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By constructing the configuration of D3-branes with D(-1)-branes as D-instantons, we study the three-
dimensional Yang-Mills-Chern-Simons theory in holography. Because of the presence of the D-instantons,
the D7-branes with discrepant embedding functions are able to be introduced in order to include the
fundamental fermions (as flavors) and the Chern-Simons term (at very low energy) in the dual theory. The
vacuum structure at zero temperature is studied in the soliton background, and it illustrates the topological
phase transition in the presence of instantons. Moreover, since the confinement/deconfinement phase
transition could be holographically identified as the Hawking-Page transition in the bulk, we accordingly
calculate the critical temperature of the deconfinement phase transition by collecting the bulk on-shell
action as the thermodynamical free energy. On the other hand, we evaluate the difference of the
entanglement entropy in slab configuration by using the Ryu-Takayanagi formula since the confinement
may also be characterized by the entanglement entropy. Altogether we find the behavior of the critical
temperature is in qualitative agreement with the behavior of the critical length determined by the
entanglement entropy which implies the entanglement entropy could indeed be a character of the
confinement in our setup and the D3-D(-1) system would be a remarkable approach to study the three-
dimensional gauge theory.

DOI: 10.1103/PhysRevD.104.066008

I. INTRODUCTION

In the past decade, a specific class of three-dimensional
(3D) Chern-Simons (CS) theory involving fundamental
matters with Nf flavors attracts many interests and the
large N ’t Hooft limit of such theories with a UðNÞ gauge
symmetry has been studied in detail [1–7]. It is conjectured
there would be a conformal field theory living in the limit of
vanishing flavor mass. Along this direction, some evidence
was found that may be supportable to the conjecture,
e.g., boson/fermion duality [8] and level/rank duality [9].
On the other hand, the large N field theory can be analyzed
holographically by using string theory according to gauge/
gravity duality or AdS/CFT correspondence, which has
become very famous nowadays [10,11]. Therefore inves-
tigation of the CS theory in holography naturally becomes a
remarkable topic. And in this work, our goal is to explore

an exactly holographic description of 3D theory with a
CS term.
In string theory, the simplest way to build a holographic

duality for 3D nonsupersymmetric theory is to construct the
configuration of coincidentNcD3-branes, i.e., to compactify
one of the spatial directions of the D3-brane on a supersym-
metry breaking circle S1 [12,13]. Such a configuration ofNc
D3-branes at the large Nc limit is described by IIB super-
gravity, and it has been attempted to study the 3D Yang-
Mills-Chern-Simons (YMCS) theory or 3DQCD (QCD3) in
holography, e.g., the vacuum structure [14,15] and the
quantum Hall effect [16]. However, the D3-brane back-
ground does not include dynamical D-instanton, which
would play the important role to involve the topological
properties in the dual theory. For example, as it is known the
YM instanton in 4D quantum chromodynamics (QCD) is
topologically nontrivial excitation of the vacuum that con-
tributes to the thermodynamics of the theory and relates to
chiral symmetrybreaking [17,18].Basedon string theory, the
Dp-Dðp − 4Þ brane system [N Dp-branes andM Dðp − 4Þ-
branes] has gauge theory instantons with exactly 4NM
moduli as in gauge theory [19,20]; thus, via gauge/gravity
duality, a holographic way to include the YM instanton is
to take into account the configuration of coincident Nc
D3-branes (choosing p ¼ 3) with ND D(-1)-branes as
D-instantons smeared homogeneously in the world volume
of the D3-branes [21–23]. The system of D3-branes with
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dynamical D-instantons succeeds to describe the 4D QCD-
like theories, and the presence of D-instantons could reflect
some topological properties of the dual theory [24–27]. So
the D3-D(-1) approach has provided an impressive inter-
pretation of the D-instanton.
In order to work out a holographic description of 3D

theory with a CS term, in this note we focus on constructing
the D3-D-instanton configuration by following the standard
technique [12,13] in string theory because the D3-D(-1)
approach would turn out that the D(-1)-branes, as the
D-instantons, could reduce to a CS term in the 3D dual
theory. Specifically, since the D(-1)-branes are dynamical
in the supergravity background, there would be a non-
vanished Ramond-Ramond zero form C0 coupling to these
D(-1)-branes. So when we examine the dual theory by
considering a probe D3-brane, its action would contain a
term as

R
C0F ∧ F. As we will focus on the 3D dual theory

obtained by compactifying one of the spatial directions on
the circle S1, thus below the energy scale of the circle, the
term

R
C0F ∧ F can be integrated out to become a 3D CS

term as
R
C0F ∧ F ∼

R
dC0 ∧ ω3 ∼

kb
4π Tr

R
ω3 where ω3

refers to the CS three-form and kb corresponds to the
boundary value of C0. Afterwards once the soliton anti–de
Sitter (AdS) solution is chosen, it will lead to an area law
due to the asymptotics of the Wilson loop, so confinement
is also expected to exhibit in the dual theory at low
temperature. To further include matters, the flavors are
introduced by embedding a stack of probe D7-branes [28]
and the spontaneous breaking of chiral symmetry can be
identified as the separation of Nf flavor branes in the IR
region depicted by the IIB supergravity as the holographic
description of [29]. Moreover, additional D7-branes as CS
branes with a discrepancy embedding function can be put
into the background due to the presence of the D-instan-
tons; accordingly at very low energy, the dual theory could
be a pure CS theory. We specifically analyze the behaviors
of the embedding functions of the various D7-branes and
evaluate the associated free energy density by including both
flavors and CS terms. The result illustrates the topological
phase transition that is enhanced by the D-instantons, and it
seems to be qualitatively consistentwithwhat the presence of
a CS term topologically contributes to the mass parameter
[30] and the D0-D4 approach in 4D [31–34].
Besides, we evaluate the critical temperature of the

deconfinement phase transition in this holographic setup
since the dual theory is expected to exhibit the confinement.
While the deconfining geometry in holography is less
clear, the phase transition at a critical temperature can be
identified as the bubble/black brane transition, or namely
Hawking-Page transition, in the bulk which is very sug-
gestive of the deconfinement transition [35–38]. Following

this idea, we collect the total on-shell action as the holo-
graphic free energy consisted of the bulk fields (as the color
sector), the flavor and the CS branes, in the soliton and black
brane background respectively. By comparing the free
energy, we find the charge density of D-instantons indeed
contributes to the thermodynamics and the critical temper-
ature is decreased by the D-instantons through the flavor and
CS branes. However, at the large-Nc limit, the critical
temperature becomes independent on the D-instantons since
the backreaction of theCSbranes is not included in this setup.
To parallel examine whether our analysis for the deconfine-
ment transition is consistent, we on the other side calculate
the entanglement entropy holographically in this system
since the entanglement entropy may also be a characteristic
tool to detect the confinement in the dual theory [39–42].
Using the Ryu-Takayanagi (RT) formula [43] with the slab
geometry, the holographic entanglement entropy can be
obtained, and it exhibits a first order phase transition at a
critical length which behaves similarly as the critical temper-
ature evaluated by the thermodynamics. In this sense, we
believe the configuration of D3-branes with D-instantons
would be a remarkable approach to study 3D gauge theory.
The outline of this note is as follows. In Sec. II, we

