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We compactify the ten-dimensional spacetime in heterotic supergravity leaving four-dimensional
Minkowski spacetime. We search for nonsupersymmetric, non-Ricci-flat solutions of the equations of
motion with the quadratic curvature term. By assuming that the extradimensional spaces are products of
2-manifolds, three types of solutions are found. They are S2 × T2 ×H2=Γ, S2 ×H2=Γ ×H2=Γ, and
S2 × S2 ×H2=Γ, where H2=Γ denotes a compact hyperbolic manifold. The metrics can be written
explicitly, and they can be applied to phenomenology.
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I. INTRODUCTION

There are several problems in the Standard Model of
particle physics: It does not contain gravity, and it cannot
explain the origin of gauge groups or the number of
generations. These problems would be explained by more
fundamental theories, and prominent candidates for them
are superstring theories. Superstring theories reside in ten-
dimensional spacetime. Dimensions beyond four have not
been observed [1–4], so the additional six dimensions need
to be small enough. In the context of string phenomenol-
ogy, the six-dimensional space is often assumed to be a
Calabi-Yau manifold [5] or a toroidal orbifold [6,7]. These
spaces are Ricci flat, so it is easy to show that they satisfy
the equations of motion.
The purpose of this paper is to find nonsupersymmetric,

non-Ricci-flat compactifications in the supergravity theory
as the low-energy limit of the heterotic superstring theory
[8]. Without supersymmetry, we need to solve equations of
motion. We assume that the ten-dimensional spacetime is a
direct product of Minkowski spacetime and three 2-mani-
folds. The advantage of 2-manifolds is that the condition
for Green-Schwarz anomaly cancellation mechanism [9]
can be satisfied [10] without assuming equality between
curvatures and gauge field strengths (“standard embed-
ding”). In addition, such submanifolds allow us to suppose
a Freund-Rubin-like configuration for gauge fields [11]. In
the heterotic supergravity Lagrangian, the necessity for a
quadratic curvature term was shown later in Ref. [12].

Obtaining four-dimensional theories with non-Ricci-flat
manifolds has, of course, a long history [11,13–30]. Our
study differs from previous works for the quadratic curva-
ture term and the above Ansätze.
To search for explicit solutions, we assume the

two-dimensional submanifolds are spaces of constant
curvature. The six-dimensional manifold solutions that
we find here are S2 × T2 ×H2=Γ, S2 ×H2=Γ ×H2=Γ,
and S2 × S2 ×H2=Γ, where S2, T2, and H2=Γ are a two-
dimensional sphere, a torus, and a compact hyperbolic
manifold [14,21], respectively. By the flux quantization
condition, a finite number of solutions for the curvature of
the first S2 are found.
This paper is organized as follows. In Sec. II, we describe

the Lagrangian and field equations that we solve in this
paper. In Sec. III, explicit configurations of gauge fields
and curvature tensors that satisfy the field equations are
shown. In Sec. IV, we summarize the results of this paper.

II. LAGRANGIAN AND EQUATIONS OF MOTION

We consider the bosonic part of the Lagrangian for
heterotic supergravity [12,27]

L ¼ ffiffiffiffiffiffi
−g

p
e−2ϕ

�
Rþ 4ð∇ϕÞ2 − 1

12
HMNPHMNP

þ α0

8
RMNPQRMNPQ −

α0

8
trðFMNFMNÞ

�
; ð1Þ

where g is the determinant of the metric gMN and the
indices run M;N; P;Q ¼ 0;…; 9. RMNPQ is the Riemann
tensor, and the Ricci scalar R and the Ricci tensor RMN

are defined as R ¼ gNQRNQ ¼ gMPgNQRMNPQ. The gauge
field strength FMN is
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FMN ¼ ∂MAN − ∂NAM þ ½AM; AN �; ð2Þ

FMN ¼FA
MNT

A; AM ¼AA
MT

A; trðTATBÞ¼ δAB; ð3Þ

where AA
M is a gauge field and TA is a generator of gauge

groups E8 × E8 or SOð32Þ.
The equation of motion for the three-form field H is

∂Mðe−2ϕHMNPÞ ¼ 0: ð4Þ

We take dilaton ϕ constant and H to vanish:

∂Mϕ ¼ 0; HMNP ¼ 0; ð5Þ

and then the equation of motion for H (4) is satisfied. Such
a configuration with unbroken supersymmetry leads to
Ricci-flat compactification [5]. In this paper, we do not
assume low-energy supersymmetry. The other equations of
motion become

