PHYSICAL REVIEW D 104, 066010 (2021)

Neutrino-nucleon DIS from holographic QCD: PDFs of sea and valence
quarks, form factors, and structure functions of the proton
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We discuss unpolarized neutrino- and anti-neutrino-nucleon deep inelastic scattering using a chiral
doublet of baryonic sources with explicit symmetry breaking, in a slice of AdSs with both a hard and soft
wall. We explicitly derive the direct and transition form factors for the vector and axial-vector currents for
the holographic dual of a proton and neutron. We use them to derive the s-channel structure functions for
neutrino and antineutrino scattering on a proton and neutron in bulk. The #-channel contributions stemming
from the Pomeron and Reggeon exchanges are also evaluated explicitly. The pertinent even and odd
structure functions in the limit of large and small parton momentum fraction x are given. The results allow
for the extraction of the nonperturbative parton distribution functions carried by the sea and valence quarks
both at large-x and small-x regimes. Our holographic parton distribution function (PDF) sets compare well
with the Les Houches accord PDF (LHAPDF) and the coordinated theoretical-experiment project on QCD
(CTEQ) PDF sets in the large-x and small-x regimes in the intermediate range of Q%> < 10 GeV?.

DOI: 10.1103/PhysRevD.104.066010

I. INTRODUCTION

At extremely low x, the measured nucleon structure func-
tions on unpolarized nucleon targets, show a rapid growth
of sea quarks and gluons at low x [1,2]. Phenomenological
arguments suggest that the growth saturates [3], a point
supported by perturbative QCD arguments [4]. A central
question is then this: what is the primary mechanism for the
growth of the sea quarks at low x?

Deep inelastic scattering (DIS) in holography at mod-
erate x is different from weak coupling as it involves
hadronic and not partonic constituents [5]. The large gauge
coupling at the low renormalization point, causes the color
charges to rapidly deplete their energy and momentum,
making them visible to hard probes only through double
trace operators. However, because the holographic limit
enjoys approximate conformal symmetry, the structure
functions and form factors exhibit various scaling laws
including the parton-counting rules [6]. DIS scattering at
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low x is partonic and fully saturated [7]. Recently, we have
extended the notion of DIS scattering to nuclei as extremal
Reisner-Nordstrom (RN)-AdS (anti—de Sitter) black holes
with an emerging Fermi surface [8].

In this paper we consider neutrino and antineutrino DIS
scattering on an unpolarized nucleon described by a Dirac
chiral doublet using holographic QCD. The scattering is
chiefly due to neutral and charge exchanges. In QCD the
charge exchange currents discriminate between partons and
antipartons. When combined with antineutrino DIS scatter-
ing, it allows for the separation between sea and valence
partons. In holography, the partonic description holds only
for very large x and very small x in the Regge limit. The
purpose of the present study is to construct the even and odd
parity leptonic structure functions for neutrino and anti-
neutrino scattering, and use them to extract the sea parton
distribution of the nucleon as a Dirac fermion in bulk.

The organization of the paper is as follows: in Sec. Il we
briefly review the setting for the model with bulk chiral
gauge fields and a doublet of Dirac fermions in a slice of
AdSs, for both the soft and hard wall. The explicit breaking
of chiral symmetry is enforced by the boundary value of a
scalar bulk field in the bifundamental representation. In
Sec. III we derive the direct and transition form factors for
the vector and axial-vector form factors for both the proton
and neutron. In Sec. IV, we briefly review the essentials of
neutrino and antineutrino DIS scattering on unpolarized
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nucleon targets, and show how the valence and sea up and
down parton distribution functions are related to the struc-
ture functions of W exchanges. The s-channel contributions
to these structure functions are derived using the direct and
transition form factors in holographic QCD. The #-channel
contributions are also derived using the Pomeron and
Reggeon exchanges in bulk. In Sec. V, all the results are com-
bined to extract the valence and sea partonic distributions at
large and small x, with a detailed comparison to the LHAPDF
and CTEQ PDFs. Our conclusions are in Sec. V. A number of
Appendixes are added to support some of the derivations.

II. HOLOGRAPHIC MODEL

AdS/CFT duality maps a conformal and strongly coupled
gauge theory in 1+ 3 dimensions at the boundary to a
weakly coupled type-II supergravity in 1 + 9 dimensions in
bulk, with a dilaton, an antisymmetric tensor field, and
additional odd (ITA) or even (IIB) forms. AdSs x S° geom-
etry emerges from solitonic and Bogomolnyi-Prasad-
Sommerfield (BPS) charged D-brane supergravity solutions

|

in bulk with the graviton and dilaton excitations dual to
glueballs. The dual of the flavor excitations at the boundary,
are obtained through probe Dp-branes and described by DBI
and Chern-Simons effective actions.

A simple way to capture AdS/CFT duality in the non-
conformal limit is to model it using a slice of AdSs with
various bulk fields with assigned anomalous dimensions and
pertinent boundary values, in the so-called bottom-up
approach which we will follow here. We consider AdSs
both with a soft and hard wall, with a background metric
gun = (M- —1)R?/7? with the flat metric Nuw =
(I,-1,-1,—1) at the boundary. Confinement will be
described by a background dilaton ¢ = x?z> for mesons
and ¢ = &*z? for nucleons in the soft wall model. In the hard
wall model, ¢ = 0 and confinement is enforced at z = z.

A. Bulk vector mesons

The vector mesons fields in bulk are denoted by
L,, R,. They are U(2) valued and described by the effective
action [9,10]

Su = dsxe_(p(z)\/ggMPgNQTr(]:km}-%’Q +f§4NF§Q> +/d5x(a)§(.,4) — o5 (A)), (2.1)

1
443
with 7 = dA — i A% in form notations and A = A“T* with T° = 31, and T = 1 7. Note that the generators 7 are fixed in
such a way that the electromagnetic charge of the proton is 1, while that of the neutron is 0. The bulk U(2) vector field
V = (R + L)/2 and axial-vector field A = (R — L)/2 reduce to the QCD flavor source fields at the boundary. The Chern-
Simons contributions in (2.1) are
N,

ws(A) Ne /ds)cTr(AF2 +%A3]:—%A5> =

3i 3
B 5 22 a2 s
= = d>xTr (A(dA) > AdA 5 A ) (2.2)

The equation of motions for the bulk gauge fields follow by variation (D = d — i A)
1
V9

The coupling g5 in (2.1) is fixed by the brane embeddings in bulk, with 1/ gg =3N,./(122%) (D7-branes), and 1/ gg =
(3v/2/2°2z)N../(127%) (D9-branes). When ignoring these embedding, the standard assignment is 1/g2 = N../(122%) to
match the vector 2-point correlation functions of QCD in the UV [11].

(D (Vge™ AMN)] = 0. (2.3)

B. Bulk fermionic doublet

The bulk Dirac fermion action in curved AdSs with minimal coupling to the left U(2) gauge fields is

1 1
Sp = 2792 d5xe—'/’(1>\/§(£m +Lp) + 292/ d“x\/ —g¥ (Lyy1 + Lyva). (2.4)
5 5

with Ly, = (‘?1!2‘1’1_2) .—- This extra UV contribution is needed to maintain the bulk to boundary correspondence. The
Dirac and Pauli fermionic contributions Lrj» = Lpine1s + Lpauliro are explicitly

i - - B}
Lpiract 2 = (ETl,zeQIFA (DILV'R - Dk’R)‘Pl.z — (M + V(Z))‘Pl,qulQ)y

Lpauiit 2 = i2g§ X 7]‘?1,26%40’437‘_@%‘?1,2’ (2.5)
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with ¢4% = L[, T'?], and the left and right covariant derivatives

- - 1 S
DY =0y + ga)NAB[FA,FB] —iL4T* = Dy — iL%T*,

- -1 -
Dk = oy + g ONAB M4, 18] + iL4T* = Dy + iL4 T,

| .
D§ = 6N + g(l)NAB[FA,FB] - l.RX/Ta = DN - l.RX/Ta,

- - 1 -
DX =0y + ngAB[FA, 8] 4+ iR4,T* = Dy + iR%TC.

The left and right flavor field strengths are set to
ALy = Lyy, Ay = Ryy. The Dirac or minimal fer-
mionic coupling is standard, but the Pauli coupling is not.
It can be shown to follow from the Supergravity (SUGRA)
action by reduction from the top-down approach. Without
it, the neutron form factor vanishes. The nucleon doublet

refers to
\P - (‘I‘pl,z )
12 = .
anl.Z

The nucleon fields in bulk form an isodoublet p, n with 1,2
referring to their + = R, L chirality at the boundary [12].
They are dual to a boundary chiral doublet of baryonic
sources with¥ ), , <> O,  and ¥, , <> O,, . with anoma-
lous dimensions +M = +(A —2) = £(r —3/2). They
map onto a non-normalizable solution or source, plus a
normalizable or expectation value of the corresponding
source at the boundary. This doubling is best seen in the
top-down approach using a left and a right bulk filling
brane.

The fermionic potential V(z) = k%2> will be used for
both the soft and hard wall. Here e} = z5) is the inverse
vielbein. The components of the spin connection are
® . = 1, the Dirac gamma matrices " =

(2.7)

uzw — Wy
(y*, —iy®) are chosen in the chiral representation, and satisfy
the flat anticommutation relation {I'A, T2} = 28, The
equation of motions for the bulk Dirac chiral doublet follows

by variation

(160" - LOup AT - (b + V() )z =0,
(2.8)

with 1,2 = R, L = =£. The inclusion of a fermionic potential
which is set to the dilaton profile for simplicity, breaks con-
formal symmetry and guarantees the Reggeization of the
nucleon spectrum in bulk. Equation (2.8) is supplemented
with confining boundary conditions for the hard wall,
and vanishing fields asymptotically for the soft wall. The
solutions to (2.8) are briefly discussed in Appendix B. In
short, for the soft wall and in the absence of a tachyon

(2.6)

|
coupling in bulk, the spectrum Reggeizes with M2 =
4%%*(n + 7 — 1) and the ground state proton, neutron states
with n = 0 are degenerate. They follow from the mixed
representation
¥i(p.2) = yr(2)¥(p) +wi (¥ (p)  (2.9)
for n = 0, with yg(z ~ 0) ~ z771/? and y; (z ~ 0) ~ 7773/2
for the positive parity states 1 = + at the boundary. Similar
relations follow for the negative parity states 2 = — at the
boundary through the substitution y ; <>F y by parity.
Note that the canonical dimension for the QCD baryonic
sources is A = 9/2 which would suggest a twist 7 = 4.
However, we expect nonvanishing anomalous dimensions
to develop at strong coupling. We do not know of any
reliable calculational scheme to assess them. We will
assume A and thus z as a parameter with a twist 7 =3
to recover the hard scattering rules. The inclusion of
additional twist contributions is discussed in [13].

C. Fermionic currents

For later use, it will be useful to define the bulk U(2)
Dirac 1-form currents

AL -
JgN = 2Pl — @ NTPAT Y
oL
AL -
JuN = 2P, pNPATay, (2.10)
ORY,
and the bulk U(2) Pauli 2-form currents
Lo -
JgMN — TPl 5 2 W e el oA B T
OLSn
MN 8‘C’Pauli2 2 U M _N _AB
JN — ——2 — _2g2 x nP, el e oM BTY,, (2.11)

R
ORS
in terms of which the pertinent 1- and 2-form charged
currents read, respectively,
Tik = I0% = 1% = Pai 26 T 10,

JZ% = J}‘],\;? + IJ%{\;? = @p]yzegrA‘Pn].z, (212)
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and

JEMN — JIMN G MN — 4002 s B, oM N pABY

JMN = JIMN 4 jJaMN — +295 X n‘I‘pleA eNohB ‘Pnl,

JEMN — JIMN _pMN — 02 s B, eMeN AP .

JRMN = JIMN 4 J3MN = 242 x n‘I‘pzeA eNo B ;. (2.13)

D. Bulk effective action

In terms of the charged and left 1-form gauge fields Ly = \/Li (L, F iL%), the bulk meson effective action (2.1) can be
recast in the following form

1 1
SM ) —/dsxe Z < 8ML_N8ML + aML_NaNLL — ZLOMNLOMN — ZLaMNL?WN + L el R>

tants [ (LG (L) ~ £55,(R)). 214)

with the Chern-Simons contribution restricted to the charged left currents through a neutral
L5,(L)=0.Lo,LoL; +0.L;0,LOLY — 8 LILY), Ly — 9, L, L9, LS + 0, L)0, L, Ly +0,LY9,LSL;, (2.15)
where we made use of the Abelian field strengths
Ly = OylLs — OyL,
L3 = 0y LS — OyLY;. (2.16)

In terms of the 1- and 2-form currents, the bulk fermion effective action (2.5) now reads

i - L _ 1 1
Lri+ Lpy D %‘PleQ’FA (Dy — Dy)¥) — (M + V(2))¥,¥; + EL;{,JZN + ELITIJZN + LYW + L3, I3
+ LIt MN + Ly J MV + L8, JOMN + L3 N 4 (1 < 2,1 <> R, M < —M)
i - S = . i - - = .
= quleﬁ/r/* (Dy —=Dy)¥1 — (M +V(2))?, ¥, + E‘I‘zeQ’FA(DN —Dy)¥, — (M + V(2))",¥,

1 1 1
+—=ViIN + —= ALY + —=ViIPN + —= AN + VI + AQION + V3N + AN

Va2 vttt \@ V2
+ \% Vi ™™ + %ALNJ;MN + % Vi "™ + %A&NJXMN
VO JOMN 4O JOMN 3 IMN A3 TN (2.17)
where we defined
JN, = JaN & aN JUN — JOMN o jauN, (2.18)

with @ = —,+,0,3, and Vy,Ay = (Ly + Ry)/2.

E. Hard and soft wall models

We now detail the specifics of the hard and soft wall model with chiral symmetry breaking through the use of a flavor
scalar in the bifundamental representation in a slab of AdS spacetime. These well motivated bottom-up models capture the
essentials of the top-down approaches and make more transparent the essential aspects of holography. Their parameters are
fixed by the brane embeddings and reduction in higher dimensions.
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1. Hard wall with bifundamentals

To distinguish vector and axial-vector spectra and
introduce a scalar X in the bifundamental representation
of U(Ny), x U(Ny)g with a scaling dimension A = 3 and
bulk action

S[X] = 2%]2/ dx\/gTr(|DX)? + 31X?) (2.19)

5
using the I-form DX = dX —iA“X + iXAR. Note by
replacing X — /2¢% x X, we can rewrite (2.19), in a form

similar to [14], as
smp:/daV@HQDxP+3mPy (2.20)

The equation of motion derived from the above action
(2.20), for A =0, has a background solution for the
bifundamental scalar near the UV boundary (z — 0)
given by

1/l 1, 1
— EM"Z+52Z = v(z).
,/29% 2g§

(2.21)

Xo(x, Vi d 0) ~

Both the current mass matrix and the quark bilinear are
diagonal, M, = m,1 and ¥ = o1, with £V = 2¢2(g%q] )
where i, j = 1,2...N are the flavor indices. For the hard
wall, the boundary condition for the U(N;) gauge fields
is FRE(x,z9) = 0.

Vectors.—The bulk vector field V), = (V,.Vs) splits
into a u transverse, u longitudinal, and 5-contribution. The
5-longitudinal components of the vector field mix through a
Higgs-type effect. They can be decoupled by a pertinent
choice of gauge. The transverse part of the vector field
decouples, and its mode decomposition in terms of v, (z)
yields the bulk equation

@G@w@0+%ﬁ%@_o (2.22)

subject to the confining conditions w,(0) = y/},(z9) = 0.
The solutions are readily found as y,(z) ~ zJ;(m,z) with

the vector spectrum m,, fixed by the zeros y, , of the Bessel
function Jy(yo,) = 0, with normalization

2
|7 avmmmn @@ =om 223
and the completeness relation
> wa@wa(@) =Vg"e(z-2).  (2.24)

n=1

The first zero of J, or y; = 2.40483, is identified with the
rtho meson state m,_, = yo1/29 = 0.775 GeV which fixes
the TR scale z, = 3.103/GeV. Note that asymptotically
Yo & nx with m, = nx/z.

