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We study the effects of addition of the Chern-Simons (CS) term in the minimal Yang-Mills (YM) matrix
model composed of two 2 × 2 matrices with SUð2Þ gauge and SOð2Þ global symmetry. We obtain the
Hamiltonian of this system in appropriate coordinates and demonstrate that its dynamics is sensitive to the
values of both the CS coupling, κ, and the conserved conjugate momentum, pϕ, associated to the SOð2Þ
symmetry. We examine the behavior of the emerging chaotic dynamics by computing the Lyapunov
exponents and plotting the Poincaré sections as these two parameters are varied and, in particular, find that
the largest Lyapunov exponents evaluated within a range of values of κ are above what is computed at
κ ¼ 0, for κpϕ < 0. We also give estimates of the critical exponents for the Lyapunov exponent as the
system transits from the chaotic to nonchaotic phase with pϕ approaching to a critical value.
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I. INTRODUCTION

Recently, there has been growing interest in exploring
the structure of chaotic dynamics emerging from the matrix
quantum mechanics [1–12], such as the Banks-Fischler-
Shenker-Susskind (BFSS) and the Berestein-Maldacena-
Nastase (BMN) models [13–19] which appear in the
discrete light-cone quantization of M theory in the flat
and the pp-wave background, respectively. These models
are SUðNÞ gauge theories, describing the dynamics of the
N-coincident D0-branes, in the flat and spherical back-
grounds. It is well known that the gravity dual is obtained in
the ’t Hooft limit, i.e., at large N and strong Yang-Mills
(YM) coupling and describes a phase in which D0-branes
form a so-called black brane, i.e., a string theoretical black
hole [18–20]. While the earlier investigations (and some
recent as well [21–26]) on the quantum mechanical
behavior of these models were performed in the
Euclidean time formulation using both analytical pertur-
bative and Monte Carlo methods, in the past few years,
there has been increasing interest in accessing the quantum
dynamics using real-time formulations [10,11]. These
studies are propelled by a result due Maldacena-
Shenker-Stanford (MSS) [6], which states that under
general circumstances, the Lyapunov exponent (which is

a measure of chaos in both classical and quantum mechani-
cal systems) for quantum chaos is bounded, that this bound
is controlled by the temperature of the system, and given by
λL ≤ 2πT. It is conjectured that systems which are holo-
graphically dual to the black holes, are expected to be
maximally chaotic. This is already demonstrated for the
Sachdev-Ye-Kitaev [27] model, and expected to be so for
the BFSSmodel too. Numerical studies reported in [4] found
that, for the BFSS model treated at the classical level,
the largest Lyapunov exponent is given as λL ¼
0.2924ð3Þðλ0tHooftÞ1=4. This is parametrically smaller than
the MSS bound 2πT and violates it only temperatures below
≈0.015, while the quantum correction recently evaluated
using Gaussian state approximation [11], indicates that the
largest Lyapunov exponent vanishes below a nonzero tem-
perature, and hence ensures that the MSS bound is not
violated.
It is important to note that not only the BFSS, BMN

matrix models, but even their subsectors at small values of
N appear as nontrivial many-body systems, and we lack a
complete solution to these or even for the smallest Yang-
Mills (YM) matrix model to date. The latter may be
described as being composed of two 2 × 2 Hermitian
matrices with SUð2Þ gauge and SOð2Þ global symmetries.
It can be obtained by dimensionally reducing the YM
theory from 2þ 1 to 0þ 1 dimensions. The classical
dynamics of this system was recently investigated in [5]
(see also Refs. [28,29] in this context) and it was shown
that, using the SUð2Þ gauge and SOð2Þ rotations of the two
matrices among themselves and a judicious choice of
coordinates to fully implement the Gauss law constraint
leads to a Hamiltonian with 2 degrees of freedom and their
conjugate momenta. In addition, the angular momentum,
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pϕ, associated with the rigid SOð2Þ symmetry appears as a
conserved quantity via a term proportional to the square of
pϕ and strongly controls the structure of the effective
potential and the ensuing dynamics. At pϕ ¼ 0, the model
collapses to the usual x2y2 potential, which is already
known to lead to almost completely chaotic dynamics [30–
33]. In [5], the response of the system to a range of different
values of pϕ is investigated and it is found that, at fixed
energy, there is a value of pϕ above which the chaos ceases
to exist and the dynamics is essentially described by
quasiperiodic motion. Therefore, the model is conjectured
to have two phases, namely a chaotic phase corresponding
to a toy model for a black hole, and a phase consisting of
two D0-branes tied with a fixed number of open strings
stretching between them, with a force that depends on the

number of excited strings. The latter can be roughly
thought of as the “adiabatic invariant” for the quasiperiodic
orbits, which appear as the Kolmogorov-Arnold-Moser
(KAM) tori (see, for instance, [34]) in the Poincaré
sections. For a given value of energy these two phases
can coexist within a range of values of pϕ, while the end of
chaotic dynamics is argued to correspond to the end of the
black hole phase. Quantum aspects of the 2 × 2 matrix
model are addressed in [35], where the ground state energy
is also estimated.
In order to gain further insight into the matrix model

composed of 2 × 2 matrices with SUð2Þ gauge symmetry,
in this paper, we set out to investigate the dynamics in the
presence of the Chern-Simons (CS) term. It is possible to
obtain the corresponding action starting from the SUð2Þ

FIG. 1. Contour plots for Veff in (a), (c), and (d) and Veffðr; θ ¼ 0Þ in (b).
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Yang-Mills Chern-Simons (YMCS) model in 2þ 1 dimen-
sions and reducing it to 0þ 1.1 In a manner similar to the
one followed in [5], while paying attention to the
differences in the procedure due to the CS term, which
is first order in time derivative, we obtain the Hamiltonian
of the system. The latter has the same degrees of freedom as
the pure YM model, while the effective potential is
governed not only by pϕ, but also the CS coupling κ,
which enters into the effective potential via κpϕ and another
term ∝ κ2r2. Varying κ at different values of pϕ, we probe
the impact on the chaotic dynamics. Our new findings are
as follows. First, we find that at pϕ ¼ 0, values of the
largest (and only) Lyapunov exponent are above that
evaluated at κ ¼ 0, approximately within the range of
values of 4πjκj ≲ 4. This can be attributed to shrinking
of the sharp edges of the effective potential contours [see
Fig. 1(a)], but not sustained further for 4πjκj≳ 4 as the
harmonic term ∝ κ2r2 starts to dominate and chaotic
dynamics gradually declines. The second and more inter-
esting effect is due to the κpϕ term, which alters the
Lyapunov spectrum depending on its sign, in other words,
the orientation of pϕ matters. For instance, we find the
values of the largest Lyapunov exponent for κpϕ < 0 for a
range of values of κ at fixed pϕ are above what is evaluated
at κ ¼ 0. These results are presented and discussed in detail
in Sec. III, where our findings obtained from the Lyapunov
data are further corroborated via the use of Poincaré
sections. As another important finding, we give estimates
for the critical exponents for λL and the value of the order
parameter, pc

ϕ, as the system transits from chaotic to non-
chaotic phase. The rest of the paper is organized as follows.
Section II gives the developments leading to the Hamiltonian
of the model. Most of the details of the calculations in this
section are relegated to theAppendices for completeness.We
summarize our results and briefly state our conclusions
in Sec. IV.