construct the black D3-D(-1) solution to obtain a confin-
ing geometry and examine the dual theory by a probe
D3-brane. Afterwards, we analyze the embedding function
of the flavor and CS branes, compute the free energy by
including the flavor andCS term in Sec. III, and then evaluate
the vacuum structure of the dual theory in Sec. IV. In Sec. V,
we investigate the deconfinement phase transition by com-
paring the free energy of this model thermodynamically and
compute the variation of the entanglement entropy as a
parallel verification. Summary and comments aregiven in the
last section.

II. THREE-DIMENSIONAL THEORY FROM
CONFINING GEOMETRY

In this section, we will briefly review the system of Nc
D3-branes withND D-instantons, i.e., the D(-1)-branes, and
then construct the background geometry for a confining
dual theory at the large-Nc limit.
The D3-D(-1) brane system is geometrically represented

by a deformed D3-brane solution with a nontrivial
Ramond-Ramond (R-R) scalar fieldC0 which is recognized
as a marginal “bound state” of D3-branes with ND smeared
D(-1)-branes. We denote the Nc D3-branes as color branes.
In the large Nc limit, the ten-dimensional (10D) type IIB
supergravity action, as the effective action, describes the
low-energy dynamics of this system which in string frame
is given as

SIIB ¼ 1

2κ210

Z
d10x

ffiffiffiffiffiffi
−g

p �
e−2ΦðRþ 4∂Φ · ∂ΦÞ − 1

2
jF1j2 −

1

2
jF5j2

�
: ð2:1Þ
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Here 2κ210 ¼ ð2πÞ7l8s is the 10D gravity coupling constant, ls and gs are, respectively, the length and the coupling constant of
string, and F1;5 is the field strength of the R-R zero and four-formC0;4. The near-horizon solution of nonextremal D3-branes
with a nontrivial C0 in string frame reads

ds2 ¼ e
ϕ
2

�
r2

R2
½−fTðrÞdt2 þ dx · dx� þ 1

fðrÞ
R2

r2
dr2 þ R2dΩ2

5

�
;

eϕ ¼ 1þ Q
r4H

ln
1

fðrÞ ; fTðrÞ ¼ 1 −
r4H
r4

; F5 ¼ dC4 ¼ g−1s Q3ϵ5;

F1 ¼ dC0; C0 ¼ −ie−ϕ þ iχ; ϕ ¼ Φ −Φ0; eΦ0 ¼ gs; ð2:2Þ
where ϵ5 is the volume element of a unit S5 and

R4 ¼ 4πgsNcl4s ; Q3 ¼ 4R4; Q ¼ ND

Nc

ð2πÞ4α02
V4

Q3: ð2:3Þ

This solution describes that the D-instanton charge ND is
smeared over the world volume V4 of the coincident black
Nc D3-branes homogeneously with a horizon at r ¼ rH.
And it implies ND=Nc must be fixed since the backreaction
of the D-instantons has been involved in the bulk action.
The dual theory of this system is conjectured as the 4D
N ¼ 4 super Yang-Mills theory (SYM) in a self-dual gauge
field background or with a dynamical axion at finite temper-
ature characterized by the order parameter Q. In order to
obtain a confining or QCD-like dual theory, let us follow the
discussion in [12,13]. Specifically we first take one of the
three spatial dimensions xi of the D3-branes to be compac-
tified on a circle S1 with a period xi ∼ xi þ δxi. Hence below
theKaluza-Klein energy scale defined asMKK ¼ 2π=δxi, the

dual theory becomes effectively three dimensional. Then we
are going to get rid of all massless particles other than the
gauge fields. The simplestway to achieve this is to impose the
antiperiodic and periodic boundary condition on fermion and
bosonic fields, respectively, along S1. So the supersymmetric
fermions and scalars in the dual theory acquire mass of order
MKK which is accordingly decoupled in the low-energy
dynamics. Next we perform a double Wick rotation on the
D(-1)-D3 brane background, i.e., t → −ixi; xi → −it to
identify the bulk gravity solution as its holographic corre-
spondence. Without loss of generality, let us denote the
direction along S1 as xi ¼ x3 throughout this manuscript;
thus, the confining solution of nonextremal D3-branes with
smeared D-instantons is obtained as

ds2 ¼ eϕ=2
�
r2

R2
½ηabdxadxb þ fðrÞðdx3Þ2� þ 1

fðrÞ
R2

r2
dr2 þ R2dΩ2

5

�
;

fðrÞ ¼ 1 −
r4KK
r4

; a; b ¼ 0; 1; 2; ð2:4Þ

where the solution of dilaton Φ and R-R fields C0;4 remains. Since the warp factor eϕ=2 r2

R2 never goes to zero, the solution
(2.4) defined for r > rKK does not have a horizon. And it would lead to an area law in the dual theory according to the
asymptotics of the Wilson loop in this geometry. Namely below the energy scaleMKK, the dual field theory should exhibit
confinement. To avoid the conical singularities in the region of r > rKK, we have to further require

MKK ¼ 2rKK
R2

: ð2:5Þ

Afterwards, the dual theory can be examined by taking into account the action of a probe D3-brane, which is expected to be
a 3D YM plus CS theory at r → ∞ as

SD3 ¼ −μ3
Z

d4xe−ϕStr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðgþ F Þ

p
þ μ3

Z
C4 þ

1

2
μ3Tr

Z
C0F ∧ F

≃ −
1

2g2YM
Tr

Z
d4xFμνFμν −

1

4π
Tr

Z
dC0 ∧ ω3 þOðF4Þ

¼ −
1

2g23d;YM
Tr

Z
d3xFabFab þ i

kb
4π

Tr
Z
R1;2

ω3; ð2:6Þ
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where F ¼ 2πα0F is the gauge strength, μp ¼ ð2πÞ−pl−p−1s refers to the D-brane charge, and ω3 is the Chern-Simons three-
form,

ω3 ¼ A ∧ dAþ 2

3
A ∧ A ∧ A: ð2:7Þ

By imposing the background solution, it leads to

dC0jr→∞ ¼ −ikbMKKδðx3 − x̄3Þdx3; g23D;YM ¼ g2YMMKK

2π
; ð2:8Þ

where we have assumed that ω3 is independent of x3 and
does not have components along x3. So (2.6) represents the
YM-CS action located at x3 ¼ x̄3, which means C0jr→∞ ¼
0 if x3 ∈ ð0; x̄3Þ; C0jr→∞ ≠ 0 if x3 ∈ ðx̄3; 2πM−1

KKÞ. In this
case, we have to slightly modify the supergravity solution
for C0 in (2.2) as

χ ¼ 1 − kbMKKΘðx3 − x̄3Þ; ð2:9Þ

where Θðx3 − x̄3Þ is the step function.

