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Chaos in the SU(2) Yang-Mills Chern-Simons matrix model
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We study the effects of addition of the Chern-Simons (CS) term in the minimal Yang-Mills (YM) matrix
model composed of two 2 x 2 matrices with SU(2) gauge and SO(2) global symmetry. We obtain the
Hamiltonian of this system in appropriate coordinates and demonstrate that its dynamics is sensitive to the
values of both the CS coupling, , and the conserved conjugate momentum, p,, associated to the SO(2)

symmetry. We examine the behavior of the emerging chaotic dynamics by computing the Lyapunov

exponents and plotting the Poincaré sections as these two parameters are varied and, in particular, find that

the largest Lyapunov exponents evaluated within a range of values of k are above what is computed at

k=0, for kpy < 0. We also give estimates of the critical exponents for the Lyapunov exponent as the

system transits from the chaotic to nonchaotic phase with p, approaching to a critical value.

DOI: 10.1103/PhysRevD.104.066006

I. INTRODUCTION

Recently, there has been growing interest in exploring
the structure of chaotic dynamics emerging from the matrix
quantum mechanics [1-12], such as the Banks-Fischler-
Shenker-Susskind (BFSS) and the Berestein-Maldacena-
Nastase (BMN) models [13-19] which appear in the
discrete light-cone quantization of M theory in the flat
and the pp-wave background, respectively. These models
are SU(N) gauge theories, describing the dynamics of the
N-coincident DO-branes, in the flat and spherical back-
grounds. It is well known that the gravity dual is obtained in
the 't Hooft limit, i.e., at large N and strong Yang-Mills
(YM) coupling and describes a phase in which DO-branes
form a so-called black brane, i.e., a string theoretical black
hole [18-20]. While the earlier investigations (and some
recent as well [21-26]) on the quantum mechanical
behavior of these models were performed in the
Euclidean time formulation using both analytical pertur-
bative and Monte Carlo methods, in the past few years,
there has been increasing interest in accessing the quantum
dynamics using real-time formulations [10,11]. These
studies are propelled by a result due Maldacena-
Shenker-Stanford (MSS) [6], which states that under
general circumstances, the Lyapunov exponent (which is
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a measure of chaos in both classical and quantum mechani-
cal systems) for quantum chaos is bounded, that this bound
is controlled by the temperature of the system, and given by
Ay £2xT. 1t is conjectured that systems which are holo-
graphically dual to the black holes, are expected to be
maximally chaotic. This is already demonstrated for the
Sachdev-Ye-Kitaev [27] model, and expected to be so for
the BFSS model too. Numerical studies reported in [4] found
that, for the BFSS model treated at the classical level,
the largest Lyapunov exponent is given as A; =
0.2924(3) (Aioofc) /. This is parametrically smaller than
the MSS bound 27T and violates it only temperatures below
~0.015, while the quantum correction recently evaluated
using Gaussian state approximation [11], indicates that the
largest Lyapunov exponent vanishes below a nonzero tem-
perature, and hence ensures that the MSS bound is not
violated.

It is important to note that not only the BFSS, BMN
matrix models, but even their subsectors at small values of
N appear as nontrivial many-body systems, and we lack a
complete solution to these or even for the smallest Yang-
Mills (YM) matrix model to date. The latter may be
described as being composed of two 2 x 2 Hermitian
matrices with SU(2) gauge and SO(2) global symmetries.
It can be obtained by dimensionally reducing the YM
theory from 241 to O+ 1 dimensions. The classical
dynamics of this system was recently investigated in [5]
(see also Refs. [28,29] in this context) and it was shown
that, using the SU(2) gauge and SO(2) rotations of the two
matrices among themselves and a judicious choice of
coordinates to fully implement the Gauss law constraint
leads to a Hamiltonian with 2 degrees of freedom and their
conjugate momenta. In addition, the angular momentum,
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FIG. 1.

Py» associated with the rigid SO(2) symmetry appears as a
conserved quantity via a term proportional to the square of
py and strongly controls the structure of the effective
potential and the ensuing dynamics. At p, = 0, the model
collapses to the usual x*y? potential, which is already
known to lead to almost completely chaotic dynamics [30—
33]. In [5], the response of the system to a range of different
values of p, is investigated and it is found that, at fixed
energy, there is a value of p, above which the chaos ceases
to exist and the dynamics is essentially described by
quasiperiodic motion. Therefore, the model is conjectured
to have two phases, namely a chaotic phase corresponding
to a toy model for a black hole, and a phase consisting of
two DO-branes tied with a fixed number of open strings
stretching between them, with a force that depends on the
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Contour plots for Vg in (a), (¢), and (d) and Vg (r,0 = 0) in (b).

number of excited strings. The latter can be roughly
thought of as the “adiabatic invariant” for the quasiperiodic
orbits, which appear as the Kolmogorov-Arnold-Moser
(KAM) tori (see, for instance, [34]) in the Poincaré
sections. For a given value of energy these two phases
can coexist within a range of values of p,, while the end of
chaotic dynamics is argued to correspond to the end of the
black hole phase. Quantum aspects of the 2 x 2 matrix
model are addressed in [35], where the ground state energy
is also estimated.