II. SUð2Þ MATRIX MODEL WITH
THE CHERN-SIMONS TERM

The action of the model may be given as

S ¼ SYM þ SCS; ð2:1Þ

where

SYM ¼
Z

dtTr

�
1

2
ðD0XiÞ2 þ

1

4
½Xi; Xj�2

�
; ð2:2Þ

and

SCS ¼ κ

Z
dtTr½ϵijðXi

_Xj þ 2iA0XiXjÞ�

¼ κ

Z
dtTr½ϵijXiðD0XjÞ�: ð2:3Þ

In these expressions, X1, X2 are 2 × 2 traceless Hermitian
matrices whose entries are functions of time only. They
transform under the adjoint representation of SUð2Þ: Xi →
U†XiU as usual. D0Xi ¼ ∂0Xi − i½A0; Xi� are the covariant
derivatives, and A0 is a gauge field which transforms
accordingly under the local SUð2Þ gauge group. S is
invariant under the local SUð2Þ gauge symmetry as well
as under a global SOð2Þ; i.e., the “rigid” rotations of the
Xi’s among themselves. In (2.3), κ is the CS coupling
constant. Note that, due the gauge invariance of SCS term in
0þ 1 dimensions, κ is not level quantized.2 Let us also note
that we have implicitly set the Yang-Mills coupling, an
overall factor 1

g2 in SYM, to unity. YM coupling can easily be

restored back in the action by performing the scalings
t → g

2
3t, ∂0 → g−

2
3∂0, A0 → g−

2
3A0, Xi → g−

2
3Xi and

κ → g
4
3κ. The pure CS model limit is obtained by letting

g → ∞ and it is discussed in detail in Appendices C and D.
It is convenient to work in the A0 ¼ 0 gauge. In the

presence of the CS term, Gauss law constraint takes the
form

−½Xi; _Xi� þ 2κϵijXiXj ¼ 0: ð2:4Þ

We may express the matrices Xi as

Xi¼
1ffiffiffi
2

p x⃗i·σ⃗¼
1ffiffiffi
2

p xαi σ
α; i∶1;2; and α¼ 1;2;3; ð2:5Þ

where 1ffiffi
2

p is a normalization factor and σα are the usual Pauli

matrices. For future notational convenience, it is also useful
to arrange components of Xi into column vectors:

x⃗1 ¼

0
B@

x11
x21
x31

1
CA; x⃗2 ¼

0
B@

x12
x22
x32

1
CA: ð2:6Þ

Substituting (2.5) into the action (2.1) yields the
Lagrangian

L ¼ 1

2
ð _x⃗2

1 þ _x⃗2
2Þ þ κðx⃗1· _x⃗2 − x⃗2· _x⃗1Þ − ðx⃗1 × x⃗2Þ2; ð2:7Þ

1Let us immediately note here that, although the CS coupling
is quantized for the non-Abelian CS term in 2þ 1 dimensions,
this is not so after dimensional reduction to 0þ 1 since the
coupling of this model involves the two-dimensional volume
factor, and the CS term is indeed gauge invariant in 0þ 1
dimensions. Full details of this reduction and related facts are
provided in Appendix A. 2A detailed discussion is provided in Appendix A.
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while the constraint (2.4) takes the form

x⃗1 × _x⃗1 þ x⃗2 × _x⃗2 − 2κx⃗1 × x⃗2 ¼ 0: ð2:8Þ

The canonical conjugate momenta are easily obtained from
the Lagrangian (2.7) as

p⃗1 ¼ _x⃗1 − κx⃗2;

p⃗2 ¼ _x⃗2 þ κx⃗1; ð2:9Þ

which clearly show that the kinematical and conjugate
momenta are no longer the same in the presence of the CS
term, a fact which is widely known in the literature (see for
instance, [36]). Defining

L⃗1 ¼ x⃗1 × p⃗1; L⃗2 ¼ x⃗2 × p⃗2; ð2:10Þ

Gauss law constraint in (2.8) can be expressed as the
condition of the vanishing of the SUð2Þ angular momen-
tum:

L⃗ ≔ L⃗1 þ L⃗2 ¼ 0: ð2:11Þ

In order to obtain the corresponding Hamiltonian, we
need to observe that the Lagrangian involves a term which
is first order in time derivatives. Let us note that the generic
form of such a Lagrangian can be given as

Lðqa; _qa; tÞ ¼
1

2
gab _qa _qb þ fa _qa − V; a; b∶1;…; K;

ð2:12Þ

where gab is the metric associated to the generalized
coordinates qa, fa are functions of the generalized coor-
dinates, i.e., fa ≡ faðqbÞ and V ≡ VðqaÞ is the potential.
The corresponding Hamiltonian can be shown to take the
form (see Appendix C for details)

H ¼ 1

2
g−1abpapb þ

1

2
g−1abfafb − g−1abfapb þ V: ð2:13Þ

Adapting (2.13) to (2.7), in the Cartesian coordinates, we
obviously have gab as the Euclidean flat metric δij, we may

write f⃗i ¼ −κεijx⃗j (i; j∶1, 2) and observe that V ¼
ðx⃗1 × x⃗2Þ2. Putting all these together, we find that the
Hamiltonian corresponding to (2.7) takes the form3

H ¼ 1

2
ðp⃗2

1 þ p⃗2
2Þ þ

1

2
κ2ðx⃗2

1 þ x⃗2
2Þ

þ κðp⃗1·x⃗2 − p⃗2·x⃗1Þ þ ðx⃗1 × x⃗2Þ2; ð2:14Þ

with the equations of motion easily evaluated to be

_x⃗1 ¼ p1;

_p⃗1 ¼ −κ2x⃗1 þ κp⃗2 − 2x⃗2 × ðx⃗1 × x⃗2Þ;
_x⃗2 ¼ p2;

_p⃗2 ¼ −κ2x⃗2 − κp⃗1 þ 2x⃗2 × ðx⃗1 × x⃗2Þ: ð2:15Þ
Using (2.15), the time derivative of L⃗1 may be

expressed as

_L⃗1 ¼ κx⃗1 × p⃗2 − 2x⃗1 × ðx⃗2 × ðx⃗1 × x⃗2ÞÞ: ð2:16Þ

A similar result holds for _L⃗2. Although the second term in
(2.16) remains aligned with L⃗1 as it does in the pure YM
matrix model, this is not manifest for the first term.
Nevertheless, the subsequent analysis will show, upon
implementing the Gauss law in appropriate coordinates,
that the dynamics remain planar.
Taking advantage of the local SUð2Þ ≈ SOð3Þ and the

global SOð2Þ rotations, we may introduce the coordinates
ðα; β; γ; r; θ;ϕÞ. Following [5], we may consider the 3 × 2

matrix M whose columns are the vectors x⃗1 and x⃗2, i.e.,
M ¼ ðx⃗1; x⃗2Þ and express M as