III. FLAVOR AND CHERN-SIMONS BRANE

In this section, let us discuss the embedding of flavor and
CS brane in the D3-brane background with D-instantons
(2.4) in holography.

A. Adding flavors

According to the dictionary of AdS/CFT, introducing
flavors into the holographic background is to add funda-
mental matter in the dual theory [28]. So follow the
discussion of the D3/D7 approach, we put a stack of Nf

D7-branes as probes, as Nf copies of fundamental flavors,
into our background (2.4), and the configuration of various
D-branes is illustrated in Table I. Note that in this
configuration the supersymmetry is completely broken
even in an extremal D3-brane background since the leftover
direction x9 is transverse to both flavor D7- and color
D3-branes which leads to six mixed Neumann-Dirichlet
boundary conditions. The bare mass of flavors corresponds
to the separation between color and flavor branes at the UV
boundary, which means the scalar field respected to x9 on
the world volume of the D7-branes is the mass operator ψ̄ψ
in the dual field theory.
Since the directions x4 � � � x9 transverse to the Nc,

D3-branes are usually described by spherical coordinates;
for convenience we introduce a new radius coordinate ρ as

rðρÞ ¼
�
ρ2 þ r4KK

4ρ2

�
1=2

; ρ >
rKKffiffiffi
2

p ; ð3:1Þ

and thus the metric (2.4) on coordinate ρ can be written as

ds2 ¼ eϕ=2
�
r2

R2
½ηαβdxαdxβ þ fðrÞðdx3Þ2� þ R2

ρ2
ðdρ2 þ ρ2dΩ2

5Þ
�
: ð3:2Þ

Then let us choose the spherical coordinates λ;Ω4 to reparametrize the directions x4 � � � x8 which are part of the world
volume of flavor branes and separate transverse coordinate x9 ≡ u with ρ2 ¼ λ2 þ u2. Afterwards the metric on
fxa; x3; λ;Ω4; ug takes the form as

ds2 ¼ eϕ=2
�
r2

R2
½ηabdxadxb þ fðrÞðdx3Þ2� þ R2

ρ2
ðdλ2 þ λ2dΩ2

4 þ du2Þ
�
; ð3:3Þ

TABLE I. The configuration of various D-branes. “-” represents the D-branes that extend along this direction.
Note that “−1” is vertical to all the directions of bulk spacetime.

−1 0 1 2 (3) 4 (r) 5 6 7 8 9

D(-1)-branes -
Color D3-branes - - - -
Flavor D7-branes - - - - - - - -
CS D7-branes - - - - - - - -
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where r ¼ rðρÞ. Embedding the flavor brane into fxa; λ;Ω4g at a constant x3 with u ¼ uðλÞ, the induced metric on the
flavor D7-brane becomes

ds2D7 ¼ eϕ=2
�
r2

R2
ηαβdxαdxβ þ

R2

ρ2
½ð1þ u02Þdλ2 þ λ2dΩ2

4�
�
: ð3:4Þ

Note that we need to impose the following boundary condition (dudλ ≡ u0),

u0jλ¼0 ¼ 0; ujλ¼λ∞
¼ u∞: ð3:5Þ

We have used λ∞ to denote the UV boundary or UV cutoff in the dual field theory. So for a single D7-brane, its action can be
collected as

SD7 ¼ −TD7

Z
d8xe−ϕ

ffiffiffiffiffiffiffiffiffiffi
−gD7

p
; ð3:6Þ

where TD7 ¼ g−1s μp is the tension of the Dp-brane. Plugging the solution (2.2) into (3.6), the action of a probe flavor brane
is obtained as

SD7 ¼ −TD7V3VS4R
2

Z
dλeϕðρÞ

�
ρ2 þ r4KK

4ρ2

�
3=2 λ4

ρ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u02

p
; ð3:7Þ

where V3 and VS4 refer to the Minkowskian world volume of D3-brane and the volume of a unit S4. By varying the
D7-brane action respected to uðλÞ, the associated equation of motion is

d
dλ

�
eϕðr4KK þ 4ρ4Þ3=2 λ4

8ρ8
u0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u02
p

�

¼ −eϕ
�
r4KK þ ρ4 −

1

8
ρ
dΦ
dρ

ðr4KK þ 4ρ4Þ
�
ðr4KK þ 4ρ4Þ1=2 λ

4u
ρ10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u02

p
: ð3:8Þ

In order to obtain the embedding function uðλÞ, we have to
solve (3.8) with (3.5). So let us analyze massless and
massive embedding of the flavor brane, respectively.

1. Massless case

First let us investigate the case of the limit rKK → 0,1

which corresponds to the extremal D3-D(-1) solution. The
equation of motion (3.8) comes to

d
dλ

�
eϕ

λ4

ρ2
u0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u02
p

�
¼ −

2λ4u
ρ4

eϕ
�
1 −

1

2
ρ
dϕ
dρ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u02

p
;

ð3:9Þ

where

ϕ → 1þ Q
r4

; ð3:10Þ

in the limit of rKK → 0. It is clear that at λ ¼ 0 the right-
hand side of (3.9) is not vanished unless uðλÞ ¼ 0 is the
solution. We expect uðλÞ ¼ 0 to be an unstable solution
as it is discussed in the D3/D7 approach [14,15] since
this solution is invariant under the parity transformation
uðλÞ → −uðλÞ.
Then let us investigate the case of rKK > 0. In the

massless, we need to choose u∞ ¼ 0 in (3.5) since there is a
parity transformation uðλÞ → −uðλÞ in the massless case
and u∞ corresponds to the bare mass of the flavors. In order
to search for an analytical solution, we use the following
ansatz for uðλÞ as

uðλÞ ¼

8>><
>>:

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2KK
2
k − λ2

q
; 0 ≤ λ ≤

ffiffi
k
2

q
rKK;

0; λ >
ffiffi
k
2

q
rKK;

ð3:11Þ

where k≡ kðqÞ is a constant dependent on q ¼ Q=r4KK
only. Notice that r ∈ ðrKK;∞Þ so that k ≥ 1. Plugging