In order to gain further insight into the matrix model
composed of 2 x 2 matrices with SU(2) gauge symmetry,
in this paper, we set out to investigate the dynamics in the
presence of the Chern-Simons (CS) term. It is possible to
obtain the corresponding action starting from the SU(2)
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Yang-Mills Chern-Simons (YMCS) model in 2 + 1 dimen-
sions and reducing it to 0 + 1." In a manner similar to the
one followed in [5], while paying attention to the
differences in the procedure due to the CS term, which
1s first order in time derivative, we obtain the Hamiltonian
of the system. The latter has the same degrees of freedom as
the pure YM model, while the effective potential is
governed not only by py, but also the CS coupling «,
which enters into the effective potential via kp 4 and another
term o k?r%. Varying « at different values of p,;, we probe
the impact on the chaotic dynamics. Our new findings are
as follows. First, we find that at Py = 0, values of the
largest (and only) Lyapunov exponent are above that
evaluated at x = 0, approximately within the range of
values of 4z|k| S 4. This can be attributed to shrinking
of the sharp edges of the effective potential contours [see
Fig. 1(a)], but not sustained further for 4z|x| > 4 as the
harmonic term o x?7? starts to dominate and chaotic
dynamics gradually declines. The second and more inter-
esting effect is due to the xp, term, which alters the
Lyapunov spectrum depending on its sign, in other words,
the orientation of p, matters. For instance, we find the
values of the largest Lyapunov exponent for kp, < 0 for a
range of values of « at fixed p,, are above what is evaluated
at k = 0. These results are presented and discussed in detail
in Sec. III, where our findings obtained from the Lyapunov
data are further corroborated via the use of Poincaré
sections. As another important finding, we give estimates
for the critical exponents for A; and the value of the order
parameter, py, as the system transits from chaotic to non-
chaotic phase. The rest of the paper is organized as follows.
Section II gives the developments leading to the Hamiltonian
of the model. Most of the details of the calculations in this
section are relegated to the Appendices for completeness. We
summarize our results and briefly state our conclusions
in Sec. IV.

II. SU(2) MATRIX MODEL WITH
THE CHERN-SIMONS TERM

The action of the model may be given as
S = Sym + Scs.

where

'Let us immediately note here that, although the CS coupling
is quantized for the non-Abelian CS term in 2 4 1 dimensions,
this is not so after dimensional reduction to 0+ 1 since the
coupling of this model involves the two-dimensional volume
factor, and the CS term is indeed gauge invariant in O+ 1
dimensions. Full details of this reduction and related facts are
provided in Appendix A.

Sym = / dtTrB (D0X5)2+%[Xi,Xj]2 . (22)
and
Scs = K / diTrle;;(X.X; + 2iA0XX;)]
_x / diTrle, X, (DoX;)). (2.3)

In these expressions, X, X, are 2 x 2 traceless Hermitian
matrices whose entries are functions of time only. They
transform under the adjoint representation of SU(2): X; —
U'X,;U as usual. DyX; = 9yX; — i[A, X;] are the covariant
derivatives, and A, is a gauge field which transforms
accordingly under the local SU(2) gauge group. S is
invariant under the local SU(2) gauge symmetry as well
as under a global SO(2); i.e., the “rigid” rotations of the
X,;’s among themselves. In (2.3), x is the CS coupling
constant. Note that, due the gauge invariance of Scg term in
0 + 1 dimensions, k is not level quantized.2 Let us also note
that we have implicitly set the Yang-Mills coupling, an
overall factor gl, in Sy, to unity. YM coupling can easily be
restored back in the action by performing the scalings
t— g.%t, 0y — g_%ﬁo, Ay — g_-%AO, X, - g‘.%Xi and
k — gik. The pure CS model limit is obtained by letting
g — oo and it is discussed in detail in Appendices C and D.

It is convenient to work in the Aj =0 gauge. In the
presence of the CS term, Gauss law constraint takes the
form

_[Xi’Xi] + 2K€inin =0. (24)
We may express the matrices X; as
X 1)?_' L oo 01,2, and 1,2,3 (2.5)
i=—=X;0=—=x%0% i:1,2, a=1,2,3, .
V2 V2

where \/Li is a normalization factor and ¢ are the usual Pauli

matrices. For future notational convenience, it is also useful
to arrange components of X; into column vectors:

1 1

X1 %)

X =| x|, X =13 | (2.6)
3 3
X1 X3

Substituting (2.5) into the action (2.1) yields the
Lagrangian

32 L2 - L o5 -~ o
(X7 +X3) + k(X X, = X5:X)) = (X) X X,)%,

L= (2.7)

1
2

%A detailed discussion is provided in Appendix A.
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while the constraint (2.4) takes the form

)_()l X );il + )_()2 X );()2 - 2K§l X §2 = O (28)
The canonical conjugate momenta are easily obtained from
the Lagrangian (2.7) as

- 5 -
P1 = X1 — KXy,

52 = ;iz + Kil, (29)
which clearly show that the kinematical and conjugate
momenta are no longer the same in the presence of the CS
term, a fact which is widely known in the literature (see for
instance, [36]). Defining
L, =X, xpy, L, =X, X Py, (2.10)
Gauss law constraint in (2.8) can be expressed as the
condition of the vanishing of the SU(2) angular momen-
tum:
L== L1+L2:O (211)
In order to obtain the corresponding Hamiltonian, we
need to observe that the Lagrangian involves a term which
is first order in time derivatives. Let us note that the generic
form of such a Lagrangian can be given as

. 1 .. .
L(‘]a’Qa’t):EgaanQb+faQa_Vv a,b:1,... K,

(2.12)

where g,, is the metric associated to the generalized
coordinates ¢q,, f, are functions of the generalized coor-
dinates, i.e., f, = f,(q,) and V =V(q,) is the potential.
The corresponding Hamiltonian can be shown to take the
form (see Appendix C for details)

1 1
H:Eg;blpapb'f—ig;llfafb_g;llfapb‘i‘v. (213)
Adapting (2.13) to (2.7), in the Cartesian coordinates, we
obviously have g, as the Euclidean flat metric §;;, we may
write fi = —Ksij)?j (i,j:1, 2) and observe that V =
(X, X X,)?. Putting all these together, we find that the
Hamiltonian corresponding to (2.7) takes the form®

1, . |
H =5 (B} +93) +5¢° (X +X3)

+k(P1Xy —PoXy) + (X xX5)%, (2.14)

In the pure CS limit the Hamiltonian becomes zero as
explained in Appendices C and D.

with the equations of motion easily evaluated to be

§1 =P

IL))] = —KX| + kP — 2%, X (X] X X»),

’;(2 = P2,

f)z = —Kk?X, — kP + 2%, x (X; X X,). (2.15)

Using (2.15), the time derivative of ﬂl may be
expressed as

L, = &%, X P, — 2%, x (X, X (X X X3)). (2.16)

A similar result holds for ﬁz. Although the second term in

(2.16) remains aligned with fl as it does in the pure YM
matrix model, this is not manifest for the first term.
Nevertheless, the subsequent analysis will show, upon
implementing the Gauss law in appropriate coordinates,
that the dynamics remain planar.