M ¼ 1ffiffiffi
2

p Rðα; β; γÞ·

0
B@

r r cos θ

0 r sin θ

0 0

1
CA·

�
cosϕ sinϕ

− sinϕ cosϕ

�
;

ð2:17Þ

where Rðα; β; γÞ is a SOð3Þ Euler matrix using z − x − z
active rotation with the angles ðα; β; γÞ, respectively. Its
explicit form is given in the Appendix D for quick

reference. M0 ≡ ðx⃗T;ð0Þ
1 ; x⃗T;ð0Þ

2 Þ with x⃗T;ð0Þ
1 ≔ ðr; 0; 0Þ and

x⃗T;ð0Þ
2 ≔ ðr cos θ; r sin θ; 0Þ may be thought of as a con-

figuration of the two D0-branes oriented coplanarly with a
relative angle θ obtained via a SUð2Þ gauge choice. The
latter is not preserved in general by the global SOð2Þ
rotations on x⃗1 and x⃗2, which can be taken to act on the
right of M0, nor it is preserved by the SUð2Þ ≈ SOð3Þ
gauge rotations, which acts from the left on M0. Thus,
taking these facts together, (2.17) is a convenient way to
introduce new coordinates for the present dynamical
system. The advantage of this choice of the coordinates
is that the Gauss law constraint in (2.11) can be fully solved
and manifestly imposed on the Hamiltonian expressed in
terms of the new variables, as we will demonstrate in what
follows. Let us also remark that, this is essentially the same
approach followed in [5] except that we no longer restrict
the gauge SUð2Þ ≈ SOð3Þ rotations to an SOð2Þ subgroup
in advance, since it is not readily seen that _L⃗i (i ¼ 1, 2)
remain aligned with L⃗i.

3In the pure CS limit the Hamiltonian becomes zero as
explained in Appendices C and D.
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Let us note in advance that the components of angular
momentum L⃗ can be expressed in terms of the conjugate
momenta ðpα; pβ; pγÞ corresponding to the Euler angles
ðα; β; γÞ4 as [37]

L⃗ ¼

0
B@

sin αðpγ csc β − pα cot βÞ þ pβ cos α

cos α csc βðpα cos β − pγÞ þ pβ sin α

pα

1
CA; ð2:18Þ

which immediately implies that the Gauss law constraint
L⃗ ¼ 0 is equivalent to

pα ¼ pβ ¼ pγ ¼ 0: ð2:19Þ

We will make use of (2.19) to fully impose the Gauss law
constraint in what follows.
The metric in the new coordinates ðr; θ;ϕ; α; β; γÞ is

straightforwardly obtained from the expression

gij ¼ Trð∂iM†∂jMÞ: ð2:20Þ

We give the components of gij and its inverse gij in
Appendix D and also provide there the details of the
evaluation of the Hamiltonian in the new coordinates using
the generic form in (2.13) together with the inverse metric
gij. Employing these facts and imposing the Gauss law
constraint (2.19), we find

H ¼ 1

2
p2
r þ

2

r2
p2
θ þ

p2
ϕ

2r2 cos2ðθÞ þ κpϕ

þ κ2r2

2
þ 1

4
r4 sin2ðθÞ þ ℏr;

≕
1

2
p2
r þ

2

r2
p2
θ þ Veff : ð2:21Þ

Since this Hamiltonian is cyclic in ϕ, as in the pure YM
case [5], pϕ is a constant of motion and taking advantage of
this fact, we have defined the effective potential, Veff , in the
second line of (2.21). A number of remarks regarding this
Hamiltonian are now in order.5 First, we observe that the
terms involving the CS coupling κ are new and therefore we
are now in a position to examine the chaotic dynamics
emerging from (2.21) as κ and the angular momentum pϕ

assume a range of different values. Also note the presence
of the ℏr term in Veff . In [5] this term is motivated by the
fact that for sin θ ≈ θ, the motion can be considered to be
adiabatic in θ with an effective frequency ωθ;eff ≈ r. With ℏ
taken as a small parameter, the term ℏr can then be
considered as the quantum mechanical correction to the

energy, which lifts the flat direction of the pure YM model,
that is, the case corresponding to the commuting matrices.
In the present case, dependence of Veff on θ is the same as
the pure YM model, leading to the same interpretation for
this term. The interesting new fact is that, for κ ≠ 0, Veff
already develops a minimum even at ℏ ¼ 0. This minimum
is at θ ¼ 0, and the real positive root of the quartic equation
κ2r4 þ ℏr3 − p2

ϕ ¼ 0. For ℏ ¼ 0, we obtain r2 ¼ j pϕ

κ j,
which yields E > 2κpϕ for κpϕ > 0 and simply E > 0

for κpϕ < 0. Let us also note that for κ ¼ 0, r ∝ p2=3
ϕ ℏ−1=3,

and for a typical value of ℏ ¼ 0.1, Veff ≈ 0.32 at pϕ ¼ 1

[5], while for κ ≠ 0, this minimum shifts upward for κ > 0
and downward for κ < 0. For instance, we have Veff ≈ 0.53
and 0.21 at 4πκ ¼ 2 and 4πκ ¼ −2, respectively; this is
illustrated in Fig. 1(b). In general, the positive shift of the
Veff with increasing values of κpϕ > 0 reinforces the
harmonic term in the potential and they together act to
decrease the Lyapunov exponent, while κpϕ < 0 gives a
window of negative values (−5 < 4πκ < 0), in which we
observe a slight increase in the Lyapunov spectrum clear as
will be made manifestly clear in the next section.
It is also useful to have the contour plots of the Veff at

pϕ ¼ 0, 1, 2 for various values of κ aswewill refer to them in
the next section. These are given in Figs. 1(a), 1(c) and 1(d).
Sharp edges in these potential contours near θ ≈ 0 corre-
spond to the flat direction of the pure YM potential. In the
present case, the CS term helps to lift this, as the harmonic
term in Veff assists to shrink the sharp edges for all values of
pϕ and also acts to pull the contours toward closed loops for
pϕ ≠ 0. For pϕ > 0, the latter happens faster for κ > 0 as
opposed to κ < 0 and vice versa for pϕ < 0.

III. ANALYSIS OF THE CHAOTIC DYNAMICS

We now explore the chaotic structure of the system
governed by (2.21) by studying the Lyapunov spectrum and
the Poincaré sections.

A. Lyapunov spectrum

Setting the energy E ¼ 1, ℏ ¼ 0.1, and letting pϕ assume
the values 0,1,2, which is convenient for ease in compari-
son with the pure YMmatrix model results in [5], we obtain
the largest Lyapunov exponents (LLE), λL, as the CS
coupling takes on a range of values, in which the typical
behavior of the LLE’s is captured. Our results are obtained
after averaging over 120 randomly selected initial con-
ditions6 in each case. They are presented in Figs. 2(a)–2(c)
and we will elaborate on them shortly.
The chaotic structure of the pure YM model is explored

in [5] and it is found that the system is fully chaotic at
pϕ ¼ 0 and essentially becomes nonchaotic with4As this is not frequently encountered in the literature, we

provide a quick derivation in Appendix E.
5For the pure Chern-Simons limit of this Hamiltonian, readers

are referred to Appendices C and D.

