ð48a2e7ϕ

2 Þ: ðA3Þ

As explained in [33], it is possible to eliminate the
anisotropic parameter a from Eq. (A3) altogether by
shifting the dilaton field to

ϕ̃ ¼ ϕþ 4

7
log a; ðA4Þ

and thus solve directly for ϕ̃. This allows us to easily
impose the boundary condition ϕbdry ¼ 0 by defining that
the anisotropy corresponding to a given solution is given by

a ¼ e
7
4
ϕ̃bdry : ðA5Þ

Thus, solutions with different ϕ̃bdry correspond to solutions
with different anisotropies.
Given that the equation for ϕ̃ is highly nonlinear, it is

necessary to resort to numerical methods to obtain a
solution for an arbitrary a=T. The first step is to expand
Eq. (A3) in a power series of r around the horizon

ϕ̃ ¼ ϕ̃h þ
X∞
i¼1

ϕ̃iðr − rhÞi: ðA6Þ

By solving order by order it is possible to write any
undetermined coefficient ϕi in terms of ϕ̃h [60]. Then
Eq. (A6) is used to provide initial data for the numerical
integration, starting from r ¼ rh þ ϵ, with ϵ ≪ rh, all the
way to the boundary at r ¼ ∞ in the case of the exterior
solutions, and from r ¼ rh − ϵ toward, and down to, the
singularity at r ¼ 0 in the case of the interior solutions.
After this we can obtain the anisotropy by substitution into
Eq. (A5) and finally ϕ with the appropriate boundary
condition using Eq. (A4).

With the solution for ϕ in the interior and the exterior at
hand, we can obtain F by simply substituting into Eq. (A1),
as this is an algebraic relation. Incidentally, this always
results in anF satisfying the boundary conditionF bdry ¼ 1.
However, given that the relation between B and ϕ is differ-
ential, it is necessary to again perform a numerical integra-
tion. In order to do this we expand Eq. (A2) in a power series
of r around rh using Eq. (A6) and

B ¼ Bh þ
X∞
i¼1

Biðr − rhÞi: ðA7Þ

By solving Eq. (A2) order by order, we can write any
undetermined coefficient in terms of Bh and ϕh. Then, using
the result of this as our initial data, we can integrate Eq. (A2)
numerically from r ¼ rh þ ϵ to the boundary at r ¼ ∞ for
the exterior solutions, and from r ¼ rh − ϵ to the singularity
at r ¼ 0 for the interior solutions. Given that we want the
spacetime to asymptote AdS5 at the boundary, the last step is
to use the symmetry of Eq. (A2) and redefine

B →
B

Bbdry
; ðA8Þ

ensuring in this way that B goes to unity at the boundary.
Note that this rescaling needs to be done consistently for
both the exterior and interior solutions. In Fig. 13 we show
the metric functions for small (a=T ¼ 4.41) and large
(a=T ¼ 24.91) anisotropies in the interior and exterior
regions.
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2. DK MODEL

In this section we show the integration procedure needed
to obtain the interior solutions for the DK model. The
equations of motion that determine the metric functions and
the Maxwell field come from the variation of the five-
dimensional action (17). After the substitution of the Ansatz
(18), Maxwell equations are automatically satisfied and
Einstein equations can be manipulated into

0 ¼ 2W2ð4b2 þ VðU0V 0 þ UV 00ÞÞ
− VWð2VðU0W0 þUW00Þ þUV 0W0Þ þ UV2W02;

0 ¼ −2W2ðV 02 − 2VV 00Þ þ 2V2WW00 − V2W02;

0 ¼ Wð8b2 − 6V2ðU00 − 8Þ − 6VU0V 0Þ − 3V2U0W0;

0 ¼ Wð4b2 þ 2VU0V 0 þUV 02 − 24V2Þ
þ VW0ðVU0 þ 2UV 0Þ: ðA9Þ

Given that the equations are singular at rh, in order to solve
numerically we first expand them in powers of r around rh
by using

U ¼ 6rhðr − rhÞ þ
X∞
i¼2

Uiðr − rhÞi;

V ¼ V0 þ
X∞
i¼1

Viðr − rhÞi;

W ¼ 3r2h þ
X∞
i¼1

Wiðr − rhÞi: ðA10Þ

This behavior near the horizon allows the family of
solutions to easily interpolate between the black D3-brane
and BTZ ×R2 by changing the value of b=V0 from 0 toffiffiffi
3

p
. Additionally, this also ensures that the temperature of

every member of the family is given by T ¼ 3rh=2π.