1Since the value (of, e.g., dilaton) at rKK ¼ 0 may be divided,
we will not take the strict limit although the limit of rKK → 0 is
well defined in the D-brane background [12]. An effective way is
to choose rKK ¼ ε where ε is infinitesimally small, and then take
ε → 0 in the final result, so there would be no inconsistency in
our calculation.
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(3.11) into (3.8), it leads to a constraint equation which
determines the relation of k and q as

3þ 3k4 − 2k2ð3þ 8qÞ − 3qðk2 − 1Þ2 ln
��

k2 − 1

k2 þ 1

�
2
�
¼ 0:

ð3:12Þ

This equation can be numerically solved, and the relation of
k and q is illustrated as in Fig. 1. The solution (3.11) has
two branches which refer to a pair of D7-branes wrapping
the upper and lower half-five-sphere with various numbers
of D-instantons represented by q. The flavor branes
wrapping the upper and lower half-five-sphere have oppo-
site parity as it is illustrated in Fig. 2. Since the relation of k
and q smoothly returns to the case without D-instantons,
i.e., k ¼ 1, q ¼ 0, the solution (3.11) corresponds to the
maximal embedding of the flavor branes as it is in the D3/
D7 approach, which refers to the embedded flavor branes
that have maximal energy among all possible solutions to
(3.8) with u∞ ¼ 0 in the boundary condition (3.5).
In order to find a more general configuration of uðλÞ, let

us take a look at the asymptotic behaviors of (3.8). In the

region of λ → 0, we have u0ðλÞ → 0; ρ → u, so (3.8) leads
to a solution as

uðλÞ ¼ �u0 ∓
�

4ðr4KK þ u40Þ
5u0ðr4KK þ 4u40Þ

−
1

10
ϕ0ðu0Þ

�
λ2 þOðλ4Þ:

ð3:13Þ

Note that u0 > 0 and

ϕ0ðu0Þ≡ ∂
∂ρ ϕðρÞ

				
ρ¼u0

¼ 64Qr4KKu
3
0

ðr4KK − 4u40Þðr4KK þ 4u40Þ
h
r4KK þQ ln ðr4KKþ4u4

0
Þ2

ðr4KK−4u40Þ2
i

< 0; ð3:14Þ

due to u0 >
ffiffi
2

p
2
rKK. The second derivative of uðλÞ takes the

opposite sign to uðλÞjλ¼0. On the other hand, in the region
of λ → ∞, we have uðλÞ → u∞; ρ → λ, so Eq. (3.8)
becomes

d
dλ

ðλ2u0Þ ¼ −2u: ð3:15Þ

Accordingly, the asymptotic behavior of uðλÞ at large λ
takes the general form as

uðλÞ ¼ �
ffiffiffiffiffi
μ3

λ

r
sin

� ffiffiffi
7

p

2
ln

λ

λ∞

�
; ð3:16Þ

by imposing the boundary condition uðλ∞Þ ¼ 0 where
μ; λ∞ > 0 are the integration constants. This solution also
has two branches, and thus it implies the global signs of
uðλÞ and u0ðλÞ are opposite as well. Keeping this in mind,
we numerically evaluate the minimal embedding solu-
tion (without any nodes) of (3.8) with various charge
densities of D-instantons represented by q and the results
are illustrated as in Fig. 3. Our results show that q ¼ 0
corresponds to the minimal embedding among various

FIG. 1. Numerical solution of k and q.

FIG. 2. The maximal embedding of flavor D7-branes in the u, λ
plane with various q.

FIG. 3. The minimal embedding function uðλÞ of flavor brane
with various q and the parameter is set to be λ∞ ¼ 5.73rKK.
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values of q respected to the solutions with zero node, and
this is consistent with how the D3-D-instanton solution
describes the dual theory in an excited background.
Equation (3.8) also includes solutions with n nodes, and
let us denote it as unðλÞ, so the minimal solutions are
identified as u0ðλ; qÞ now. We also show the numerical
relation of un¼0;1;2ðλ; qÞ for a fixed q and u1;2ðλ; qÞ with
various q as in Fig. 4. The numerical calculation implies
that the associated energy of the embedded flavor brane is a
monotonically increased function of the number of nodes
for any q, and this is numerically verified as in Fig. 5. In this
sense, the solution of maximal embedding presented in
(3.11) can be treated as having infinity nodes. On the other
hand, we can find the total energy of a flavor brane is
always minimized at q ¼ 0. To verify this conclusion

quantitatively, we could in particular evaluate the energy
density of a maximal embedded flavor brane since it would
be semianalytical. Plugging (3.11) into (3.6), we could
obtain the energy density of a maximal embedded flavor
brane as

Emax
D7 ¼ −

1

V3

Smax
D7 ¼ TD7VS4R

2

�
λ∞
3

þ bmaxðqÞr3KK
�
:

ð3:17Þ

Here bmaxðqÞ is a constant dependent on q that can be
expressed by the combination of generalized hypergeo-
metrical functions. We plot out the numerical values of
bmaxðqÞ as in Fig. 6, and it indeed shows q ¼ 0 corresponds

FIG. 4. The upper figures illustrate the relation of u0;1;2ðλÞ with q ¼ 0, 0.5, and the lower figures show the relation of u1;2 respective to
various q.

FIG. 5. The ratios of En and E0. En refers to the energy of a
flavor brane with n-nodes embedding function unðλÞ.

FIG. 6. The relation of bmax and q. The numerical value shows
bmaxð0Þ ≃ 1.026 which exactly returns to the result in [15].
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to the flavor brane of the lowest energy. In this sense, the
vacuum with nonzero q could be recognized as the
metastable vacua of flavors in the presence of instantons
in the dual theory, which is in agreement with [14,15].
Since we are usually interested in comparing energies

with the same boundary condition between different
solutions, the maximal energy (3.17) should be subtracted
as the regularization of the total energy. Let us denote the
on-shell action with n-nodes embedding function unðλÞ as
SnD7, so the total energy of the flavor brane is redefined as

En
fðqÞ ¼ −

1

V3

ðSnD7 − Smax
D7 Þ: ð3:18Þ

For the minimal embeddings of two parity-related flavor
branes, Eq. (3.18) could be evaluated as

E0
fðqÞ ≃ −NcðgsNcÞ½b0ðqÞM3

KK þ a0ðqÞM3
μ�; ð3:19Þ

where b0ðqÞ and a0ðqÞ depend on the D-instanton charge q.
The energy scale Mμ is related to the length scale μ ¼
MμR2=2, which comes from the duality of holographic
radius/energy relation [44]. The difference between the
energy density at large Nc should be relevant to the
potential barrier of the instanton vacuum in the dual theory.
Besides, the general configuration of Nf flavor branes can
also be obtained by (3.19). Let us consider p of Nf flavor
branes located in the upper u, λ plane while the other
Nf − p flavor branes located the lower plane with minimal
embedding. Since the energy of each flavor brane is
equivalent, the total energy of these flavor branes should be