6Our method for evaluating the Lyapunov exponents and
choosing initial conditions is explained in Appendix B.
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increasing values of pϕ. At the intermediate values
0 < pϕ < 2, for example at pϕ ¼ 1, there are regions in
the phase space, in which quasiperiodic motion is present
as signaled by KAM tori appearing in the Poincaré section
plots given in [5], while the rest of the phase space is filled
with chaotic motion.
In Fig. 2(a), a profile of the Lyapunov spectrum of the

model values of κ in the interval 4πjκj ≤ 15 and at pϕ ¼ 0 is
presented. The plot is essentially symmetric with respect to
the κ ¼ 0 axis asmay be expected from (2.21), which is even
under κ ↔ −κ for pϕ ¼ 0 and although LLE values tend to
decrease in an almost monotonic manner for 4πjκj > 4, they
are essentially nonvanishing for 4πjκj ≤ 10, which makes us
conclude that the model is chaotic and behaves similar to the
pure YM case within this range of the CS coupling. The

rathermild increase in the LLE values observed in this plot in
the narrow range 4πjκj < 4 can be explained as follows. As
jκj increases, sharp edged regions in the contour plot of the
effective potentialVeff , as illustrated in Fig. 1(b), become less
pronounced, and consequently, compared to κ ¼ 0, the
system spends relatively less time in these regions where
the dynamics is adiabatic in θ and therefore no appreciable
contribution to chaos is expected [5]. In turn, this results in a
mild increase in the LLE spectrumwithin the indicated range
of κ values. Nevertheless, for 4πjκj > 4, the harmonic term
starts to become significant and the chaotic dynamics is
gradually lost.
For pϕ ≠ 0, the κpϕ term in Veff impacts the Lyapunov

spectrum asymmetrically depending on its sign, as it causes
a fixed negative or a positive shift on the latter. At pϕ ¼ 1,

FIG. 2. Lyapunov spectra versus κ values at pϕ ¼ 0, 1, 2.
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for instance, which is illustrated in Fig. 2(b), we immedi-
ately observe that λL values, within the range of values
−5 < 4πκ < 0, are above what is computed at κ ¼ 0. This
can be attributed to the downward shift in Veff due to
κpϕ < 0, which clearly also lowers the minimum of Veff as
we have already discussed toward the end of previous
section. The increase in λL cannot be sustained for
4πκ < −5, since then the harmonic term ∝ κ2r2 becomes
sufficiently strong even at short distances to dominate Veff
and initiates the decline of the chaotic dynamics. For κ > 0,
this term acts to strengthen the harmonic terms and the
chaotic motion becomes sharply suppressed before

4πκ ≈ 5. At pϕ ¼ 2, which is shown in Fig. 2(c), we, still
observe a mild increase in the Lyapunov exponents roughly
in the range −4 < 4πκ < 0, but the maximum value of λL
now appears to be ≈0.03, an order of magnitude less than
that found for pϕ ¼ 0 and pϕ ¼ 1, and not significant
enough to conclude that any dense chaotic dynamics
remain for pϕ ≥ 2.

B. Poincaré sections

All of the conclusions of the previous subsection
regarding the chaotic dynamics of the present dynamical

FIG. 3. Poincaré sections at pϕ ¼ 0.

FIG. 4. Poincaré sections at pϕ ¼ 1 for κ > 0.
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system are well supported by the Poincaré sections.
We have obtained the latter at the θ ¼ 0 intersections
of the phase space and projected onto the pθ, pr plane.
Figures 3–6 show the Poincaré sections on the first
quadrant of the pθ, pr plane.
From Fig. 3, we see that chaotic dynamics appears to fill

the phase space at pϕ ¼ 0, for a large range of values of κ,
which is approximately 4πjκj≲ 10, while the periodic
motion starts to compete and take over after this range
of κ values as can be observed from Fig. 3(c).
At pϕ ¼ 1 and 4πκ ¼ 1, from Fig. 4, we observe that the

phase space is still dominated by chaos, while a few KAM
tori indicating quasiperiodic motion are visible. As κ
continues to increase, more KAM tori start to occur, and
the system swiftly becomes nonchaotic for 4πκ ≳ 4 and
gets dominated by quasiperiodic orbits. However, for κ < 0
as illustrated in Fig. 5, the system appears to remain densely
chaotic with only a few KAM tori appearing until around
4πκ ≈ −5, while the quasiperiodic motion starts to spread
for 4πκ ≲ −7.5 and start to take over only after 4πκ ≲ −10.
Let us also note that some KAM tori appear to intersect,
especially as seen in the Poincaré sections at larger values
of jκj, for instance, in Figs. 4(d) and 5(f). This is due to
possible different values of the r coordinate appearing in
the evolution of the system starting with distinct initial

conditions being projected to the same point on the
pθ,pr plane.
For pϕ ¼ 2, we see that there is very little chaos

remaining in the phase space regardless of the value of κ
and quasiperiodic motion dominates the phase space. This
can be seen from the Poincaré sections in Fig. 6. There is no
chaos for κ > 0, and although some randomly spread points
appear for negative κ values, for small jκj, KAM tori
quickly dominate the phase space and quasiperiodic motion
is all that is left.

C. Transition from chaotic to nonchaotic phase

In order to investigate the transition of the system from
the chaotic phase, i.e., black-brane phase, to the non-
chaotic, integrable phase dominated by quasiperiodic
motion, it is useful to examine the change of λL with pϕ

treated as the order parameter, while keeping κ fixed. The
fitting curves presented in Fig. 7 help to illustrate the
situation with sufficient clarity. In particular, from this
figure, we see that for −7≲ 4πκ < 0, λL decreases linearly
with increasing pϕ, and the transition between the two
phases occurs at pc

ϕ ≈ 2 with a critical exponent of 1 for λL.
Therefore, we conclude that approximately within this
range of κ, the transition from the chaotic to nonchaotic

FIG. 5. Poincaré sections at pϕ ¼ 1 for κ < 0.
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phase has the same characteristic as found for the pure YM
model in [5]. For 4πκ < −7, the λL value is already below
0.1 [see Fig. 2(b)] at pϕ ¼ 1 and tends to decrease faster
with increasing pϕ; at 4πκ ¼ −10, we estimate that what
little remains of the chaotic phase approaches pc

ϕ ≈ 2with a

critical exponent ≈3=2. For κ > 0, on the other hand, not
only the approach to nonchaotic phase appears to be faster,
but also it tends to occur at smaller values of pϕ at larger κ.
For instance, we estimate that at 4πκ ¼ 1, pc

ϕ ≈ 1.75, while
at 4πκ ¼ 2, pc

ϕ ≈ 1.55, with critical exponents ≈3=2 and
≈5=2, respectively.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have studied the chaotic structure of the
minimal Yang-Mills Chern-Simons matrix model. Using
the gauge and global symmetries, and with a suitable
choice of the coordinates, the Hamiltonian of the system is
obtained in a form in which the Gauss law constraint is
fully solved and manifestly imposed. We have studied the
chaotic dynamics of the model, and in particular, probed
the changes in the Lyapunov exponent as the values of both
the CS coupling, κ, and the conserved conjugate momen-
tum, pϕ, are varied. We have found that, even for pϕ ¼ 0,
there is a range of CS coupling values, approximately given
as 4πjκj≲ 4 within which the Lyapunov exponent is larger
in value compared to that evaluated at κ ¼ 0. We have also
seen that the κpϕ term in the effective potential alters the
Lyapunov spectrum depending on its sign. We have found
that the largest Lyapunov exponents evaluated within a
range of values of κ are above those computed at κ ¼ 0, for

FIG. 6. Poincaré sections at pϕ ¼ 2.