The bulk-to-boundary vector propagator follows from
(2.22) through the substitution m2 — —Q? with the boun-
dary conditions V(Q,0) = 1 and 9,V(Q, zy) = 0 (confin-
ing). The solution can be obtained in closed form

Fn n\~
V(0.0 = Y Ll

_0: (Kl(QZ) +%u(gz>), (2.25)

where we have also shown its mode decomposition with the
decay constants gsF, = (=0,w,(2)/z),.

Axials.—Similarly the bulk axial-vector field Ay =
(A, As) splits into a y transverse, u longitudinal, and 5-
contribution. The 5-longitudinal components of the axial-
vector field, mix through a Higgs-type effect. They can be
decoupled by a pertinent choice of gauge, at the expense of
more coupling of the A5 field with the tachyon field. For
instance in the R gauge, the As field is identified with the
pion field. These contributions will not be followed except
when discussing the pion contribution to the direct and
transitional axial-vector form factors below.

The p-transverse part of A, is always decoupled. Its
mode decomposition in terms of ¥,(z) yields the bulk
equation

0, (% Gzli/n(z)> - % Uzgz) Wa(z) + g”ﬁ‘pn (z) =0.

(2.26)

Upon taking the chiral limit before the near-boundary limit
(i.e., my — 0 before z — 0), (2.26) reduces to

0.(20,(2)) - 320 + LA =0 (220
with the same confining boundary conditions ¥, (0) =
¥h(z0) =0 and a similar normalization (2.23) and com-
pleteness relation (2.24). Note that (2.27) can only be
solved numerically.

However, we can find an equation that can be solved
analytically, if we take the near-boundary limit first without
taking the chiral limit (i.e., z — 0 with m, # 0) of (2.26)
which reduces to

(2.28)

| I, 1, _
0, (Z azl//n(z)) ~as myir,(z) + Z M, (z) = 0.

Defining 2 = m2 + %mﬁ we can recast (2.28) in the form

066010-5
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1 1
0. (L0,(0) + Lm0, @229
which maps onto the vector equation (2.22) with the
replacement of 7, (z) <> v, (z), and /m,, <> m,,.

In the near boundary or UV limit, the differences
between the axial-vector and vector masses are only due
to the explicit symmetry breaking effect with m, # 0, and
vanishes in the chiral limit. In general however, the
difference is largely due to the spontaneous breaking of
chiral symmetry through £ = o1, as a numerical solution to
(2.27) shows. For 6z} < 1, a simple parametric estimate
can be obtained using first order perturbation theory in
(2.27)

1 Z
i o+ [ dealn (@) Ploz + my P (230
0

which reduces to the near boundary or UV limit result for
ozg — 0. In the chiral limit (2.30) yields a chiral splitting
between the axials and vectors

%~ m? +0.38 (; azzg> (2.31)
solely due to the chiral condensate. Note that asymptoti-
cally, the linear mass splitting in the hard wall model
vanishes, i.e., i1, —m, ~6%z3/n — 0 for n> 1. Below
and for simplicity, we will carry the analytical analysis
using the near boundary limit, using the substitution

(2.32)

The bulk-to-boundary axial-vector propagator follows
from (2.29) through the substitution m2 — —0% = —(Q?* +

tm2) with the boundary conditions A(Q,0)=1 and
0.A(Q, z9) = 0 (confining). Note that A(Q,0) # A(0, z)
since \A(0, z) # 1. The solution can be obtained in closed

form as

9sF 0, (z g Fnl//n
)2 ST (),
= ~ Ko(0z) , , » )
— 0 <K1(QZ) TS ICED

where we have also shown its mode decomposition with the
decay constants gsF, = (—=0.17,(2)/2)._-

2. Hard wall without bifundamentals

Both the bulk-to-boundary vector and axial-vector
propagators can be obtained in closed form in a variant
of the Sakai-Sugimoto construction [15] using a hard wall

model without the use of the bifundamental scalar field in
bulk but with modified boundary conditions.

Vectors.—The vector fields are still given with the same
hard wall boundary conditions y,,(0) = y),(z9) = 0, but
the axial-vector fields satisfy ,(0) =,(z0) =0 and
W (z9) # 0. The solutions are again readily found in the
form Y (Z) ~ ZJl (ng) with m, = 70.n/Z0-

Axials.—Similarly, the axial vector spectrum follows
with @, (z) ~ zJ,(im,z) with m, =y, ,/z0. If 7o is fixed
by the rho mass then the ratio of the axial-to-rho meson
mass is 7/ /M; = y;1/ro1 = 1.593, which is consistent
with the empirical ratio m,/m, = 1.587 as in the Sakai-
Sugimoto construction. The higher excited modes fare less
better empirically in both formulations.

The bulk-to-boundary axial-vector propagator follows a
similar reasoning as the vector analog, through the sub-
stitution M2 — —Q? with the boundary conditions

V(Q,0) =V(0,z) =1 and V(Q.z)) =0 (confining).
The solution follows as
Y ~ gSFan/n(Z)
V(Qv Z) ~ Q2 + 7’712
~ 5y Ki(Qz) )
=Qz| K 2.34
0:(k(09) - 158 1(09)). (230

3. Soft wall with bifundamentals

In the soft wall model with scalar bifundamentals, we
replace (2.20) by [14]

S[X] = / Bxe=t0) JGTr(DXP +3X[)  (2.35)

with again the same background solution and boundary
identification for the bifundamentals.

Vectors.—In this model, the bulk vector gauge field in
terms of w,,(z) yields the bulk equation

_(/() e_(ﬁ(Z)
(0w (@) + i =0, (239
The solutions are readily found as y,(z) =

R’ LY (R*Z%), and m2 =4k*(n+1) for n=0,1,...
with normalization coefficients ¢, = \/2/n+ 1 deter-
mined from the normalization condition (for the soft wall
model with background dilaton ¢ = &>z?)

[ i P @ (@) = b 237

For the soft wall model, the bulk-to-boundary vector
propagator follows from (2.36) through the substitution
m? — —Q? with the boundary conditions V(Q, 0) = 1. The
solution can be obtained in closed form as

066010-6
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gsF .y, (2)
Q> +mj

0 0
=&T — 1+—=:;2;
=&z (+4I~<2M +42, 222,
L dx X
— 22 a _ ~22’ 2.38
KZA(I—x)Zx exp[ l—xKZ] (2.38)

where we have also shown its mode decomposition with
the decay constants gsF, = (=0.y,(z)/z)y and defined
a= Q?/4ir>.

Axials.—For the soft wall model, the mode decomposi-
tion of the axial-vector gauge field in terms of ¥, (z) yields
the bulk equation

€_¢(Z) ~ e_¢(z) ly Z 2 5
o.(“ 0 @) -3 L0

V(Q.z) =

’

e_(/)(z>

+——— i (2) = 0, (2.39)

which, upon taking the chiral limit before the near-
the-boundary one (i.e., taking m, — 0 before z — 0),
reduces to

q

€_¢(Z) 1
9, (T azwz)) - et 2, 2

e_¢(z>
+— apa(z) =0,

(2.40)

T}(Q,Z) ~ giann(Z) _ gSFnlpn(Z)

Q% +m? — Q% +

0’ 0* N lodx X
KZF<1+@ Ul 1+ 4~2,2K =R | (l—x)zx exp —l_xkzzz

where we have also shown its mode decomposition with
the decay constants gsF, = (—0,9,(z)/z),, and defined
a=Q?/4r%.

We emphasize that the exact form of (2.43) requires
solving numerically (2.39) for the normalizable modes and
using the mode decomposition (first line). Alternatively,
one can solve (2.39) also numerically for the non-
normalizable modes, after the substitution M2 — —Q2.
However, for DIS scattering which is the main thrust of
this paper, this is not needed. Indeed, in the DIS regime with
Qzo > 1, the near-boundary approximation giving (2.43)
(second line) is sufficient. This will be assumed throughout.

III. DIRECT AND TRANSITION FORM FACTORS

The vector and axial-vector couplings to the Dirac
fermion in bulk follow from the Witten diagrams.

with a similar normalization (2.37). Again, note that (2.40)
can only be solved numerically.

But, similar to the hard wall case, we can find an
equation that can be solved analytically, for the soft wall
model, if we take the near-boundary limit first without
taking the chiral one (i.e., z = 0 with m, # 0) of (2.39)
which reduces to

€_¢<Z) ~ €_¢(Z) 1 2~
0“0 (@) - L)

e_(/)(z)

+ g, (z) = 0.

(2.41)

: 2 _ 52 2
Defining m;, = m;, — 2mq,

e_¢(z) €_¢(Z>
0. (" 0.,(2) ) +
(o) +

we can rewrite (2.41) as

m%ll/?n (Z) =0, (242)

which is essentially the same equation as the vector
one (2.36) with the replacement of ¥, (z) < w,(z), and
M, < m,.

For the soft wall model, the bulk-to-boundary axial-vector
propagator follows from (2.42) through the substitution
m% — —0% = —(Q? + L m2) with the boundary conditions
V(0Q,0) = 1. Notethat V(Q, 0) # V(0, z) since V(0, z) # 1.
The approximate solution follows as

(2.43)

They involve both the Dirac and Pauli form factors. We
note that neutrino scattering through the charged currents
involve solely the charged left currents. Here we construct
both the direct and transition form factors needed for the
vector and axial-vector currents and compare the direct
ones to the most current data on the proton and neutron. We
will use these form factors to construct the s-channel
contributions for neutrino DIS scattering on nucleon
targets.

A. Direct vector and axial
form factors

The direct vector and axial form factors for the proton
and neutron V,A + N(p) — N(p'), can be extracted from
the boundary to bulk three point functions with pertinent
Lehmann-Symanzic-Zimmermann (LSZ) reduction using
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0.3 .
Cow(p.plq) = lim _
pr.promy

(1 = mR) (= k) [ disdtyelt e OOV EONONI0) ()

through the ratio

_Co (PP q)

03)p H2y _ 71 7(0.3)u
Wy it (Q%) = (N(P" )y 3" (0)IN(p)) = (3.2)
NPT OIN () = 2o T
for the chargeless form factor, and similarly for the charged currents
tp (2 / 1 Fu
Wya(Q%) = (N(p )|7§JV,A(O)|N(p)> (3.3)
and the electomagnetic currents
~ 1~ ~
Wim(Q?) = (N(P")gm(0)IN(p)) = <N(p’)|§13”(0) + IV (0)IN(p)). (3.4)
with ¢> = (p' — p)*> = —Q?. Here N(p) refers to the U(2) proton-neutron doublet
N,(p)
o= (0. 3.5)
N.(p)
and the baryonic decay constant Fy(p) is canonically defined as the
(O[ON(x)IN(p)) = Fy(p)e™* (3.6)

modulo the spin-flavor structure of the nucleon source Oy.
These definitions are commensurate with the lattice defi-
nitions for the three point functions and form factors [16],
with the baryonic decay constants defined and evaluated in
[17] (and references therein). In our case they are tied to the
bulk wave functions and given in (B14)—-(B15).

The chargeless currents J 9;3)” at the boundary are
identified with the quark (partonic) currents, with the
quarks in the fundamental representation of U(N, = 2).
They are sourced by the dual bulk vector fields V9(Q,z —

0) and V;(Q.z—0) at the boundary, respectively.

Similarly, the dual bulk axial vector fields A,§0’3>(Q, 7=

0) and 1 x \/% x A¥(Q,z — 0) at the boundary, are the dual

of the quark currents 720’3”’ (0) and 273”‘ (0), respectively.
|

. 1 /1
SBiac i X] = 2—gz/dzd4y\/§e Rz <§ VIO + V?\J%/N)

5

or more explicitly

3

|

We now proceed to evaluate the Abelian part,
U(1)§ , cU(2) of the Dirac and Pauli contributions
to the direct vector or axial form factors of the proton
and neutron (3.2). We will give a detailed account of the
Dirac contribution to the direct parts of the ectromag-
netic and axial-vector currents, setting up this way the
various definitions and normalizations. The Pauli con-
tributions will follow a similar reasoning and will be
only quoted.

1. Direct vector form factor: Dirac

The Dirac contribution to the direct part of the electro-
magnetic current can be extracted from the bulk Dirac part
of the action in (2.17) in the soft wall model

(3.7)

. 1 027 = 1 _ 1
Shieeli- X] = 2—92/ dzdy\/ge """ R (‘Pli/N <— VT + V?VTS)TM + Woxr" (g VRT® + V13vT3>‘Pzi),

5

= (2”>454(PX - p—q) X Fx(Px)x Fy(p)

1

X E[IL(I’Z)(, QZ) +IR(nX7 Qz)]’

1 _
2_9§ X 29% X €nucleon X usx (Px)ﬁl(Q)M"(p)

(3.8)
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following the conventions for the interaction action used in [18]. Here ¢#(g) is the polarization of the EM probe. In the last
equality in (3.8) we substituted the bulk gauge fields by (A4), and the bulk fermionic currents in terms of the fermionic
fields (B15). The charge assignments are e,,,..on = 1 for the proton, and e, ,¢.on = O for the neutron. We have also defined

IL(nx,QZ) EI<M+5/2,nx,Q2), IR(I’IX,QZ)EI(M+3/2,nx,Q2), (39)

with (w = #2z%)

T 2\ _ (5 0 ® =1 —w o, )
(m,nx, Q%) = C(m,nx)['( 1 + — dww™ te™U| 1 + 2w | L2 (w),
0

422 a2’
_\ C(m—=D)(ny+m—1)\1 2 2
T (=) 2T + nx) 3.10)
C(m—1) T(Z + ny + i)

and the normalization

_ F(”lx + 1) 1
Clm,ny) = 2, 3.11
(7, nx) (F(m— Dy +7=1)) (3.11)
Here we have set Q> = —g” (spacelike), and used the final state mass shell condition
1 . 1
P%:(p+q)2:M%—|—Q2<_—l>EM§:4K2(I’1X+M—|-§> (3.12)
X

to identify ny = Q*(1/x —1)/4&%, with p> = M} = 4&*(M + %) = 8&? for the initial nucleon state.
The Dirac part of the electromagnetic current (3.4) can be extracted from (3.8) using

; 1 SSEM
Wt 2) = @, (p')r'u, % FEM(Dlrac) = Dirac | ) NZ2), 313
EM(Du':ic)(Q ) u (p )7 u (p) 1 (Q) FN(p,)FN(P) 56”(q) ( ) ( )

which amounts to the Dirac or minimal contribution to the electromagnetic form factor (Q? < 0)

i 1 1 _
FIMOI(0%) = 5 5 % 208 X moeon X 5 1y = 0,0%) + Ty = 0,0)] + ONZ) (3.14)
5

or more explicitly in the soft wall model

1 3
enucleon( 2 2 + 2 2 2
E+1)&E+2) G&+DE&E+)E&+3)

F)]EM(Dirac) (Q) _ ) + O(N;2)7

_ my 3mg ) 5
— Cnucleon ((Q2 T ) @yt my) TON) G)

using the soft wall tho meson trajectory m2 = 4%*(n + 1). Note that normalizing F fM(DiraC)(O) =1 for the proton, fixes
1 + O(NZ?) = 1. In other words, the 1/N . corrections to the EM form factors must vanish at Q = 0 due to the conservation
of the electromagnetic current. Also note that (3.15) asymptotes a dipole form ~1/Q* which is consistent with the hard

scattering rules [5].
2. Direct axial form factor: Dirac

The direct axial form factors are derived using the same reasoning, with WZ”(QZ) (3.2) following from the pertinent
variation of the bulk Dirac action

066010-9
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xialy . 1
S](DOH?;)CA al[l,X] :29 /dzd“y\/ée_“A )1(03) ,
5