E0
f;tot ¼ pE0

fðqÞ þ ðNf − pÞE0
fðqÞ ¼ NfE0

fðqÞ: ð3:20Þ

2. Massive case

Let us turn to the massive case by considering the
inclusion of a bare mass of the quarks or fermions in the
dual theory. The bare mass in this model can be viewed as a
source for the condensate operator hψ̄ψi of fermions. Since
the bare mass of fermions is identified as the spatial
separation between D3- and D7-branes along the transverse
direction u in the UV region and we have seen in the last
subsection

uðλÞ → 1ffiffiffi
λ

p ; ð3:21Þ

at large λ, we can set

lim
λ→λ∞

ffiffiffi
λ

μ

s
uðλÞ ¼ 2πl2sm: ð3:22Þ

This is also equivalent to set u∞ ≃ 2πl2sm while this
boundary condition breaks the parity symmetry. So the

parity transformation u → −u implies the flavor branes
with up/down embedding have to take a positive/negative
mass which succeeds the discussion in the D3/D7 approach
consistently. It means the fermion mass leads to the
degeneracy between the upper and lower embedding of
the flavor branes. Then in order to obtain the energy of
the flavor brane in the massive case, we can start from the
massless case by performing a small variation in the
boundary condition,

δu∞ ¼
ffiffiffiffiffiffi
μ

λ∞

r
2πl2sδm: ð3:23Þ

So the associated variation in the on-shell action of the
flavor brane becomes

δSD7 ¼
∂L
∂u0 δu

				λ¼λ∞

λ¼0

¼ −TD7V3VS4R
2

�
eϕðr4KK þ 4ρ4Þ3=2

×
λ4

8ρ8
u0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u02
p δu

�				λ¼λ∞

λ¼0

; ð3:24Þ

which leads to

δEf ¼ TD7VS4R
2λ2∞u0ðλ∞Þδu∞eϕðλ∞Þ≡∓cðq;λ∞Þδm;

cðq;λ∞Þ ¼ eϕðλ∞ÞNc
ffiffiffiffiffiffiffiffiffiffi
gsNc

p
24π5=2

M2
μ; ð3:25Þ

where we have used u0ð0Þ ¼ 0 and the equation of motion
for uðλÞ. Since the embedding function can have both signs
as in the massless case characterized by u0∞, the positive/
negative mass m determines the sign of u0∞ as it is
preferred. As the massless case, the energy of the flavor
brane can be obtained by using (3.18) which consists of the
massless part E0

fðqÞ plus a small variation δEf as

E0
fðq;mÞ ¼ E0

fðqÞ þ δEf

≃ E0
fðqÞ∓ cðq; λ∞Þm: ð3:26Þ

This result shows that the fermion condensate is negative/
positive for positive/negative mass due to

hψ̄ψi ¼ dE0
fðq;mÞ
dm

¼ ∓cðq; λ∞ÞsignðmÞ: ð3:27Þ

And it would be slightly modified by the presence of the
D-instantons in the quadratic order of the fermion mass.
To close this subsection, let us evaluate the total energy

of Nf flavor branes with a bare mass. As before, we
consider the configuration that p of Nf branes wraps the
upper half-five-sphere separated from the other Nf − p-
branes wrapping the lower half-five-sphere with a common
mass m. So the total energy is a collection of upper and
lower branes which is
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E0
f;totðq;mÞ ¼ p½E0

fðqÞ − cðq; λ∞Þm�
þ ðNf − pÞ½E0

fðqÞ þ cðq; λ∞Þm�
¼ NfE0

fðqÞ þ ðNf − 2pÞcðq; λ∞Þm: ð3:28Þ

It would be obvious that, for any q, the minimal energy
occurs at p ¼ Nf for m > 0 and p ¼ 0 for m < 0. And
(3.28) reduces to (3.20) if m → 0 so that the degeneracy of
upper and lower embeddings is regained.

B. Embedding of the CS D7-brane

Since the R-R flux C0 is nonvanished in our D3-D(-1)
background, there should also be a magnetic source for C0.
And the source could be provided by nb CS D7-branes as
probes coupled to C0 magnetically. The configuration of
the CS brane is illustrated in Table I. Since the number of
CS branes should be an integer, the CS level is automati-
cally quantized in holography.
In the D3-brane approach, the CS brane can be set

located at r ¼ rKK in order to minimize their energy
density; however, this does not work in the presence of
D-instantons because the energy density of a single CS
brane is evaluated as

SCSD7 ¼ −TD7

Z
d8xe−ϕ

ffiffiffiffiffiffiffiffiffiffi
−gD7

p
− μ7

Z
C8

¼ −TD7V3VS5R
2r3eϕ − ND; ð3:29Þ

where C8 is the dual form of C0 defined as dC8 ¼⋆ dC0.
This action is divergent at r ¼ rKK which leads to an IR
divergence in the dual field. While this is not important
when we are interested in comparing the difference of the
energy, the position of the CS brane would be less clear.
To figure out this problem we require that our discussion
should reduce to the D3-brane approach if q → 0. In this
sense, we assume that the location of the CS brane r ¼ rKK
is shifted by the presence of D-instantons which becomes
r ¼ rQ > rKK. And we furthermore treat the solution (3.11)

describing a CS D7-brane embedding at r ¼ rQ according
to the embedding equation (3.8), so that

rQ ¼ 1ffiffiffi
2

p
�
kþ 1

k

�
1=2

rKK: ð3:30Þ

Hence for a fixed q, the maximal embedding of a flavor
D7-brane can be identified as an embedding function of CS
D7-brane as it is done in the D3-brane approach. The
positive and negative level of the CS brane corresponds to
the orientation of counterclockwise and clockwise, respec-
tively, in the u, λ plane. Therefore the total energy of a CS
brane can be evaluated as

ECSðqÞ ¼ −
SCSD7
V3

¼ μ7VS5R
2r3Qe

ϕðrQÞ

¼ gsN2
cM3

KK

64π2

�
1

2
ffiffiffi
2

p
�
kþ 1

k

�
3=2

eϕðrQÞ þ 1

2
q

�
;

ð3:31Þ

which indeed reduces to the D3-brane approach when
q → 0. We plot out GðqÞ ¼ ECSðqÞ=ECSð0Þ and cðq; λ∞Þ=
cð0; λ∞Þ as a function of q in Fig. 7. The numerical result
also illustrates q ¼ 0 and corresponds to the CS brane with
minimal energy and the limit of rQ → rKK.
At low energy, the CS brane reduces to a 3D UðnbÞ

gauge theory and leads to a Chern-Simons action at level
−N due to the Wess-Zumino term of the D-brane action
which is

SC4
¼ 1

2ð2πÞ5l4s

Z
D7

C4 ∧ TrðF ∧ FÞ

¼ −
1

2ð2πÞ5l4s

Z
S5
F5

Z
R1;2

Trω3 ¼ −
Nc

4π

Z
R1;2

Trω3:

ð3:32Þ

All excitations on the CS branes will decouple at very low
energy scale except this CS term, so we can obtain the

FIG. 7. The relation of cðq; λ∞Þ (left), GðqÞ ¼ ECSðqÞ=ECSð0Þ (right), and q. For q ¼ 0, it returns to the D3-brane approach without
any D-instantons.
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level/rank duality SUðNÞnb ↔ UðjnbjÞN through this holo-
graphic system as the quantum field theory expectations.