FIG. 7. Lyapunov spectra versus pϕ at 4πκ ¼ −10;−7;−1,
1, 2. Estimates for pc

ϕ and the critical exponents for λL are
obtained from the best fitting curves to the data.
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κpϕ < 0. These results are discussed in detail in Sec. III,
where we also presented estimates for the critical exponents
for λL and the value of the order parameter, pc

ϕ, as the
system transits from chaotic to nonchaotic phase.
Let us finally note that the out of time order correlators

approach recently applied in [38] to a system involving a
x2y2 term in the potential to probe quantum chaos may also
be suitable for the model treated in this paper and we hope
to report on any developments along these directions
elsewhere in the near future.

ACKNOWLEDGMENTS

Part of the work of S. K. work was carried out during his
sabbatical stay at the physics department of CCNY of
CUNY and he thanks V. P. Nair and D. Karabali for the
warm hospitality at CCNYand the metropolitan area. S. K.
thanks A. P. Balachandran for discussions and critical
comments. The authors acknowledge the support of
Türkiye Bilimsel ve Teknolojik Arastirma Kurumu under
Project No. 118F100 and Middle East Technical University
Research Project No. GAP-105-2018-2809.

APPENDIX A: CHERN-SIMONS ACTION IN 0+ 1
DIMENSIONS

In 2þ 1 dimensions, the CS action for the Hermitian
SUð2Þ gauge fields Aμ may be given as [36,39]

SCSð2þ1Þ ¼
k
4π

Z
d3xϵμνρTr

�
−Aμ∂νAρ þ

2

3
iAμAνAρ

�
;

ðA1Þ

where Aμ transform under the SUð2Þ gauge transformations
as Aμ → U†AμU þ iU†∂μU. Invariance of eiSCSð2þ1Þ under
large gauge transformations requires that k is an integer.7

Dimensional reduction from 2þ 1 to 0þ 1 dimension is
facilitated by requiring that all spatial dependence of the
gauge fields Aμðx; tÞ are dropped and only their time

dependence is retained. This implies that in SCSð2þ1Þ all
the spatial derivatives collapse to zero. Introducing the
notation Aμ ≡ ðA0; XiÞ, i∶1, 2, we immediately find

SCSð0þ1Þ ¼
k
4π

Z
d2x

Z
dtTrðϵijðXi

_Xj þ 2iA0XiXjÞÞ

¼ kV2

4π

Z
dtTr½ϵijXiðD0XjÞ�;

≕ κ

Z
dtTr½ϵijXiðD0XjÞ�; ðA2Þ

where V2 ≔
R
d2x denotes the result of the two-dimen-

sional volume integral. Thus the coupling of the CS action
in 0þ 1 dimensions takes the form κ ≔ kV2

4π and due to the
volume factor V2, it differs from the coupling of the CS
action in 2þ 1 dimensions. In particular, due to the V2

factor, which can take arbitrary real values, κ is not an
integer multiple of 1

4π. We also see that the CS coupling κ
obtained in this manner is consistent with the fact that
SCSð0þ1Þ is manifestly gauge invariant [as it is trivially
observed from the second line of (A2) upon using the
cyclicity of the trace and U†U ¼ UU† ¼ 1]. These facts
clearly indicate that κ is not level quantized.
In this paper we work with 4πjκj ⪅ 10 as this conven-

iently gives the relevant range of κ values to explore the
dynamics at E ¼ 1 and jpϕj ⪅ 2. The latter are the values of
energy and pϕ used in [5], which we use since it gives us an
ease in comparison. In our study, we are only considering
the classical theory but writing out the ℏ explicitly in the
action there will not be any reason to keep 4πκ within the
values of Oð1Þ.

APPENDIX B: CALCULATION OF LYAPUNOV
EXPONENTS AND SELECTION OF INITIAL

CONDITIONS

1. Calculation of Lyapunov exponents

Lyapunov exponents are useful to determine the sensi-
tivity of a system to given initial conditions. More
precisely, they measure the exponential growth in pertur-
bations and therefore give a reliable way to establish the
presence of chaos in a dynamical system [34,40,41]. For a
Hamiltonian system, if we denote the perturbations in the
phase space coordinates gðtÞ≡ ðg1ðtÞ; g2ðtÞ;…; g2NðtÞÞ by
δgðtÞ, then we may conclude that the system is chaotic if, at
large t, δgðtÞ deviates exponentially from its initial value at
t ¼ t0: jjδgðtÞjj ¼ eλðt−t0Þjjδgðt0Þjj. Here λ > 0 are called
the positive Lyapunov exponents and there are 2N of them
for a phase space of dimension 2N. Let us also note that this
description is in parallel with the statement that even
slightly different initial conditions give trajectories in the
phase space, which are exponentially diverging from each
other and hence lead to chaos. In a dynamical system
presence of at least one positive Lyapunov exponent is

7Let us also note that for gauge fields valued in the Lie algebra
of the Lie group G, CS action on a 2Dþ 1 dimensional space-
time manifoldM changes underG transformation by a term of the
form Ω ∝

R
M Tr½ðg−1dgÞ2Dþ1� (up to a constant factor), where

g ∈ G. In general, Ω does not vanish [39]. For M ¼ S2Dþ1, Ω is
determined via the (2Dþ 1)th homotopy group of G, π2Dþ1ðGÞ,
and the requirement of gauge invariance of eiSCS leads to the level
quantization of the CS coupling. If M is the 2Dþ 1 Minkowski
space,Ω is still determined by π2Dþ1ðGÞ if we demand that g → 1
as time goes to �∞ and at spatial boundaries [36,39]. For D ¼ 0
and G≡ SUð2Þ, we clearly have Ω ¼ 0 since g−1dg is valued in
the Lie algebra of SUð2Þ and hence its trace is vanishing. Thus,
this general consideration is applicable to the SCS in 0þ 1
dimensions and indicates that SCSð0þ1Þ is indeed gauge invariant.
In particular, we also have that π1ðSUð2ÞÞ≡ Π1ðS3Þ ¼ 0, there-
fore, Ω vanishes in 0þ 1 dimensions implying once again that
SCSð0þ1Þ is gauge invariant.