Rþ α0

8
RMNPQRMNPQ −

α0

8
trðFMNFMNÞ ¼ 0; ð6Þ

RMN þ α0

4
RMPQRRN

PQR −
α0

4
trðFMPFN

PÞ ¼ 0; ð7Þ

∇MFMN þ ½AM; FMN � ¼ 0: ð8Þ

Equation (6) can be made much simpler. By multiplying
Eq. (7) with gMN , we obtain

Rþ α0

4
RMNPQRMNPQ −

α0

4
trðFMNFMNÞ ¼ 0: ð9Þ

Comparing with Eq. (6), we find

R ¼ 0: ð10Þ

This is a result of the constant dilaton and vanishing H (5).
We use this equation instead of the dilaton equation (6).
Vanishing of the Ricci scalar does not mean that the ten-
dimensional manifold is Ricci-flat RMN ¼ 0, as we will see
in the next section.
In addition to the above equations of motion, the

curvature form and the gauge field have to satisfy

0 ¼ dH ¼ α0

4
ðtrR ∧ R − trF ∧ FÞ ð11Þ

for the Green-Schwarz anomaly cancellation mechanism
[9]. To satisfy this condition, standard embedding RMNab ¼
FA
MNT

A
ab has often been assumed. Such a relation, however,

cancels the second and the third terms of Eq. (7), and only
Ricci-flat solutions RMN ¼ 0 are allowed. We need

RMNab ≠ FA
MNT

A
ab ð12Þ

for some components to find nontrivial solutions.

III. COMPACTIFICATION

A. Ansätze

We are going to solve Eqs. (7), (8), (10), and (11). We
assume that the ten-dimensional manifold is a product of
four manifolds:

M10 ¼ M0 ×M1 ×M2 ×M3; ð13Þ

where M0 is the four-dimensional Minkowski spacetime
and Mi (i ¼ 1, 2, 3) are two-dimensional spaces of
constant curvature. The metric of M10 is block diagonal
and depends only on the coordinates of corresponding

manifolds gðiÞmn ¼ gðiÞmnðxðiÞÞ, where the indices m and n are
tangent to Mi. The nonzero Riemann tensor components
are then

RðiÞ
mnpq ¼ λiðgðiÞmpg

ðiÞ
nq − gðiÞmqg

ðiÞ
npÞ; ð14Þ

where λi is a constant sectional curvature. The other
components with indices of M0 (like R0123) or mixed
manifolds (like R4568) are zero.
For the gauge field strength FA

MN , we assume that it is
also block diagonal for M and N and nonzero only
for Uð1Þ components (A ¼ 1; 2;…; 12). The range of A
is determined to leave the gauge group SUð5Þ in
E8 × E8 ⊃ SUð5Þ ×Uð1Þ12. For the nonzero components,
we take Freund-Rubin-like configuration [11]

FAðiÞ
mn ¼ ffiffiffiffi

gi
p

fAi ϵ
ðiÞ
mn; ð15Þ

where gi ¼ detðgðiÞmnÞ, fAi is a constant (sometimes called a

flux density [28]), and ϵðiÞmn is a Levi-Civita symbol for Mi.
Other components are set to zero. This configuration can
satisfy the nonstandard embedding condition (12).

B. Field equations and flux quantization

By the above setups, we can show that the equation of
motion for FMN (8) is satisfied. Consider that N ¼ n is in
the direction of the manifoldMi. The second term in Eq. (8)
vanishes:

½AM; FMn� ¼ AAðiÞ
m FBmnðiÞ½TA; TB� ¼ 0; ð16Þ

since AA is nonzero only for Uð1Þ components.
The covariant derivative term becomes also zero for the
Freund-Rubin configuration:
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∇MFMn ¼ 1ffiffiffiffi
gi

p ∂m

� ffiffiffiffi
gi

p fAiffiffiffiffi
gi

p ϵmn

�
TA ¼ 0: ð17Þ

Our Ansätze Eqs. (14) and (15) can also satisfy the
condition for the Green-Schwarz mechanism, Eq. (11).
Components of the first term are zero [10]:

R½MN
RSRPQ�RS ¼

X3
i¼1

RðiÞ
½MN

rsRðiÞ
PQ�rs ¼ 0: ð18Þ

This is because fM;N; P;Qg cannot be all different in each
two-dimensional manifold Mi. For the same reason, the
second term in Eq. (15) is also zero ifM, N, P, andQ are in
the same Mi. For different indexes m and n tangent to Mi
and p and q tangent to Mj (i ≠ j), we need