Taking advantage of the local SU(2) ~ SO(3) and the
global SO(2) rotations, we may introduce the coordinates
(a,p,y,r,0,¢). Following [5], we may consider the 3 x 2
matrix M whose columns are the vectors X; and X,, i.e.,
M = (X,X,) and express M as

| r rcosé # in g
cos sin
M:_R(a,ﬂ,y)- 0 rsiné ( . >,
V2 0 0 —sing cos¢

(2.17)

where R(a,f,y) is a SO(3) Euler matrix using z —x —z
active rotation with the angles (a,f3,y), respectively. Its
explicit form is given in the Appendix D for quick

reference. M° = (X7, 7% with ¥ = (r,0,0) and

ig’@ := (rcos@, rsin@,0) may be thought of as a con-

figuration of the two DO-branes oriented coplanarly with a
relative angle @ obtained via a SU(2) gauge choice. The
latter is not preserved in general by the global SO(2)
rotations on X; and X,, which can be taken to act on the
right of M°, nor it is preserved by the SU(2) = SO(3)
gauge rotations, which acts from the left on M. Thus,
taking these facts together, (2.17) is a convenient way to
introduce new coordinates for the present dynamical
system. The advantage of this choice of the coordinates
is that the Gauss law constraint in (2.11) can be fully solved
and manifestly imposed on the Hamiltonian expressed in
terms of the new variables, as we will demonstrate in what
follows. Let us also remark that, this is essentially the same
approach followed in [5] except that we no longer restrict
the gauge SU(2) ~ SO(3) rotations to an SO(2) subgroup

in advance, since it is not readily seen that ﬂi i=1,2)
remain aligned with L;.
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Let us note in advance that the components of angular
momentum L can be expressed in terms of the conjugate
momenta (p,, pg, p,) corresponding to the Euler angles

(. B.7)" as [37]

sina(p, cscf— p, cotff) + pscosa
cosacscf(p,cosfp—p,) + pgsina |,
Pa

L= (2.18)

which immediately implies that the Gauss law constraint
L = 0 is equivalent to

Po=Pp=p, =0. (2.19)
We will make use of (2.19) to fully impose the Gauss law
constraint in what follows.

The metric in the new coordinates (r,6,¢,a,pB,y) is
straightforwardly obtained from the expression
We give the components of g;; and its inverse g¥ in
Appendix D and also provide there the details of the
evaluation of the Hamiltonian in the new coordinates using
the generic form in (2.13) together with the inverse metric
¢". Employing these facts and imposing the Gauss law
constraint (2.19), we find

2 Py

1
H—_.p 2
N pr+r2 p6+2r2cosz(6)

) +Kkpy

2,2
1
+ % +7 r*sin?(0) + fr,

1 2
= - p;+ ﬁl’é + Vet (2.21)

2

Since this Hamiltonian is cyclic in ¢, as in the pure YM
case [S], p, is a constant of motion and taking advantage of
this fact, we have defined the effective potential, Vg, in the
second line of (2.21). A number of remarks regarding this
Hamiltonian are now in order.’ First, we observe that the
terms involving the CS coupling « are new and therefore we
are now in a position to examine the chaotic dynamics
emerging from (2.21) as x and the angular momentum p,,
assume a range of different values. Also note the presence
of the fir term in V4. In [5] this term is motivated by the
fact that for sin @ ~ 6, the motion can be considered to be
adiabatic in @ with an effective frequency wy . ~ r. With 72
taken as a small parameter, the term #r can then be
considered as the quantum mechanical correction to the

*As this is not frequently encountered in the literature, we
provide a quick derivation in Appendix E.

For the pure Chern-Simons limit of this Hamiltonian, readers
are referred to Appendices C and D.

energy, which lifts the flat direction of the pure YM model,
that is, the case corresponding to the commuting matrices.
In the present case, dependence of Vi on 6 is the same as
the pure YM model, leading to the same interpretation for
this term. The interesting new fact is that, for k # 0, V
already develops a minimum even at # = 0. This minimum
is at @ = 0, and the real positive root of the quartic equation
K2t 4 — pé =0. For =0, we obtain r* = '77”
which yields E > 2kp, for kpy >0 and simply E >0

for kp, < 0. Let us also note that for k = 0, r piﬂh‘m,

and for a typical value of 7 = 0.1, Vo~ 0.32 at p, =1
[5], while for x # 0, this minimum shifts upward for x > 0
and downward for k < 0. For instance, we have V4 =~ 0.53
and 0.21 at 4zx = 2 and 47k = —2, respectively; this is
illustrated in Fig. 1(b). In general, the positive shift of the
Ve with increasing values of xp, > 0 reinforces the
harmonic term in the potential and they together act to
decrease the Lyapunov exponent, while kp, < 0 gives a
window of negative values (—5 < 4zx < 0), in which we
observe a slight increase in the Lyapunov spectrum clear as
will be made manifestly clear in the next section.

It is also useful to have the contour plots of the V4 at
Py = 0, 1, 2 for various values of k as we will refer to them in
the next section. These are given in Figs. 1(a), 1(c) and 1(d).
Sharp edges in these potential contours near 6 ~ O corre-
spond to the flat direction of the pure YM potential. In the
present case, the CS term helps to lift this, as the harmonic
term in V. assists to shrink the sharp edges for all values of
Py and also acts to pull the contours toward closed loops for
py # 0. For py > 0, the latter happens faster for x > 0 as
opposed to k < 0 and vice versa for py < 0.

>

III. ANALYSIS OF THE CHAOTIC DYNAMICS

We now explore the chaotic structure of the system
governed by (2.21) by studying the Lyapunov spectrum and
the Poincaré sections.