IV. VACUUM STRUCTURE OF THE
DUAL THEORY

In this section, let us analyze the vacuum structure in the
dual theory at the large-Nc expansion. Since the vacuum of
the dual theory in general may include both flavor and CS
branes, we are going to take into account the configuration
with two kinds of the D7-branes.
The effective CS level in the dual theory is required as

i
Z
S1
F1jr→∞ ¼ keff : ð4:1Þ

However, in order to define the CS level κ ¼ kb − Nf=2,
the CS level must depend on p. To find the result, we
can straightforwardly count the number of the orientation in
the u, λ plane. Defining the number of D7-branes with
counterclockwise/clockwise orientation is positive/nega-
tive; let us consider the configuration of that, in the u, λ
plane k0 counterclockwise CS branes live in R0, p flavor
branes live in Rþ, and Nf − p flavor branes live in R−
where Rþ;R−;R0, respectively, refers to the regions of
the u, λ plane which are above, between, and below the
flavor branes as it is illustrated in Fig. 8. We only consider
the minimal embedding of the flavor branes since the
concern is the vacuum structure. Requiring κ ¼ keff at the
UV boundary, we have [15]

keff ¼

8>><
>>:

κ − Nf

2
; in Rþ;

κ þ p − Nf

2
; in R0;

κ þ Nf

2
; in R−;

ð4:2Þ

and k0 ¼ κ þ p − Nf=2 which is what we desire in the
dual field theory. The interpretation of such a D-brane
configuration at low energy is that the flavor symmetry
UðNfÞ is broken spontaneously to UðpÞ ×UðNf − pÞ,

which creates 2pðNf − pÞ Goldstone bosons and their
target space is Grassmann,

Grðp;NfÞ ¼
UðNfÞ

UðpÞ ×UðNf − pÞ : ð4:3Þ

The CS branes leads to a level/rank duality of Uðjκ þ p−
Nf=2jÞN ↔ SUðNÞkþp−Nf=2. So the low-energy dynamics
of a p sector would have the symmetry

Grðp;NfÞ × SUðNÞkþp−Nf=2; ð4:4Þ
in which the Nf þ 1 sectors describe the vacuum of the
dual theory holographically. To analyze the phase structure
of the vacuum, the minimal value of the (free) energy is
necessary. Since the total energy of the p sector consists
of flavor plus the CS part and the flavor energy has be
obtained in (3.28), we need to include the energy of the CS
brane, which is the number of CS branes times the energy
density ECSðqÞ given in (3.31). Therefore the total free
energy density is collected as (κ ≥ 0; 0 ≤ p ≤ Nf) [15],

Eðp; qÞ ¼ NfE0
fðqÞ þ ðNf − 2pÞcðq; λ∞Þmþ jκ þ p − Nf=2jECS: ð4:5Þ

Minimize (4.5) and then compare the free energy; the associated free energy density is obtained as, for κ > Nf=2,

Evac ¼
� ðκ − Nf=2ÞECS; m < m�; SUðk − Nf=2Þ;
ðκ þ Nf=2ÞECS − 2Nfcm; m > m�; SUðkþ Nf=2Þ;

ð4:6Þ

where SUðk� Nf=2Þ refers to the corresponding topological phase in the dual theory. And for κ < Nf=2, the minimized
free energy density and associated topological phase are collected as

Evac ¼

8>><
>>:

ðNf=2 − κÞECS; m < −m�; SUðk − Nf=2Þ;
2ðκ − Nf=2Þcðq; λ∞Þm; −m� < m < m�; Grðp;NfÞ;
ðNf=2þ κÞECS − 2Nfcðq; λ∞Þm; m > m�; SUðkþ Nf=2Þ;

ð4:7Þ

FIG. 8. The configuration of flavor and CS branes on the u, λ
plane. The flavor branes are represented by the orange lines, and
the CS branes are represented by the blue line. Rþ;R−;R0,
respectively, refers to the regions above, between, and below the
flavor branes.
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where the critical mass m� is defined as

m� ¼ ECSðqÞ
2cðq; λ∞Þ

: ð4:8Þ

Since cðq; λ∞Þ never goes to zero, the derivative with
respect to m in both (4.6) and (4.7) is discontinuous, which
means there remains to be a first order phase transition at
m ¼ �m� in the presence of the D-instantons. And the
vacua would be degenerate at the critical point. However,
in our holographic approach, the mass m� additionally
depends on the charge density q of the D-instantons. So
we numerically evaluate m� as a function of q as in Fig. 9.
According to the numerical calculation, while the order
parameter cðq; λ∞Þ in the UV limit λ∞ → 0 is almost
unchanged, the critical mass m� is increased by the pre-
sence of the D-instantons, which shifts the phase transition
point for κ > Nf=2, thus enhancing the phase of Grðp;NfÞ
for κ < Nf=2. Accordingly, the D3-D(-1) approach implies
the phase transition point is also determined by the
D-instanton charge. This could be interpreted as the
topological effect in the dual theory, which is similar as
the topological contribution to the mass in the presence of
the CS term [30].