1 .
Stime i, X] = 2 / dzd*y\/ge ™ AGIT, (3.16)
92
or more explicitly for the chargeless component,

xialy. 1 )
Spiae1:X] =5 5 / dzd'y /e 7 = (B VAR OV = By AR TO)
5

~ (2m)*6*(Px — p — q) X Fx(Px) X Fy(p)

1 _ 1 ~ ~
2 2 X 295 X g,(Anuz:leon I/tsx (PX)¢(CI>}/SMS, (p> X 5 [IR(nX’ Qz) - IL (nX7 Q2>]’ (317)
where the substitution (2.32) was used in the second line, i.e.,

1
0 = Q*+-m2 - Q> + imf — mj. (3.18)

2

Similarly, for the charged components

Dirac

1
Sj:Ax1al[l X] 2 \/_/dzd4y\/§e—kz (‘Pf)/(n NAi\,Iﬂlll/P le/l’l NAi\Pn/P)
= (2 )454(PX—P—6])XFX(PX)XFN(P)

1 1 ~ ~
— X202 X —= X ey, i, (P 3 —\|Z L0 -1 ,0%)]. 3.19
X 29% X gS X \/E X eWnucleon X ”sx( X)f(Q)y us,»(p) X 2[ R(nX Q ) L(nX Q )} ( )

Here ¢ (g) is the polarization of the charged vectors. Following the normalization of the flavor generators 7 in (2.1), the
axial and electroweak charges are

0 —_ 0 — 0 =
YAnucleon — gAproton = YAneutron — 2 ’
1

3 — 3
JAnucleon — gAproton - 2’

3 _ 3 _ _l
Yanucleon — YAneutron = 2 ’

t =ei =1, (3.20)

+ —
eWnucleon - eWproton = €Wneutron

Finally, the isoscalar axial form factor can be extracted from (3.17) using

! 0SB +ON2), (321
Fyn(p')Fn(p) d€,(q) °r '

- 0A (Dir:
Whiine)(Q0) = WI(Q?) = g (p)r7us(p) x F"™(0) =
which yields the minimal Dirac contribution to the isoscalar axial form factor as

0A (Dirac 1
FPPR(0) »

1 ~ -
2792 X 29% X g(/)\nucleon X E [IR(nX =0, QZ) - IL (nX =0, Qz)] + O(Nc_z) (322)
5

More explicitly, in the soft wall model we have
1 3

N N 02 +ii
(=9( 4zm° 1) E=9( 4~zm°+1)( m°+2)

F*

Di
( raC)(Q> ~ g?lnucleon

) + O(N;?) (3.23)
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following (3.15). Equation (3.23) reduces to a dipole form factor asymptotically ~1/Q*, which is consistent with the hard
scattering rules [5]. Recall that the substitution (3.18) in the bulk-to-boundary axial-vector propagator is justified for
Qzo> 1, as we noted in (2.43). For Qzg — 0, (3.22)—(3.23) give

g nZ\ (g 72 -1 52
3(Dirac) :1 0(Dirac) _, @_ 1 ﬂ @ 1 @ 5 l %_1 o s
ot =3~ = | Ge) G ) G 2)) el o

with the rightmost result corresponding to the leading perturbative correction as in (2.30) for 6z3 < 1. Using the soft wall
parameters in [14] (model A) yields my = 0.775 GeV and 7y = 1.363 GeV, resulting in a large Dirac leading perturbative
contribution to the isovector axial charge of the nucleon gi(Dlrac) ~ 1/3. The near-boundary approximation is not justified in

this limit, with the exact but numerical bulk-to-boundary axial-vector propagator required.

(3.24)

3. Pion pole

Finally, we note that the axial-vector form factor is characterized by two invariant form factors F4(g*) and H4(g?) in

general, which are defined as

(11755 (0)|p2) = a(p1) (PP’ Falg?) + ¢y Ha(q*)) Tu(py).

with ¢ = p, — p;. In the chiral limit, the two form fac-
tors are tied by the conservation of the axial-vector
current H,(q?) = —2myF4(¢?)/q* with H,(q> ~0) ~
—2myga/q* exhibiting the pion pole. The absence of this
contribution in (3.32) can be traced back to the As field
which we have ignored. As we noted above, the Aj
mixes with the tachyon X. When taken into proper
consideration, this mixing after gauge fixing locks As
with the phase IT of the tachyon, i.e., X = X,e'!, which
is identified with the pion field. Careful considerations in
bulk yield precisely H,(g?) as expected from current
conservation in the chiral limit [19]. Here we can just
reinstate this contribution by inspection, with the full

pion pole ¢*> — ¢> — m2.

B. Transition form factors
In DIS scattering of neutrinos off nucleons, we will need
the transition form factors of the left chargeless and charged
currents. For that, we define the left vector transition form
factor for the process V.L +p — X

Wy L(@%) = (X|T%, .(0)[p) (3.26)

SLDirac[i’X] = (2”)454<Px - p—q) X Fx(Px) x Fy(p)

1 5l - 1—p
X 27 x 2g5 | iis, (Px)¢(q) 5

i p)T2 00, 02) + 1, (P

(3.25)

with Q? = (Py — p)?. We first evaluate the U(1), Dirac
and Pauli contributions to the transition vector form factor
(3.26) and then generalize them to the corresponding
U(1)EM U(1)f c U(2), contributions.

1. U(1), contributions

The minimal Dirac interaction term between the bulk
U(1), gauge field Ly and the bulk fermionic field ¥, in the
action is

. 1 22 Z —
Sbiracli> X] :ng/dzd4y\/§e ¢ }LN%X}’N‘PU,
(3.27)

following the canonical normalizations

¥ > \/2¢2¥ Ly — gsLy. (3.28)
which makes the couplings and power counting manifest in
Witten diagrams. The explicit form of (3.27) in terms of the

bulk fermions is

1—|—y5

() Ta(n 0] 329
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The Dirac contribution to the U(1), transition form factor reads explicitly

WM (q2) 1 SSLDlrac + O<N—2)
e Fx(Px)Fy(p)de,(q) o
1 1 1 6SD
_ X — irac + O
Fx(Px)Fy(p ) 295 9s 56( ) (Ve
1 1—y 1+y
= ot 26 x o, o (5 ) ()T ) 4 (Pt (S5 (01 02)] + O02)
5
(3.30)
2. U(1)f contributions
For neutrino and antineuutrino scattering, the pertinent left-handed hadronic transition form factor is
WL(Q2) = (N(Px)[TL"(0)N(p)), (3.31)

which can be evaluated using the Dirac and Pauli contributions to the fermionic action. To illustrate the normalizations,
consider for simplicity the contribution due to the Dirac part, which yields the interaction vertex

1 o 11
Stiracli X] = 5— % /dzd4 e X LEITY :x/dzd4 e F \{tﬂ/n PNLEPP
bl X] =5 5 5 W9 W =25 W9 %

1
= (2n)*s*(Px —p—q) % 27 X 263 X Fx(Px)F »/u(p)
5

1 5

X 75X imten [ (Px)¢*(4) (1 7

1—|—y5

Yo (0 T000) + Pl a) (5 Y ()T 08)|

(3.32)

with the corresponding transition form factor

1 1 5SiL
irac +O(NL_2)
FX(PX) p/n(p)m /:tt( )

Dlrac (Qz)

2 +
=—5X2¢g: Xe
5 Whnucleon
243

1—|—y5

2[%(&»”(1;ys)usxpm(nx,gb+usX<Px>yﬂ( i ()T, 03] + 00,

+
x2g2 X e
2 gz 5 Wnucleon

X (its, (Px)7"us,(p)[Zr(ne. O7) + Zp(ny, Q7)) + iy, (Px)r* v us, (p)[Zr(ny, O7) = I (0. 07)])
+O(N22). (3.33)

3. Charged transition form factor: Pauli

The minimal Dirac bulk interaction does not contribute to the neutron transition form factor. This contribution arises from
the U(1), part of the Pauli interaction in bulk [20]

Séaﬁll[l X] 29 / dzd4y\/§e_’( 2 (T]Xg LMN‘PII' - ‘i’szMNRMN‘PZi). (334)
5
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The inclusion of this interaction is straightforward but tedious, with the final result for the charged currents

Wlif”(Qz) = €lnucteon
X (g, (Px )1ty (P)[Zp(nys Q) + Iy (ny, OF)]
+ i, (Px)r*r’uy, (p)[Zr(ny, 07) = Zp.(ny, OF])
+ 1 (it (Py)ruy, (p) [T k(1. Q) + T (1, OF]
+ i, (Px)r*ruy, (p)[Tr(ny, O1) = T 1 (e, 07)])
+ 2% (@15, (Px) o™ iqyus,(p)[ L r(ny. Q7 ) + Ly (ny. OF)]
+ its, (Px)o*iq,y us (p)[Zrr(ny. OF) — Tre(ny, 07)])
— (g, (Px ) g ffus, (p) [Kr(ny, O7) + Kp(ny, 0F)]
+ it (Px)q gy’ us, (p)[Kr(ny, 0F) = Kp(ny, 07)]) + O(NZ?),

with
ot =28 = %bf", vl =iy —n),
and manifest current conservation, i.e., qﬂWi"” = 0 for on shell spinors. The integrals
T Ki(nx, Q) =T . KM +5/2,nx, Q%) Tg.Kg(ng, Q%) =T.K(M +3/2,nx, 0%)
are related to the general integrals of the type (3.10), namely
J(m, ny, Q%) = C(in,ny)['(1 + a) /)oo dww™ e (wld(1 + a;2;w))'Ln’7‘X_2(w),

= C(m,nx)I'(1 + a) /oo dww™le™ (—ald(1 + a; 1;w))Li=2(w),
0

F()T( + ny — 1) (ny — a( — 1))al(a + ny)

=C(m,n = ,
(. ) T(ny + D)(a +m +ny + 1)
—a(m—1)+ ny _
= 2 xT(m, ny, Q%)
ot @+ ny x Z(m,nx, Q%)

1
K(ﬁ’l, ny, QZ) = ? X j(ﬁ’l, ny, QZ)’(338)

with a = Q%/4%%, and

1 o 2 ek
Tir(ng, Q%) = =x C(m+5/2,ny)T(1 + a) / dww’"“e‘WZ/{(l + %;2; w) Lo (w),

K 0 K

1 o 0? m—t
Tgi(ny, Q%) ==xC(m+3/2,nx)I'(1 + a) / dww’"”e‘”%l(l + F;Z; w) Ly, *(w).

K 0 K

We have made use of the recursive relation between the confluent hypergeometric functions
wo,U(a,b,w) = (1 =b)U(a,b,w) — (1 +a—-b)U(a,b—1,w),

together with their integral representation
u(a b W) — L/Oo dtta_] (t+ 1)—a+b—1e—tw
I'(a) Jo
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and the property of the Laguerre polynomials

I'a+1+n)
Fla+ 1DI'(n+1)

Li(w) = Fi(=n,a+1,w) (3.42)

to evaluate the integrals.
4. U1)EM c U(2)y, contributions

The electromagnetic transition vector form factor Wiy, (Q?) as defined through

~ 1. ~
Wim(Q?) = (N(Px)|[Jgm(0)IN(p)) = <N(Px)|513"(0) +JV(0)IN(p)) (3.43)
can be extracted from (3.8) with the inclusion of the Pauli contribution (3.34), using

WI;{M(Dirac)(Q2) — 1 6SEDIi\;[ac+Pauli + O(NL—Z) (344)
Fx(Px)Fy(p) de,(q)

The result is

1
€ﬂW//léM<Q2) = €/4 <enucleon S ﬁsx (PX)}’HMSI-(p)E [IR<nxv 2) +ZL(nxv Qz)]
1
+ ”p/nusx(PX)y”us, (p) 5 [jR<nx7 Q2) - jL (nm Q2)]

+ ﬂp/"ﬁsX(PX)f’””i%“s, (p)[ILR(nx’ QZ) - IRL(nx’ QZ)D + O(NZZ) (3-45)

5.UQ1), cU(2), contributions

The chargeless axial transition form factor W{;’S(Qz) as defined through

03 ~(0.3
W) = (N(PY)ITE (0)IN(p)) (3.46)
follows the same reasoning, with the full result including the Dirac and Pauli contributions:

1 ~ ~
0,3 0,3 0,3 0,3 -
e W02 = ¢ >(ggnuzleonxus,((PX)wySus,.(p)Q[IR<nx, 0*) =1, (n,. 0%)]

1 ~ ~
+ ’7(0’3) a‘\‘x(PX)yﬂySMS;(p) E [jR (nx’ QZ) + jL (I’lx, 2)]

+ 77(0’3)ﬁsX(PX)U”DiCIUJ’5usi (P)ZLr(ny, C 2) + Zgp(ny, C 2)]) + O(NZZ)' (3.47)

IV. NEUTRINO AND ANTINEUTRINO DIS SCATTERING IN QCD

In QCD Iepton nucleon scattering follows from the contraction of the leptonic tensor and hadronic tensor through the
exchange of neutral currents carried by y, Z and charged currents carried by W*. Some useful insights on standard neutrino
DIS scattering on a nucleon can be found in [21]. In this section we briefly review the key definitions and characteristics of
this scattering as a prelude to the holographic analysis, which will make use of the transition form factors established above
for the s-wave contributions to DIS.
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A. Structure functions for v v scattering

An overall review of neutrino DIS scattering can be found in [21], so we will be brief in our presentation of the results
for our ensuing analysis. For unpolarized nucleons, the hadronic tensor for neutrino (antineutrino) scattering can be
organized under the strictures of Lorentz symmetry, parity, and current conservation in terms of three invariant structure
functions

v, 1 iq-x
Wit = / dxes (P|[J (x). T£ (0)]|P).

— (- BV e 4 (Pt ) (Pt ) 2P 507) F P Y (), (1)
q 2x 2x/) q q

where g, P,, are the 4-momenta of the virtual current and nucleon, respectively. x = —q?/2P - q is the Bjorken parameter
which is kinematically bounded 0 < x < 1. F, refers to the symmetric structure functions, while F3 refers to the
antisymmetric one. The formers are parity preserving, while the latter is not for neutrino and antineutrino probes. In the DIS
limit with Q? = —¢? > P? and x fixed, the structure functions in QCD obey Bjorken scaling. In this limit, the parity even
structure functions satisfy the Callan-Gross relation F, = 2xF;. We note that analyticity allows to relate the hadronic DIS
tensor (4.1) to the discontinuity of the forward Compton amplitude of a lepton on a nucleon

4zWil = 27ImTy) = 2almi / d*xe'~ (P|T*(J,} (x)J(0))|P) (4.2)
To calculate the hadronic tensor (4.1) we use the completeness of the hadronic spectrum f
= 1 Dx .U v.U S 2
Wil =53 D 8(My = (P+ @)W WP = Wiil® + iwj (4.3)
s.sy My

with the transition current matrix element (3.26), for excited states of squared mass My = Q*(1/x —1) + m3, and
P? = M} = m%. For neutrino scattering the explicit form of the QCD quark (partonic) currents in (4.2) are given by

eJim = €407,

~ _ 1
ew x 2J" = quTiy”E(l -7)q,

5 ~ ~ 1
ewly = ewJ; — 2eysin®Oy Iy = ewq;/”5 (1 =7%)q — 2ey sin 20w gQr"q, (4.4)
with e, ey the electric and electroweak charges, and sin 8y, = - with the Weinberg angle Oy ~ Z.
0 0 2
3 _
= . Th=(T)" = ) 45
¢ (0 —%) (") (() 0 (4.5)

[

The imaginary part in (4.2) receives contribution from the
neutral yy, ZZ, yZ as they mix, and the charged WT W+ as
they are conjugate.