However, it is important to note that the coordinate r here
is not the usual radial coordinate of the black brane solution
r̃. Instead, the relation between the two is given by

r̃ ¼ rþ rh
2
; ðA11Þ

which means that for a vanishing magnetic field the
singularity is located at r ¼ −rh=2, not at r ¼ 0.
By plugging Eq. (A10) into Eq. (A9) we can solve for

any of the undetermined coefficients in terms of b=V0 and
then use this to provide initial data for the numerical
integration. This is performed from r ¼ rh þ ϵ to the
boundary at r ¼ ∞ for the exterior solutions, and from r ¼
rh − ϵ to the singularity at r ¼ rs for the interior solutions,
with ϵ ≪ rh in both cases. This procedure will give
solutions whose boundary behavior is

V ∼ Vbdryr2; W ∼Wbdryr2; U ∼ r2: ðA12Þ

However, we can exploit the symmetries of the equations of
motion (A9) and rescale them as

V →
V

Vbdry
; W →

W
Wbdry

; b →
b

Vbdry
; ðA13Þ

which in turn gives the desired AdS5 behavior at the
boundary. Once again this rescaling needs to be done
consistently for both the exterior and interior solutions.
Notice that on this occasion it is necessary to simulta-
neously scale the value of b to preserve the solution.
One important thing to note is that the position of the

singularity is fixed at rs ¼ −rh=2 not for every member of
the family of solutions but only for b=T2 ¼ 0. Instead, the
location of the singularity in the r coordinate is a function
of the magnetic field intensity. By rs we mean the radius at
which the curvature scalar

(a) (b)

FIG. 13. Metric functions and dilaton for the MT model as functions of r for (a) a=T ¼ 4.41 and (b) a=T ¼ 24.91. In each panel the
horizon, located at rh ¼ 1, is denoted as a black vertical line.
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RμναβRμναβ ðA14Þ

goes to infinity. We show the metric functions for small (b=T2 ¼ 5.85) and large (b=T2 ¼ 56.62) magnetic field intensities
in the interior and exterior regions in Fig. 14.

APPENDIX B: LATE-TIME BEHAVIOR OF THE COMPLEXITY RATE OF CHANGE

In this section we explicitly write the expression for the late-time behavior of the complexity rate of change (86) and show
that the dependence on lnull vanishes in the limit t0 → ∞. In this limit rm goes to rh; hence, Eq. (86) takes the form

lim
t0→∞

dSWDW

dt0
¼ 2N

�Z
rh

rmin

dr
ffiffiffiffiffiffi
−g

p
LðrÞ − GðrminÞ

�
þ 2N lim

rm→rh

� ffiffiffiffiffiffiffiffiffiffi
−
gtt
grr

r � ffiffiffi
σ

p g0tt
gtt

−
σ0ffiffiffi
σ

p log

�
σ0lnull

2σ
ffiffiffiffiffiffiffiffiffi−grr

p
������

r¼rm

�
: ðB1Þ

To evaluate the limit in the second term we use the fact that gtt has a zero at rh, grr has a simple pole there, and the other
metric functions are regular at the horizon. This means that to leading order
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−
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r
∼ r − rh;
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Hence,
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which in turn means that
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This shows that lnull does not affect the late-time behavior of the rate of change of the complexity, as the final
expression is

lim
t0→∞
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(a) (b)

FIG. 14. Metric functions for the DK model as functions of r for (a) b=T2 ¼ 5.85 and (b) b=T2 ¼ 56.62. In both panels the horizon,
located at rh ¼ 1, is denoted as a black vertical line.
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