V. ENTANGLEMENT ENTROPY
AND CONFINEMENT

Since the entanglement entropy is expected to be a tool
to characterize the confinement/deconfinement phases of
the dual theory [39–42], in this section we will compute the
quantum entanglement entropy between two physically
disjoint spatial regions in the bulk and then compare the
results with the analysis of the free energy.
Before the holographic calculation, we first take into

account the simplest geometry: region A is the product
of R2 × Il where Il is a line interval of length l and region
B is the complement of A. According to the AdS/CFT
dictionary, the quantum entanglement entropy between

regions A and B relates to the surface γ in bulk whose
boundary coincides with the boundary of A. Supposing we
are discussing the correspondence of AdSdþ2=CFTdþ1, the
classical area of surface γ is given as

Sγ ¼
1

4Gdþ2
N

Z
γ
ddx

ffiffiffiffiffiffiffi
gind

p
; ð5:1Þ

where Gdþ2
N is the (dþ 2)-dimensional Newton constant

and gind refers to the induced metric on γ. Notice γ has to be
spatial-like to represent the entanglement entropy at a fixed
time. The (5.1) can also be generalized into nonconformal
situations. For example, in 10D geometry of D-branes,
Eq. (5.1) could be naturally modified as

SA ¼ 1

4G10
N

Z
γ
d8x

ffiffiffiffiffiffiffi
gind

p
: ð5:2Þ

We will use (5.2) to evaluate the quantum entanglement
entropy in our holographic model.
The most convenient way to begin the calculation is to

write the 10D metric as

ds2 ¼ αðrÞ½βðrÞdr2 þ ημνdxμdxν� þ gmndymdyn; ð5:3Þ

where μ ¼ 0; 1;…; d, m ¼ dþ 2;…; 9 parametrize Rdþ1

and 8 − d internal directions, respectively, and r refers
to the holographic radial coordinate. Using (5.2) with
formula (5.3), the minimized action is given as

SA ¼ Vd−1

2G10
N

Z
r∞

r�
dr

ffiffiffiffiffiffiffiffiffi
βðrÞp

HðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðrÞ −Hðr�Þ

p ; ð5:4Þ

where

lðr�Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
Hðr�Þ

p Z
∞

r�
dr

ffiffiffiffiffiffiffiffiffi
βðrÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðrÞ −Hðr�Þ

p ;

HðrÞ ¼ e−4ϕV2
intα

dðrÞ;

V int ¼
Z Y8−d

m¼1

dym
ffiffiffiffiffiffiffiffiffi
det g

p
: ð5:5Þ

The minimal surface has distinct features for small and
large l according to the definition of regions A and B. The
minimal surface extends into the bulk up to the radial
position r� > rKK as a connected surface for small l while
the minimal surface becomes two disconnected pieces and
extends in the bulk all the way up to rKK for large l. In order
to characterize the phase transition, we need to compare the
entanglement entropy of the connected with the discon-
nected configuration of the minimal surface. While the
entanglement entropy itself may be divergent, its difference
ΔS could be finite, which according to (5.4) could be
written as

FIG. 9. Relation ofm�ðqÞ and q. The critical mass for the phase
transition is increased by the presence of the D-instantons.
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ΔS≡ 2G10
N

Vd−1
ðSconfA − SdicA Þ

¼
Z

∞

r�
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðrÞHðrÞ

p ��
1 −

Hðr�Þ
HðrÞ

�
−1=2

− 1

�

−
Z

r�

rKK

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðrÞHðrÞ

p
: ð5:6Þ

Plugging (2.4) into (5.3)–(5.6), we can numerically calcu-
late the relation of ΔS and l, l and r� as illustrated in
Fig. 10. As we can see, the critical length lc (ΔS ¼ 0) is
increased by the density of the D-instanton charge denoted
by q, which implies there would be a first order phase
transition at scale lc and it is enhanced in the presence of
the D-instantons. Since the entanglement entropy takes the
order of OðN0

cÞ and OðN2
cÞ, respectively, for l > lc and

l < lc, this phase transition may relate to the deconfinement
phase transition in a QCD-like theory. So it would be, on
the other hand, very interesting to evaluate the critical
temperature of the deconfinement phase transition to
examine whether it is consistent with the analyses of the
entanglement entropy in holography.
To obtain the critical temperature of the deconfinement

in the dual theory, we should compute the associated free
energy F in holography, which is the summary of the
Euclidean version of the on-shell action (2.1) denoted
as SEIIB, Gibbons-Hawking term SGH, and holographic
counterterm Sbulkct in bulk, since the deconfinement phase
transition is suggested to be identified as the Hawking-Page
transition in the bulk [35–38]. In Einstein frame, they are
given as [45,46],

Sbulk ¼ SEIIB þ SGH þ Sbulkct ;

SEIIB ¼ −
1

2κ210

Z
d10x

ffiffiffi
g

p �
R −

1

2
∂Φ · ∂Φ −

1

2
e2ΦjF1j2 −

1

2
jF5j2

�
;

SGH ¼ −
1

κ210

Z
d9xe−2Φ0

ffiffiffi
h

p
ðK − K0Þ;

Sbulkct ¼ −
1

κ210

Z
d9xe−2Φ0

5

R

ffiffiffi
h

p
; ð5:7Þ

where h is the determinant of the boundary metric, i.e., the
slice of the 10D metric (2.4) in the Einstein frame at fixed
r ¼ r∞ with r∞ → ∞: K is the trace of the extrinsic
curvature at the boundary, K0 arises from the standard
transformation of the gravity action from Einstein to string
frame, and they are given as

K ¼ −
1ffiffiffi
g

p ∂r

ffiffiffi
h

p
jr→∞; K0 ¼

9

4

ffiffiffiffiffiffi
grr

p ∂rϕjr→∞: ð5:8Þ

Then to include the contribution of the flavors and CS
level, we additionally need to evaluate the Euclidean
on-shell action of the flavor and CS brane with respect
to backgrounds (2.2) and (2.4). For the flavor D7-brane,
it is embedded at x3; u ¼ const, and the on-shell action
and the holographic counterterm Sfct could be chosen as
[46–48]

FIG. 10. Left: Relation of l and r� for q ¼ 0, 0.5, 1, 2, 3, 4, 5 (lower to upper); lmax is increased by q. Right: Relation of ΔS and l for
q ¼ 0, 0.5, 1, 2, 3, 4, 5 (left to right) as a typical swallowtail behavior. The critical length lc is also increased by q.
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Sf ¼ SDBI þ Sfct;

SDBI ¼ −NfTD7

Z
d8xeϕ

ffiffiffi
g

p
;

Sfct ¼
R
3
TD7

Z
d7x

ffiffiffiffiffiffiffi
hD7

p
: ð5:9Þ

We note that the metric presented in (5.7)–(5.9) refers to
the metrics (2.2) and (2.4) in the Einstein frame which is
defined as gstring ¼ gEinsteineϕ=2. For the CS brane, it is
embedded at x3 ¼ const and r ¼ rQ; rH with respect to
(2.2) and (2.4). The on-shell action of a CS brane evaluated
in the confining background has been given in (3.31) while

it vanishes in the black brane background (2.2) calculated
by using (5.9). Therefore the total on-shell action including
the bulk part, flavor part, and CS part is

Son−shell ¼ Sbulk þ Sf þ SCS: ð5:10Þ

Afterwards recalling the AdS/CFT dictionary,

he−Fi ¼ eSon−shell ; ð5:11Þ

with the solutions (2.2) and (2.4) we can obtain the free
energy F, respectively,