B. Unpolarized parton distributions
through charged currents

Neutrino and antineutrino scattering on a hadron through
the charged currents yield very important information on
the parton content of a hadron in the DIS limit. At weak
coupling, the parton model gives a very simple descriptive
of the structure functions in terms of the partonic

distribution functions of the hadron. Assuming two flavors
for simplicity and isospin symmetry, the partonic model for
vp — [~X through Wt exchange gives

(x, Q) = d(x, Q) + &(x, ),
(x, Q) = 2x(d(x, Q) + i(x, Q)),
FY'7(x,0) = 2(d(x, Q) — a(x, Q)),

FY'r

FYr
2

(4.6)

while for up — [T X through W~ exchange it gives
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F\"?(x,0) = u(x. Q) +d(x, Q),
FY P (x, Q) = 2x(u(x, Q) + d(x. Q).

Fy "(x.0) = 2(u(x, Q) = d(x. Q)). (4.7)
with modulo e?,. The corresponding neutron structure
functions follow by isospin symmetry. Equations (4.6)—
(4.7) can be inverted to give the unpolarized valence and
sea parton distributions in the proton. We now proceed to
evaluate these unpolarized partonic distributions using the
holographic dual of neutrino scattering.

V. NEUTRINO AND ANTINEUTRINO
DIS IN HOLOGRAPHY

We now consider neutrino DIS scattering on a nucleon as
a Dirac fermion in bulk using holography, in the double
limit of a large number of colors and strong gauge coupling
A = ¢*N,. Antineutrino DIS scattering follows from perti-
nent rearrangements. DIS scattering on a nucleon as a bulk
|

(b ZZ o L () 2)3(P} — M3)(2)'84 (P + q = Py) (P,

dilatino using holography was first addressed in [5] and
later by others [18,22-24]. At large x, DIS scattering using
U(1), probes follows from the direct and crossed Witten
diagrams in bulk, and at small x it follows from Pomeron
exchange in the form of a Reggeized and warped close
string exchange in bulk. We now review the analysis for a
U(1), current and then extend it to the electromagnetic
vector U(1)¥M c U(2)y, and the left-handed U(1)f C
U(2), currents.

A. Structure functions: Baryonic exchange

in the s channel

For unpolarized U(1), scattering, the hadronic tensor is
v 1 iq-y v
L= MZ/d“ye (P, s|[J (y). J5 (0)]|P.s), (5.1)

with the spectral decomposition for the s-channel
contributions

L(0)|PX7 SX><PXv SxV'Z(O)

,5)

S,8x
*Z > 8(Mx = (P +)*)(P,s|TL(0)|P + q.sx)(P + ¢, sx|J% (0)|P.5).
8,5y My
:—225 (M% — (P + q)>)WhWy*, (5.2)
s,sy My
The t-channel Reggeized contributions will be addressed below.
B. Dirac contribution
Using the relations
y - ,
€ﬂ<PX|JlZ,Dirac(q)|P> = (2ﬂ)454(PX -P- q) <P + q|‘]L Dlrac( )|P> = NL X g S Sil;lt,Dirac[l’X]’
<P|JL Dlrac( >|PX> = (2ﬂ)464<PX —-P- q) <P‘JL Dlrac( )|P + ('I> = NL X 1nlD1rac[X l]? (53)
we can make explicit the contracted hadronic tensor
L s.Dirac — Zé MX p + q)Z)N%
x Z > (T, Tr(fagy"Prug ity Pruy, + ity y" Pruy ity Pru,,)
s; Sy
+ I%L_lsx}'”PLus,-ﬁsiyVPLusx +Ilzeﬁsx}/ﬂPRus,»ﬁs,-nyRusx)' (54)

The additional normalization constant A’y = (1/2¢%) x 2¢% x N, compensates for the missing higher spin-j and O(g?)
ig)(p) =

corrections in the s channel. Since »  (u,)(p)(
s channel are

¥ + M, then the contracted hadronic tensor contributions from the
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€I4€VW’Il‘l,/s~Dirdc 25 M2 p + q) >N]2~

X 2<IR(nx)IL(nx)MXMO€ e+ (I%{(nx) +I%(nx)) <(p ' 6)2 - % (P2 +p- Q)e : €)

5 T = T ) (e Prapy) ) (5:3)

By approximating the sum by an integral in a continuous state, i.e.,

5308~ 0+ 0) 35 [ o (5 -38) ~ 7. (56)

we have
N2
€M€DWllfl:s,Dirac ~ 4% N2 <2IL(nx)IR(nx)MXM0€ €+ (Zz( ) +I%(nx))(2(p : €>2 - (p2 +p- ‘I>€ ’ 6)
+ (Zk(ny) = I7(n,)) (i€ Pxqpp))- (5.7)

The same contraction applied to the canonical hadronic tensor decomposition (4.1), for a neutrino, with a transverse
polarization € - ¢ = 0 [which we have already used in deriving (5.7)], yields

2x . X
.6, W = —*FL + ?(e - p)?FL - teﬂeyeﬂ”“ﬁqapﬁ?Fg(x, q*). (5.8)

A comparison of (5.8) to (5.7) allows for the extraction of the s-channel baryonic contributions to the DIS structure
functions

N2 M:  Q? 1 3
F%rDlrac - % Yy (Iz( ) +I%(nx)) 70+E _IR(nx)IL(nx)MO M% + Q2 ;_ 1 s
NZ Q2
F%lerac - 4~ (IZ( ) +I%(nx)) X ’
N2 Q2
F?Lax,Dirac - 4~ (Iz( ) I%(nx))71 (59)
with the DIS kinematics (3.12) subsumed. Similarly, using the transition form factor (3.44), we find
F EVI Dirac — eiucleon X F Ifs,Dirac’
F%\/[Dlrdc = eiucleon X F%S,Dirac’
FISEAMDlrac = 0’ (510)
while using the transition form factor (3.33), we find
. 4(€i )2
Y‘;,Dirac = 4(eviVnucleon) X F Ifs Dirac = e‘/lzlnucleon x F IIE;VI Dirac?
nucleon
+ 4(eyy 1 )?
Z,Dirac = 4(eViVnucleon) x F %s Dirac eﬂzlnuc <o X F lzii\/l Dirac?
nucleon
+
Fg‘; Dirac 4(eViVnucleon) X F%s Dirac* (511)
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C. Dirac plus Pauli contributions

The full left current vertex with the Pauli contribution is given in (3.35). A rerun of the preceding arguments yields the
hadronic tensor for v scattering in the untraced form (v scattering follows from v <> y)

1
167k>

+ 2MoAg(arg™q - (Px + p) + Bra"q"q - (Px + p) — iage"* P q,(Px + p),)
+ 2(ards + Pra"qa)(args + Bra* as) (P"P% + P"Py — §*%p - Py — ie" Py, p;)
1
—54(3¢"(24- pa-Px = ¢’p - P)
+ 4> (p"Px + p*PX) + ¢"q"p - Px — (¢ p" + 4" p*)q - Px — (¢“Px + ¢"P%)q - p))

W = MMy (axg® + (P + 2arfr)q"q" + 2% (9" ¢* — 4"q"))

+(R->L,—i— +i)|, (5.12)

with Py = g + p, M3 = M2 + ¢*(1 — 1/x), and

ag =2(eZr +nTk). Pr = 4L g, Ag = =2nKk, (5.13)

ere Wit —2225 (M3 — (P + gt Wil e Wi

s.sy My
_(Nt> + +*X8[2i ( )MM py+j2< )( HpY 1 VPH _ pivp . P )+j2( )( ﬂyaﬂp )]
- 8]?2 €;4 €y LR\ oM xn +N )\ Py prxy—np X —\ny)\ie Xapﬁ’
(5.14)
where we have defined
Lir(ng) = InL(nx)IqR(nx) + 4’72q21RL( )Z1r(ny)
T (ny) = Th(ny) + T (ny) — 417 * (T3 g (n) + Ty (1)
j%(nx) = I%R(nx) - I;%L (”x)?
I}]R(”X) = eWnucleonIR(nX) + ’/IjR(nX)’
InL(nx) = e-\;/nucleonIL(nx) =+ njL(nx)7 (515)
and we have used ¢* - ¢ =0, €™ - g =0, gq;¢”™ =0, and g;q;e"*" = 0.
Comparing (5.14) with the contraction of (4.1), for neutrino v, i.e.,
+ 2 + . +
el Wi = ef e W = —et - e FV 4 q—fe‘* -pet - pFY - lejej*eﬂ””ﬁqap/;%ng (x,q%), (5.16)
allows for the extraction of the structure functions
L2 N L)
FY = 2 7% (n ) 2 4x — I 1r(n)M, M§ + Q* ;—1 )
) +) ~ 0*
FV" = 72 =,
2s K' ( ) X
+2 2
FY' = U\fig)i%(nx)g, (5.17)
- K X
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where we have used Py = p, + Gu» Pappe® = 0,67 -q =0,€e™ - g =0, and M} = M3 + ¢*(1 — 1/x). Strict bulk-to-
boundary correspondence implies N'; = 1 in the double limit of a large number of colors N, and strong gauge ’t Hooft
gauge coupling. Here we follow [18] and assume proportionality between the bulk and boundary structure functions with
N an overall parameter that captures parts of the finite corrections to the strict double limit. It will be fixed by a point in the
data. Similarly, we can find the structure functions for antineutrino o scattering through W~ exchange as

W~ _ Wt + — Vs —
Fls - Fls (eWnucleon - eWnucleon’NL - NL)’
W= _ Wt + — Vs -
F2s - F2s (EWnucleon - eWnucleon’NL - NL)’

F3W.S‘7 = F3WS+ (6+ - ea/nucleon;NlJf - NZ)' (5'18)

Whnucleon

D. Structure functions: Pomeron exchange in the ¢ channel

DIS scattering at small x is dominated by Reggeon and Pomeron exchanges. In this section, we first consider DIS
scattering using U(1), currents in the Pomeron regime and then generalize our results to the electromagnetic vector
U(1)8M c U(2)y, and the left-handed U(1)7 C U(2), currents. The Pomeron is dual to a close string exchange or graviton
in the ¢ channel [22,23,25-27]. This is best obtained by recalling that the hadronic tensor ties to the forward scattering
amplitude of a U(1), current through

1 )
Wi = 3 [ e (Pl ). 1 O)|P.) = 2etmT (5.19)
where the Compton scattering amplitude 7% is given by
€y€yTﬁl:t = A]ZpeLp (S, t)’ (520)

for massive graviton or glueball £, exchange in the 7 channel, with the explicit result given in (D18). The Pomeron
contribution as a graviton exchange to the 7-channel structure functions F7, ,,(x, Q) follow from

2x
e, e, Wi, = Ff, + ?(6 - p)?F5, = 2almAYS (5,1 =-K*=0), (5.21)

for € - ¢ = 0. Inserting (D28) into (5.21) we obtain

2%z 0\ 2-2/Vi 1\ 1-2/va
2xFL _g_§X7ZX (?) X (;)
B Sk
P1” 2 10g[@?/R +log[1/x]] ~ \log[@?/7%] + log[1/x]

1/2% \/z : _ T(; —
x (2r) /2§<1 + O<log[Q2/f<2] —|—log[1/x]>> x F(jo. K = 0) x I (jo.Q =0Q),

L 72_K2XLX (g>z-z/ﬁx <l>1_2/ﬂ
2t T 2 ~
g VA 3 X

X ex {—5—2 \/Z ] X < \//_1 )3/2
P17 2 logl?/@] + log[1/x]] ~ \log[Q%/@%] + log[1/]
x (2n)1/25<1 . o( v )) % Fljor K = 0) x (I1(j0, 0 = @) + I£(jo. 0 = @), (5.22)

log[Q? /%] + log[1/x]

with & = y 4+ /2. The preexponents in (5.22) are commensurate with the expected Pomeron behavior 5%~ with the

intercept ap(0) — 1 = 1-2/ \/2 after the identification s ~ Q%/x in the DIS limit. The additional overall factor of Q is the
left over (longitudinal) polarization from the overlaping incoming-outgoing U(1), wave functions. The exponents reflect
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on the warped Gribov diffusion in D | = 3, for 2, spatial dimensions and 1, holographic dimension. The result (5.22)
extends to the SU(2) currents by introducing a normalization factor A¢=%. More specifically, for the charged currents

we have
) 1-2/V2

2 v
2xFI = (A@ﬂixLx( ) o (
52 3/2
<1 - g ] * (g )

% Vi
e Vi
<021+ (g i) ) * 7l K =0 1200 =)

% 0\ 2-2/Vi 1\ 1-2/VZ
[;VWi — +\2 = —
- Wi T (4T ()

==

exp [-5 Vi } . ( Vi )”
2 loglQ?/@] + log[1/x]] ~* \log[Q?/@%] + log[1/4]

. VA , : .
x (27)'/? X F(jo. K =0)x (I¥(jo, 0 = Q' L(jo.O0=0"). :
20781+ 0o ot ) ) UK = 0) X (o @ = 0) 4 1o 0 = @), (5:2)

E. F;f * structure functions: Reggeon exchange in the ¢ channel
Reggeon exchange is also a f-channel contribution stemming from a spin-1 exchange induced by the Chern-Simons
contribution in (4.1). The latter allows for the anomalous coupling of W~W ™ in bulk with @), a spin-1 flavor singlet U(1)
gauge field in bulk (the analog of the omega meson). In principle, the Reggeized spin-1 exchange in bulk contributes to the
unpolarized and parity odd structure function F’5. A similar contribution was observed for the spin structure function in [23],
following an earlier analysis in [22]. More specifically, the U(1) exchange of L2 in bulk stems from (2.17) and (2.15), with
the vertices

T - d4P2d4P1d4k 44
LYVY: /(277)12(27[) ) (pz — k- pl)SL‘I"P’

&g d*qd*k
LLL: / %(2;;)454@ k—q')sk,, . (5.24)
/]

where we have defined

Sk ow = 93Kcs / dzle*e;; (q)e; (q')0.L" (g, 2)(=ik,)ep(k)LO(k, z) L™ (¢, z)

— "¢} (q)€; (q')0.L™ (¢ 2)(ik,)ep(k)LO (k. 2) L (q.2)
+ e""ef (q)e; (q')0.LT(q.2)eQ(k)LO (k. 2)(—iq),)L™(¢'. z)
)0 (k. 2)(ig,)L* (g, 2)

_ €6p/41/€+ q

/!

(@)ex(q')

v (9)e5(q)

— e el (q)e; (q')0-L™ (g, 2)ep (k)L

(9)¢; (q)en(k)0.LO(k, z)(~ig,)L™(q', )L™ (g, 2)
+ e ef (q)e; (q)en(k)0.LO(k, z)(iq,)L* (¢, )L™ (4, 2)],
= gixes(=i)e* e (q)ez (¢')(d, + q,)ep(k)

x / d2(0.LO(k. 2)L(¢'. 2)L(g.2) - 0, L(¢. )L (k. D)L(g'. 2). (5.25)

with
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Li(x.z) =€ (q)L"(q.z)e"™, L;(x.2) = €;(¢')L™(q'. 2)e™i™, L)(x,z) = eN(k)L T (k,z)e~**.  (5.26)

In the last line in (5.25), we have used the fact that L*(q,z) = L™(q,z) = L(q, ).
Using the relation
ImAP, (5,1 =0) = e e "Wy, (5.27)

with W}, given by (4.1), and AP}, (s,1) given by (C32), we can extract the structure function F3’ “(x, Q%) in the 1
channel as

1 Q) 2-jo=Alo) s \Jo e~V /2logls/®]
FV" —4x 4% gs X —= X @3kpee X | = X[=) x—mno
& g () 2) " (logls/R))"

< (Va2 (14 ({”))xlgoo,gg 0) x F(jo. K = 0).

0 1—4 1 o~ VA48 /2(log[Q? /&%) +log[1/x])
= 16 X gchs X - —

3 " (10g[Q?/@] + log[1/x]) 2
VA

<10g[Q2/ %?] +log

Here s ~ %2, jo=1=1/\A, A(jo) =2, and & — z/2 = y = 0.55772..... is Euler-Mascheroni constant.

x (ﬂ/zﬂ)l/zg(l +0 [l/x])> x 1:(jo, 0,0 = Q) x F\*¥(jo, K =0).  (5.28)

VI. HOLOGRAPHIC RESULTS AND COMPARISON TO DATA

Equations (4.6)—(4.7) can be inverted to give the unpolarized valence and sea parton distributions in the proton, in terms
of the pertinent holographic structure functions. The ones for the neutron follow by isospin symmetry. More specifically, we
have for the unpolarized sea of the proton

xii(x, Q) = L (FY 7 (x.0) — xFY 7 (x. 0)).