A. Lyapunov spectrum

Setting the energy £ = 1, 2 = 0.1, and letting p, assume
the values 0,1,2, which is convenient for ease in compari-
son with the pure YM matrix model results in [5], we obtain
the largest Lyapunov exponents (LLE), 4;, as the CS
coupling takes on a range of values, in which the typical
behavior of the LLE’s is captured. Our results are obtained
after averaging over 120 randomly selected initial con-
ditions® in each case. They are presented in Figs. 2(a)-2(c)
and we will elaborate on them shortly.

The chaotic structure of the pure YM model is explored
in [5] and it is found that the system is fully chaotic at
Py =0 and essentially becomes nonchaotic with

®0ur method for evaluating the Lyapunov exponents and
choosing initial conditions is explained in Appendix B.
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FIG. 2. Lyapunov spectra versus k values at py =0, 1, 2.

increasing values of p,. At the intermediate values
0 < py <2, for example at p, = 1, there are regions in
the phase space, in which quasiperiodic motion is present
as signaled by KAM tori appearing in the Poincaré section
plots given in [5], while the rest of the phase space is filled
with chaotic motion.

In Fig. 2(a), a profile of the Lyapunov spectrum of the
model values of k in the interval 4z|x| < 15 and at p;, = 0 s
presented. The plot is essentially symmetric with respect to
the k = 0 axis as may be expected from (2.21), which is even
under k <> —« for p, = 0 and although LLE values tend to
decrease in an almost monotonic manner for 4z|x| > 4, they
are essentially nonvanishing for 4z|x| < 10, which makes us
conclude that the model is chaotic and behaves similar to the
pure YM case within this range of the CS coupling. The

rather mild increase in the LLE values observed in this plot in
the narrow range 4z|k| < 4 can be explained as follows. As
|| increases, sharp edged regions in the contour plot of the
effective potential V., as illustrated in Fig. 1(b), become less
pronounced, and consequently, compared to x =0, the
system spends relatively less time in these regions where
the dynamics is adiabatic in 6 and therefore no appreciable
contribution to chaos is expected [5]. In turn, this results in a
mild increase in the LLE spectrum within the indicated range
of k values. Nevertheless, for 4z|«| > 4, the harmonic term
starts to become significant and the chaotic dynamics is
gradually lost.

For p, # 0, the kp, term in V4 impacts the Lyapunov
spectrum asymmetrically depending on its sign, as it causes
a fixed negative or a positive shift on the latter. At py = 1,
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FIG. 3. Poincaré sections at py = 0.

for instance, which is illustrated in Fig. 2(b), we immedi- 4nk ~ 5. At py = 2, which is shown in Fig. 2(c), we, still
ately observe that 4, values, within the range of values  observe a mild increase in the Lyapunov exponents roughly
—5 < 4nk < 0, are above what is computed at x = 0. This  in the range —4 < 47k < 0, but the maximum value of A;
can be attributed to the downward shift in V. due to  now appears to be ~0.03, an order of magnitude less than
kpy < 0, which clearly also lowers the minimum of Vg as  that found for p, =0 and p, =1, and not significant
we have already discussed toward the end of previous  enough to conclude that any dense chaotic dynamics
section. The increase in 1, cannot be sustained for  remain for p, > 2.

47k < -5, since then the harmonic term « k2> becomes
sufficiently strong even at short distances to dominate V
and initiates the decline of the chaotic dynamics. For x > 0,
this term acts to strengthen the harmonic terms and the All of the conclusions of the previous subsection
chaotic motion becomes sharply suppressed before  regarding the chaotic dynamics of the present dynamical

B. Poincaré sections

0 01 02 03 04 05 06 07 08 09 0 0.1 0.2 03 0.4 05 0.6 0.7

(c) drk =3

(a) dnrr =1

(d) 47k =4

FIG. 4. Poincaré sections at p, = 1 for x > 0.
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FIG. 5.

system are well supported by the Poincaré sections.
We have obtained the latter at the € = 0 intersections
of the phase space and projected onto the py, p, plane.
Figures 3-6 show the Poincaré sections on the first
quadrant of the py, p, plane.

From Fig. 3, we see that chaotic dynamics appears to fill
the phase space at py, = 0, for a large range of values of «,
which is approximately 4z|x| < 10, while the periodic
motion starts to compete and take over after this range
of k values as can be observed from Fig. 3(c).

At Py = 1 and 47k = 1, from Fig. 4, we observe that the
phase space is still dominated by chaos, while a few KAM
tori indicating quasiperiodic motion are visible. As k
continues to increase, more KAM tori start to occur, and
the system swiftly becomes nonchaotic for 4zx 2 4 and
gets dominated by quasiperiodic orbits. However, for « < 0
as illustrated in Fig. 5, the system appears to remain densely
chaotic with only a few KAM tori appearing until around
4rk =~ —5, while the quasiperiodic motion starts to spread
for 4zx < —7.5 and start to take over only after 4zx < —10.
Let us also note that some KAM tori appear to intersect,
especially as seen in the Poincaré sections at larger values
of ||, for instance, in Figs. 4(d) and 5(f). This is due to
possible different values of the r coordinate appearing in
the evolution of the system starting with distinct initial

(e) 4k = —10

0.8 1 0.2 0.4 0.8 1

() 4rk = —15

Poincaré€ sections at p, = 1 for k < 0.

conditions being projected to the same point on the
Po.p, plane.

For p, =2, we see that there is very little chaos
remaining in the phase space regardless of the value of «
and quasiperiodic motion dominates the phase space. This
can be seen from the Poincaré sections in Fig. 6. There is no
chaos for k > 0, and although some randomly spread points
appear for negative x values, for small ||, KAM tori
quickly dominate the phase space and quasiperiodic motion
is all that is left.