FA
½mnF

A
pq� ¼

1

3

X
A

ffiffiffiffiffiffiffiffi
gigj

p
fAi f

A
j ¼ 0: ð19Þ

It can be satisfied if fAi do not overlap for A:

fAi f
A
j ¼ 0 ði ≠ j; no sum over AÞ: ð20Þ

The equations of motion to be solved are Eqs. (7) and
(10). They are reduced to

λi þ
α0

2

�
λ2i −

X
A

ðfAi Þ2
�

¼ 0; ð21Þ

X3
i¼1

λi ¼ 0: ð22Þ

From Eq. (21), we see that λi can be positive or negative.
This is crucial to obtain non-Ricci-flat solutions. If the
quadratic curvature term or gauge field were not, all λi are
nonpositive or non-negative, and Eq. (22) forces them to
be zero.
The equations of motion (21) and (22) have a trivial flat

solution M1 ¼ M2 ¼ M3 ¼ T2 (λ1 ¼ λ2 ¼ λ3 ¼ 0 with no
gauge fields, fA1 ¼ fA2 ¼ fA3 ¼ 0). We are interested in
nonflat solutions here. The manifold with λi > 0 is a two-
sphere S2 and λi < 0 is a compact hyperbolic manifold
H2=Γ [14,21]. For Mi ¼ S2, H2=Γ, gauge field strength
satisfies the flux quantization condition [10,29]

Z
Mi

FA ¼ volðMiÞfAi ¼ 2πnAi ; ð23Þ

where volðMiÞ is a volume of Mi and nAi is an integer. On
the other hand, the Ricci scalar is also related to an integer
by the Gauss-Bonnet theorem:

Z
Mi

R ¼ volðMiÞ2λi ¼ 4πχi; ð24Þ

where χi is the Euler characteristic (χi ¼ 2 for S2 and a
negative even number for H2=Γ). Dividing Eq. (23) by
Eq. (24), we find

fAi ¼ nAi
χi

λi: ð25Þ

Substituting it to the equation of motion (21), we obtain

λi ¼
� 1

ci−1
2
α0 ðci ≠ 1Þ;

0 ðci ¼ 1Þ;
ð26Þ

ci ≡ 1

χ2i

X
A

ðnAi Þ2: ð27Þ

C. Solutions

For simplicity, we put α0 ¼ 2 below. To find solutions for
Eqs. (22), (26), and (27), it is useful to derive the range of
λi. In the region ci < 1 and ci > 1, λi is monotonically
decreasing with ci. By the definition, ci ≥ 0 and the
minimal ci > 1 is 5

4
; then

λi ≤
�
4 ðfor S2Þ;
−1 ðfor H2=ΓÞ: ð28Þ

Without loss of generality, we can set λ1 ≥ λ2 ≥ λ3. For
nonflat solutions, Eq. (22) implies λ1 > 0 and λ3 < 0. We
discuss three cases with zero, negative, and positive λ2. We
can find many discretized solutions, and two sample
solutions for each case are summarized in Table I. We
pick up some solutions below.

1. Case (i): M1 =S2, M2 =T2, and M3 =H2=Γ
This manifold corresponds to λ2 ¼ fA2 ¼ 0. The con-

dition of vanishing Ricci scalar (22) is

1

c1 − 1
þ 1

c3 − 1
¼ 0: ð29Þ

It has four solutions:

ðc1; c3Þ ¼
�
5

4
;
3

4

�
;
�
3

2
;
1

2

�
;
�
7

4
;
1

4

�
; ð2; 0Þ; ð30Þ

corresponding to

λ1 ¼ −λ3 ¼ 4; 2;
4

3
; 1: ð31Þ

One of the solutions ðλ1; λ3Þ ¼ ð1;−1Þ can be realized if
the nonzero parameters are (we choose fAi ≥ 0)
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n11 ¼ n21 ¼ 2; f11 ¼ f21 ¼ 1: ð32Þ

The number of nonzero fAi is two, and it is minimal for case
(i). The condition for anomaly cancellation Eq. (20) is
satisfied.

2. Case (ii): M1 =S2 and M2 =M3 =H2=Γ
This manifold corresponds to λ2 < 0. The inequality (28)

and Eq. (22) give

4 ≥ λ1 ¼ −λ2 − λ3 ≥ 2: ð33Þ
There are only two solutions for λ1:

λ1 ¼ 4; 2: ð34Þ
For λ1 ¼ 2, the others are λ2 ¼ λ3 ¼ −1. This case requires
three fAi to be nonzero, and we have checked that this is
minimal. For λ1 ¼ 4, other parameters λi and fAi can be
calculated as in other cases.