»—-PI

xd(x. Q) =3 (Fy "(x.0) —xF3 " (x.Q)). (6.1)
and for the unpolarized valence contribution of the proton
— = _ 1 w=p Wtp
xuy(x, Q) = x(u(x, Q) — ax. Q) = ;x(F3 "(x, Q) + Fy "(x.Q))
+3 (FW "(x.Q) = F) "(x.0)).
- 1 - +
xdy(x. Q) = x(d(x. Q) = d(x. Q)) = x(Fy "(x. Q) + F3 ’(x.Q))
1 - +
—Z(FZV "(x.Q) = Fy "(x.0)). (6.2)
with the structure functions receiving contributions from the s and ¢ channels

(x 0) +FW p(xy 0),
P(x,Q) + Fy "(x. Q). (6.3)

+
Fy "(x.Q) = Fy,
+
F{ 7 Q) = Fy
The charged s-channel even-parity structure functions F Zip (x, Q) are given in (5.17) and (5.18), respectively, and the
t-channel structure functions F;‘;i” (x, Q) are given in (5.23). The charged s-channel odd-parity structure functions

F Xi” (x, Q) are given in (5.17) and (5.18), respectively. The charged t-channel odd parity structure functions F Zi” (x, Q)
are given in (5.28).
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*l XT(x, Q) =xu (x, Q) =xd(x, Q) =xd(x, Q)
3.0} for Q? = 6.5 GeV?
2.5)
2.0
1.5}
1.0}
0.5
1.x‘;0_5 5.:‘1‘0-5 1.x‘10_4 5.x‘;0_4 0.001 0005 0.010
x
FIG. 1. Small-x holographic PDFs as given in (6.4) and (6.5)

for: the normalization coefficient '3, = 0.309 (the green curve),
the normalization coefficient fixed between N7, = 0.274 and

f, = 0.375 (the blue band), ’t Hooft coupling 1 = g%{MNC =
9.533, the twist of proton 7 =3 (fixed by the scaling of the
electromagnetic form factor of proton in [20]), and soft-wall IR
scale & = 0.350 GeV (fixed by the mass of proton and p meson
in [20]).

A. Results in the small-x regime

In the small-x regime, the results for the sea & and d
distributions are solely due to the #-channel Pomeron
exchange

L 1 +
}Cl_r)réxu(x, 0) = ZFZ P(x,0),

.- 1w
limxd(x, Q) = 2 F, " (x. Q). (6.4)
with no Pomeron contribution to the tail of the valence

distributions
limxuy (x, Q) =0,
x—0

}(i_r}l(l)xdﬂx, Q) =0. (6.5)
Figure 1 shows the holographic Pomeron contribution at
small x for the xu and xd distributions of the proton at a
resolution Q? = 6.5 GeV?, following from (6.4) and (6.5).
The *t Hooft coupling is 1 = g3\;N. = 9.533, the twist of
proton is set to =3 (fixed by the scaling of the
|

electromagnetic form factor of proton in [20]), and the
soft-wall IR scale is fixed to € = 0.350 GeV (to reproduce
the mass of the proton and p meson as in [20]). The green
curve uses the normalization coefficient N7, = 0.309. The
blue-band corresponds to the normalization coefficients
fixed between N7, = 0.274 and N7, = 0.375.

B. Fixing the charged normalization A/}, parameters

Throughout we will use the same 't Hooft coupling
A = g5yN. = 9.533, which is within the standard choice in
the most holographic constructions. The charged normal-
izations N7, are fixed between 0.274 and 0.375 and will be
shown as a blue band in all results to follow. These
normalizations are chosen for a best fit to the reduced
noncharged (r, NC) and unpolarized deep inelastic e*p
scattering cross section o7y at low x. We recall, that o7y
is given by a linear combination of the generalised structure
functions

d268. P 4X 5 2
rNC = Gch QzBJ _F2$—XF3—y_FLv
dJCBJdQ 2racY + +

(6.6)

with Y. =1+ (1 —y)2 The overall structure functions,
F 5, F L, and xF 3, are sums of structure functions, Fy, F g(z ,
and F%, relating to photon exchange, photon-Z interfer-
ence, and Z exchange, respectively, and depend on the
electroweak parameters as

Fz = F2 —Kz0, 'F£Z+K%(Ug+ag) F%,
FL=F —kzv, - FI* + K212 + a?) - FZ,

= 7
xF3 = —kza, - xF\* + &% - 2v,a, - xF5.

Here v, and a, are the vector and axial-vector weak
couplings of the electron to the Z boson, and
kz(0%) = Q*/[(Q* + M%) (4 sin? Oy, cos® Oy)]. The values
of sin? @y, = 0.23127 and M, = 91.1876 GeV were used
for the electroweak mixing angle and the Z-boson mass. In
the quark-parton model where the kinematic variable xg; is
equal to the fractional momentum of the struck quark, x, the
structure functions are given in terms of the PDFs as

(Fa(x, Q). FY(x, Q). F5(x. Q)) & [(€}. 2¢,,., v} + a}) (xvu(x, Q) + xid(x, Q))
+ (€5, 2eqvq. vy + ag)(xd(x, Q) + xd(x, Q))].
(xFéZ(x, Q),xF%(x,0)) =~ 2[(e,ay, v,a,)(xu(x, Q) — xii(x, Q))
+ (eqaq, vgaq)(xd(x, Q) — xd(x, Q))],

(FL(x, Q). F{*(x, Q). F{(x, Q)) » (0.0,0),
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FIG.2. The reduced noncharged and unpolarized deep inelastic e* p scattering cross section o nc(x, O, s) atlow-x versus Q? as given

in (6.6) for increasing x, at \/s = 318 GeV. The middle green curve and the blue band are the holographic results for different charge
normalizations A/ f[. The red points are the HI and ZEUS data [28], and the orange points at low 0? are the data from E665 [29].
See text.
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with e, and e; denoting the electric charge of up- and
down-type quarks, while v, , and a, , are the vector and
axial-vector weak couplings of the up- and down-type
quarks to the Z boson.

In Fig. 2 we show the measured 6y (x, O, 5) versus Q*
in GeV? at /s = 318 GeV with increasing x resolution.
Figure 2(a) follows from (6.6) for x = 0.000016 using the
small-x holographic PDF shown in Fig. 1. Figure 2(b)
shows the same for x = 0.00005. The middle green curve
corresponds to A'F, = 0.309. Figure 2(c) follows also from
(6.6) for x = 0.00008, with the middle green curve refer-
ring to N7, = 0.314. Figure 2(d) refers to x = 0.00013
with the middle green curve referring to N7, = 0.313.
Figure 2(e) follows again from (6.6) at x = 0.0002 with
the middle green curve N7, = 0.329. Figure 2(f) refers to
x =0.00032 with the middle green curve referring to

£ =0.313. Figure 2(f) refers to x = 0.0008 with the

middle green curve referring to A'7, = 0.335. Figure 2(f)

refers to x = 0.0013 with the middle green curve referring
to NF, = 0.359. The data from the Hl and ZEUS col-
laboration [28] are shown in red. The data shown in orange
at very low 0? are from the E665 collaboration [29]. Note
that we have reconstructed the orange data points for the
cross section oy yc(x, Q.s) at /s =318 GeV from the
E665 dataset for the structure function F,(x,Q) at
0.0008 < x <0.001 using [30]

Fy
= 1
ZXFl ( +

As noted above, the blue-band follows from the normali-
zation range fixed by N7, = 0.274 and N7, = 0.375. In
Fig. 3, we show the structure functions constructed from
our small-x holographic PDFs shown in Fig. 1.

4M7x*
Q2

R(x, Q) ) —1=R"(x.0). (6.8)

3.0 T T T ]

for Q? =6.5GeV?

F2(x, Q)
25

2.0
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(a) F»(x, Q) as given in (6.7) using the small-x holographic PDFs shown in Fig. 1. The red data points are from combined H1

and ZEUS collaborations [28] [reconstructed from their data for the cross section 6y (x, Q. s) using our small-x holographic PDFs
(6.4) and (6.5) shown in Fig. 1]. (b) F,(x, Q) — F,(x, Q) as given in (6.7) using the small-x holographic PDFs shown in Fig. 1.
(c) F gz(x, Q) as given in (6.7) using the small-x holographic PDFs shown in Fig. 1. d) F5(x, Q) as given in (6.7) using the small-x

holographic PDFs shown in Fig. 1.
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FIG. 4.

quarks in the proton as given in (6.9). The bands follow from fixing (.K/ z, ./if L) =

(35.431,61.335) (blue dark band). See text.

C. Results in the large-x regime

As we noted in the introduction, DIS scattering in
holographic QCD at moderate values of partonic-x involves
hadronic and not partonic constituents [5]. Indeed, in the
large N, limit, the leading single trace twist contributions
acquire large anomalous dimensions and are suppressed.
The dominant contributions stem from double-trace oper-
ators with mesonic quantum numbers. Another way to see
this is to note that the large gauge coupling at the low
renormalization point causes the color charges to undergo a

0.0 0.2 0.4 0.6 0.8 1.0
X
(b)

(a) Large-x holographic PDFs of the valence quarks in the proton as given in (6.10). (b) Large-x holographic PDFs of the sea

(17.715,30.667) (green light band), and (K/Z,/f/;) =

regime, the holographic limit enjoys approximate conformal
symmetry, with the structure functions and form factors
exhibiting various scaling laws including the parton-
counting rules [5,6]. More specifically, we have for the
sea contribution

(F, ”(x.Q) = xFy, " (x,Q)).

4;|~

lim li
lim @H_n,o xit(x, Q) =

rapid depletion into a cascade of even weaker charges,  lim lim xd(x, Q) = l(F;Z_” (x,Q) —xF ;‘;—p (x,Q)), (6.9)
making them visible to hard probes only through double 7' %-0 4
trace operators.
At large x, DIS scattering is almost off the entire hadron
making the holographic approach pertinent. In this  and for the valence contribution
|
1 - p 4
tim i xuy (v, ©) = 3 x(FY 7(x,0) + Y 7 (x,0)) + 4 (F% 7(x,0) = FL " (x. 0)).
X— Kz_)o
1 - “p .
lim lim xdy (x. Q) = 4x(F§Z P(x, Q) + Fy. P(x,Q)) - (FW P(x,Q) = Fy. "(x,0)), (6.10)
s £-0
with the even and odd structure functions given, respectively, by
W= Wp
FZS P(x’ Q) F2s Dlrac( Q) + F2s Pauh(x Q) + F2s mlxed( Q)9
W W
F%; p(x’ Q) F3s ]ﬁrac( Q) + F3s Pauh(x Q) + F’)s mlxcd(x Q>’ (611)
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The large-x asymptotic of the Dirac + Pauli 4+ Mixed structure functions following from (5.17), can be worked out in
closed form. For the even-parity structure functions we have

~2

7—1
F;‘; lﬁrac( Q) (NL) (eWnucleon)2 X (é) T+1(1 _x) 2’

~ ~2\ 7—1
FY (6 0) = (W2 xp x 4z — 1) (Q—> (1 )2,

~2\ 7—1
FUr (6.0) = (WE)? ernuclegnxnxzt(r—l)x(g) X (1= 52, (6.12)

in agreement with a recent analysis in [31] [see their Eqgs. (88), (105), and (132)] and with the hard scattering rules [5].
For the odd-parity structure functions we also have

~2

7—1
P (r.0) = (NE) x <eWnudem>2x(g) #H(1 =52,

~ ~2\ 7—1
FZZPauh( X, Q) = (N?‘Z)Z X 7]2 X 4(T - 1)2 X (%) XT+1(1 _x)1—2’

~2

7—1
N xewﬂumﬂxnx4<r—1>x(§) X (1 = )2, (6.13)

also in agreement with the recent results in [31] [see their Egs. (88), (104), and (131)] and with the hard scattering rules [5].
Note that even though the Pauli vertex contribution involves an additional vierbein in comparison to the Dirac one, hence an
a priori extra suppression with the z parameter and therefore Q? by duality, it is balanced by the extra z derivative in the

magneticlike coupling F,., causing both contributions to scale identically with large Q? at large x.

Here N7 = c(t) x N'T with ¢(z) are undetermined coefficients, that can in principle be fixed rigorously in a specific
model. As we noted earlier, strict bulk-to-boundary correspondence implies ' = 1 in the double and dual limit. Here we
are assuming proportionality between the bulk and boundary structure functions, with A7 as overall parameters [18], that
capture pamally the finite corrections to the double limit. In the numerical analysis at large x to follow, we fit only the two

parameters N 1> which are defined as

o RrEy2 + 2 V2 2 2 EV2 o
NL = (NL) X (eWnuclcon> +(NL) xn X4(7_1) +<NL> XeWnucleonXI/lX"’(T_l)- (614)
*inc(,Qs) forx=0.93 0.050¢ ¥ no(%,Qs)  forx=0.85
0.010}+ and \/7 =5.565GeV and \/7 =5.565GeV
0.010}
0.005 |
0.005 |
0.001} 0.001}
5.x1074 }
5.x1074 |
5 10 15 20 25 5 10 20

@? Q?
(@) (b)
FIG. 5. (a) 65yc(x, Q,5) as given in (6.6) for x = 0.93, using the large-x holographic PDFs shown in Fig. 4, with the orange data

points from JLAB [33]. (b) Same as in a for x = 0.85, with the red data points from the combined SLAC and BCDMS collaborations
[30]. See text.
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FIG. 6. (a)F,(x, Q) as given in (6.7) using the large-x holographic PDFs shown in Fig. 4. The red data points are from combined
SLAC and BCDMS collaborations [30] for x = 0.65, x = 0.75, and x = 0.85. (b) F,,(x, Q) — F,(x, Q) as given in (6.7) using the large-
x holographic PDFs shown in Fig. 4. (c) F gz(x, Q) as given in (6.7) using the large-x holographic PDFs shown in Fig. 4. (d) F%(x, Q) as
given in (6.7) using the large-x holographic PDFs shown in Fig. 4. (e) F° gz (x, Q) as given in (6.7) using the large-x holographic PDFs
shown in Fig. 4. (g) F%(x, Q) as given in (6.7) using the large-x holographic PDFs shown in Fig. 4.
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FIG. 7.

(d

(a),(b) Our holographic PDF sets (shown in blue band) compared to 292 PDF sets (shown in multiple solid lines) from CTEQ

and LHAPDF projects incorporated within the ManeParse Mathematica package [35]. (c),(d) Our holographic PDF sets (shown in the
green band) compared to 292 PDF sets (shown in multiple solid lines) from CTEQ and LHAPDF projects incorporated within the

ManeParse Mathematica package [35].

In terms of (6.14), the structure functions (6.11) simplify

~ 7—1
FY7(x,0) = F¥7(x,0) = (V)2 x (Q—) (1 =22,

with & = 0.350 GeV as fixed by the mass of the proton and
p meson in [20].

Equation (6.15) scales as (1/Q?%)""! asymptotically in
agreement with the hard scaling laws expected from strong
coupling [5], but vanishes as (1 —x)"? at large x in
contrast to (1 —x)>~3 suggested in [32]. The large-x
behavior at strong coupling follows from the observation
that for the virtual photon with amplitude 1/Q to scatter off
the nucleon as a Dirac fermion, the latter has to shrink to a
size (1/Q), with a scattering probability (1/Q?)*"!. As a
result, the structure function at large Q but fixed s~
Q?*(1 — x) scales as

& (6.15)

[
2

Fy(x,0) ~ Q? (s =Q*1—-x))* (6.16)

1\ 7!
@)
To reproduce the hard scaling law asymptotically requires
2046 —47 =2 —27 or a =7 —2, which is the large-x
scaling in (6.15). To recover Bjorken scaling for the
structure function requires 2a+6—-47=0 or ¢ = 27 — 3,
which is the large-x scaling law suggested in [32]. We
expect the latter to set in at very large Q°.