C. Transition from chaotic to nonchaotic phase

In order to investigate the transition of the system from
the chaotic phase, i.e., black-brane phase, to the non-
chaotic, integrable phase dominated by quasiperiodic
motion, it is useful to examine the change of 4, with p,
treated as the order parameter, while keeping « fixed. The
fitting curves presented in Fig. 7 help to illustrate the
situation with sufficient clarity. In particular, from this
figure, we see that for —7 < 4zx < 0, 4, decreases linearly
with increasing p,, and the transition between the two
phases occurs at py ~ 2 with a critical exponent of 1 for 4;.
Therefore, we conclude that approximately within this
range of k, the transition from the chaotic to nonchaotic
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1

(e) vk = —5

FIG. 6. Poincaré sections at p, = 2.

phase has the same characteristic as found for the pure YM
model in [5]. For 4zx < —7, the 4, value is already below
0.1 [see Fig. 2(b)] at p, = 1 and tends to decrease faster
with increasing p; at 4zx = —10, we estimate that what
little remains of the chaotic phase approaches py, ~ 2 with a

0.25
drk =1

¢

¥ drk=2

1 drr=-1
$ Ak =-T
¥ drr=-10

0.2

——0.2544 |py — 1.75/*2
——0.4632 [p, — 1.55[>/2
———0.1837 (ps — 2.1)
———0.1032(py — 2)
——0.03395 |p, — 22

FIG. 7. Lyapunov spectra versus p, at 4zx = —10,-7, -1,
1, 2. Estimates for pj and the critical exponents for 4, are

obtained from the best fitting curves to the data.

critical exponent ~3/2. For « > 0, on the other hand, not
only the approach to nonchaotic phase appears to be faster,
but also it tends to occur at smaller values of p,, at larger k.
For instance, we estimate that at 4zx = 1, p; ~ 1.75, while
at 4k = 2, Py~ 1.55, with critical exponents ~3/2 and
~5/2, respectively.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have studied the chaotic structure of the
minimal Yang-Mills Chern-Simons matrix model. Using
the gauge and global symmetries, and with a suitable
choice of the coordinates, the Hamiltonian of the system is
obtained in a form in which the Gauss law constraint is
fully solved and manifestly imposed. We have studied the
chaotic dynamics of the model, and in particular, probed
the changes in the Lyapunov exponent as the values of both
the CS coupling, k, and the conserved conjugate momen-
tum, p,, are varied. We have found that, even for p, = 0,
there is a range of CS coupling values, approximately given
as 4z|k| < 4 within which the Lyapunov exponent is larger
in value compared to that evaluated at x = 0. We have also
seen that the xp, term in the effective potential alters the
Lyapunov spectrum depending on its sign. We have found
that the largest Lyapunov exponents evaluated within a
range of values of x are above those computed at k = 0, for
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kpy < 0. These results are discussed in detail in Sec. III,
where we also presented estimates for the critical exponents
for 4, and the value of the order parameter, py, as the

system transits from chaotic to nonchaotic phase.

Let us finally note that the out of time order correlators
approach recently applied in [38] to a system involving a
x*y? term in the potential to probe quantum chaos may also
be suitable for the model treated in this paper and we hope
to report on any developments along these directions
elsewhere in the near future.
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APPENDIX A: CHERN-SIMONS ACTION IN 0+1
DIMENSIONS

In 2 4+ 1 dimensions, the CS action for the Hermitian
SU(2) gauge fields A, may be given as [36,39]

k 2
SCS(2+1) = E/ d3x€l“//’Tr<—A”0UAp -+ g iA”ADAp> s

(A1)

where A, transform under the SU(2) gauge transformations
as A, - U'A,U 4 iU'9,U. Invariance of e'*cs¢+1 under
large gauge transformations requires that k is an integer.7

Dimensional reduction from 2 4 1 to 0 4 1 dimension is
facilitated by requiring that all spatial dependence of the
gauge fields A,(x,7) are dropped and only their time

"Let us also note that for gauge fields valued in the Lie algebra
of the Lie group G, CS action on a 2D + 1 dimensional space-
time manifold M changes under G transformation by a term of the
form Q « [, Tr[(¢7'dg)*” '] (up to a constant factor), where
g € G. In general, Q does not vanish [39]. For M = §?P+!, Q is
determined via the (2D + 1)th homotopy group of G, 7,p,(G),
and the requirement of gauge invariance of e’Scs leads to the level
quantization of the CS coupling. If M is the 2D + 1 Minkowski
space, Q is still determined by 7,p . (G) if we demand that g — 1
as time goes to +oo and at spatial boundaries [36,39]. For D = 0
and G = SU(2), we clearly have Q = 0 since g~'dg is valued in
the Lie algebra of SU(2) and hence its trace is vanishing. Thus,
this general consideration is applicable to the Scg in 0+ 1
dimensions and indicates that Scg(g4 1) is indeed gauge invariant.
In particular, we also have that 7z, (SU(2)) = I1;(S*) = 0, there-
fore, Q vanishes in 0 4+ 1 dimensions implying once again that
Scs(o+1) 18 gauge invariant.

dependence is retained. This implies that in Scgp4p) all
the spatial derivatives collapse to zero. Introducing the
notation A, = (A, X;), i:1, 2, we immediately find

k .
Scs<0+1) = E/ d2X/ dtTr((;'l](Xin + 2lA0XlX,))

kV,
= diTrle;; X;(DoX )],

= K'/ diTrle;;X;(DoX )], (A2)

where V, := [ d’x denotes the result of the two-dimen-
sional volume integral. Thus the coupling of the CS action

K> and due to the

in 0 + 1 dimensions takes the form k := 7
volume factor V,, it differs from the coupling of the CS
action in 2 4 1 dimensions. In particular, due to the V,
factor, which can take arbitrary real values, x is not an
integer multiple of 4—1”. We also see that the CS coupling «
obtained in this manner is consistent with the fact that
Scs(o+1) 1s manifestly gauge invariant [as it is trivially
observed from the second line of (A2) upon using the
cyclicity of the trace and UTU = UU" = 1]. These facts
clearly indicate that x is not level quantized.