K. BAŞKAN and S. KÜRKÇÜOǦLU PHYS. REV. D 104, 066006 (2021)

066006-10



sufficient to conclude the presence of chaotic motion. In
Hamiltonian systems, due to the symplectic structure of the
phase space, Lyapunov exponents appear in λi and−λi pairs
and a pair of the Lyapunov exponents vanishes as there is
no exponential growth in perturbations along the direction
of the trajectory specified by the initial condition, and the
sum of all the Lyapunov exponents is zero as a consequence
of Liouville’s theorem. These facts are well known and
their details may be found in many of the excellent books
on chaos [34,40,41].
We follow the Appendix in [25] to describe the method

to compute all the Lyapunov exponents. With UðtÞ denot-
ing a time evolution operator, we may write

δgðtÞ ¼ UðtÞδgð0Þ i ¼ 1;…; 2N; ðB1Þ

and

δgðt1 þ t2Þ ¼ Uðt2ÞUðt1Þδgð0Þ: ðB2Þ

Lyapunov exponents are defined by

λi ¼ lim
t→∞

1

t
log

� jjδgðtÞjj
jjδgð0Þjj

�
: ðB3Þ

Dividing the time into n equal steps such that t ¼ nΔt,
Lyapunov exponents can be expressed as

λ ¼ lim
t→∞

1

nΔt
log

�jjUðΔtÞ…UðΔtÞδgð0Þjj
jjδgð0Þjj

�
: ðB4Þ

We may consider that ðh10; h20;…; h2N0 Þ span an orthonor-
mal basis for the set of vectors tangent to the phase space
trajectory gð0Þ at t ¼ 0. After a timeΔt, time evolved vectors
can be written as ki1 ¼ UðΔtÞhi0, where ðk11; k21;…; k2N1 Þ
spans a basis of tangent vectors to the trajectory gðΔtÞ.
However, this basis of vectors need not be orthogonal. Using
the Gram-Schmidt orthogonalization process, we can obtain
the orthogonal set from ðk11; k21;…; k2N1 Þ, which we may
denote as ðh̃11; h̃21;…; h̃2N1 Þ. The expansion rate of the vector
h̃i1 can be determined as

ri1 ¼
jjh̃i1jj
jjhi0jj

¼ jjh̃i1jj; ðB5Þ

since all hi0 is normalized to 1 already. An orthonormal basis
after time Δt is therefore given as ðh11; h21;…; h2N1 Þ where

hi1 ¼
1

ri1
h̃i1: ðB6Þ

This procedure defines the time evolution after one step of
Δt. AfternΔt steps,wemaywrite theLyapunovexponents as

λi ¼ lim
n→∞

1

nΔt

Xn
k¼1

logðrikÞ: ðB7Þ

The set fλ1;…; λ2Ng is called the Lyapunov spectrum and as
a consequence of this construction λ1 is the largest Lyapunov
exponent, since h1i leads toward the direction in the phase
space which is most sensitive to the initial conditions and
therefore the expansion rate r1i has the largest value in this
region of the phase space.
A MATLAB code solving the Hamilton’s equations of

motion and evaluating the Lyapunov exponents according
to the procedure outlined above is used for our numerical
calculations. Let us note that since the phase space is four
dimensional, there are only four Lyapunov exponents, two
of which are zero and the remaining two may be denoted as
λL and −λL in view of our earlier remarks in this section.
We pick the initial conditions that are used both in the

evaluation of the Lyapunov spectrum and the Poincaré
sections as follows. Both pr and θ are initially taken to be
equal to zero. Using the Hamiltonian (2.21), pθ can be
expressed as

pθ ¼
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2
κ2r4 − 0.1r3 − κpϕr2 þ r2 −

p2
ϕ

2

s
; ðB8Þ

where we have already set E ¼ 1 and ℏ ¼ 0.1. We
determine the intervals of r values, which make the
argument of the square root in (B8) positive and restrict
to the one in which r > 0. The initial value of r is chosen
randomly from this interval and the initial value of pθ is
then determined from (B8).
We run the MATLAB code evaluating the largest positive

Lyapunov exponent for 120 randomly selected initial
conditions according to this procedure at each value of κ
and take their average to obtain each data point. The error
bars are obtained by computing the mean square variances.
In the simulation, we take a time step of 0.5 and run the
code from time 0 to 3000. The λL obtained in this manner is
recorded at several values of pϕ and κ.

APPENDIX C: GENERIC FORM OF THE
HAMILTONIAN AND THE PURE CHERN-

SIMONS LIMIT

Restoring the YM coupling, we may write the YMCS
action in the form

SYMCS ¼
1

g2

Z
dtTr

�
1

2
ðD0XiÞ2 þ

1

4
½Xi; Xj�2

�

þ κ

Z
dtTrϵijXiðD0XjÞ: ðC1Þ

Let us note that the dimensional analysis shows that g has
the units ½Length�−3

2, κ has the units ½Length�2, while the
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fields Xi and A0 are of dimension ½Length�−1. In the paper,
we have scaled t → g−

2
3t, ∂0 → g

2
3∂0, A0 → g

2
3A0, Xi →

g
2
3Xi and κ → g−

4
3κ to work in the units where g is set

to unity.
With the YM coupling included explicitly using (2.7),

we can write

SYMCS ¼
Z

dt
1

2g2
ð _x⃗2

1 þ _x⃗2
2Þ þ κðx⃗1· _x⃗2 − x⃗2· _x⃗1Þ

−
1

g2
ðx⃗1 × x⃗2Þ2; ðC2Þ

while the corresponding conjugate momenta and the
Hamiltonian are given as

p⃗1 ¼
1

g2
_x⃗1 − κx⃗2; p⃗2 ¼

1

g2
_x⃗2 þ κx⃗1: ðC3Þ

H ¼ g2

2
ðp⃗2

1 þ p⃗2
2Þ þ

1

2
g2κ2ðx⃗2

1 þ x⃗2
2Þ

þ g2κðp⃗1·x⃗2 − p⃗2·x⃗1Þ þ
1

g2
ðx⃗1 × x⃗2Þ2: ðC4Þ

We may obtain the pure CS limit by letting g → ∞. In this
limit, we see from (C3) that p⃗1 → −κx⃗2 and p⃗2 → κx⃗1.
Substituting this in the Hamiltonian (C4), we find

H ¼ g2ðx⃗2
1 þ x⃗2

2Þ − g2ðx⃗2
1 þ x⃗2

2Þ ¼ 0: ðC5Þ

Therefore, we see that in the pure CS limit the Hamiltonian
vanishes and hence no dynamics or chaos remains. This
result is consistent with the general considerations arising
from the Chern-Simons theories, as it is known that the pure
CS theory has no dynamics, but nontrivial dynamics emerges
from coupling to dynamical matter fields, or by considering
the CS action on a manifold with boundaries [36].
More generally, for a system with generalized coordi-

nates qi and velocities _qi, Lagrangian involving first order
time derivatives have the generic form