In Fig. 4(a) we show the behavior the valence
distributions xuy(x, Q) in the upper blue dark band,
and xdy(x,Q) in the lower green light band at
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FIG. 8.

0.2 0.4 0.6 0.8 1.0

(a),(b) Our holographic PDF sets (shown in blue band) compared to 292 PDF sets (shown in multiple solid lines) from CTEQ

and LHAPDF projects incorporated within the ManeParse Mathematica package [35]. (c),(d) Our holographic PDF sets (shown in green
band) compared to 292 PDF sets (shown in multiple solid lines) from CTEQ and LHAPDF projects incorporated within the ManeParse

Mathematica package [35].

0? = 6.5 GeV?, following from (6.10). In Fig. 4(b) we
show the behavior of the sea distributions xit(x, Q) in the
lower blue dark band, and xd(x, Q) in the upper green
|

light band at the same Q? = 6.5 GeV?, following from
(6.9). The normalization coefficients delimiting the bands
are fixed to

(K/Z,K/Z) = (17.715,30.667) (green light band: d quark),

(N7 A7) = (35.431,61.335)  (blue dark band: u quark).

To assess the range of validity in parton x of the
holographic results at large x, we reassess the reduced
neutral charge o7 yc-(x,Q,s) as given in (6.6) solely in
terms of the large-x holographic PDFs. The results are
shown in Fig. 4 at low Q? for /s = 5.565 GeV. The
orange data points are from JLAB [33]. The red data points
are from the combined SLAC and BCDMS collaborations

(6.17)

I
[30] (see Fig. 5.14 in [30]). Note that the F,(x, Q) data of
[30] to o7y (x. Q.s) where converted using (6.8). These
results show that the range of validity of the holographic
results at large x is limited to 0.75 < x < 1 (see also below).
Our results for the reported DIS e p in Fig. 5 are consistent
with the recent holographic results reported in [34] in the
large-x regime (see Fig. 5 in [34]).
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FIG. 9. (a),(b) Our holographic PDF sets (shown in blue band) compared to NNPDF collaboration PDF sets with error bars (shown in

red band) from LHAPDF projects incorporated within the ManeParse Mathematica package [35]. (c),(d) Our holographic PDF sets
(shown in green band) compared to NNPDF collaboration PDF sets with error bars (shown in red band) from LHAPDF projects

incorporated within the ManeParse Mathematica package [35].

D. Structure functions at intermediate Q>

To investigate further the range of validity of the holo-
graphic PDFs at intermediate Q2 and large x, we show in
Fig. 6(a) the holographic structure function F,(x) in (6.7)
versus x at Q% = 6.5 GeV?, evaluated using the results for
the valence distributions shown in Fig. 4(a). The red data
points are from the combined SLAC and BCDMS collab-
orations in [30] for x = 0.65, x = 0.75, and x = 0.85. In
Fig. 6(b) we show the difference F, (x, Q) — F,(x, Q) versus
x as given in (6.7) for Q> = 6.5 GeV? using also the large-x
holographic PDFs shown in Fig. 4. In Figs. 4(c)-4(f) we
show, respectively, ng(x, 0), F4(x,Q), ng(x, 0), and
F%(x, Q) versus large x for 0> = 6.5 GeV? using also the
large-x holographic PDFs in Fig. 4. Figure 6(a) shows that
the holographic results are compatible with the SLAC and
BCDMS data [30] in the range 0.75<x<1 for

Q% = 6.5 GeV?. Again, the normalization coefficients for
the holographic valence PDFs setting the blue dark band are
given in (6.17).

E. Comparison to the empirical CTEQ, LHAPDF,
and NNPDF datasets

We have also compared our holographic PDF sets
both for the small-x and large-x regimes for the valence
and sea distributions, to 292 PDF sets from the CTEQ
and LHAPDF projects incorporated within the
ManeParse Mathematica package [35]. The global compari-
son is displayed in Figs. 7 and 8 for Q° = 6.5 GeV>.
Figures 8(a) and 8(c) show the 292 PDF sets in multiple
solid lines from CTEQ and LHAPDEF dataset [35], in
comparison to our holographic PDF sets shown in blue light
band for the up distributions, and in green light band for the
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(a),(b) Our holographic PDF sets (shown in green band) compared to NNPDF collaboration PDF sets with error bars (shown

in red band) from LHAPDF projects incorporated within the ManeParse Mathematica package [35]. (c),(d) Our holographic PDF sets
(shown in blue band) compared to NNPDF collaboration PDF sets with error bars (shown in red band) from LHAPDF projects

incorporated within the ManeParse Mathematica package [35].

down distributions. The holographic growth at intermediate-
xovercomes these datasets, but joins with a smaller subset
of these data at very low x. Figures 8(b) and 8(d) show
that the holographic sea at large x is relatively small but
consistent overall with all the datasets in the expected
applicability of our approach. A similar comparison
for the holographic valence distributions is shown in
Figs. 7(a) and 7(c) at low x and Figs. 8(b) and 8(d) at
large x with consistency in both limits with the CTEQ and
LHAPDF dataset [35].

In Fig. 9 we compare the holographic results for the sea
distributions to the NNPDF collaboration PDF sets with
error bars (shown in the red band) from the LHAPDF
projects incorporated within the ManeParse Mathematica
package [35]. Figures 9(a) and 9(c) show our results in blue
dark band for the sea of up quarks, and in green light band
for the sea of down quarks. Figures 9(b) and 9(d) show also

our results for the sea of up and down quarks at large x. The
growth of the holographic sea at low x is larger in the
intermediate range but slower at very low x. At large x, our
holographic results for the sea are relatively small but
consistent with the reported dataset. In Fig. 10 the
valence up and down distributions are compared to the
same dataset with the same notations as for the sea. At
low x, the holographic results are consistent with zero for
the valence up and down quark distributions. At larger x,
the holographic results are consistently larger for the up
quark valence distribution in the region of validity of the
holographic construction.

VII. CONCLUSIONS

We presented a comprehensive holographic derivation of
DIS neutrino-nucleon scattering process using AdS/CFT
duality formulated in a slice of AdS5 with bulk U(2) valued
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vector mesons to describe a tower of isovector and isoaxial
particles, and a fermionic isodoublet to account for the
even- and odd-parity proton and neutron excitations. To
distinguish the vectors from the axials, chiral symmetry is
broken either through a tachyon in the bifundamental
representation both for the hard or soft wall model, or
though boundary conditions for the hard wall. The Yukawa
coupling of the bifundamental tachyon field between the
even-odd bulk fermionic fields was ignored, since the DIS
regime is mostly sensitive to the high lying part of the
nuclon spectrum for which the effect is negligible.

Using Witten diagrams, we have derived the pertinent
Dirac and Pauli form factors for both the direct or diagonal
currents and the transition or off-diagonal currents. The
results for the direct vector form factors are consistent with
those in [20], and for the transition form factors they are
consistent with those in [18]. To our knowledge, the results
for the direct and transition axial form factors are new. We
use them for a holographic estimate of the axial coupling
ga, which is directly sensitive to the explicit and implicit
breaking of chiral symmetry.

We have used the transition form factors for the left
currents to explicitly construct the s-channel contributions
to neutrino and antineutrino DIS scattering through the
pertinent Witten diagram. This has led to the explicit
identification of the s-channel holographic contributions
to the even- and odd-parity structure functions for both W+
charged currents. The 7-channel contributions stemming
from the Reggeized Pomeron exchange is explicitly con-
structed and shown to dominate at low x the even-parity
structure functions. The Reggeon exchange through the
bulk Chern-Simons interaction is shown to dominate the
low-x odd-parity structure function.

For intermediate values of Bjorken x, DIS scattering in
holography is very different from QCD. The leading twist-2
operator in the operator product expansion (OPE) of the
current-current (JJ) correlators acquire large anomalous
dimension and are dwarfed by the double trace operators,
which carry higher twists but are protected. In this regime,
DIS scattering is off a poinlike hadron which is similar to
scattering for x ~ 1. When x < 1, DIS scattering in QCD is
dominated by Reggeon exchange and is dual to spin-2 or
spin-1 Reggeized exchange in bulk. So lepton-nucleon
scattering in holography allows us to probe the partonic
content of the nucleon in the two regimes of x~ 1
and x < 1.

We have carried explicit calculations and comparison to
the available data both for the structure functions and
PDFs from LHAPDF and CTEQ, in both of these regimes.
Our results show consistency for large x for the inter-
mediate range of Q> < 10 GeV? where scaling violations
are still substantial. At low x our results show a somehow
larger growth at intermediate but low x. The results at
higher Q7 resolution can be obtained through standard
QCD evolution.
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APPENDIX A: Uy (1) GAUGE FIELDS

The Uy, (1) gauge fields solves the equations of motion in
bulk

VK + 26890, <e"~‘222 EGZV"> =0,
av, -0,(0,v*) =0, (A1)
subject to the gauge condition
9, VF + ze¥7 0, <e-'<212 % VZ> =0, (A2)
and the boundary condition
V(2. 3)]:n0 = €,(q)e™, (A3)

with polarization €,(¢g). The normalizable solutions in
Kaluza-Klein (KK) modes are

2 2
Vu(z.y)=e€, (q)e_'q‘r<1+Q ) 2z2u< 1+2 20 2>,

472

i 0? 0?
V.(zy)= 2(61) qe“”F<1+ >2U<1+F,IK >
(A4)

for ¢> = Q> >0, where U(a;b;w) are the confluent
hypergeometric functions of the second kind.

1. Bulk to boundary propagator
The non-normalizable wave function for the virtual
photon is of the form V,(z,y) = V(Q.z)e,e™?, with
g*> = —-0% <0 and

n¢n
Q Z)_QSZQ2+m%- (AS)
For the soft wall
bu(2) = e, R27Ly(RP2%) = Ja(my,2),  (A6)

with ¢, = \/2/n + 1 fixed by the normalization condition

/ d2\/Ge (G (Db (2) = 6. (AT)
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Also recall that V(Q, z) = %8 G(z,7')|—, ties to the bulk to boundary propagator with

2 1 d
V(Q,z)—KzF(l+4Q—>Z/{<1 4Qz,21< )—k2z2A ﬁx“exp(—lfxfczzz), (A8)

and satisfies V(0,z) = V(Q,0) = 1.

2. Bulk to bulk propagator

The bulk-to-bulk propagator for the massive mesons, for spacelike momenta (g> = —Q?), can be written as
Gu(z.7)=1iT,G(z.7) = i<—i7,w + q}:ﬁ”) ZJV m,,7)G w(Q.my) Ty (my,, 7). (A9)
with
¢}’l n
) Al10
= + o (A10)
and
Bmd) = 6,0, Gu(@om,) = (=, +22) T (A1)
n n )77% n 1774 m% Q2 + m%l

Note that the bulk to boundary propagator follows by taking z — 0, which simplifies (A10) as

¢n (Z - 0) _QSFn¢n(ZI) Z2 gSFn¢n(ZI) Zz
G 0,7)~ |- =— 2 AT =2 V(0,7), Al2
@05 { oo, 20w 22 g emy 219 A1
where we used the fact that
Foo ( 1y ¢(/)> 2+ )R (A13)
n—=_—\|\"€¢ " 700,Z =——C\n K-,
gs 7" dee U5

with ¢,,(z = 0) ~ ¢,k>z%(n + 1). Note that the ratio in the bracket in (A12) is n independent! If we define the meson decay
constant as f, = —F,/m,, then we have

ba(2) = L2 x 2952201 (222), (A14)

n

which is in line with vector meson dominance.

APPENDIX B: FERMIONIC FIELDS

We start by considering a general fermionic field in bulk AdS that solves the free Dirac equation in the presence of a soft
wall. For that, we remove the dilaton field by rescaling

lP(y’ Z) = €+’~<222/21/~/(y,z), (Bl)

with the reduced field solving
; 5 25 1 =2 0y |
P70 -y ——(M+&2)1p(y.2) =0, (B2)

where @ = y#0,,. We now decompose the reduced field into two chiral copies
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(v, 2) =wr(y.2) +¥r(y. 2), WiR = Pr/r. (B3)

with (y°)2 =1, and P )p = P+ = % The solution to (B2) follows by further reduction into L/R KK modes using

2
P (1F 7)uy(P) 5 Fm(a). (B4)

WL/R()’»Z) =e

| =

with u,(P) a free Dirac spinor in four dimensions, and the L/R KK modes f; /r(z) now satisfying

0P 4 R 4 2R <M - %) + @] Fur(e) = P (). (BS)

1. Spectrum and modes

The equation of motion (B5) has normalizable solutions only when P> has

1
pg:Mg:4f<2(n+M+§), (B6)
with n =0, 1,2, ..., which are
- A'(n+1) @2/ M+1/2
T =\t a2 LR,
2r 1 2.2 _
" (2) (n+1) RM+1/2,M =22 M 1/2(1?212) (B7)

T(n+M+1/2)
with the normalization condition
|7 i@ e(z) = o (B8)

We can rewrite the normalized wave functions for the bulk Dirac fermion (or proton and neutron which correspond to the
n = 0 states) as

Y(p.z) = yr(2)¥(p) + wi(2)¥) (p).
Y(p.z) = yr(2)¥(p) + wi(2)¥) (p). (B9)
where for the soft wall
ﬁR 5 =20 (7=2)
wr(z) = 2 267 Ly (&),
v (@) = 5 BETLY @), (B10)
K

with & =222 and the generalized Laguerre polynomials L\ (&), iig = i, &'z — 1, and i, = &\/2/T(z). The
normalization of the bulk wave functions can also be rewritten as

|7 @zt () = . (B11)
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with ¢ = %22, and the inverse vielbein ¢4 = \/|¢**|84 (no summation intended in y). The leading twist parameter is 7 = 3,
and the free Weyl spinors P9 s(p) = Pu(p) and P ,.(p) = u(p)P+ are tied to the free spinor normalization at the
boundary

a(p)u(p) =2my,  2myxa(p")y'u(p) =a(p')(p’ + p)u(p). (B12)

2. Bulk to boundary propagator

The bulk to boundary propagator (or the nonrenormalizable mode) of the bulk Dirac fermion is given by

265 F 5 (p)wi () 263F 3 (p)wi (2)
Y(p,z)= P ¥ (p), B13
(p.2) Z Py v R #(P) +zﬂ: Py v R 1(p) (B13)
where the fermionic decay functions are defined as
2[(z =1+ n)
FR
() = /—X” \/ - O)(n+ 1)
1 2(z -1
Fi(p) = x M,k f-ltn) (B14)
242 INz—1DC(n+1)

Note that the on shell bulk Dirac fermions are just the residues at the poles p?> — m2 in (B13). The in-out baryonic states
used in our DIS analysis throughout are

w = cireen L (L) (7@ + (M50 )y ()7%0)] x /268 % F(o).
= e (D, 2@ + (B0 ), (R @) x 28 < Fatrn). (@15)

where 5; and sy label the in-out spin, and identified F{ = F§ = Fy(p) (ground state) and FR = FL = Fy(Py)
(excited state).