In this paper we work with 4z|k| < 10 as this conven-
iently gives the relevant range of x values to explore the
dynamics at E = 1 and |p| 5 2. The latter are the values of
energy and p, used in [5], which we use since it gives us an
ease in comparison. In our study, we are only considering
the classical theory but writing out the # explicitly in the
action there will not be any reason to keep 4zx within the
values of O(1).

APPENDIX B: CALCULATION OF LYAPUNOV
EXPONENTS AND SELECTION OF INITTIAL
CONDITIONS

1. Calculation of Lyapunov exponents

Lyapunov exponents are useful to determine the sensi-
tivity of a system to given initial conditions. More
precisely, they measure the exponential growth in pertur-
bations and therefore give a reliable way to establish the
presence of chaos in a dynamical system [34,40,41]. For a
Hamiltonian system, if we denote the perturbations in the
phase space coordinates g(7) = (g, (1), g(1), ..., gon(t)) by
5g (1), then we may conclude that the system is chaotic if, at
large ¢, 5g(t) deviates exponentially from its initial value at
t =ty ||6g(1)|| = e*10)||5g(ty)||- Here A > 0 are called
the positive Lyapunov exponents and there are 2N of them
for a phase space of dimension 2N. Let us also note that this
description is in parallel with the statement that even
slightly different initial conditions give trajectories in the
phase space, which are exponentially diverging from each
other and hence lead to chaos. In a dynamical system
presence of at least one positive Lyapunov exponent is
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sufficient to conclude the presence of chaotic motion. In
Hamiltonian systems, due to the symplectic structure of the
phase space, Lyapunov exponents appear in 4; and —4; pairs
and a pair of the Lyapunov exponents vanishes as there is
no exponential growth in perturbations along the direction
of the trajectory specified by the initial condition, and the
sum of all the Lyapunov exponents is zero as a consequence
of Liouville’s theorem. These facts are well known and
their details may be found in many of the excellent books
on chaos [34,40,41].

We follow the Appendix in [25] to describe the method
to compute all the Lyapunov exponents. With U(¢) denot-
ing a time evolution operator, we may write

og(r) =U(1)og(0) i=1,...,2N, (B1)
and
5g(ty +12) = U(12) U(11)6g(0). (B2)
Lyapunov exponents are defined by
1 I5g(t)|)
A= hm—log< : (B3)
oot \]|0g(0)]]

Dividing the time into n equal steps such that t = nAt,
Lyapunov exponents can be expressed as

1 |\U(A?)...U(A1)Sg(0)]]
g( 152 (0)]] )

(B4)

We may consider that (h}, A3, ..., h3") span an orthonor-
mal basis for the set of vectors tangent to the phase space
trajectory g(0) att = 0. After atime Az, time evolved vectors
can be written as ki = U(Ar)hj, where (ki k3,....,k3N)
spans a basis of tangent vectors to the trajectory g(Ar).
However, this basis of vectors need not be orthogonal. Using
the Gram-Schmidt orthogonalization process, we can obtain
the orthogonal set from (k},k?,...,k"), which we may
denote as (h},h?, ..., h7"). The expansion rate of the vector
h! can be determined as

i _ |

r1:|

since all h6 is normalized to 1 already. An orthonormal basis

=

i
]
)|

= ||}

, (BS5)

after time At is therefore given as (h}, h7, ..., h7N) where
1
W= L (B6)
"1

This procedure defines the time evolution after one step of
At. After nAt steps, we may write the Lyapunov exponents as

. 1 " i
A = H&E;bg(n‘)' (B7)

The set {4y, ..., Aoy } is called the Lyapunov spectrum and as
a consequence of this construction 4, is the largest Lyapunov
exponent, since ! leads toward the direction in the phase
space which is most sensitive to the initial conditions and
therefore the expansion rate ! has the largest value in this
region of the phase space.

A MATLAB code solving the Hamilton’s equations of
motion and evaluating the Lyapunov exponents according
to the procedure outlined above is used for our numerical
calculations. Let us note that since the phase space is four
dimensional, there are only four Lyapunov exponents, two
of which are zero and the remaining two may be denoted as
A;, and —1; in view of our earlier remarks in this section.

We pick the initial conditions that are used both in the
evaluation of the Lyapunov spectrum and the Poincaré
sections as follows. Both p, and @ are initially taken to be
equal to zero. Using the Hamiltonian (2.21), py can be
expressed as

]

1 1
Do _E\/_EKZ’A —0.17° —kpyr* +r* — R

where we have already set £E=1 and 72 =0.1. We
determine the intervals of r values, which make the
argument of the square root in (B8) positive and restrict
to the one in which » > 0. The initial value of r is chosen
randomly from this interval and the initial value of py is
then determined from (B8).

We run the MATLAB code evaluating the largest positive
Lyapunov exponent for 120 randomly selected initial
conditions according to this procedure at each value of «
and take their average to obtain each data point. The error
bars are obtained by computing the mean square variances.
In the simulation, we take a time step of 0.5 and run the
code from time O to 3000. The A; obtained in this manner is
recorded at several values of p, and «.

(B8)

APPENDIX C: GENERIC FORM OF THE
HAMILTONIAN AND THE PURE CHERN-
SIMONS LIMIT

Restoring the YM coupling, we may write the YMCS
action in the form

1 1 1
S =— [ dTr( = (DeX,)* +=[X,;, X ;)?
YMCS gz/ r(z( 0Xi) +4[ i ﬂ)

+K/dl‘TI‘€UXl(D0XJ) (Cl)

Let us note that the dimensional analysis shows that g has
3

the units [Length]™, k has the units [Length]?, while the
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fields X; and A, are of dimension [Length]~!. In the paper,
we have scaled 1 — g73t, 9y — G0y, Ag = GAy, X; >
2 4 . . .
¢X; and k¥ — g3k to work in the units where g is set
to unity.
With the YM coupling included explicitly using (2.7),
we can write

I o = A

Symcs = /dfﬁ(’ﬁ +X3) + k(XX — X,X)
1 . o

_?(Xl sz)z, (C2)

while the corresponding conjugate momenta and the
Hamiltonian are given as

R | N N - [N -
P :—2X1 — KXo, P2 :—2X2+KX1. <C3)
g g
= ( +Pz)+ 5K (XT +X3)
- - - - 1 - -
+ g°k(P1X — Pr-X,) +?(X1 xX;)%.  (C4)

We may obtain the pure CS limit by letting ¢ — 0. In this
limit, we see from (C3) that p; — —«X, and p, — kX;.