3. Case (iii): M1 =M2 = S2 and M3 =H2=Γ
The ranges of the sectional curvatures are

4 ≥ λ1 ≥ ðλ1 þ λ2Þ=2 ¼ −λ3=2 ≥ 1=2: ð35Þ
Then eight values of λ1 are possible:

λ1 ¼ 4; 2;
4

3
; 1;

4

5
;
2

3
;
4

7
;
1

2
: ð36Þ

The minimal number of nonzero fAi is three for
the case ðλ1; λ2; λ3Þ ¼ ð2

3
; 1
3
;−1Þ. Another nontrivial sol-

ution ðλ1; λ2; λ3Þ ¼ ð4; 4;−8Þ can be realized with

c1¼c2¼
5

4
¼22þ12

22
; c3¼

7

8
¼ð3nÞ2þð2nÞ2þn2

ð−4nÞ2 ; ð37Þ

where n is an arbitrary natural number. The Euler character-
istic χ3 ¼ −4n is limited to a multiple of four. Nonzero flux
densities fAi are calculated by Eqs. (25) and (37) as

f11¼ f32 ¼ f53¼ 4; f21¼ f42 ¼ f53 ¼ 2; f73¼ 6: ð38Þ

The anomaly cancellation condition Eq. (20) is satisfied.

IV. CONCLUSIONS

We found a new set of nontrivial solutions for the
equations of motion in heterotic supergravity. We have
assumed the extra six-dimensional space is a product of 2-
manifolds (13). Such a space has two advantages: The
Green-Schwarz mechanism can be realized without assum-
ing the standard embedding, and the gauge field can take
Freund-Rubin-like configuration (15). By the quadratic
curvature term in the Lagrangian and the nonstandard
embedding, the sectional curvature λi can be positive or
negative [see Eq. (21)], leading to non-Ricci-flat solutions.
The solutions are summarized in Table I.
In these solutions, the curvatures are fixed by the

equations of motion and discretized by the flux quantiza-
tion condition. They cannot be continuously changed, so
the solutions are expected to be stable. In contrast with
Ricci-flat cases, there is no freedom to multiply curvatures,
since the quadratic curvature term is present, and such
stability was pointed out in Ref. [27] (the stability of
compactification on the products of Einstein manifolds was
also discussed in Ref. [28] with a different action). It would
be interesting to examine whether the solutions remain
stable with the inclusion of higher-curvature terms.
Our compactifications realize four-dimensional

Minkowski spacetime, so they can be applied for phe-
nomenology. For example, if nonzero Uð1Þ fluxes are
suitably embedded in E8 × E8, the gauge symmetry
SOð10Þ can be left, which is ideal for grand unification
with massive neutrinos [31,32]. We know explicit metrics
and gauge field components in our solutions. They will
enable us to calculate not only topological numbers, such
as the number of generations, but also other continuous
parameters like Yukawa couplings in four-dimensional
theories. We would further study these phenomenological
aspects in the future.

TABLE I. Sample solutions for the equations of motion (21) and (22), satisfying the conditions for anomaly cancellation (20) and flux
quantization (25). The sectional curvature λi and the flux density fAi are defined in Eqs. (14) and (15), and χi is the Euler characteristic
(χ1 ¼ 2). λi and fAi are proportional to 2=α0, and m and n are arbitrary natural numbers.

λ1 λ2 λ3 χ2 χ3 Nonzero fAi

1 0 −1 0 −2n f11 ¼ f21 ¼ 1

4 0 −4 0 −2n f11 ¼ 4, f21 ¼ f33 ¼ f43 ¼ f53 ¼ 2

2 −1 −1 −2m −2n f11 ¼ 2, f21 ¼ f31 ¼ 1

4 −2 −2 −2m −2n f11 ¼ 4, f21 ¼ 2, f32 ¼ f42 ¼ f53 ¼ f63 ¼ 1
2
3

1
3

−1 2 −2n f11 ¼ 1, f21 ¼ 1
3
, f32 ¼ 2

3

4 4 −8 2 −4n f11 ¼ f32 ¼ f53 ¼ 4, f21 ¼ f42 ¼ f63 ¼ 2, f73 ¼ 6
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