Lðqi; _qi; tÞ ¼
1

2
gij _qi _qj þ fi _qi − V; ðC6Þ

where gij is the metric, fi is some function of the
generalized coordinates i.e., fi ≡ fiðqjÞ and V is a poten-
tial V ≡ VðqiÞ. Canonical momenta are evaluated as

pi ¼
∂L
∂ _qi ¼ gij _qj þ fi: ðC7Þ

In terms of pi, _qi can be solved using the inverse metric in
the form

_qi ¼ g−1ij ðpj − fjÞ;
¼ gijðpj − fjÞ: ðC8Þ

The Hamiltonian then takes the form

H ¼ pi _qi − L

¼ pig−1ij ðpj − fjÞ −
1

2
gijg−1ik ðpk − fkÞg−1jl ðpl − flÞ − fig−1ij ðpj − fjÞ þ V

¼ pig−1ij ðpj − fjÞ −
1

2
g−1jl ðpj − fjÞðpl − flÞ − fig−1ij ðpj − fjÞ þ V

¼ pig−1ij ðpj − fjÞ −
1

2
g−1ij ðpi − fiÞðpj − fjÞ − fig−1ij ðpj − fjÞ þ V

¼ g−1ij

�
pipj − pifj −

1

2
pipj þ pifj −

1

2
fifj − pifj þ fifj

�
þ V

¼ 1

2
g−1ij pipj þ

1

2
g−1ij fifj − g−1ij pifj þ V; ðC9Þ

given in (2.13).
In order to discuss the limit in which the Lagrangian

consists of only first order time derivatives, we may first set
gij → 1

g2 gij, g
−1
ij → g2g−1ij and V → 1

g2 V. We may, therefore,

write the generic form of the Hamiltonian as

H¼g2
�
1

2
g−1ij pipjþ

1

2
g−1ij fifj−g−1ij pifj

�
þ 1

g2
V; ðC10Þ

while the conjugate momenta take the form pi ¼
1
g2 gij _qj þ fi. Thus, in the limit with g → ∞, we have pi →

fi and upon substituting this in (C10), we immediately see
that H ¼ 0.
It is somewhat more subtle to see the pure CS limit from

the Hamiltonian given in the angular coordinates in (2.21).
We will provide a concrete discussion of this limit in the
next Appendix.
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APPENDIX D: DERIVATION OF THE HAMILTONIAN IN THE NEW COORDINATES

1. Metric

A general SOð3Þ element in the Euler’s parametrization with z − x − z active rotation with the angles α, β, γ respectively
is given by [42]

Rðα; β; γÞ ¼

0
B@

cðαÞcðγÞ − sðαÞcðβÞsðγÞ −sðαÞcðβÞcðγÞ − cðαÞsðγÞ sðαÞsðβÞ
cðγÞsðαÞ þ cðαÞcðβÞsðγÞ cðαÞcðβÞcðγÞ − sðαÞsðγÞ −cðαÞsðβÞ

sðβÞsðγÞ sðβÞcðγÞ cðβÞ

1
CA; ðD1Þ

where s and c stand for sine and cosine, respectively. This can be facilitated to obtain the matrix M in (2.17).
The metric in the new coordinates ðr; θ;ϕ; α; β; γÞ is evaluated using gij ¼ Trð∂iM†∂jMÞ and it yields

gij ¼

0
BBBBBBBBB@

1 0 0 0 0 0

0 r2
2

1
2
r2 sinðθÞ 1

2
r2 cosðβÞ 0 r2

2

0 1
2
r2 sinðθÞ r2 r2 cosðβÞ sinðθÞ 0 r2 sinðθÞ

0 1
2
r2 cosðβÞ g34 g44 g45 r2 cosðβÞ

0 0 0 g54 g55 0

0 r2
2

r2 sinðθÞ r2 cosðβÞ 0 r2

1
CCCCCCCCCA
; ðD2Þ

where

g34 ¼ r2 cosðβÞ sinðθÞ;

g44 ¼ −
1

8
r2 cosð2βÞ cosð2ðγ þ θÞÞ − 1

16
r2 cosð2ðβ − γÞÞ − 1

16
r2 cosð2ðβ þ γÞÞ þ 1

4
r2 cosð2βÞ

þ 1

4
r2 cosðθÞ cosð2γ þ θÞ þ 3r2

4
;

g54 ¼ −
1

2
r2 sinðβÞ cosðθÞ sinð2γ þ θÞ;

g45 ¼ −
1

2
r2 sinðβÞ cosðθÞ sinð2γ þ θÞ;

g55 ¼ −
1

4
r2 cosð2ðγ þ θÞÞ − 1

4
r2 cosð2γÞ þ r2

2
: ðD3Þ

The inverse metric g−1ij is given as

gij ¼

0
BBBBBBBBBB@

1 0 0 0 0 0

0 4
r2 0 0 0 − 2

r2

0 0
sec2ðθÞ

r2 0 0 − secðθÞ tanðθÞ
r2

0 0 0 g44 g45 g46

0 0 0 g54 g55 g56

0 − 2
r2 − secðθÞ tanðθÞ

r2 g64 g65 g66

1
CCCCCCCCCCA
; ðD4Þ

where
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g44 ¼ −
ðcosð2γÞ þ cosð2ðγ þ θÞÞ − 2Þcsc2ðβÞcsc2ðθÞ

r2
;

g45 ¼ 2 cotðθÞ cscðβÞ cscðθÞ sinð2γ þ θÞ
r2

;

g46 ¼ ðcosð2γÞ þ cosð2ðγ þ θÞÞ − 2Þ cotðβÞ cscðβÞcsc2ðθÞ
r2

;

g54 ¼ 2 cotðθÞ cscðβÞ cscðθÞ sinð2γ þ θÞ
r2

;

g55 ¼ ðcosð2γÞ þ cosð2ðγ þ θÞÞ þ 2Þcsc2ðθÞ
r2

;

g56 ¼ −
2 cotðβÞ cotðθÞ cscðθÞ sinð2γ þ θÞ

r2
;

g64 ¼ ðcosð2γÞ þ cosð2ðγ þ θÞÞ − 2Þ cotðβÞ cscðβÞcsc2ðθÞ
r2

;

g65 ¼ −
2 cotðβÞ cotðθÞ cscðθÞ sinð2γ þ θÞ

r2
;

g66 ¼ −ðcosð2γÞ þ cosð2ðγ þ θÞÞ − 2Þcot2ðβÞcsc2ðθÞ þ sec2ðθÞ þ 1

r2
: ðD5Þ

2. Hamiltonian in the new coordinates

Corresponding to the generalized coordinates ðr; θ;ϕ; α; β; γÞ, we label the associated conjugate momenta as
ðpr; pθ; pϕ; pα; pβ; pγÞ. Using the inverse metric in (D4), we have the first term in the generic form of the
Hamiltonian (2.13) [or (C9)] given as