Therefore, we see that in the pure CS limit the Hamiltonian
vanishes and hence no dynamics or chaos remains. This
result is consistent with the general considerations arising
from the Chern-Simons theories, as it is known that the pure
CS theory has no dynamics, but nontrivial dynamics emerges
from coupling to dynamical matter fields, or by considering
the CS action on a manifold with boundaries [36].

More generally, for a system with generalized coordi-
nates ¢; and velocities ¢;, Lagrangian involving first order
time derivatives have the generic form

. | .
L(4i- i 1) = 5 949:4; + fid: = V. (Co)
where g;; is the metric, f; is some function of the
generalized coordinates i.e., f; = f;(¢;) and V is a poten-
tial V = V(g;). Canonical momenta are evaluated as

OL .
Pizgzgim‘l‘fﬁ (C7)

i

In terms of p;, ¢; can be solved using the inverse metric in
the form

qi =g (pj = f))

Substituting this in the Hamiltonian (C4), we find =g'(p;— f)) (C8)
H=¢gX+x3) -4 +x3)=0. (C5) Jon
g\X] 2) — g (X 2 The Hamiltonian then takes the form
J
H=pq—-L

= pigi; (P = fj) = gl,glk "pe =097 (pi = f1) = figi (p = f;) +V

=DPigi; (P Ypj—fi) - 9,1 "pj =) pi = fl)_figi_jl(p_j_fj)+v

:Pigfj( fj) QU( i_fi)(pj_fj)_figi_j](p/_fj)+v

=g (p,-p, pifi— p,p,+p,f] fifj_pifj+fifj> +V

1 1
= Eg;jlpipj +§9{;1fifj —gi'pifi+V, (C9)

given in (2.13).

In order to discuss the limit in which the Lagrangian
consists of only first order time den'vatives we may first set
gij = og,], g,j s gu and V - 2 V. We may, therefore,

write the generic form of the Ham11ton1an as

1 1 1
H=g (59,}1171-171+§g{,~1fif,-—gfjlpifj> +?V, (C10)

|

while the conjugate momenta take the form p; =
;—2 9ij4; + fi Thus, in the limit with g — oo, we have p; —
fi and upon substituting this in (C10), we immediately see
that H = 0.

It is somewhat more subtle to see the pure CS limit from
the Hamiltonian given in the angular coordinates in (2.21).
We will provide a concrete discussion of this limit in the
next Appendix.
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APPENDIX D: DERIVATION OF THE HAMILTONIAN IN THE NEW COORDINATES
1. Metric

A general SO(3) element in the Euler’s parametrization with z — x — z active rotation with the angles a, f3, y respectively
is given by [42]

c(@)e(y) =s(@)c(P)s(y) —=s(@)c(B)e(y) —cla)s(y)  s(a)s(p)
R(a.p,y) = | c(y)s(a) +c(a)c(B)s(y)  cla)e(B)ely) —s(@)s(y) —c(a)s(B) |, (D1)
s(B)s(y) s(B)e(r) c(p)

where s and ¢ stand for sine and cosine, respectively. This can be facilitated to obtain the matrix M in (2.17).
The metric in the new coordinates (r, 6, ¢, a,f.y) is evaluated using g;; = Tr(9;M"9;M) and it yields

1 0 0 0 0 0
0 2 1risin(@)  r?cos(p) 0 2
0 r’sin(0) r r>cos(B)sin(@) 0  r’sin(6)
gij = 1 2 2 ’ (D2)
0 3r cos(p) 934 Gaa gss 17 cos(p)
0 0 0 954 Gss 0
0 - r? sin(@) r? cos(p) 0 r?
where
a4 = 1* cos(f) sin(6),
1 1 1 1
s = =5 c05(2) cos(2ly +0)) ~ 1 P os(2(f 7)) 1 cos(2(p + 7)) + 1 eos(2f)
1 3r?
+7 r? cos(0) cos(2y + 6) + %
1
954 =75 r? sin(f) cos(0) sin(2y + ),
1
Gus = =3 r? sin(f) cos(@) sin(2y + ),
L, L, r
gss = ——r-cos(2(y + 0)) ——r*cos(2y) + =. (D3)
4 4 2
The inverse metric g;;' is given as
1 0 0 0 O 0
0 4 0 o o0 -2
0 0 seczz(é') 0 0 _sec(0) 2tan(B)
gij — r r , (D4)
0 0 0 Mg 4
0 0 0 LT g6
0 -2 — sec(0) 7tar1<9) 64 65 g%

where
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s (cos(2y) + cos(2(y + 0)) — 2)csc?(B)csc?(6)
5 .

g5 2eo0)eselp) cszc(é) sir};(Zy +0).

o _ (c0s(2n) + cos(rz(y + a))r - 2) cot(p) ese(B)esc(0)

g5t 2eo0)ese(p) 0:20(6) sin(2y +0)

5= (cos(2y) + 008(2(:2+ 0)) + 2)csc?(6) |

5 _ _2eou(p)con(0) cszc(é?) sin(2 +6)

ot _ Leos2r) + Cos(2(’;/ + e))r - 2) cot(p) ese(B)esc(0)

g5 _ _2e0t(p) con(0) crszc(ﬁ) sin(27 +6)

56 = —(cos(2y) + cos(2(y + 6)) — 22)c0t2(ﬁ)csc2(9) + sec?(0) + 1 | D3)

r

2. Hamiltonian in the new coordinates

Corresponding to the generalized coordinates (r,6,¢,a,f,y), we label the associated conjugate momenta as
(Pr+Pos» Py Pa> Pp- Py). Using the inverse metric in (D4), we have the first term in the generic form of the
Hamiltonian (2.13) [or (C9)] given as