Fd ¼ −
1

8
N2

cπ
2T4V3βT −

36π

λt
NcND þ 1

18
NcNfT3V3λt½ðπ þ ln 64ÞqT − 2�;

Fc ¼ −
M4

KKN
2
cV3β3

128π2
−
36π

λt
NcND þ λM3

KKNck0V3

64π2
GðqÞ þ λtM3

KKNcNfV3½2þ qð8þ π − ln 4Þ�
512

ffiffiffi
2

p
π3=2Γð7

4
Þ2 ;

βT ¼ 1=T; qT ¼ Q=r4H; β3 ¼ 2π=MKK; ð5:12Þ

where λt is the ’t Hooft coupling constant defined as
λt ¼ gsNc and Fd;c refers to the free energy evaluated in the
backgrounds (2.2) and (2.4), respectively. k0 is the number
of CS branes, and we have assumed k0 and Nf take the
same order at large-Nc due to the flavor and CS branes as
probes. GðqÞ is a function defined as GðqÞ ¼ ECSðqÞ=
ECSð0Þ whose behavior has been numerically illustrated in
Fig. 7. Following the most discussion in gauge/gravity
duality [35–38], the black brane (2.2) and soliton (bubble)
solution (2.4), respectively, correspond to the deconfine-
ment and confinement phases in the dual theory, so the
phase transition can be obtained by comparing their free
energy, which identifies the confinement/deconfinement
phase transition in the field theory as the Hawking-Page
transition in the bulk. According to (5.12), we can find
the D-instantons as D(-1)-branes negatively increase the
bulk free energy as a contribution of OðN2

cÞ because at
the large-Nc limit, Nd=Nc must be fixed; otherwise, the
backreaction of the D-instantons in bulk vanishes. The
critical temperature Tc of the phase transition can be
obtained by comparing the free energy at Fd ¼ Fc, which
is evaluated as

Tc ¼
MKK

2π
−
λtMKK

6π2
k0
Nc

GðqÞ

−
λtMKK

432π2
Nf

Nc
ðC1 þ C2qÞ þOðN−2

c Þ; ð5:13Þ

where C1;2 are two constants given as

C1 ¼ 64π þ 9
ffiffiffi
2

p
π5=2

Γð7
4
Þ2 ≃ 464.66;

C2 ¼
9

ffiffiffi
2

p
π5=2ð8þ π − ln 4Þ

2Γð7
4
Þ2 − 32πðπ þ ln 64Þ ≃ 551.815;

q ¼ Q
r4KK

¼ 128π2

λtM3
KKV3

ND

Nc
: ð5:14Þ

Notice in the large-Nc limit, q is fixed and thus GðqÞ is
also fixed. So the critical temperature is not affected at
OðN0

cÞ while it decreases at OðN−1
c Þ by the presence of

the D-instantons through the flavor and CS branes due to
GðqÞ > 0. Since the behavior of Tc is qualitatively con-
sistent with the behavior of lc ∼ T−1 obtained by evaluating
the entanglement entropy, we may conclude that the
entanglement entropy is indeed able to characterize the
deconfinement phase transition.

VI. SUMMARY AND DISCUSSION

In this work, by compactifying on the supersymmetry
breaking S1, we construct the supergravity solution for Nc
black D3-branes with dynamical ND D-instantons, i.e.,
D(-1)-branes, to obtain a 3D confining Yang-Mills in
holography. To exhibit flavors and the CS term in the dual
theory, we also add flavor and CS branes as a probe into the
bulk geometry; hence the dual theory is expected to be a 3D
YMCS with matters or CS QCD-like theory. The low-
energy regime of the 3D dual theory is analyzed by the IIB
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supergravity solution which geometrically shows the
spontaneous breaking of the chiral symmetry UðNfÞ down
to UðpÞ ×UðNf − pÞ, p ∈ Z. And at very low energy,
D-instantons could reduce to a pure CS theory. Because of
the presence of the dynamical D-instantons, the embedding
function of the flavor branes depends on the nonzero charge
density of the D-instantons, which is realized to be
metastable vacua of instantons in the dual theory. Then
we further evaluate the vacuum structure of the dual theory
by including both flavor and CS branes, which leads to a
topological phase transition determined by the order
parameter m� in the large-Nc limit and m� is increased
by the presence of D-instantons as it is expected. This
behavior of m� can be interpreted as the topological
contribution from the CS term in the dual theory, similarly
as the topological contribution to mass in the CS theory.
Moreover, we additionally evaluate the entanglement
entropy and total free energy in holography to investigate
the critical length lc and critical temperature Tc, which is
expected to be the characters of the deconfinement phase
transition. The behavior of Tc is in qualitative agreement
with the behavior of lc which implies the quantum
entanglement entropy could indeed be a tool to determine
confinement/deconfinement in this holographic approach.
We would like to give some comments to close this

work. First, we notice that the discrepancy between
topological phases characterized by m� becomes vanished
if ECS → 0. And in the black brane background (2.2), the
CS brane is expected to be embedded at r ¼ rH to
minimize its energy which leads to a vanished ECS.
Since the black brane background corresponds to a dual
theory at finite temperature, the topological structure of the
vacuum may therefore become vanished. So in this sense,
our model might provide a holographic interpretation of
why the topological aspects of hot QCD by instantons is
quite difficult to be measured in experiment [49–52].
Second, it is expected that the topological phase tran-

sition is second order [1–7] if the number of the CS brane is

OðNcÞ. This can be achieved by taking into account the
backreaction of CS branes. However, the number of CS
branes is given by

R
S1 F1 which relates to the boundary

value of C0 in our current setup. So the bulk dynamic
could not involve the backreaction of CS branes in this
work. The valid way to include the backreaction of CS
branes is to solve the IIB supergravity action with a
fluctuation of C0 sourced by the CS branes, and then
the next-to-leading-order contribution in the large-Nc
limit to the vacuum structure would be able to analyze
in this sense. However, we would like to leave this for
future study.
Last but not least, since the topological entanglement

entropy is defined as the finite part of the entanglement
[53,54] which could be the measure of the topological
order, ΔS should relate to the topological entanglement
entropy. So the critical length lc seemingly shows the
transition between the phases with different topological
entanglement entropy. Thus if the entanglement entropy
can characterize the deconfinement phase transition, Tc
may also reflect some properties of the topological order in
the theory. However, our result also shows, in the large-Nc
limit, Tc becomes nearly independent on the instantons
while the behavior of lc remains to be determined by the
instantons. Accordingly it seems the entanglement entropy
is more sensitive to the topological properties of the theory
than the critical temperature. And we expect it could be
an instructive way to study the topological structure of
YMCS theory.
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