3. Yukawa coupling through the tachyon

The inclusion of a bi-fundamental tachyon field X (x, z) in bulk to lift the degeneracy between the vector and axial-vector
mesons, would also imply a Yukawa coupling between the even-odd bulk fermionic fields ¥, which we have not
considered here. More specifically [12]

I gx

Sy ==
12.X 292 D)

Px\/g() (x, 2)X (x, 2) ¥ (x, 2) + ¥o(x, 2) X7 (x, 2) ¥y (x, 2)). (B16)

which would mix 1,2 and lifts the degeneracy of the low-lying even and odd parity states in the nucleon sector,
(¥, +¥,)/ V2. A first order estimate in perturbation theory gives for the nucleon ground state with n = 0

g gxo
ant, = % [ Ex, @R QP - 7P =5 25, (B17)

with X,(z) given in (2.21). (B16) through the expansion around the vev, X(x, z) & X(z)e™*?), would also generate a

contribution to the pion-nucleon coupling and also the axial charge of the direct and transition axial form factors [12]. Since
our central interest is neutrino DIS scattering we can neglect this coupling and its effects on our results, as most of our
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analysis involves the behavior near the UV boundary where the effects of o is negligible both in the nucleonic wave
functions and the spectrum.

APPENDIX C: DETAILS OF THE REGGEON EXCHANGE
The bulk gauge field LY (k, z) exchange contribution to the diffractive Compton scattering amplitude in the 7 channel is

given by

iAIip—»Lp(‘g’ t) = Zi-;lip—»LpOnm s, t),

i.,zlfp_ip(mn, s,t) = (=)V4 . (q.q' k,m,) x Gw(m,,, 1) x (=)V" 4 (P1, P2, K, my), (C1)
with the bulk vertices (k = p, — p; = ¢ — ¢)

VM ( /k ) 5S§LL J( )_|_ 5SZLL J( )
£ £ ’mi’l = < 0970/ N\ m"’ S(070(1 )\ mn, ’
101(9:9 S(e0.L0(k.2)) ) " TSIk 2)) )

= gﬁKcsB"(qvq’,ei)/dZ(V(Q,Z)V(Q’,Z)GZJL(mn,Z) -0 V(0,2V(Q.2)J(m,, 2)),

58k

LYY )JL(m,,,z) —gs/dz\/ﬁe_d’z‘i’(pz,z)y’”{‘(pl,z)JL(m,,,z). (C2)

Vy’ ) ’k7 n = 7 0r077
L\y\y(pl P2 m ) (5(€8L0(k,z))

We have defined p = (p; + p»)/2, t = —K>, V(Q,z) = L(q = /=02, z) as given in (A8), and used the bulk-to-bulk
gauge field propagator (A9) with the substitutions ¢ — k, Q — K, and V — L. We have also used the vertices in (5.24), and
defined

B'(q.q'.€%) = (=i)e’™ e} (q)e; (') (g, + q.)- (C3)

For 7/ — 0, we can use (A12) and simplify (C1) as

PAL L1 (5. 8) & (=) Vi (a1 40 ko) X (=in) X (=D)V] gy (P11 P2 ko). (C4)
with
2
V’ZLL(ql »q2, kz) = ggKCSB”(qv ql’ €i) / dZ (V(Q7 Z>V(Ql7 Z)Z - aZ])(Q7 Z)V<Q,7 Z) E) )
3 _
Vo1 paok) =555 [ deGe 28 2 1 VK.2) = 5PV (K), (c3)
where V(K, z) = L°(k = V-K?,z7), and F(ILN)(K) is the form factor of the nucleon due to LY.

The Reggeization of the bulk spin-1 gauge field L9 (k, z) exchange can be obtained, in a similar way to the Reggezation of
the spin-2 graviton exchange, through the substitution

Tum(7).2) = 00, 2) = o0 $al2) (co

followed by the summation over all spin-j meson exchanges using the Sommerfeld-Watson formula

%Z(SH + (=s) 1) > _72’7/:262 <s]_]s+m(;j)]_l> (C7)

jz1

The contour C is to the left of all odd poles j = 1, 3, ... (in contrast to the Reggeized graviton where the contour is chosen to
the left of the even poles), and requires the analytical continuation of the exchanged amplitudes to the complex j plane.
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The spin-j normalized meson wave functions J; (m,,(j), z) (C6) are expressed in terms of the wave functions of massive
scalar fields ¢, (j, z) which are given, for the soft wall model, in terms of the generalized Laguerre polynomials as

D). 2) = ca()Z2VLY 2 (w), (C8)

with w = ¥2z2. The normalization coefficients are

N (2R2A0-D0(n + 1)\ 2
= (Ferap=1) )

and the dimension of the massive scalar fields (with an additional mass coming from the massive open string states attached
to the D9- or D7-branes) A(j) is given by

R2
A(j) :2+\/4+m2R2+?(j—1),

=24/ V(i = jo): (C10)

where, in the last line, we have used the fact that m>R> = —3. The spin-1 transverse bulk gauge field defined as zL2 (my, z)
obeys the same bulk equation of motion as a bulk massive scalar field ¢, (j = 1, z) with m>R?> = —3 which is manifest in
(E10). We have also used the open string quantized mass spectrum m?R? = (j — 1)(R?/a’) = V/A(j — 1) for open strings
attached to the D9- or D7-branes in bulk, and we have defined j, = 1 — 1/v/A.

We now recall that the non-normalized bulk-to-boundary propagators of massive scalar fields are given in terms of
Kummer’s (confluent hypergeometric) function of the second kind, and their integral representations are (for spacelike
momenta k*> = —K?)

- . A7 . . -
V(j.K.2) = zA(-”U(aK + % YNORSE w) = AW A0U(a()), b(j) w),
. . 1 1 . . X
= 72Dw2al) — / dxx@)=1(1 — x)P0) ex (— w>, Cl11
r@0) Jo (1=x)™Wexp| =1 (c11)
with w = &2z2

K2 . A(j . )

a=a=" " ah=ac+2-29 pG=3-ag), (C12)

47*’
after using the identity U(m, n;y) = y!="U(1 +m — n,2 — n,y). Therefore, the bulk-to-bulk propagator of spin-j mesons
J1(m, (). 2)G(j. 2.2 ) (my(j). 2) = 27U VG (j. 2,22 =07 (C13)

can be approximated at the boundary as (for spacelike momenta k> = —K?)

I‘l _)O n

— (R2)AU)-2 20 F(A(J)—Z—i—a) o,
) A(j)—l T(A(j) -2) VUK. 2), (C14)

where ¢, (j,z = 0) = gb (j,z = 0). We have defined the non-normalized bulk-to-boundary propagator of spin-j mesons

1~
],KZ Z gK2+¢n(JZ)_EV( )

V20 , (C15)

a+2 a14(A(j)-3)
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with the shift a + =2 ( ) a1+ (A(j) —3) defined in such a way that the mass spectrum of massive scalar fields

m? = 4% (n + A= 1)) and the mass spectrum of spin-1 gauge fields m2 = 4%*(n+ 1) match, i.e., we shift

n+ % —n+ 1+ (A(j =1)—3), giving the mass spectrum of spin-;j mesons
my(j) = 4% (n + 1+ (A(j) = 3)).
We have also used

C(],K €)

-Fn(]) ( \/_e (gxx>zaz'¢n(jﬂz/>)z’=e’

C(j. K.e) :V(J,K,e),

and the substitution ¢,(j.z = 0) =1¢,(j.z > 0) ~ ¢,(j)z AD-172972(0) for the soft wall model.
After the Reggeization, the scattering amplitude for the spin-j meson exchange becomes

iAé,,_)]_p(js S, [) ~ (_i)V/IiLL(j’ 9192, kz) X (_in/w) X (—i)qunp(j, P1s P2 kz)’

with

_ 1 -
Vi(iqi.ga k) = 72 g2kesB(q. q”ei)/dzzz“ D
5

1 A(j)=1-(j=1)-1
« <V(Q,Z>V(Q6z> e Z( )lyl
~ , xw 2 A(j)—2w
9.V(Q.2)V(Q'.2) AG) -1 ) (&) raQ)-2) -

= VLLL(j? Qv Ql) X Bﬂ(q’ q/, €i)7
W k) = 3 d - 1+2(j—1)\i; A\ —(j—l)V i K
L (P1s P2 ke) = g5 x5 [ dzy/ge™"z (P2, D)r"¥(p1.2)z (J.K.2),

= gsF\"NM (LK) x a(pa)ru(py).

We have defined

. 1 -
Vi, 0,0') = ) X ggkcs/dz 2201
5

— 1= (j = 1))ZA0-1=G=D)1
x (V(Q,z)v(Q',z) NCthl (i( )12)1
- F ) BTN a2 HAG) =2+ @)
OM(Q.2V(Q'2) X =5 )( pos N2,
——1 2-j-A0) 1) % R2AU XF(A(j)—2+a)X 1
=7 X gikcs X Q 1:(j, 0, Q') x -4 FAG)=2) 3=T

with
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1:(j,0.0') = / dEEFTAD(WV(EV(EQ'/ Q) x (A(j) = 1 = (j = 1) = 9:V(E)V(£Q'/ Q).

<@ -1- G-y x 20 L e (2 o )
Q Q|3+ A =150 +AG) + 1)
a2 g2 (2 33
2 QG“<Q’2 ;(j+A(j)+1),;(j+A(j)+1))’ 2
where G4 (2], ) is the Meijer G function. We have used the identities
QlimV(f) =¢Ki(8) and 0:(&K,(8)) = —&K,-1(8) (C22)

2500
B

to evaluate the integrals with £ = Qz. The function F (ILN) (j,K) in (C19) admits the integral representation

g U-1)-A0)-1
FgLN)( i, K) = % X% @) /01 dx x*~1(1 —x)"’<1)
fig —<()) i =(c(j)+1)
(2] e () () e (L)),
3 L Goy-ag
2 2
(RN DeGIEA =b() + () | (AL)? | T(e() + DI = b() + c())
<<> F0-b() +c() +a) () F2=5(j) +c(j) +a) ) (€23)
where
B)=3-AG).  c()=(e+n+ AU T (c20

After summing over all contributions from the spin-j mesons, the total amplitude A, (s,7) is given by

Lp—Lp
dj (s + (=s)! :
tLOIt)—>Lp(S’ t) = _L ( Aﬁp—»Lp(.]’S’ t)’

2mi sinzj

Aﬁp—)Lp(j’ S, t) = VLLL(j’ Q? Q/) X Bﬂ(qv ql’ ei) X gSF(lLN> (.]’ K) X ﬁ(pZ)yﬂu(p1)7 (CZS)

The contour C is at the rightmost of the branch point of F{V(j, K) and the leftmost of j = 1,3, .... From (C25), we
determine the single Reggeon amplitude (total amplitude) in momentum space, after wrapping the j-plane contour C to the
left,

) o dj (1 AN
AR (5.1) = =i~ / ’°—J( e >sf—folm[AzpqL,,<j,s,r>]. (C26)

o T \ sinzj

The imaginary part follows from the discontinuity of the I' function

Im[Af, (. 5. 0] = (C(A() =2)VirL(j. Q. Q') X B*(q.q',€¥) x gsF N, K) x #(p2)7ut(P1))j= o a)—2

i)

with the complex argument
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A(j) = A(j) =2 = i\/Va(jo— j) = iy (C28)

and j, = 1 — 1/+/A. For y — 0, we may approximate 1/T(iy) ~ iye'”, with the Euler-Mascheroni constant y = 0.55772....
The single Reggeon amplitude (total amplitude) in momentum space (C25) can now be cast in block form

Lporp(sst) = 1(jo. s) X Gs(jos 5, 1), (C29)
with
Cfiedj (1+e T\
I(ors) == [ ’“—’( i )sf-fo sin [/ V2(io = /).
o T\ sinzj

) | R . . : _
Gs(jo.s.1) = = (RUTIN(A() = 2)V111 (). Q. Q') x B/ (9. ¢, €¥) % asF{™ (G K)  (pa)r,u(p))ljojy a2 (€30)

We have set 5 = s/&%, and & — /2 = y = 0.55772..... is Euler-Mascheroni constant. We note that the apparent pole in
the Gamma function at the Reggeon intercept, cancels out in the combination I'(A(jo) —2)V; 11 (Jo. O, Q).
In the block form (C29), the spin-j integral /(jy, s) is similar to the spin-; integral in [27] [see Eq. (4.19)], with the

identifications K(s, b, z.2) < AR, (s.1), (z2'/R*)G3(jo. v) < Gs(jo.5.1), £(v) < &, and § < 5. We then follow

[27] to evaluate the spin-j integral by closing the j-contour appropriately. In the high energy limit v/A/7 — 0 (7 = log §), the
single Reggeon contribution to the amplitude is

e~V
o (5. 1) = e [(Va/7) + i](\/i/zn)l/ZgW <1 + o(‘@)) x Gs(jo. 5. 1). (C31)

We can rewrite the amplitude (C31) as

1 Q) 2-Jo=AUi) s \Jo e~V /2logls/%]
}?;]_)Lp(s,t)l’4x4xg5X?ngk'csx<T> X ) X —

5 K (log[s/R%])*/2
. 1/2"‘ \/j’ ~ . /
x [(VA/) +i] x (V2/2m) 2E( 1+ O == | | x Gs(jo.1.Q. Q). (C32)
log[s/&?]
where
Goli 11 1 1 1 1 1 1 1 Ge(i
sUos . 1) = g2 g X oox Tx gikes ® . QFa0) @80 E -0 @i sUo. 5, 1),
5
. . 1 1
= 1o, ©. Q') x Fi™ (jo. K) x 57" x 7 x B'(q.q/. ) x 7 x i p2)y,u(p). (C33)
with
I'(A(jy) =2
F Gy k) = AU =24 a) % F (o, K). (c34)

A(jo) -1 x 7= (o=1)=A(jo)-1

APPENDIX D: DETAILS OF THE POMERON EXCHANGE

The transverse and traceless part of the graviton (17,, — n,, + h,,) follows from the quadratic part of the Einstein-Hilbert
action in de Donder gauge,
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S:/dsx ge L,

1
452

'Ch = - gﬂynlpnmaﬂhidauhpr’ (Dl)

with Newton constant 162Gy = 87%/N? = 32 = 2«*. The massive glueball spectrum is determined by solving the equation
of motion for £, following from (D1), with for spin-2 glueballs

m2 = 8&%(n+ 1), Gsf, = 2Ry (D2)

1. Graviton coupling in bulk

For the graviton in the axial gauge h,, = h,, = 0. Using n,, — 1,, + h,, in the linearized bulk action gives

- V2i? y
hPY: — 3 /de\/ghWT’;,
V2 2
hLL: — 2K / & x\/gh,, T, (D3)

with the energy-momentum tensors for the fermions and left gauge fields

Ty =e %Z‘i’y"a”‘l’ — 1L,
T} = —e (o Fi Fry — <P Py Fr) — Ly, (D4)
and the rescaling
\P — Zgglp’ LN e d gSLN’ h/u/ d 2K2hﬂl/' (DS)

Evaluating the couplings or the vertices (D3) on the solutions, Fourier transforming the fields to momentum space, and

integrating by part the trace-full part for the fermions, we find for the couplings to the fermions (h'PW) to the left gauge
fields (hLL)

) d*pod*p d*k
AR / EP2EPIEZ ony4st(p, — k= 1) ()

(277)12
d*q d*qd*k
e [ CLEIEE 0a (g =k - ), (06)
(27)
with
V2K? -
Shw = =5 / dz\/ge™"z€1, h(k, 2)¥(p2, )y p"¥(p1, 2),
Sk = V2P / dz\/ge el Th(k, )K" (q.q €. €, 2). (D7)
We have set h,, = ellh(k,z) (where €!] is transverse and traceless polarization tensor), ¢* = —Q?, ¢* = —Q"* for

spacelike momenta, and defined
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K"(q.q' €€, 2) = By V(Q, 2)V(Q'. 2) = By 9:V(Q, 2)9: V(' 2),
B (e.€') = ete”,
Bi'(q.q.¢.¢) =¢-éq"q" —q-ée'q" =g -eq'e” + q- g'e'¢”, (D8)

with By o = 1,,BYy, K = 1,,K*, and the non-normalizable wave function for the virtual photon V(Q, z) given in (A4).