1, csc?(f) cos(2y)esc?(0) p2  csc?(B)esc?(0) pacos(2(y +80))  2cot(B) cse(B)esc?(0) pap,
59ij PiPj = — 2,2 - 272 - 2

2 r
N cot(f) csc(p) cos(2y)esc?(0) pap, N cot(f) csc(B)csc?(0) pap, cos(2(y + 6))

) 2
N 2csc(p) cot(0) csc(0) pappsin(2y +6) N csc?(fB)esc?(0) p2 N cot?(f)csc? (6) p?
2 2 2

_ cot*(B) cot(6) cse(0) pj cos(2y +0) N cot(6) csc(8) pj cos(2y +6) _ 2cot(p) cot(0) cse(6) pyp, sin(2y + 0)
) 2 )

+cs02(9)p/% tan(0) sec(0)p,py 2pyp9+sec2(9)p§ p2  sec’(0)py  2p> +p$

r? r? r2 272 272 272 P2 (Do)

In order to proceed, we need to evaluate the form of fl- = —Ke,-ji j (i,j:1, 2) in the new coordinates. The function
fi = fi(g;) and g; in the Lagrangian (2.7) appear as

[iq; = kXX — kXX (D7)
Since the ith column of the matrix M in (2.17) corresponds to the components of X;, and so the correspondence goes with

their time derivatives, the right-hand side of (D7) can be written by taking the inner products of the column vectors of M and
M and this yields

f = -% (26 + sin(0) (2 cos(B) + 27 + 0). (D8)
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Since  fiG; = f1i+ [20 + 3 + fai + fsP+ foi in
the new coordinates, the coefficients f;(r,0,$,a,p,7),

(i:1,...,6) are now easily read out from (D8) to be
fl - 0’
1, .
f2= —57 Kk sin(6),
f3 = —VZK,
fa = —r*xsin(0) cos(p),
fS = 0’

fe = —r’ksin(0). (D9)

With f; given (D9), we can evaluate the second and the
third term in (2.13). We find

_gljlff/ __r K (D]O)
and
1
glj lf] p(/)K' (Dll)
The last term takes the form
Lo oo 1y,
E(Xl X X,) = rsin ), (D12)

which is the same as what would be obtained had we used
the matrix M?, since the square of the cross product of the
column vectors of M is a scalar and does not get affected by
gauge rotations.

Putting (D6), (D10), (DI1), and (D12) together and
imposing the Gauss law constraint L =0 via (2.19) as®

pa:pﬂ:py:()a (D13)

we finally obtain the Hamiltonian given in (2.21).

3. Pure CS limit in the new coordinates

With the YM coupling written explicitly, the Hamiltonian
in the angular coordinates is given as

K°r

p2 2,2
PR — + b + J—
2r% cos?(0) Py T )

1 2
_ 2 2 2

H=yg <§pr T3Pt

1

+ —5 r*sin?(6). (D14)

49
Since the Gauss law constraint (2.19) p, = psy = p, =01is
already imposed in (D14), it is somewhat more subtle to see the

pure CS limit. The formal way to proceed is to use the form of

¥This is proved in the next Appendix.

the Hamiltonian prior to imposing the Gauss law constraint
which is given by (C10) with (D6), (D10) and (D11). As
g — oo, we have p; — f; with f; given in (DY), and a short
calculation in MATHEMATICA confirms that H = 0. A rather
quick way to see this result from (2.21) is as follows. From the
Gauss law constraint the equations Po = 0, p, = 0imply that
0 = 0. This gives pg = f, = ——Kr sin® = 0. We further

have p,=f, and f; =0 and Py =13 f3 = —ri.
Substituting these in (2.21), we immediately obtain H = 0.

APPENDIX E: ANGULAR MOMENTUM VECTOR
IN TERMS OF EULER ANGLES AND
CONJUGATE MOMENTA

Angular velocities can be expressed in terms of Euler
angles and their time derivatives as [37,42]

wy = 7sin(a) sin(8) + fcos(a),
= fsin(a) — 7 cos(a) sin(f),
w3 = @+ ycos(f). (E1)

In terms of Euler angles and their time derivatives,
rotational kinetic energy takes the form

1
T = — IIW% + IzW% + I3W%)

(
2
= I, (ysin®(a)sin?(B) + 2/ 7 sin(a) cos(a) sin(p)

+ freos?(a) + L(77cos?(a)sin? (p)
— 2p37 sin(a) cos(a) sin(f) + Fsin?())
+ I3(2ay cos(B) + &* + y*cos?(B)), (E2)

where I; are the moment of inertia with respect to the
principal axes associated to z — x — z active rotation with
the angles «, f3, y.

Momentum conjugates to the Euler angles a, f, y are

oT oT oT
= 5. - - 5> E3
Pe =5 Pr= 5 Pr=7%; (E3)
and we have
Pa 0 I;  I3cos(f) a
P | = 0 Ay Ay pl. (E4)
Dy I3cos(B) Az Az Y

where the remaining components of matrix A are given as
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Ay = Iicos?(a) + I,sin?(a),

Ayz = I, cos(a) sin(a) sin(f) — I, cos(a) sin(a) sin(f3),

Az = I cos(a) sin(a) sin(f) — I, cos(a) sin(a) sin(f),

Asy = I5c08%(B) + I,cos?(a)sin?(f) + I,sin?(a)sin?(f).
(E3)

Writing (E4) as P = A® in short, the column matrix 0=
(@.f.7)" can b
Substituting «, /3, y obtained from this equation into (E1)
yields wy, wy, w3 in terms of p,, pg, p,. Finally, we obtain

can be obtained from the equation ©=A""P.

the components of angular momentum L using L; = gvT

I,w; (no sum over i) as [37]

sin(a)(p, csc(f) — p, cot(B)) + pp cos(a)
cos(a) csc(f)(pq cos(B) — p,) + ppsin(a)
Pa

=
I

(E6)

Therefore, the Gauss law constraint L = 0 is equivalent
to (2.19).
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