1

2
g−1ij pipj ¼ −

csc2ðβÞ cosð2γÞcsc2ðθÞp2
α

2r2
−
csc2ðβÞcsc2ðθÞp2

α cosð2ðγþ θÞÞ
2r2

−
2 cotðβÞ cscðβÞcsc2ðθÞpαpγ

r2

þ cotðβÞ cscðβÞ cosð2γÞcsc2ðθÞpαpγ

r2
þ cotðβÞ cscðβÞcsc2ðθÞpαpγ cosð2ðγþ θÞÞ

r2

þ 2 cscðβÞ cotðθÞ cscðθÞpαpβ sinð2γþ θÞ
r2

þ csc2ðβÞcsc2ðθÞp2
α

r2
þ cot2ðβÞcsc2ðθÞp2

γ

r2

−
cot2ðβÞ cotðθÞ cscðθÞp2

γ cosð2γþ θÞ
r2

þ cotðθÞ cscðθÞp2
β cosð2γþ θÞ

r2
−
2 cotðβÞ cotðθÞ cscðθÞpβpγ sinð2γþ θÞ

r2

þ csc2ðθÞp2
β

r2
−
tanðθÞ secðθÞpγpϕ

r2
−
2pγpθ

r2
þ sec2ðθÞp2

γ

2r2
þ p2

γ

2r2
þ sec2ðθÞp2

ϕ

2r2
þ 2p2

θ

r2
þp2

r

2
: ðD6Þ

In order to proceed, we need to evaluate the form of f⃗i ¼ −κεijx⃗j (i; j∶1, 2) in the new coordinates. The function
fi ¼ fiðqjÞ and _qi in the Lagrangian (2.7) appear as

fi _qi ≡ κx⃗1· _x⃗2 − κx⃗2· _x⃗1: ðD7Þ

Since the ith column of the matrix M in (2.17) corresponds to the components of x⃗i, and so the correspondence goes with
their time derivatives, the right-hand side of (D7) can be written by taking the inner products of the column vectors ofM and
_M and this yields

fi _qi ¼ −
1

2
r2κð2 _ϕþ sinðθÞð2_α cosðβÞ þ 2_γ þ _θÞÞ: ðD8Þ
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Since fi _qi ¼ f1 _rþ f2 _θ þ f3 _ϕþ f4 _αþ f5 _β þ f6 _γ in
the new coordinates, the coefficients fiðr; θ;ϕ; α; β; γÞ,
ði∶1;…; 6Þ are now easily read out from (D8) to be

f1 ¼ 0;

f2 ¼ −
1

2
r2κ sinðθÞ;

f3 ¼ −r2κ;

f4 ¼ −r2κ sinðθÞ cosðβÞ;
f5 ¼ 0;

f6 ¼ −r2κ sinðθÞ: ðD9Þ

With fi given (D9), we can evaluate the second and the
third term in (2.13). We find

1

2
g−1ij fifj ¼

1

2
r2κ2; ðD10Þ

and

1

2
g−1ij pifj ¼ −pϕκ: ðD11Þ

The last term takes the form

1

2
ðx⃗1 × x⃗2Þ2 ¼

1

4
r4sin2ðθÞ; ðD12Þ

which is the same as what would be obtained had we used
the matrix M0, since the square of the cross product of the
column vectors ofM is a scalar and does not get affected by
gauge rotations.
Putting (D6), (D10), (D11), and (D12) together and

imposing the Gauss law constraint L⃗ ¼ 0 via (2.19) as8

pα ¼ pβ ¼ pγ ¼ 0; ðD13Þ

we finally obtain the Hamiltonian given in (2.21).

3. Pure CS limit in the new coordinates

With the YM coupling written explicitly, the Hamiltonian
in the angular coordinates is given as

H ¼ g2
�
1

2
p2
r þ

2

r2
p2
θ þ

p2
ϕ

2r2 cos2ðθÞ þ κpϕ þ
κ2r2

2

�

þ 1

4g2
r4 sin2ðθÞ: ðD14Þ

Since the Gauss law constraint (2.19) pα ¼ pβ ¼ pγ ¼ 0 is
already imposed in (D14), it is somewhatmore subtle to see the
pure CS limit. The formal way to proceed is to use the form of

the Hamiltonian prior to imposing the Gauss law constraint
which is given by (C10) with (D6), (D10) and (D11). As
g → ∞, we have pi → fi with fi given in (D9), and a short
calculation in MATHEMATICA confirms that H ¼ 0. A rather
quickway to see this result from (2.21) is as follows. From the
Gauss law constraint the equationspα ¼ 0,pγ ¼ 0 imply that
θ ¼ 0. This gives pθ ¼ f2 ¼ − 1

2
κr2 sin θ ¼ 0. We further

have pr ¼ f1 and f1 ¼ 0 and, pϕ ¼ f3, f3 ¼ −r2κ.
Substituting these in (2.21), we immediately obtain H ¼ 0.

APPENDIX E: ANGULAR MOMENTUM VECTOR
IN TERMS OF EULER ANGLES AND

CONJUGATE MOMENTA

Angular velocities can be expressed in terms of Euler
angles and their time derivatives as [37,42]

w1 ¼ _γ sinðαÞ sinðβÞ þ _β cosðαÞ;
w2 ¼ _β sinðαÞ − _γ cosðαÞ sinðβÞ;
w3 ¼ _αþ _γ cosðβÞ: ðE1Þ

In terms of Euler angles and their time derivatives,
rotational kinetic energy takes the form

T ¼ 1

2
ðI1w2

1 þ I2w2
2 þ I3w2

3Þ
¼ I1ð_γ2sin2ðαÞsin2ðβÞ þ 2_β _γ sinðαÞ cosðαÞ sinðβÞ
þ _β2cos2ðαÞÞ þ I2ð_γ2cos2ðαÞsin2ðβÞ
− 2_β _γ sinðαÞ cosðαÞ sinðβÞ þ _β2sin2ðαÞÞ
þ I3ð2_α _γ cosðβÞ þ _α2 þ _γ2cos2ðβÞÞ; ðE2Þ

where Ii are the moment of inertia with respect to the
principal axes associated to z − x − z active rotation with
the angles α, β, γ.
Momentum conjugates to the Euler angles α, β, γ are

pα ¼
∂T
∂ _α ; pβ ¼

∂T
∂ _β ; pγ ¼

∂T
∂ _γ ; ðE3Þ

and we have

0
B@

pα

pβ

pγ

1
CA ¼

0
B@

0 I3 I3 cosðβÞ
0 A22 A23

I3 cosðβÞ A32 A33

1
CA
0
B@

_α
_β

_γ

1
CA; ðE4Þ

where the remaining components of matrix A are given as8This is proved in the next Appendix.
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A22 ¼ I1cos2ðαÞ þ I2sin2ðαÞ;
A23 ¼ I1 cosðαÞ sinðαÞ sinðβÞ − I2 cosðαÞ sinðαÞ sinðβÞ;
A32 ¼ I1 cosðαÞ sinðαÞ sinðβÞ − I2 cosðαÞ sinðαÞ sinðβÞ;
A33 ¼ I3cos2ðβÞ þ I2cos2ðαÞsin2ðβÞ þ I1sin2ðαÞsin2ðβÞ:

ðE5Þ

Writing (E4) as P ¼ AΘ in short, the column matrix _Θ ¼
ð _α; _β; _γÞT can be obtained from the equation _Θ ¼ A−1P.
Substituting _α; _β; _γ obtained from this equation into (E1)
yields w1, w2, w3 in terms of pα, pβ, pγ . Finally, we obtain

the components of angular momentum L⃗ using Li ¼ ∂T
∂wi

¼
Iiwi (no sum over i) as [37]

L⃗ ¼

0
B@

sinðαÞðpγ cscðβÞ − pα cotðβÞÞ þ pβ cosðαÞ
cosðαÞ cscðβÞðpα cosðβÞ − pγÞ þ pβ sinðαÞ

pα

1
CA:

ðE6Þ

Therefore, the Gauss law constraint L⃗ ¼ 0 is equivalent
to (2.19).
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