2. Scattering amplitude

The ¢ channel Compton exchange of a spin-2 glueball of mass m, in AdS reads

iAI}fp—»Lp(s’ t) = Zi;lﬁp—»Lp(mnﬁ s, t),

n

PAL (s, 1) = (=)Vi T (qog o kom,) x GIT o (my 1) x (=D)VERTT (py. pa.komy), (D9)

with the bulk vertices (k = p, — p; =g —¢)

v 5, 1
VI k) = (Grtblss ) ) = V2605 [ deyie b2 a2 o),

Ve 58k —
hﬂ‘I"IT;T (pl’ pZ’k mn) = (%)Jh my, 2 2K /dz\/ge ¢ZlP(p2’ )y pﬂlp(pl’ )Jh(mnv )7 (Dlo)
with p = (p; + p,)/2. The bulk-to-bulk transverse and traceless graviton propagator G5 = G,wa/} for the 27+ glueball is
[36,37]
G lop(mat,2,2) =J (mn,z)Gﬂmﬂ(mn, tJ,(m,,7),
1 2 i
GLlp(m,. 1) = > (’T oL g+ T 45T 1 — gTﬂyTaﬂ> i tic
with
Tﬂl/ = Nw + k ku/m%w
Jlmy, 2) = wa(2) = e, 2 La V72 (2¢), (D11)
and
24~6 r 1
¢, = (ZRTln E DY (D12)
I'(n+3)
normalized according to
[ it @) = S (D13)
For 7/ — 0, we can simplify (D9) as (t = —K?),
: u(TT) i YeT)
Ay (500 % OV @102 % () < GOV (012K (D14

with
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4
v Z
V) (0 k) = V2R x /dz@e oK g €. 2)

Vi (propak) = =V x [ deGet2Up 2y pHpr UK. 2)

where

V2KF 3y, (2)
HK2) =) =t o

n

= 47T (ax +2)U(ag +2,3;28) = T(ag +2)U(ag, —1;2¢),

— %/{)1 dx x* (1 = x) exp(—%@f)),

with ax = a/2 = K?/8k%,

1 1 4
F,=—|—-——0, nz’) =——c,L%(0),
m( A0 @), =gt )
We have used the transformation U(m, n;y) = y'™U(1 +m —n,2 —n,y) in the second line of (D16).

3. High energy limit

(D15)

(D16)

(D17)

In the high energy limit \/2/7 — 0 with 7 = log§ = log[s/k%], the single Pomeron (or spin-j glueballs) contribution to

the Compton scattering amplitude has been evaluated in [24], with the result

sy 0.0 2 ST ) + 12 (14:0( ) ) < Gl .0)

with & — /2 = y = 0.55772..... is Euler-Mascheroni constant, and

. (KN 4-A0)+i-2
GS(/O? S, 1, Q) - (kv>
1 1 ~ . . a, . Q,
s <§ é“/ e 2F(A(J) - 2)(VZLL(17 0.0') x B1ﬁ - V{;LL(]’ 0,0') x Boﬂ)
V2P i AG) a s e
x Y2 R0, K)u(m)yapﬂu(pl)) |
95 J= o A() =2
with, Qz = £,
Vv 2 2~2 . . .
Vi (7.0.Q') = - dz\/ée‘Z B 2412072 x V(0,2) x V(Q', z) x C(j) x 2202,
= Q+UFAUD x 2 / ng“““f 2 x V(E) x V(EQ'/ Q) x C(j) x A==,
\/2 o
Vi (.0.0) = 75" dz\/§e‘Z T 42072 % 9,V(0, 2) x OV(Q', 2) x C(j) x z20)=(-2),
N N
= QO UTAU) % i" dge™" FEHA X DV(E) X DV(Q'/ Q) x C(j) x £4U)
0
and
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By DU P(r(1 = b+ c)
2 T(l-b+c+a)

A(J, K) =

2 - iy \2 c(1-b
x<<%) 2Fl(a,c+1,1—b+c+a,—1)+(Z—f) C(7+)~2F1(a+1c+12 b+c+a—1))
N

N l-b+c+a
(D21)
The parameters are fixed as
J—2  A()
1-b =(r—-1)+—+4+—2,
+e=(r-1)+ 7T
- - j—2
1—b+c+a:(r+1)+T+aK,
J=2_A@)
= 1)+ =
c=(t+1) 5 5
flR = ﬁLIZ‘X/l VT— 1, FlL = IZ“IL’V 2/F(T), (D22)
and
N g L 2207 (ag + 5
C(j) =&y X - ; )
A(j)  T(A() -2)
. . a K? , 2
AG) =2+ \2VA(j=jo) and ax =2 =cm and jp=2 -7 (D23)

We can rewrite Gs(jo, 5,1, Q, Q") of (D19) more compactly as

252 0\ 2-(+a0))
Gs(jo.s.1.0.0") =—75X <T>
Js K

1 . N Q,
Xsif(J»K)(IgT(]v Qs Q/) XBlﬁpapﬁ 15 (.] Q Q/) XBO p(lp/}Q )|]—>jo j)—>22 (D24)
where we have set Ky, = Ky = &, and defined the dimensionless functions

F(j, K) = #2720 x T(A(j) = 2) x C(j,K) x A(j, K),
1£(j,0.0) =5 /oo d¢ 6—52;—$§A(,-)+j+2 x V(&) x V(£Q'/Q),
0

1 o' 0’
- 2 J)+j+2 = G2 2
2 Q 22 Ql2

1£6.0.0) =5 [T aeeTE R0 x 0,(6) x v(60/0).

1 142 Q% 0007
I~ 5 X 2A(j)+j+2EG2:2 -3

Q

LG+ AG) +4). (j+A(j)+6)>’

1,1
3 +AG)+5).3 (J+A()+5)>

(D25)

using the identities (C22).
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We can also rewrite the amplitude (D18) as

22 0 2+2/V2 s\ -2/Va e—ﬂéz/zlog[s/fcz]
Lporp(s:t) 2—5 X <~> X <~2> X (—N

% o\R R logls/%%])*/2
Vi i
X m) + i z)/? x Gs(j !
(VA7) + ] x (Va/27) 5(1+O<l o/ ]>> Gs(jo-1, 0. Q') (D26)

where we have explicitly used 7 = log[s/%?], jo =2 — \/i-, A(jo) =2, E—n/2 =y = 0.55772..... is a Euler-Mascheroni
constant, and defined

, 1 gg 7\ 2-Go+A(o)) 5 . ,
G(JO,SZQQ)_QA; 22X 0 x 57 x Gs(jo, 5,1, 0,0") (D27)

For small x, we have s ~ Q?/x, we can rewrite the amplitude (D26) in terms of x as

o 1 2k [Q\22IVE  [1\I-2Vi  o=ViE/2(10g]Q* /] +log[1/])
Lp-rp (¥, Q:1) =5X% g—g (?) % (E) x (log[Q?/%%] + log[1/x])3/?
- A z
* (VA7) +i] x (\/Z/Z”)mé(] " O<log[Q2/E2\]/-—F log[l/x]>) X Gslio.x.1.0. Q). (D28)

where we have defined (:?S(jo,x, t,0,0) = 2xGs (jo» 5,1, Q, Q") with (¢- g =0)

, (D29)
J=Jo-A(j)=2

Gslion:1.0.0) = K (10.0.0) x (5, = (e pP ) = 1£G.0.0) x e )

APPENDIX E: OPERATOR PRODUCT EXPANSION

The parton model emerges in QCD through a leading twist contribution to the structure functions. The twist expansion
follows from the OPE of the JJ currents. We now illustrate this expansion to leading order for the charged current
contributions in 7-ordered product in (4.2). Specifically, we have as x — 0

Y 072 0) % (AT T, (1= 18IS 5 (1= 1)al0) + AOT 1, 5 (1= )S(-2)5 (1= 1)) ).

(E1)
with S(x) = 2iy - x/(2zx?)?. With the help of the identity
1t X1y = (Suap T 1€aprs)xY’ (E2)
with the symmetric tensor
Syvap = Muallup + MgtV = My, (E3)
in (El), the short distance contribution to the T-ordered product in (4.2) is
Tt »2e5 q—; (Pl(Suapd(0)77 (1 = 15)q(0) = i€uapq(0)y” (1 = 75)(0))|P). (E4)

q

For unpolarized scattering, a comparison of (E4) to (4.2) suggests that the parity odd structure function F; can be identified
with the antisymmetric tensor contribution,
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Fa(x. )P (e Pt Plar (1 - 1)l ). (BS)

(E5) is suggestive of a j = 1 exchange through the left singlet current, since s/=! < 1/x.

Although the twist-2 contribution to the OPE is real, it provides the relevant starting point for the Reggeization by
summing over higher spin-j states in holography [22]. For that, we first note that the holographic dual of the singlet current
form factor is

(Px|gy’ (1 —ys5)q|P) = [exity(Px)y’ (1 = y° )uy(P)]
1 /22 1 .

—q < 2~nx 7 ZZ 2~nx
« [amemen; |5 () TR v () HeRe). @
The bulk-to-boundary propagator V(Q, 7') relates to the bulk-to-bulk propagator G(Q, z, ') through
.2 ,
E»I(%ZTZ G(0.7.,2) =V(0.2). (E7)
Using (E7) into (E6) gives

(Px|gy’ (1 —ys)q|P) = [eniiy(Px)y’ (1 — ¥ )uy(P)]

2
X llrr(l)?/dz\/ﬁe“’ﬁGl(Q,z’,z)

Z

<L (E) mene+ (&) rene) (=8)

1. Hard wall
For the hard wall model with ¢ = 0, the bulk-to-bulk propagator can be readily constructed

II(QZ<)
IO(QZO)

and (E7) explicitly checked. However, for the Reggeization it is more useful to recall that the bulk-to-bulk propagator for the
U, (1) vector field, obeys the Green’s equation in warped space (Q? = —g?)

G(0.7,2) = 22/ (Ip(Qz0) K1 (Qz- ) + Ko(Q20)1,(Q2z-))

(E9)

6(z =2
(A1 =20+ my) = (~2(02 + 0%) + 20)G, 1 (0.2.2) = 2C ), (E10)
VY9

with mjz.:1 = —3. Using the open-string Regge trajectory

j=1+d(m;—mi) with od=0L2=1/V2 (E11)
(E10) generalizes to spin j
6(z—7

(4 =2Q* +m})G;(0.7,2) = (\/g ) (E12)

with the recursive relation for the warped Laplacian-like
A= Z15IA 7L (E13)

Equation (E12) can be formally inverted
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1 . 1
S(z—7) =27+
&, -2 ) )

V9G;(0.7.2) = Z28(z = 7). (E14)

Changing to the conformal variable z> = e, noting that A, = —483 + 4 and using the plane-wave identity
N j-2 d
6(z—7) = (%) ﬂ” ivlpp). (E15)

we can recast (E14) in the form

dv 1

i) E16
T4 +4+ mf ¢ (E16)

V9G;(0.2.2) = \/q (¢)/ (z2)>

for Q = 0. The Reggeized form of the spin-j and twist-2 extension of (E8) is

d]l—e"”/ 1
41 sinzj X/

d 1 N
hm /dzf V(22 / v eivlp=r')

<
TR+ 1+ VA - 1) R

. Bv/i(Z) + 3030 (E17)

Z%(Pﬁzyﬁaj‘](l —75)q|P) = — [enity(P)YPOI=1(1 = p)uy(P)]

i

using the open string Regge trajectory (E11) in the forward limit (Q = 0). Here y(z) is the lowest left-chirality bulk
fermionic wave function for the hard wall. The contour C is to the leftmost of the poles j = 1, 3, ... and to the right of the

pole jo = 1 —1/+/2. Undoing the contour integration C by closing to the left and picking the single pole jy, and then
performing the v integration yield

odd
1 .
Imz (PlgyP =1 (1 —ys)q|P) = o lenity (P)yP 0P~ (1 = )uy(P)]

e~ (r=r)/4Dx 7 1 5 1

— /xx ]L 2—=jo 2
s tim = [ de/Jlg i o ) +3vA0) - (E1Y

The Gribov time is y = In(1/x) and the diffusion constant of the Reggeon is D = 4/ V2. Equation (E18) fixes the odd
structure function in (ES) in the forward direction using this semiquantitative OPE argument,

1 1
F3(O’X)NE%W'

(E19)
2. Soft wall

For the soft-wall model, the Reggeized current form factor is given by

odd

1 .
Z;UDIW’@"I(I ~75)q|P)

J

- fiodj (14 e\ . 2 . . I'A(j)—2+a 1
:_x/O/_ _< - )xl ]0Im|:2X§XK(] +A()+1 ngngi\lﬂp(pl :p2:p»kz:0):|

o T \ sinzj

— _xo /]" dj (1 + ¢ ) xiioIm|2 x 2 x RU=DHAG)+L M x 1 x QSFELN) (j.K = 0) x a(p)yPu(p)|.
oo T\ SInzj 3 Js

(E20)
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where Vilw(pl, pa, k) is given by (C19), and FELN) (j,K) is given by (C23). Note that the bracket

T(A(j) =2 +a)
r(a()-2)

is the spin-j form factor which reduces to the spin-1 form factor for j = 1, for the current operator 2 x ]{ 0) =
qr”(1 —ys)q sourced by 3 x 3 x LY(K, z — 0) at the boundary. Also note that the momentum transfer is k. = ¢, and that

2 . . 1
2 X § X ]’E(]_l)+A(])+l X g x gSFELN) (J’ K) (E21)

—k? = K? = Q? with a = K?/4&k* = Q?/4%. The momentum of the incoming nucleon is p; = p, and the momentum of
the outgoing nucleon is p, = p, with k = p, — p; =q.
Following the reasoning in Appendix C, we can evaluate the integral in (E20) with the result

odd _\/_52/21 \//_I
Imz (P|lgyPi=' (1 — y5)q|P) ~ eio™[0 x (V4/7) + i/i ](\/—/271')1/25 R <1 + (9(1—)) x Gs(jo, x,Q = 0),
(E22)

with

2 ) . 1
Gs(jo.x.0=0) = <F<A(j> —2)x2x 3 X RUZDHAGHT 5 —X QSFELN) (J,0) x 2Pﬂ)

Jio A =2.0-0
(E23)

Again, jo=1-— \/_, 7, = log[1/x], @(p)yPu(p) = 2p# = 2PP, and & — /2 = y = 0.55772..... is the Euler-Mascheroni
constant. Finally, comparing (E22) to (ES5), we find

1 _ e~V 2, Vi _
~_ e 2= i
F3(0,x)~x1_l/ﬁx (VA)2r)\/2E 7 (1 +0<TX)) x Gs(jo. x.0), (E24)
with
~ . . 2 i . F(A(]) —2+(1) 1 (LN) .
Gs(jio.x,0) = (F(A(J) —2) X 2x = x RUTDFAUH 5 oAl = e — x s PV (7, Q) (E25)
Vo 3 (A(j) -2) 9s o J=jo.A(j)—>2.0-0

APPENDIX F: TRACE OF GAMMA MATRICES

Note that the Dirac traces do not depend on the specific form of the y°, y!, y?, y* matrices but are completely determined
by the Clifford algebra

.=y +rr =", (F1)

and some useful identities for carrying some of the Dirac traces of gamma matrices above, are given by (note that
y> = iy%'y?y? and it satisfies yy* = —y#yd)

tr(yty’) = dp, (F2)

tw(y*y'y’) =0, (F3)

w(ry y’y) = 4 — Py + A, (F4)
(Y ryPyy’) = —4ie, (F5)
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w(y Yy ) = A (P -

Y ) = An® o (P = )

A < (W = ) = A (o = P 4 ™)

+ 4™ x (o = PR+ P, (F6)
tr(ya}/ﬂyﬂyﬂyﬂyyys) — _4l'(,,la/4€ﬂﬂﬁl/ _ ’,]af/eﬂﬂﬁv + nﬂﬂeaﬂﬁt/ _ nﬁveﬂaﬂf/ + nﬂveﬁaﬂﬂ _ ;,]ﬂ[telza;tf/)’ (F7)
and
tr(y" - yy’) =0  Vodd n,

tr(y”l PN

) =0 Vodd n. (F8)
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